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ABSTRACT 

 

CONSTRAINING RESPIRED CARBON STORAGE                                                            

IN THE EASTERN TROPICAL PACIFIC OVER THE LAST 25 THOUSAND YEARS                              

USING BENTHIC FORAMINIFERAL BORON/CALCIUM RATIOS            

                                                                                                         

Brian James Close                                                                                                                         

Old Dominion University, 2020                                                                                             

Director: Dr. Matthew Schmidt                                                                                                                                                                 

 

The storage of inorganic carbon in the deep Pacific Ocean is thought to play an 

important role in regulating both glacial-interglacial and millennial-scale atmospheric CO2 

concentrations (Broecker and Barker 2007; Sigman et al., 2010). A recent study by Loveley et 

al. (2017) showed that sedimentary authigenic uranium (aU) concentrations, a proxy for suboxic 

bottom-water conditions, increased significantly in the Eastern Equatorial Pacific (EEP) during 

the Last Glacial Maximum (LGM, 18 kyr – 23 kyr). If this is correct, the low-oxygen, CO2-rich 

waters would also have a lower pH and a lower carbonate ion concentration ([CO3
2-]).  Yu and 

Elderfield (2007) showed that the boron to calcium (B/Ca) ratio in the benthic foraminifera C. 

wuellerstorfi is a reliable proxy for reconstructing bottom water [CO3
2-]. Here I present new 

constraints on deep ocean carbon storage over the last 25 kyr in the EEP using new benthic 

foraminiferal B/Ca-[CO3
2-] reconstructions from four cores at a range of depths from within and 

outside the Panama Basin. These four new records all reveal lower glacial [CO3
2-], with the 

largest LGM-Holocene difference coming from core MV1014-02-17JC (17JC) (0010.83’S, 

8552.00’W; 2.9 km water depth) inside the Panama Basin. New depth profiles of glacial carbon 

storage in the region show that respired CO2 storage outside the Panama Basin was relatively 

homogenous while inside the basin there was a gradient of increasing CO2 storage with depth 
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from 2.2 km down to 2.9 km. A new sub-millennial scale record shows that during the last 

deglaciation (18 kyr - 11 kyr), waters inside the Panama Basin experienced two large increases 

in respired CO2 storage during Heinrich Stadial 1 and the Younger Dryas. Finally, intra-core 

proxy comparisons of 232Th (a dust flux proxy), excess barium (a paleoproductivity proxy),  and 

aU from 17JC and MV1014-02-8JC (8JC) (614’N, 862’W; 2 km water depth) illustrate that 

two different mechanisms likely influenced CO2 storage in the region. For 8JC, a poorly 

ventilated Pacific wide water mass was likely the source for the lower glacial [CO3
2-] at its core 

location. While for 17JC, in addition to the previously noted poorly ventilated water mass 

influence, respired CO2 storage at this core location was further enhanced by millennial scale 

increases in export production. By sequestering carbon away from the atmosphere and surface 

ocean, deep waters in the Panama Basin and in the greater EEP region likely played an 

important role in lowering glacial atmospheric CO2.  
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NOMENCLATURE 

Al/Ca  Aluminum to Calcium Ratio, mmol/mol 

AAIW   Antarctic Intermediate Water  

UCDW  Antarctic Upper Circumpolar Deep-Water  

aU   Authigenic Uranium, ppm 

BA  Bølling–Allerød                                                                                                      

B/Ca   Boron to Calcium Ratio, µmol/mol                                                                                             

DIC   Dissolved Inorganic Carbon, µmol/kg                                                                                 

EEP   Eastern Equatorial Pacific                                                                                    

Fe/Ca  Iron to Calcium Ratio, mmol/mol                                                                                               

xsBa   Excess Barium Mass Accumulation Rate, mg cm-2 kyr-1                                                                                                    

HS1  Heinrich Stadial 1                                                                                                      

HS2   Heinrich Stadial 2                                                                                              

HNLC   High Nutrient Low Chlorophyll                                                                                  

ITCZ   Intertropical Convergence Zone                                                                                

Kyr    Thousand Years                                                                                                   

LGM   Last Glacial Maximum                                                                                        

LCDW  Lower Circumpolar Deep Water                                                                              

Mg/Ca  Magnesium to Calcium Ratio, mmol/mol                                                                           

Mn/Ca  Manganese to Calcium Ratio, mmol/mol                                                                           

NPIW   North Pacific Intermediate Water                                                                           

[O2]  Oxygen Concertation, µmol/kg                                                                                 

PDW   Pacific Deep-Water                                                                                                

 



