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Chemical Vapor Deposited Diamond Films for 
Self-Referencing Fiber Optic Raman Probes 

Sacharia Albin', Jianli Zheng, Bing Xiao 
John. B. Cooper1, Robert B. Jeffers1 and Sonia Antony1 

Department of Electrical and Computer Engineering 
1Departrnent of Chemistry and Biochemistry 

Old Dominion University, Norfolk, Virginia 23529, U.S.A. 
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Diamond thin films grown by the microwave plasma enhanced chemical vapor deposi
tion (CVD) process have been investigated as an internal reference in fiber optic remote 
Raman sensing. The growth parameters have been optimized for diamond thin films on 
quartz substrates using a gas mixture of methane, carbon dioxide, and hydrogen. The 
resulting fii.Jru; exhibit essentially no Raman spectral background while exhibiting a strong 
Raman peak at \332 cm·1. The films are used as an internal reference in the quantitative 
measurement of chemical concentration using remote fiber optic Raman sensing. Internal 
referencing is accomplished by normalizing all spectral intensities of the chemical species 
to the integrated area of the CVD diamond reference peak at 1332 cm·1 and verified using 
ethanol/water solutiqns. It is shown that the measurement is independent of laser power 
fluctuations. 

1. Introduction 

Recently, we have investigated various fiber optic Raman probe designs incorporating 
both natural and synthetic bulk diamond to obtain quantitative measurement of analytes.Cll 
Raman spectroscopy is a very powerful tool for quantitative analysis; however, its applica
tion has been limited to the laboratory for "off line" analysis, necessitating the test samples 
to be brought to the laboratory to conduct the analysis. On-line monitoring becomes difficult 
because of the critical alignment requirement. Fiber optic sampling greatly simplifies 
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optica1 alignment and isolates the Raman spectrometer from the harsh environment by 
transmitting the signal to the centralized control room using long optical fibers. Both 
excitation light and scattered light can be gnided through the flexible fiber, and the Raman 
spectrnm can be easily obtained merely by immersing the fiber optic probe in the sample. 
Remote monitoring in industrial environments at distances of up to one hundred meters 
between the instruments and the industrial site can be routinely obtained.'') Multipoint 
measurement also becomes possible by multiplexing the optical fibers and having the 
operation of the whole syslem controlled by microcomputers. Since Raman spectroscopy 
is a single-beam technique, the intensity of a Raman line is affected by a number of factors, 
such as incident laser power fluctnation, frequency of the scattered radiation, absorption of 
the materials involved in the scattering, and the response of the detection system. To 
eliminate these problems in quantitative analysis, intensity referencing is employed. The 
widely used referencing technique involves introducing into the sample a small quantity of 
a presumably inert material that has an easily detectable Raman line as a standard. As the 
concentration of the standard CsT is kept constant, the relative intensity 1., which is the ratio 
of the Raman line of the analyte (Is,) to the Raman line of the standard (JsT), depends ouly 
on the concentration of the analyte as given by''-3) 

1 
,-- ls, _ R(v)A(v')v' J(v) C 

• - l"' - R(v')A(v)v'' J(v')CsT s,' (1) 

where C is the concentration, R( v) is the overall spectrometer response, A( v) is the 
absorption of the medinm, v is the frequency of the scattered light, and ]( v) and is a molar 
scattering parameter. All of the terms involving v' correspond to those of the internal 
standard. At a constant CsT, all the lead terms on the right-hand side of the equation.remain 
constant. Thus, JR is proportional to the concentration of the species of interest Cs,: 

(2) 

Unfortunately, this invasive method contaminates the test sample, and is usually unaccept
,able for in situ monitoring of industrial processes. 

Diamond is an ideal material to serve as a referencing standard. Bulk diamond exhibits 
a spectrally pure Raman peak at 1332 cm-1, with a narrow natnral line width (~2 cm-1). This 
is the ouly active mode corresponding to the triply degenerate first-order phonon with F2, 

symmetry. The second-order Raman spectrum is very wealc in the 2050-2770 cm-1 range 
with a pealc at 2458cm-1. The first-order peak is nearly 250 times more intense than the latter. 
Moreover, diamond is transparent in a broad spectral range from ultraviolet to infrared, 
chemically inert an_d mechanically robust. These properties make diamond a suitable 
material for self-referencing in quantitative Raman analysis, posing no interference to most 
analytes' spectra. In this stndy, we explore the application of CVD diamond thin fihn both 
as a large area reference material and an alternative to the expensive bulk diamond. Diamond 
film quality is often assessed by its Raman spectrnm. The Raman band of CVD diamond 
usually is broader than that of natnral diamond, and the background is not flat due to graphite 
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contamination and other impurities. This may distort the Raman spectrum of the analyte 
sample. 

