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Dragon kings of the deep sea: 
marine particles deviate markedly 
from the common number-size 
spectrum
Alexander B. Bochdansky1, Melissa A. Clouse1 & Gerhard J. Herndl2,3

Particles are the major vector for the transfer of carbon from the upper ocean to the deep sea. However, 
little is known about their abundance, composition and role at depths greater than 2000 m. We present 
the first number-size spectrum of bathy- and abyssopelagic particles to a depth of 5500 m based on 
surveys performed with a custom-made holographic microscope. The particle spectrum was unusual in 
that particles of several millimetres in length were almost 100 times more abundant than expected from 
the number spectrum of smaller particles, thereby meeting the definition of “dragon kings.” Marine 
snow particles overwhelmingly contributed to the total particle volume (95–98%). Approximately 1/3 of 
the particles in the dragon-king size domain contained large amounts of transparent exopolymers with 
little ballast, which likely either make them neutrally buoyant or cause them to sink slowly. Dragon-
king particles thus provide large volumes of unique microenvironments that may help to explain 
discrepancies in deep-sea biogeochemical budgets.

Most of the sinking organic carbon in the ocean is remineralized by microbial activity and zooplankton feeding 
in the twilight zone (50–1000 m)1,2. However, the small percentage of particulate matter that escapes into the 
bathypelagic ocean is of interest because it represents a long-term loss of carbon from the surface layers when 
undergoing dissolution and transformation to refractory dissolved organic carbon, or when being buried in sed-
iments. While most information about bathypelagic particles has come primarily from analyses of the contents 
of sediment traps3, a few surveys have explored particle numbers via optical means in their undisturbed state4–6, 
with the deepest bathypelagic number spectra reported to date from 1200–1400 m7 and 2500 m8,9. Optical surveys 
of the particle inventory are necessary because intact bathypelagic, flocculent marine snow is impossible to collect 
with traditional bottle samplers, and it has seldom been collected directly from submersibles10.

Results and Discussion
We deployed a custom-made digital inline holographic microscope (DIHM)11 at 16 stations in the subtropical and 
subarctic Atlantic and one station in the Arctic, with a maximum deployment depth of 5500 m (Supplementary 
Fig. 1). In contrast to lens-based systems, DIHM allows a focal depth of 7 cm, yielding relatively large volumes per 
image (1.8 mL) at high resolution. Three categories were considered: marine snow (which included amorphous 
aggregates – even those < 500 μm – with and without ballast material such as faecal pellets and diatom frustules), 
individual faecal pellet-like particles (cylindrical and ovoid), and all “other” particles made of optically dense 
material (Fig. 1). The “other” category included single phytoplankton cells, optically dense debris, and hetero-
trophic plankton organisms (alive or as carcasses) (Fig. 1).

The frequency distribution of faecal pellets and other particles showed a typical distribution with a higher 
frequency of smaller particles (Fig. 2). However, the frequency of marine snow particles was more evenly spread, 
with a relatively high abundance of large particles in this group (Fig. 2). Consequently, the volume contribution of 
particles in the marine snow category (Vms) dominated the total volume of particles, with values ranging from 95% 
in North Atlantic Deep Water (NADW) to 98% in Lower Deep Water (LDW) (Fig. 2). The relative frequency of 
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marine snow particles was higher in LDW, Northeast Atlantic Deep Water (NEADW), and Norwegian Sea Deep 
Water (NSDW) than in NADW and Antarctic Bottom Water (AABW). The number spectrum of all particles 
combined showed considerable deviation from a straight line (Fig. 3a) and was better described by a third-order 
polynomial (Fig. 3b). While the number spectrum from 50 μm to 300 μm was fit well by a linear regression with a 
slope of − 3, it deviated sharply from the predicted relationship at larger sizes (Fig. 3a). The first derivative of the 
polynomial peaked at a particle size slightly larger than 1 mm, with a tangential slope value of − 1.5 (Fig. 3b). The 
number spectrum returned to steeper slope values at particle sizes of several millimetres (Fig. 3b). Particles larger 
than 379 μm can be considered to be “dragon kings”12, i.e., events or phenomena to which usual power laws or 

Figure 1. Examples of three categories of particles: marine snow (bottom row), faecal pellets (centre row)  
and “others” (top row). The “others” category includes all recognizable planktonic organisms (alive and 
carcasses) and optically dense debris that does not classify as marine snow or faecal pellets. For each image, the 
size (μm) and depth sampled (m) are given.