vii 
 

NOMENCLATURE 

pCO2  Partial Pressure of Carbon Dioxide                                                                     

232Th  232Thorium Mass Accumulation Rate, µg cm-2 kyr-1                                                 

WOCE  World Ocean Circulation Experiment                                                                          

YD   Younger Dryas  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

TABLE OF CONTENTS 

               Page 

LIST OF TABLES........................................................................................................................ix 

LIST OF FIGURES .......................................................................................................................x 

Chapter          

I. INTRODUCTION .....................................................................................................................      

OCEANOGRAPHIC SETTING………............................................................................ 

II. METHODS…………………………...................................................................................... 

CORE LOCATIONS…………………............................................................................ 

AGE CONTROLS……………………………................................................................ 

B/CA SAMPLE PREPERATION………........................................................................ 

B/CA ANALYSIS………................................................................................................ 

REPLICATE AND ANALYTICAL ERROR………...................................................... 

B/CA BASED [CO3
2-] CALCULATIONS.……....…………………………....………. 

III. RESULTS............................................................................................................................... 

B/CA RESULTS………................................................................................................... 

RECONSTRUCTED [CO3
2-] RECORDS………............................................................ 

IV. DISCUSSION………………………………......................................................................... 

LGM-HOLOCENE [CO3
2-] DIFFERENCES IN THE EEP………................................. 

VERTICAL DIFFERENCES IN LGM [CO3
2-] IN THE EEP.......................................... 

MILLENIAL-SCALE DEGLACIAL [CO3
2-] CHANGES IN THE PANAMA 

BASIN…………………………………………………………………………..……..... 

MECHANISMS FOR [CO3
2-] CHANGES IN THE EEP ACROSS THE LAST 

DEGLACIATION……………………………………………….....................................                                       

BOTTOM WATER OXYGENATION…………………………………………………                   

DUST FLUX AND SURFACE WATER PRODUCTIVITY IN THE 

EEP…………………………………………………………………………….…………                    

SEA SURFACE PRODUCTIVITY RECORDED BY XSBA IN THE 

EEP………………………………………………………………............................…… 

V.  CONCLUSIONS .................................................................................................................... 

REFERNCES...………………………………………………………………………………..... 

VITA……………………………………………………………………………………………. 

 

 

1 
6 

10 

10 

11 

11 

12 

13 

14 

16 
16 

19 

23 

23 

24 

26 

27 

27 

31 

32 

35 

37 

42 



ix 
 

 

LIST OF TABLES 

Table                Page 

1. EEP Hydrographic Properties………………………………………………………………....15 

2. EEP Carbonate Chemistry……………………………………………………………….........15 

 

 

  



x 
 

LIST OF FIGURES 

Figure                Page 

1. EEP Bathymetry……………………………………………………………………………….. 

2. Eastern Pacific Hydrography…………………………………………………………………...8 

3. Panama Basin Hydrography………………………………………………………………….... 

4. EEP B/Ca-Δ[CO3
2-] Reconstructions………………………………………………………… 

5. EEP [CO3
2-] Records…………………………………………………………………………. 

6. EEP Carbon Storage Comparison……………………………………………………………..22 

7. EEP Millennial-Scale [CO3
2-] Record………………………………………………………... 

8. 17JC Intra-Core Proxy Comparison………………………………………………………….. 

9. 8JC Intra-Core Proxy Comparison……………………………………………………………

2 

9 

17 

20 

27 

29 

30 



1 
 

 

I. INTRODUCTION 

Antarctic ice core records show that atmospheric CO2 concentrations and global 

temperatures are tightly coupled through at least the Pleistocene epoch (Bereiter et al., 2012). 

Although feedback mechanisms in the ocean-climate system likely controlled atmospheric CO2 

over this period, the ultimate driver of the pCO2 variability remains a topic of debate in the 

paleoclimate community. One prevailing hypothesis postulates that a large pool of water 

enriched in respired carbon was present in the deep Pacific (below 3km) during glacial periods.  