Microwave plasma enhanced CVD (MPECVD) methods have been used more exten
sively than any other diamond growth method.C'-6l The advantages of the MPECVD method 
have been well stated by Sato and KamoC7l in a review of different diamond growth methods. 
The MPECVD method is an electrodeless process, which avoids contamination of the 
diamond films due to electrode erosion. Microwave discharges at 2.45 GHz produce higher 
plasma densities than RF discharges, leading to a higher growth rate. Furthermore, the 
spherical plasma is confined at the center of the chamber, which prevents carbon deposition 
from occurring on the chamber wall. 

Variations in the Raman spectra of CVD diamond, as compared with common types of 
natural diamond) are caused by the presence of appreciable amounts of sp2 carbon domains. 
The quality of CVD diamond depends strongly on the growth conditions, and, most 
critically, on the gas composition and substrate temperature. When conditions deviate from 
an optimum range, the occurrence of nondiamond structures increases and can eventually 
result in the formation of a graphite phase. The optimization of deposition parameters such 
as.temperature, pressure, microwave power, and so forth is very complicated. One of the 
reasons is that most of the parameters are coupled together, which gives a large space for 
optimization. An exhaustive detertnination of the combination of different parameters iS 
almost impossible. As AnthonyC8l points out, the empirical optimization of all parameters 
requires millions of growth experiments. To further complicate matters, growth methods 
reported in the literature are often optimized with different goals in mind .. These include 
optimizing the growth rate, optimizing the optical transparency, optimizing the growth on 

· a particular substrate, optimizing the grain size, optimizing for field emission, and so forth. 
The goal is to produce thin film CVD diamond on quartz that can be used as an internal 

standard for a Raman fiber-optic probe. This will facilitate remote quantitative Raman 
measurements. In achieving this goal, one of the main considerations is to minimize the 
Raman spectral background. We have conducted film growth experiments to minimize this 
background even at the expense of some line broadening of the 1332 cm·1 peak. We have 
undertaken an extensive optimization study mainly focused on pressure, substrate tempera
ture, and gas compositions to obtain the desired diamond quality while maintaining a 
reasonable growth rate. The best first search method, which varies only one parameter in 
one set of experiments, is used to obtain the optimum result. This approach, although not 
guaranteed, is however a reasonable approach to obtain the optimized result using a limited 
number of experiments. The diamond films grown under optimum conditions were used in 
fiber optic probes to perform quantitative Raman analysis. 

2. Experimental Details 

2.1 Diamond film growth 
In this research, all diamond growth experiments were performed using a commercial 

MPECVD system (ASTeX) located in the Nanoelectroincs Laboratory at Old Dominion 
University.<9J Fused silica plates were used as substrates. Substrate nucleation is necessary 
prior to diamond growth. Surface abrasion with hard materials such as diamond, <10

J cubic 
born nitride,<11l silicon carbide powder<12J or stainless steal<13

l is effective in creating 
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nucleation sites on the substrate. When diamond powder is used, the enhanced nucleation 
sites are believed to be due to residual_ diamond particles left on the surface from the 
scratching. (!4) This bas also been shown by Iijima et al. rrn.Is) with the observation of diamond 
nucleation on "diamond seeds" left from the scratching process. Nucleation is conducted 
by placing 0.25 µm diamond paste (ENGIS) on ordinary paper, and gently pushing the 
substrat_e across the paper. A high nucleation density is easily obtained after JO passes. For 
each substrate, half of the substrate area was given a few abrasions (less than 4 times), 
resulting in a low nucleation density, such that scattered diamond particles would grow 
during the deposition. Crystal structure and growth rate were exanrined in this area under 
the scanning electron microscope .(SEM). The other half area of the sample was heavily 
abraded (more than JO times), so that a continuous film was grown, and the diamond quality 
could be.roughly estimated by checking the film color visually and via Raman spectroscopy. 
A process optimization study was conducted by varying pressure, substrate temperature, and 
gas compositions to obtain diamond fihns with little Raman spectral background. 