Figure 2. Size frequency distribution of three categories of particles in five different water masses: marine 
snow (bottom row), faecal pellets (centre row), and other particles including planktonic organisms (top 
row). AABW: Antarctic Bottom Water (n =  6,213), NADW: North Atlantic Deep Water (n =  13,824), LDW: 
Lower Deep Water (n =  1,408), NEADW: Northeast Atlantic Deep Water (including some mixed-in Labrador 
Sea Water, n =  3,610), NSDW: Norwegian Sea Deep Water (n =  440)47. The relative volume contribution for 
each of the particle types is given as a percentage: Vms (marine snow) +  Vfp (faecal pellets) +  Vo (others) =  100%.
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abundance spectra do not apply and whose frequency of occurrence cannot be inferred from the distribution of 
more frequent events. Here, we define the dragon-king domain as the departure of the number spectrum from the 
95% prediction interval of the linear regression through smaller size ranges, which occurred at a size of 379 μm 
(Fig. 3a). The definition is, therefore, not based on an arbitrary size cutoff but on the numerical dominance of a 
particle size range over others. This lower size threshold may be different for other samples and environments. In 
contrast, the definition of “marine snow” is arbitrary (e.g., particles > 500 μm), and particles of this size range may 
not be considered dragon kings if their number spectrum falls within that predicted from smaller size classes. 
The consequence of the deviation from the number spectrum observed here is considerable; for instance, par-
ticles 400 μm in size were approximately twice as abundant as predicted from the regression with a slope of − 3. 
Particles with sizes of 1 mm, 3.5 mm, and 8 mm (the largest observed size here) were 10, 44, and 90 times more 
abundant, respectively, than expected from a power law with a slope of − 3 (Fig. 3).

The deviation is even more pronounced when contrasted with the commonly used benchmark slope of − 4 
(i.e., the Junge power law, dashed line in Fig. 3a)13–15. The Junge slope indicates that particle volumes are equal 
for equal logarithmic size intervals. This number-size distribution was originally assumed to hold true for the 
bathypelagic environment and was subsequently upheld by Coulter Counter measurements14. However, the upper 
limit of Coulter Counter measurements of 100 μm is below the point at which our data significantly diverged from 
a straight line (i.e., exceeded the 95% prediction interval). The Coulter Counter also creates artefacts because of 
aperture shear disaggregation14. For the smaller particle size range (50–100 μm), the slope in our study was shal-
lower than that predicted by the Junge spectral slope and was closer to the slope of − 3 previously reported for the 
surface ocean across many size ranges and instruments16. Particle spectra of marine systems are usually fit with 
one or several straight regression lines (on log-transformed values) with slopes ranging from − 2 to − 67,13,15, and 
overall, the individual deviations level out to straight spectra13,16. Local deviations from linearity over distinct 
size classes in the upper ocean have been attributed to processes such as cell growth, faecal pellet production, 
coagulation driven by diel cycles in turbulence, disaggregation, and ingestion by zooplankton13,17. The differ-
ential settling of larger particles over smaller ones certainly contributes to the increased relative abundance of 
larger particles in the deep sea. Some previously reported particle spectra showed similar deviations from straight 
slopes7–9; thus, the deviation we describe here may not be restricted to depths > 2000 m. However, the flattening 
of particle spectra at the larger particle size range13,15 could also be the result of undersampling and a truncation 
effect caused by bins with zero values16. In contrast, the number spectrum reported here returned to steeper slope 

Figure 3. Particle number spectrum of deep sea (>1897 m) particles. (a) Linear regression model (thick 
solid line) based on smaller size classes (squares) is y =  − 8.95 −  3.01x , r2 =  0.994. Thin solid lines represent 
95% prediction limits. The vertical dotted line indicates the lower limit of the dragon-king size domain (379 μm) 
based on the departure of the number-size spectrum from the upper 95% prediction limit. The Junge spectrum 
line (slope =  − 4) is shown as a dashed line. (b) Third-order polynomial fit through the number spectrum (red; 
y =  − 0.5532x 3 −  1.6123x 2 −  2.9697x  − 6.9761) and its first derivative (blue).
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values at particle sizes > 1 mm, which means that undersampling did not bias the deviations from the initial slope 
at 379 μm. It is extremely important for the spectral analysis and the identification of dragon kings to ensure that 
particles at both ends of the size spectrum are sampled with 100% efficiency. Otherwise, the number spectrum 
may be artificially curved. In our analysis, we had to exclude a large number of particles from the analysis at the 
lower size range (<50 μm) because they could not be sampled with 100% efficiency (see Methods). Particles 
that were identifiable as plankton organisms were a small fraction in the dragon-king size domain (i.e., 13.1%), 
and most of those were diatoms (82% of those identified as organisms or parts of organisms). Thus, amorphous 
marine snow aggregates were primarily responsible for the nonlinearity in the spectrum observed here.