Ventilation of this CO2-rich water mass during the deglaciation theoretically drives the increase 

in atmospheric CO2, which in turn warms the planet and brings an end to the ice ages (Sigman 

and Boyle, 2000). What is not known regarding this hypothesis is how and where the large 

volume of respired carbon was stored in the deep Pacific Ocean during glacial periods (Broecker 

et al., 2007). 

A recent study by Loveley et al. (2017) presented new 232Th, excess barium (xsBa), and 

authigenic uranium (aU) records from core MV1014-02-17JC (hereafter 17JC), collected near 

the equator just north of the Carnegie Ridge in the Panama Basin of the Eastern Equatorial 

Pacific (EEP) (0010.83’S, 8552.00’W; 2.9 km water depth; Figure 1). The 232Th record was 

interpreted to indicate changes in dust flux to the EEP, while xsBa is a proxy for export 

productivity. Loveley et al. (2017) showed that dust flux in the EEP increased during cold 

climate periods in the North Atlantic, such as northern hemisphere Heinrich Events, due to a 

southward shift in the Intertropical Convergence Zone (ITCZ). Today, the EEP is a high nutrient 

low chlorophyll (HNLC) region, where productivity is limited by the micronutrient Fe.  It was 

theorized that increased pulses of dust to the EEP likely relaxed the Fe limitation and led to 

increased productivity.  Furthermore, most periods of increased dust flux corresponded to 
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elevated values of xsBa in 17JC, suggesting iron fertilization did indeed increase export 

production and biological pump strength when the ITCZ shifted southwards.   

 

Figure 1: EEP Bathymetry. Regional Bathymetry of the EEP with locations of the four cores 

used in this study, (yellow circles) along with cores used by Umling and Thunell (2018) (blue 

squares), Doss and Marchitto (2013) (red squares), and De la Fuente et al. (2017) (green square). 

 

Increased export production during periods of iron fertilization should have also affected 

local bottom water chemistry. As sinking organic carbon is ultimately remineralized, deep water 

[O2], [CO3
2-], and pH would decrease as [CO2] increased.  Loveley et al. (2017) showed that aU 

concentrations in 17JC reached their highest levels toward the end of the LGM, suggesting that 

bottom water O2 concentrations inside the Panama Basin dropped to their lowest levels just as 

global atmospheric CO2 concentrations reached their lowest levels over the last 25 kyr (Loveley 

et al., 2017).  This is because uranium is reduced from U(VI), the soluble form uranyl carbonate, 
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to U(IV), which precipitates from solution as uranium oxide under suboxic conditions (Barnes 

and Cochran 1990).  

The aU record in 17JC is similar to aU records from the Subarctic North Pacific 

(Galbraith et al., 2007), Western Pacific (Bradtmiller et al., 2010), EEP (Marcantonio et al., 

2020), and Southern Ocean (Jaccard et al., (2016), suggesting the presence of a poorly ventilated, 

CO2-rich deep-water mass that occupied a large volume of the deep Pacific during the LGM. 

Although the presence of low oxygen bottom waters during the glacial period might suggest the 

presence of a poorly ventilated, CO2-rich deep-water mass in the glacial Pacific, localized 

suboxic conditions in the deep EEP could also have resulted from an increase in local 

productivity driven by Fe fertilization.  If this is the case, the EEP may have been an important 

regional sink for the storage of respired carbon when atmospheric CO2 concentrations were at 

their lowest. 

As respired CO2 concentrations increase in a parcel of water, the pH decreases and 

pushes the local DIC pool away from CO3
2- (Emerson and Hedges, 2008). Therefore, this 

relationship can be used to assess variations in respired carbon storage in deep ocean water. By 

reconstructing variability in the [CO3
2-] of a water mass through time, changes in local respired 

carbon storage can be inferred (Yu and Elderfield, 2007).  