2.2 Raman analysis 
The experimental setup for Raman spectroscopy is similar to that used for the bulk 

diamond self-referencing study.ti) The 514.5 line of an argon ion laser (Spectra Physics) was 
used as the excitation source for all Raman experiments. The laser line was filtered with a 
514.5 nm band-pass filter (2 mn FWHM, Chroma). A 20x objective was used to focus the 
laser onto the sample and collect the scattered Raman signal. The Raman light was filtered 
with a 514.5 mn holographic notch filter (Kaiser Optical) to remove the Rayleiglj scattered 
laser light. The filtered Raman signal was subsequently focused onto the slit (50 µ,u width) 
of an image-corrected 114-m spectrograph (Chromex). The Raman signal was dispyred with 
a 600-gtoovelmm grating blazed at 0.5 µm, and then detected using a CCD detecior (ST6-
UV Santa Barbara Instruments Group). The CCD detector consists of 750 horizontal pixels 
and 350 vertical pixels of 12 µm pitch. The detector was therrnoelectrically cooled to-35°C 
to reduce thermal noise. The same system was used to conduct self-referencing experiments 
by interfacing the diamond fihns with fiber optic probes. 

3. . Results and Discussion 

3.1 Growth parameters 
Several growth runs were executed with the parameters listed in Table 1. Films were 

analyzed using SEM and Raman spectroscopy. A well-defined peak at 1332 cm-1 clearly 
indicated the existence of diamond while a broad peak centered at 1540 cm-1, indicated the 
presence of grapbitic carbon. It has been reported by Tninstra and Koenigt1~ that the peak 
intensity ratio of the 1332 cm-1 diamond line to 1540 cm-1 graphite line (DIG) is linearly 
proportional to the reciprocal of graphite particle size. Thus, a measure of (DIG) can be used 
as an indication of the diamond quality. For each sample, the (DIG) ratio was measured to 
study the effect of pressure, substrate temperature and oxygen. The optimum value of each 
process variable was determined using the (DIG) ratio and the crystalline quality observed 
under SEM. All process parameters affect the (DIG) ratio; but the ratio is small for the range 
of pressure and substrate temperature used. Pressure itself does not play a very important 
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Table I 
Gtowth parame~rs used during optimization experiments . 

. 
Growth parameters Test Run VariableP v~ria.bleT Va[.CHJ.Hi Variable CO2 Variable CH.JCOa Optimum 

Pte5Sute (Torr) 30 20
1

40
1'° 

40 40 40 40 

Temperature* ("CJ 750 750 sso I 600 
1

6so 
1

700 I 1so 600 600 600 

Microwave Power (W) 1000 1000 1000 1000 1000 1000 
. 

Total Flow Rate (seem) 900 900 900 900 900 900 

CH.i cone. (mass%) 0.8 0.7 07 0.4 I 0.1 0.8 1.5 3.0 5.0 6.0 

COi cone, (mass%) 0 0 0 0 o.sl1.011.211.5 2.0 3.5 5.2 6.0 

H, cone. (o:=s %) 99.2 99.3 99,3 99.6 I 99.3 93.7 I 98.2 I 9s.o I 91.1 96.5 93.5 89.8 88.0 

Growth Time{how:s) 6 8 8 16 0.4 ' 
DIG Ratio 0.5 o.5 I , I 5 

"l"l"l'I 
6 43 I 26 3·'1"1"1 

... 65 >100 >100 >100 

Growth Rate (µmlhr) 2 1.1 ! 1.7 11.& 1.7 1.5l1.3l1.o o.7 O.? I 1.15 1.1 
1 

1.2s 1 0.1s I 0 l.67 25 3.17 3.8 

*This temperature is the susceptor temperature measured by a the1mocouple. The actual temperature 
of the sample is higher due to plasm.a heating. Using an optical pyrometer, we have measured the 
sample temperatures at 1000 Wand 40 TOrr and found that they are~ 180°C higher than the 
thermocouple reading. 

role in relation to the quality of diamond growth as stated by Clausing.<17J However, pressure 
can change the gas temperature and the plasma compositioq, and thus changes the growth 
rate. Pressure determines the recombination length, the lifetime, and the drift distance of 

· atomic hydrogen. <18l Substrate temperature plays an important role in both the quality and 
growth rate of diamond as discussed by many researchers. <19-,4 J The most significant 
parameter that yields a high (D/G) ratio (> 100) is found to be the mass flow ratio of CHJ 
CO2 due to the presence of oxygen from CO2. The reason for introducing oxygen through 
carbon dioxide is the safety concerns for the mixing of hydrogen and oxygen. The roles of 
hydrogen and oxygen are well documented in the etching of sp2 carbon, <25

-
28

) surface 
reconst:ru.ction,<29--33J and mamtaining the C-H-O phase diagram for diamond growth,<34

