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FIGURE 4 | ROS and RNS levels increased in plasma-treated and plasma-activated saline-treated MRSA. MRSA incorporated with APF (A), HPF (B), superoxide

indicator (C), and tMVP (D), which measured the ROS or RNS as indicated, treated with plasma for 40 s or saline treated with plasma for 40 s. Then the fluorescence

intensities of were measured in plasma-treated, plasma-activated saline-treated, and untreated MRSA. Data are representative of three independent experiments.

Error bars represent s.d.

DISCUSSION

In this study, we demonstrated that treating MRSA sublethally
with plasma-generated ROS and RNS decreased the MICs of
several antibiotics and increased persister eradication, along with
increases in the levels of ROS and RNS in MRSA cells. Plasma-
activated saline had the same effect upon the antibiotic sensitivity
of MRSA and persister inactivation as direct plasma treatment,
suggesting that the plasma-generated ROS and RNS could be
applied in both gaseous or aqueous form depending on the mode
of application. The short-lived species in the plasma-activated
saline had short half-lives, but they could react and generate long-
lived species, which also could generate to short-lived species
reversibly, such as ONOO− generated from NO−

3 (Oehmigen
et al., 2011; Liu et al., 2017). Plasma generated various ROS, which

are involved in a great many chemical reactions (Oehmigen et al.,
2011). The underlying reactions and detailed mechanisms of
plasma-activated saline are still not well understand and require
further study.

Unlike other treatments that have previously been used as
antibiotic adjuvants to enhance ROS production in bacterial
cells, plasma induces the production of a wider range of ROS
species (Morones-Ramirez et al., 2013; Shen et al., 2016). The
ROS and RNS generated by the plasma constitute a complex
mix of products, including •OH, 1O2, O•−

2 , ONOO−, and
ClO− (Liu et al., 2016). Subsequently, these many different
ROS or RNS species were also detected in plasma-treated
bacterial cells. The intracellular ROS and RNS could induce
oxidative stresses, such as damaging lipids, proteins and DNA
by •OH, 1O2, and O•−

2 , as well as protein damages by
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ONOO− and ClO− (Davies, 2016). O•−

2 could be detoxified
by endogenous antioxidants of the oxidative response, but
no enzyme can detoxify •OH or 1O2, and MRSA could not
detoxify all the multiple reactive species induced by plasma
(Vatansever et al., 2013). It was speculated that the compound
damages stimulated multiple response pathways and kept
MRSA busy with repairing, which contributed to the effects of
antibiotics.

Reactive species generated by plasma could also induce
damages in eukaryotic cells, subsequently, the safety and toxicity
of this application should be considered. The CC50 of the
plasma treatment used in this study for human primary
dermal fibroblasts was about 40 s treatment, which was close
to the LD50 on MRSA (Figure S4A). Comparing with bacterial
cells, the cultured cells are more easily to be inactivated in
vitro because of the lack of cell wall. However, the plasma
treatment did not increase micronuclei formation in fibroblast
cells (Figures S4B,C). Coincidently, a newly published paper
found similar results on lymphocyte TK6 cells (Bekeschus
et al., 2018). Further, the olive tail moment of plasma-treated
cells exhibited little difference with that of untreated cells
(Figures S4D,E). So the plasma treatment did not remarkably
increase the mutagenicity of fibroblasts as demonstrated by
both micronucleus assay and comet assay. Besides, Maisch
et al. (2012) showed that gas plasma could efficiently inactivate
S. aureus and Escherichia coli on pig skin without inducing
morphological changes or damage-related apoptosis. Clinical
trials also demonstrated that 5min daily treatment with plasma
decreased bacteria in chronic wounds of patients without side
effects (Isbary et al., 2010). These studies demonstrated the
safety of plasma treatment under limited conditions. Many
topical biocides are toxic, and the plasma could be developed
as alternative, especially the plasma-activated saline could be
the save alternative (Wales and Davies, 2015). When used as
a sensitizer with antibiotics as was done in this study, the
doses of plasma were much lower than that used for bacteria

inactivation, which would reduce the risk of toxicity and improve
the safety.

In conclusion, sublethal treatment with plasma-generated
ROS and RNS decreased the MICs of several antibiotics and
increased persister eradication, along with increases in the levels
of ROS and RNS in MRSA. Plasma and plasma-activated saline
could be explored as a novel antibiotic sensitizer to generate
oxidative stress to combat the increasing problem of antibiotic
resistance. Further studies are needed to test these methods
against other multidrug-resistant bacteria and to elucidate the
underlying mechanism.
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