In order to reconstruct deep water [CO3
2-] changes in the Pacific during the late 

Pleistocene, previous studies have analyzed B/Ca ratios in benthic foraminiferal tests (De la 

Fuente et al., 2017, Doss and Marchitto 2013, Umling and Thunell, 2018).  Yu and Elderfield 

(2007) showed that the B/Ca ratio in benthic foraminiferal calcite is quantifiably linked with 

bottom water carbonate saturation state or Δ[CO3
2- ]. Epifaunal benthic foraminifera calcify their 

tests using dissolved inorganic carbon from within the parcel of water they inhabit on the 
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seafloor (Yu and Elderfield, 2007). The two dominant boron species in the ocean are boric acid 

(B(OH)3) and borate ion (B(OH)4
-), with their concentrations varying relative to pH (Emmerson 

and Hedges, 2008). Foraminifera incorporate boron almost exclusively from the B(OH)4
- species, 

and [B(OH)4
-] decreases with decreasing bottom water pH (Yu and Elderfield, 2007). Therefore, 

foraminifera living in a water mass with a lower pH and lower [CO3
2-] have a lower B/Ca ratio in 

their calcite shell (Yu and Elderfield, 2007).   

Since these initial studies, B/Ca ratios have been successfully used to quantify changes in 

deep-water [CO3
2-] at many locations (De la Fuente et al., 2017, Doss and Marchitto 2013, 

Umling and Thunell, 2018; Allen et al., 2015; Allen et al., 2020). Several previous studies from 

the EEP utilized this proxy and found generally lower glacial [CO3
2-] than modern.  

Nevertheless, the cause of this decrease remains an open question. Doss and Marchitto (2013) 

studied three cores from mid- to deep- depths inside the Panama Basin and found a decrease in 

glacial [CO3
2-] (Figure 1, red squares). They attribute this to a strengthening of low latitude 

productivity in the eastern tropical Pacific and subsequent sequestering of carbon to the deeper 

waters in the region. In addition, a study by Umling and Thunell (2018) used a group of cores 

from the surrounding western exterior of the Panama Basin and also found a decrease in [CO3
2-] 

during the LGM (Figure 1, blue squares). They concluded that there was an absence of evidence 

for enhanced EEP production during the LGM, and instead attributed the glacial [CO3
2-] decrease 

to respired carbon accumulation in a poorly ventilated water mass.  

Nevertheless, Umling and Thunell (2018) saw consistently higher [CO3
2-] values in their 

study sites outside the Panama Basin as compared to Doss and Marchitto (2013)’s study sites 

inside the basin. This difference could indicate that the Panama Basin stored greater amounts of 

carbon relative to the rest of the Pacific due to its proximity to a terrestrial dust source leading to 
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Fe fertilization and the resulting enhanced export production. In addition, the presence of ridges 

surrounding the Panama Basin may act to further decrease ventilation of the deep waters inside 

the basin (Lonsdale and Malfait, 1974). To fully constrain the geographic influence of the 

Panama Basin on bottom water carbon storage, records from cores at similar depths from inside 

and outside the Panama Basin are needed. If [CO3
2-] values are significantly lower at a similar 

depth inside the basin relative to outside, this would provide evidence of enhanced storage of 

carbon inside the Panama Basin. 

In addition to the geographic influence of the Panama Basin on deep water carbon 

storage, the vertical extent of the deep carbon pool at the LGM remains a matter of debate. Doss 

and Marchitto (2013) constructed [CO3
2-] records at three depths (2.2 km, 3.2 km and 3.6 km) 

inside the basin and found the largest LGM-Holocene difference in their cores at 3.2 km and 3.6 

km, with the smallest difference from their core at 2.2 km. Umling and Thunell (2018) used 

cores with a depth range of 1.6 km to 3.2 km outside the Panama Basin and found that the largest 

LGM-Holocene difference was at 2.3 km and 3.2 km with cores from depths above 2 km 

showing higher LGM [CO3
2-] compared to the Holocene. Hence, the vertical depth range of the 

hypothesized glacial Pacific carbon reservoir in the EEP remains unclear.  In order to constrain 

the full vertical extent of the carbon pool at the LGM, a suite of cores spanning depths from ~2 

km to ~3 km is needed. If [CO3
2-] is lower during the LGM in this range of cores, then it 

provides support that the glacial reservoir was occupying a larger vertical extent than previously 

thought.   