•
35J 

leading to high-quality diamond. This is illustrated in Fig. 1 that shows SEM micrographs 
of samples of well-defined facets grown using CHJCO2 variables in Table 1. Note that 
different magnifications are used for these images as marked on the top of each micrograph. 
As expected, the growth rate increases when methane and carbon dioxide concentrations 
increa.se simultaneously because more carbon species are available. However, the incre
mental increase in CO2 is less than that of CH,,, which means that the selective etching of 
graphite over diamond by oxygen is very effective. The Raman spectra of these samples are 
shown in Fig. 2. For all four samples, the 1540 cm-1 graphite band has almost disappeared, 
showing the good quality of the diamond. The best result is given by sample (a), which has 
the highest diamond peak intensity and a high growth rate. This result is in contrast to the 
corresponding result shown in Fig. 3 for a sample from the test rwi. The 1332 cm-1 signal 
is weak compared to the 1540 cm-1 graphite band and the latter might interfere with the 
analytes spectra. Based on the experimental results, the optimized parameters and gas 

40 

600 

1000 

900 

6 

6 

88.0 

' 
>100 

3.8 
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(a) (b) 

(c) (d) 

Fig. 1. The effect of different C~ concentrations with optimized CO2 concentrations: (a) 6% CH4 , 

6% CO
2

, (b) 5% CH., 5.2% CO2, (c) 3% CH4, 3.5 CO,, and (d) 1.5% CH., 2% CO2• Note: different 
scales are used in the SEM as marked on top of each image. Higher growth rate is obtained with higher 
CH4 conceritration, while the quality can be controlled by CO2 concentration. 

1332cm..., 

6%CH.,6%CO, 

5%CH4, 5.2%CO, 

3%Cfl.i, 3.6%C02 

~ 1.6%CH •. 2%C02 

-
1000 1200 1400 1600 

Fig. 2. Raman spectra of the respective CVD diamond grown under different optimized gas 
compositions as shown in Fig. l(a)-(d). The best result corresponds to sample (a).· 
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(a) (b) 

347 

6000 
1542 

i3000_ ~ 
I "'° "'"_ ""\ 
i'''' ) J 
~ 2000 ~ 

i 1000 .. .A...,- . \11iw,,, .~ 
l\'l'»w<"''" ""\A'\,,.J~ . "i"'' 

0 . 

1000 1100 1200 1300 1400 1500 1600 1700 1800 

Raman shift (1/cm) 

(c) 

Fig. 3. Test run CVD diamond grown on quartz substrate with (a) low nucleation-density, (b) high 
nucleation density, and-(c) Raman spectra of the test sample (Growth parameters are gh'.en in Table 
1). 

composition for diamond growth in our system are listed in Table I, and continuous diamond 
films were grown on quartz substrate using these parameters for self-referencing experi
ments. 

3.2 Self-referencing Raman probe 
Uri.det normal incidence condition, the Fresnel reflection from the interface Of two 

materials is given by 

R=(,;-n,)' 
. ,;+n, , (3) 

where n1 and n2 are the indices of the two materials. For a fiber optic probe coated with 
diamond film as shown in Fig. 4(a), reflection from the glass/diamond boundary is 6% while 
it is 17.1% from the diamond/air boundary. Reflection due to the high index of diamond 

· gives rise to a few drawbacks: it returns the glass Raman signal back to the collection fiber 
and reduces the output of the excitation laser intensity. Moreover, when the probe is inserted 
into different solutions, the intensity of the reflected glass Raman signal changes with 
different indices of the solutions, making background subtraction difficult. Alternatively, 
when the diamond°film on a quartz substrate is placed in front of the fiber as seen in Fig. 4(b ), 
these problems are eliminated. For most aqueous or organic solutions, n2 may vary from 1.33 
to 1.5, therefore the reflectivity at the glass (n1=1.46)/liquid interface may vary from Oto 
0.21 %. This effect is very small; thus the probe design in Fig. 4(b) would not be sensitive 
to the refractive index of the solution. If the diamond film on a quartz substrate is mounted 
in front of the fiber at a 45° angle, it will prevent the reflection of the glass Raman signal back 
to the collection fibers. Diamond film grown on optical fiber using hot filament CVD has 
been used for quantitative Raman spectral measurement.<36l Unfortunately, the optical 
transmission of the probe was only 14% due to the surface roughness of the diamond film, 
resulting in weak Raman signals from both the reference and the analytes. Moreover, it is 
cumbersome to subject the optical fiber to the harsh processing conditions of diamond 
nucleation and growth. 
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Optical Fiber Diamond Film • • (a) 

(b) 
Optical Fiber • Diamood Film on Quartz Substrate • 1~[] 

Fig. 4. (a) A fiber optic probe coated with diamond film. Reflection from the glass/diamond· 
boundary is 6% while it is 17.1 % from the diamond/air boundary. (b) A fiber optic probe with.the 
qiamond film on quartz substrate that is placed in front of the fiber. For most aqueous or organic 
s9lutions, reflectivity at the glass (n1=1.46)/liquid interlace may vary from Oto 0.21_%. 