Particles collected in polyacrylamide gel traps allow a direct comparison with those captured by in situ optical 
instruments18. Gel traps are mostly dominated by “faecal aggregates” (ballasted by denser material), cylindri-
cal and ovoid faecal pellets, and optically dense phytoplankton aggregates19–21. In some instances, phytodetri-
tal aggregates dominate the flux numerically but not in terms of carbon because the density of faecal pellets 
is higher22. Amorphous marine particles with low-density material (“fluff aggregates20”) are rare in polyacryla-
mide gel traps, for instance contributing only 0 to 4% numerically and even less volumetrically20. In contrast, in 
our analysis, dragon-king particles contained large amounts of transparent exopolymers (Figs 4 and 5). Overall, 
32 ±  14.5% (n =  17 stations) of particles >379 μm resembled low-density, porous, and amorphous aggregates. 
This transparent material is well known to be a major contributor to the formation and matrix of marine snow; 
however, it is invisible unless stained by Alcian Blue (Fig. 5) or Coomassie Brilliant Blue23. It is less dense than sea-
water and thus increases the buoyancy of particles24. Generally, there is only a loose relationship between particle 
size and sinking velocity because predictions based on the Navier-Stokes law usually underestimate the sinking 
velocities of small particles and overestimate those of large amorphous aggregates25–27. Both the large amount 
of optically transparent material in the particle matrix and the almost complete absence of these particles in gel 
traps20 suggest that they are either neutrally buoyant or sink only slowly. Slowly sinking, horizontally transported 
particles have previously been suspected to be a major source of error in budget calculations for the deep sea, but 
little information exists because they are severely undersampled by sediment traps28.

We can only speculate on the origin of the dragon-king particles. They do not appear to be made of dis-
carded appendicularian houses29 because they lack the typical dense cluster of small particles in the region of 

Figure 4. Examples of dragon-king particles with little apparent ballast (a–c) and a ballasted stringer-type 
particle (d). Particles are held together by a large amount of transparent exopolymers. White scale bars =  1 mm.
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the food-concentrating filter. Their dominance could be the result of differential settlement to deeper layers if 
most of the smaller particles are solubilized before they reach the bathypelagic layers. Small particles are also not 
produced at the same rate as in surface environments because of the much lower production rates of microbes at 
depth30. Coagulation by shear and differential settlement with the contribution of prokaryotes31 may also slowly 
build larger particles from smaller ones at depth, and it has been suggested that the deep sea environment is con-
ducive to the self-assembly of gels32. Their accumulation may be facilitated by the fact that organisms known to 
significantly consume and fragment similar-sized particles in the mesopelagic layer1,33 are generally absent from 
bathy- and abyssopelagic environments34. Particles identifiable as plankton or their parts only represented 0.1% 
of the total number of particles analysed here.

While dragon-king particles may not contribute substantially to the vertical flux of organic material, they 
likely play a major role in deep sea ecosystems as resource-rich habitats for microbes. We collected particles onto 
30-μm membrane filters using gentle gravity filtration directly from Niskin bottles and found that the transparent 
matrix was heavily colonized by prokaryotes and protists (Fig. 5). This result is not unexpected because gels have 
an increased concentration of organic matter, approximately 1000 times greater than the surrounding seawater35. 
Direct collection of particles > 3 mm in the mesopelagic by submersibles has revealed prokaryotes to be 4 orders 
of magnitude more concentrated than in the ambient water (i.e., approx. 108 vs. 104 mL−1, Fig. 2 therein36). This 
enrichment most likely holds true for bathypelagic particles as well, given that ambient prokaryote concentrations 
are approximately 100 times lower than those at the surface where enrichments on particles typically range from 
100 to 1000 x 37. It has been suggested that the solubilization of particles is faster than their remineralization38, 
resulting in an abundance of dissolved matter in the pore water of marine snow. This enrichment in dissolved 
organic material is important because thresholds for nutrient uptake in particle pore water and their plumes 
most likely exceed the minimum concentration required for the growth of deep-sea prokaryotes39. Chemical 
microenvironments, such as those with low oxygen, can persist in particles, facilitating processes such as denitri-
fication40, and methane and ammonium production in the water column41,42. Recent accounts have demonstrated 
the presence of quorum sensing on particles43, and models suggest that diffusion and remineralization are not 
only influenced by the relative abundance of microbes but also by their location on particles44. All these factors 
combined may lead to the dominant contribution of particle-associated microbes to the overall metabolism of the 
deep sea45. These findings also challenge traditional bottle incubation methods. If microbial processes are tied to 
the integrity of particles that are too fragile to be collected but which contain unique communities and microen-
vironments, the typical bulk collection and incubation of water samples is inadequate to produce accurate esti-
mates of metabolic rates for the ocean’s interior. Dragon-king particles may have been overlooked with traditional 
sampling methods such as sediment traps, but the dominance of this size class suggests that particle-associated 
small-scale heterogeneity needs to be recognized in an environment that represents the largest oceanic subsystem 
in terms of volume.