 To determine if there is evidence of enhanced carbon storage within the Panama Basin as 

compared to the rest of the EEP during the LGM, I measured B/Ca ratios in benthic foraminifera 

to reconstruct bottom water [CO3
2-] from a suite of cores across the EEP both within and outside 
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the Panama Basin. These records, specifically 17JC and MV1014-01-8JC (hereafter 8JC), were 

compared with previously generated aU, 232Th, and xsBa proxy records from Loveley et al. 

(2017) and Marcantonio et al. (2020) to assess the possible influence of Fe fertilization on EEP 

carbon storage. If increased export production due to enhanced dust deposition is the controlling 

mechanism on regional carbon storage, then the [CO3
2-] records should inversely covary 

(decreased [CO3
2-] with increasing 232Th/xsBa) with the 232Th and xsBa records across the last 

deglaciation. If increased export production is not the main driver of regional carbon storage, and 

instead overall poor ventilation of source waters is the controlling mechanism, then the [CO3
2-] 

should inversely covary with the previously generated aU records (decreasing [CO3
2-] with 

increasing aU). 

The four records generated in this study were then compared to other bottom water 

[CO3
2-] records from the EEP to gain a better understanding of how carbon storage varied in the 

region since the LGM. This study incorporates cores spanning shallow (~2 km) to mid-depths 

(~3 km) in order to determine depth limits on the glacial EEP carbon reservoir. This depth range 

will allow for further constraints to be placed on the possible carbon storage gradient in the EEP 

during the LGM as well.  Combining cores from inside and outside the Panama Basin at similar 

depths will determine the influence the Panama Basin itself may have had on regional carbon 

storage. Finally, by creating high-resolution records across the last 25 kyr, this study will 

examine the temporal variability of the hypothesized carbon reservoir across the last deglaciation 

and through the Holocene.   

Oceanographic Setting  

The modern EEP is a source of CO2 to the atmosphere driven, primarily by strong 

regional upwelling of CO2 rich waters of the Equatorial Undercurrent (Takahashi et al., 2009; 



7 
 

 

Fiedler and Talley, 2006). Although this upwelling also brings nutrient rich waters to the surface, 

biological productivity is limited by low concentrations of the micronutrient Fe (Dugdale & 

Wilkerson, Martin et al., 1994). As a result, macronutrients such as nitrate and phosphate are not 

fully used and their concentrations remain high due to this Fe limitation (Robinson et al., 2009). 

This unused nutrient supply in conjunction with the Fe limitation has led the EEP to be one of 

the largest HNLC areas in the modern ocean. (Le Borgne et al., 2002). Furthermore, the EEP 

HNLC region constitutes a major site of modern efflux of CO2 from surface waters to the 

atmosphere (Takahashi et al. 2002).            

The Panama Basin is bound by a series of ridge systems and the South and Central 

American coasts. The Cocos Ridge (sill depth ~1.9 km, Figure 1) constrains the west side of the 

Basin while the south side is bound by the Carnegie Ridge (sill depth ~2.3 km, Figure 1). The 

hydrography of the EEP, like the rest of the tropical Pacific, is connected to and influenced by 

Southern Ocean-originating water masses at depth. The deep waters of the Panama Basin are 

sourced by a branch of the southeast Pacific basin abyssal circulation that originates in the 

Antarctic Circumpolar Current (Tsuchiya and Talley, 1988). Antarctic Upper Circumpolar Deep 

Water (UCDW; Figure 2) forms the deep waters in the region as it spreads north from the Peru 

Basin entering the Panama Basin at a depth of 2.9 km through a small gap (3 km) between the 

Carnegie ridge and the South American coast (Laird, 1971; Lonsdale, 1977). Additional UCDW 

flows north into the Panama Basin over a broad saddle in the middle of the Carnegie Ridge at a 

depth of ~2.3 km (Lonsdale and Malfait, 1974). As UCDW travels north it begins to slowly 

undergo vertical mixing, ultimately forming Pacific Deep Water (PDW; Figure 2) in the North 

Pacific. This deep northern-sourced water mass is the oldest water mass on Earth, characterized 

by high-nutrients and low oxygen as well as elevated CO2 concentrations (Fiedler & Talley, 
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2006). This PDW then returns south and forms the mid-depth (~1 km - 2.3 km) waters of the 

Panama Basin (Fiedler and Talley, 2006).  