3.3 Quantitative Raman spectral measurement 
The experimental setup for quantitative Ramau aualysis is shown in Fig. 5. An excitation 

filJeris placed iu 1he middle of a bundle wi1h six collection fibers surrounding it. The excition 
source is 1he 514.5-nm line of an argon ion laser, which is coupled into 1he excitation fiber 
usiog a 20x objective lens. 1be probe is placed io a beaker containing a solution of e1hyl 
alcohol io water. The collection fiber guides 1he Raman signal from 1he diamond and 
alcohol/water solution to 1he spectrograph 1hrough 1he optical assembly. The laser line is 
filtered from 1he Raman signal nsiog a holographic notch filter. 

A series of Ramau spectra of 60% ethyl alc0hol io water was collected by varying 
excitation laser power from 1.75 to 7 mW. The results are shown in Figs. 6 and 7. Figure 
6(a) shows the Raman spectra before normalization. The Raman spectra contaio signals 
from both ethyl alcohol and diamond film. The peak area of the ethyl alcohol Raman line 
at 883.3 cm-1 is plotted agaiost laser power, as shown in Fig. 6(b), and as expected, it varies 
proportionally to the excitation laser power: This peak area is normalized against that of 
diamond at 1332 cm-1 for the same range of laser power using the least-mean-square 
algorithm. The results are shown in Fig. 7. It is clearly seen that the normalized peak area 
is a constaut (within I.I%) even though we have changed 1he laser power by a factor of four. 
Therefore, the concentration of ethyl alcohol calculated usiog the diamond normalization 
procedure would give a result independent of laser power. 

Raman spectra of ethanol/water solutions at six different ethanol concentrations ranging 
from Oto 100% were collected as shown in Fig. 8(a). At constant laser power, the ethanol 
peaks viuy with concentration while 1he diamond peakremaios a constant. The spectra were 
then normalized to the diamond peak area. A lioear regression of the normalized ethanol 
p<,ak areas at 833 cm-1 vs the ethanol concentration as shown in Fig. 8(b) gives a linear 
relationship as expected from Eq. (2). Thus, diamond film can be used for self-referencing 
io lt fiber-optic Raman probe, and quantitative measurements iodependent of the iocident 
laser power can be performed. 
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El<e:imionFiber 

ArLa,er 

FlborBunillo 

aiu,otfunF:iber 

P"rsonal Comput<r 
Diamond 

Fig. 5. Schematic diagram of the experimental setup for ccillecting Raman spectra of liquids usirl.g 
fiber optic probe. 
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Fig. 6. (a) Raman spectra of 60% ethyl alcohol_ in water with different excitation laser power. The 
Raman signals from both ·ethyl alcohol and diamond film increase with laser power. (b) Peak area Of 
883.3 cm-1 band versus excitation laser power, showing linear dependence. 

Raman shift (1/cm) 

(a) 

I 
! 
• • ~ • '" 

12000 

10000 
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6000 
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0 2 4 6 8 

laserpower(mW) 

(b) 

Fig._ 7. (a) Normalized Raman spectra of 60% ethyl alcohol in water with different excitation power. 
(b) Normalized peak area versus laser power. The diamond self-referenced result is independent of 
excitation power even though the laser power is varied by a factor of four. 
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120 

l-100 

! d 80 

1 60 ' 

u 40 

Raman shift (1/cm) 
2049 

1 20 

,,-.'------+--+-----+---1--+-----; 

-0.1 0.4 0.9 1.4 1.9 2.4 2.9 

Normalized ethanol peak area 

.- linear regression 

S5 

"Fig. 8. {a) Raman spectra of ethanol/water solutions of six different concentrations and (b) the 
normalized peak area as.a function of ethanol conc.e:i:rtration. A linear dependence of the diamond 
referenced Raman intensity on the concentration of the analyte is seen·as predicted by Eq. (2). 

4. Conclusions 

Using the optimized growth parameters, thin film diamond can be grown on quartz 
substrates at a reasonable growth rate resulting in films that exhibit essentially no Raman 
spectral background. Application of the Raman line at 1332 cm-1 as an internal standard for 
a fiber optic Raman probe is demonstrated and quantitative measurements independent of 
the incident laser power are achieved. 
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_ The following information was missing on p. 341: 
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