Methods
Digital Inline Holographic Microscopy. Details of the custom-made digital inline holographic micro-
scope for the deep sea have been published elsewhere11. The path length of the laser (640 nm) through the water 
was 7 cm. The DIHM was mounted on the lowest point of the CTD rosette frame to leave an unobstructed path for 
the water to pass between the point source and the camera. Only down casts were used for analysis to avoid imag-
ing particles that were fragmented by the instrument cradle and wire. Vertical speeds through the water ranged 
from 1 to 1.5 m sec−1. Seven to twelve 4-megapixel images were recorded per second. While the maximum reso-
lution per image is approximately 5 μm, only particles larger than 50 μm can be reliably enumerated in the entire 
image volume11. Each image represents a volume of 1.8 mL, and all particles can be brought into focus within this 
volume. A total of 46,275 images were reconstructed using Octopus reconstruction software by 4-Deep (formerly 
Resolution Optics, Halifax, Canada) using the Kirchhoff-Helmholtz transform46. The maximum length of the 

Figure 5. Example of Alcian Blue-stained TEP matrix that holds larger particles together (a), and a particle 
lying across a 30-μm pore of a membrane filter as observed under the epifluorescence microscope (b). The 
transparent exopolymer matrix is heavily colonized by prokaryotes (blue) visualized with 4′ ,6-diamidino-2-
phenylindole (DAPI). The transparent matrix is too thick to show all prokaryotes in focus simultaneously.
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particle was measured manually using the built-in measuring tool, and equivalent spherical volumes were calcu-
lated from the maximum lengths. Supplementary Fig. 1 and Supplementary Table 1 show the stations sampled, 
the depth intervals, and the water masses in which particles were measured and characterized. The depths were 
chosen to target specific water masses47. The particle size - number spectrum (differential size spectrum) was cal-
culated as n(s) =  − dN/ds, where n is the particle size spectrum, N is the cumulative particle size distribution, and 
s is the maximum linear dimension of the particle16. Of 46,275 images, only particles ≥50 μm were considered in 
the analysis of the number spectrum (n =  20,552) because they can be reliably enumerated in the image beam11. 
This avoided a bias in the lower range of the particle size spectrum16. In Fig. 3, this particle size spectrum was 
compared to the Junge slope of − 4 and a slope of − 3, the most frequently reported slopes in studies of marine 
surface environments13,16.

DIHM analysis of the dragon-king size domain. To calculate the percentage value of amorphous aggre-
gates >379 μm that contained a large amount of optically transparent material, a second survey of images was 
performed. Instead of reconstructing all particles within a depth range, the image sequence was stopped only 
when a large particle was encountered in the raw images. In the expanding beam configuration of the holography 
applied here, all large particles can be reliably captured in this fashion. Some particles smaller than the threshold 
criterion that were also captured by this method were not included in the percentage calculation.

Gravity filtration. The images in Fig. 5 are based on gentle gravity filtration directly from a 25-L Niskin 
bottle onto a Millipore polycarbonate filter (30 μm pore size, 25 mm diameter). The maximum flow rate was kept 
to 100 mL min−1 with a flow restrictor placed inline after the filter cartridge. The filter was subsequently fixed 
with 2% (fin. conc.) formaldehyde and stored at − 80 °C. For the visualization of TEP, pie-shaped slices of 30-μm 
filters were placed on a 0.2-μm backing filter stained with Alcian Blue and mounted on Cyto-Clear slides48,49. 
The filter was then gently washed with ultrapure water. This procedure causes additional losses of particles from 
the filter and can thus only be used qualitatively. For visualization of prokaryotes in the gel matrix, the filter was 
first coated with agarose50 to avoid the detachment of particles and treated with 25 mM EDTA51 to make TEP 
permeable to the nucleic acid stain. The filter was then mounted on a slide with an antifadent solution containing 
4′ ,6-diamidino-2-phenylindole (Vectashield with DAPI).
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