 

Figure 2: Eastern Pacific Hydrography. Modern Pacific dissolved oxygen concentration 

profile (color scale and contours) generated from the WOCE P19C transect (Schlitzer, 2017; 

Tsuchiya and Talley, 1993). Water masses are indicated: Lower Circumpolar Deep Water 

(LCDW), AAIW (Antarctic Intermediate Water), Upper Circumpolar Deep Water (UCDW), 

North Pacific Intermediate Water (NPIW), and Pacific Deep Water (PDW). Core locations from 

this study are indicated with yellow circles. Core TR163-22 not included due to its position far 

west outside of the transect.  

 

Hydrographic profiles of modern seawater carbon system parameters are available for 

this region from the World Ocean Circulation Experiment (WOCE) P19C transect (Figure 3) 

(Talley, 2007). These seven vertical profiles from the P19C transect provide important insight 

into the region’s modern water column chemistry. Modern Panama Basin hydrography exhibits 

signs of “biogeochemical aging” in the deeper parts of the basin as a result of the accumulation 

of respired carbon. These profiles show that modern regional export production is great enough 

to alter the inflowing source waters as they travel through the basin. This can be inferred by the 

increase of Alkalinity/DIC and the decrease of dissolved O2 along the flow path of the deeper 

waters from south to north in the basin (Figure 3). 
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Figure 3: Panama Basin Hydrography. Hydrographic section data: A) Total Dissolved 

Inorganic Carbon (mol/kg), and B) Total Alkalinity (mol/kg) from the Panama Basin 

generated using the WOCE P19C transect (Tsuchiya and Talley, 1993). Core locations from this 

study are indicated with yellow circles. Core TR163-22 not included due to its position far west 

outside of the transect.  
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II. METHODS 

Core Locations 

I selected a suite of four cores spanning a depth range of 2 km to 2.9 km, with cores at 

similar depths from both inside and outside of the Panama Basin. This depth range allows for 

constraints to be placed on the vertical and horizontal extent of the deep carbon pool in the 

Panama Basin across the last 25 kyr.  Core 8JC (614’N, 862’W) was collected from the Cocos 

Ridge, just outside of the Panama Basin, at 2 km water depth and represents the shallowest core 

used in this study (Figure 1). 17JC (010’S, 8552’W) was retrieved from the Carnegie Ridge 

inside the Panama Basin at 2.9 km water depth and is used to represent the deepest conditions in 

the basin (Figure 1). Recovered from just outside the Panama Basin, VM19-28 (222’S, 

8439’W) lies at a similar depth (2.7 km water depth) to 17JC and provides a valuable 

opportunity to determine conditions at this depth south of the basin (Figure 1). Finally, TR163-

22 (92°23.9’W, 0°30.9’N) was collected 200 km northwest of the Galapagos Islands at 2.8 km 

water depth and represents another deep location west of the basin for which to compare with 

17JC (Figure 1). TR163-22 also lies the farthest distance west from the South American coast 

and is likely outside the influence of significant detrital input from the continental Americas. To 

summarize, three of the four cores, 8JC, VM19-28, and TR163-22, are from locations outside of 

the Panama Basin, while 17JC is from within the Panama Basin. I then combined my study sites 

with other cores from previously published studies in order to achieve a full range of depths and 

locations both within and outside of the Panama Basin (Figure 1). Core 17JC has the highest 

sedimentation rate and was used to generate sub-millennial scale records of rapid changes in the 

carbonate chemistry of the EEP in response to millennial scale climate events throughout the last 
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deglaciation.  This is the first study to take this comprehensive of an approach with respect to 

depth related differences in carbon storage inside and outside of the Panama Basin.   

Age Controls 

 The age model for 17JC is based on linear interpolation between ten radiocarbon dates 

analyzed on the planktic foraminifera Neogloboquadrina dutertrei from intervals within the top 

500 cm of the core (Loveley et al., 2017). Sedimentation rates for 17JC range from 8 – 12 

cm/kyr, corresponding to a sampling resolution of ~300 years. Importantly, 17JC has the highest 

sedimentation rate of any core recovered from the EEP, providing a unique opportunity to 

determine sub-millennial-scale climatic shifts and generate high-resolution records of the EEP 

deep water carbonate system. The age model for 8JC is based on linear interpolation between 

seven radiocarbon dates also analyzed on N. dutertrei, equating to a sedimentation rate that 

varies from 1.3 to 6.8 cm/kyr, giving a sampling resolution of ~300-900 years during the last 

deglaciation (Marcantonio et al., 2020). The age model for TR163-22 was created by linear 

interpolation between nine radiocarbon dates in the top 400 cm of the core by Lea et al. (2006). 

Although this core has a high sedimentation rate (∼10 cm/kyr) for the region, only 30 sample 

intervals were available to use in this study, resulting in a lower deglacial age resolution. The age 

model for VM19-28 is based on linear interpolation between six radiocarbon dates published by 

Koutavas and Lynch-Stieglitz (2003). This core has a sedimentation rate of ~5 cm/kyr and 

enough sample intervals were available to generate a high-resolution record.   

B/Ca Sample Preparation 

Tests of the epifaunal benthic foraminifera Cibicidoides wuellerstorfi (also called 

Planulina wuellerstorfi) were picked from all available intervals spanning the last 25 kyr in the 

four cores from the >150 µm size fraction. This epifaunal species was chosen because infaunal 
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benthic foraminiferal species are subject to DIC changes in pore water due to the 

remineralization of organic material in the sediments (Yu and Elderfield, 2007). Furthermore, 

there are established equations to calculate carbonate system parameters from B/Ca ratios 

measured on Cibicidoides wuellerstorfi (Yu and Elderfield, 2007) (see section 2.6 below). 10-20 

individuals totaling >250 µg (>150 µg in cases of low abundance) were carefully picked from 

each core interval, gently crushed to expose their inner chambers for cleaning, and homogenized. 

112 intervals across all four cores yielded larger samples (> 500 µg) and were split into aliquots 

after homogenization to generate replicate analyses. Samples were then cleaned according to the 

protocol outlined by Schmidt et al. (2012) and modified to avoid boron contamination. The 

cleaning procedure included sonication in ultra-pure low boron Milli-Q water and methanol, 

treatments with hot oxidizing and reducing solutions to remove organic matter and metal oxide 

coatings, respectively, transfers to new boron-free acid leached vials, and a final leach with a 

weak, ultra-pure low boron 0.01% HNO3 solution. All samples were cleaned in over-pressured 

flow hoods equipped with non-fiberglass HEPA filters to maintain trace metal clean conditions. 

B/Ca Analysis  

 Samples were dissolved in 500 µL of ultra-pure low boron 2% HNO3 and analyzed on a 

Thermo Scientific Element XR High Resolution Inductively Coupled Plasma Mass Spectrometer 

(HR-ICP-MS) at Old Dominion University’s College of Sciences Major Instrument Cluster 

(COSMIC) lab. Sample vials were only opened immediately before analysis to avoid airborne 

boron “fall-in” contamination described by Rae et al. (2011).  A series of trace and minor 

elements were analyzed and normalized to Ca including B, Mg, Fe, Al, and, Mn. Sample 

element/calcium ratios were determined from a linear calibration based on a series of four 

calibration standards of known Element/Calcium ratios analyzed between every set of six 



13 
 

 

samples during each run.  Samples were also blank corrected based on sets of 2% HNO3 blanks 

analyzed periodically throughout every run. 2% HNO3 blanks were carefully monitored for any 

sources of boron contamination during the analysis process. Al/Ca, Fe/Ca, and Mn/Ca were used 

to monitor for any contaminants remaining after the cleaning procedure. Elevated ratios of Al/Ca 

values indicate the presence of aluminosilicate clays not removed during the cleaning process. 

High Fe/Ca and Mn/Ca indicate the presence of oxide coatings not removed during the reductive 

cleaning step. Samples with ratios of >100 µmol/mol for Al/Ca, Mn/Ca, or Fe/Ca were rejected 

due to potential contamination. Elevated manganese and iron values were expected during 

analysis due high levels of hydrothermal activity in this region (Lund et al., 2016). Repeated 

analysis of three consistency standards during each run were used to determine the analytical 

precision for each series of measurements. Reproducibility of values were based on duplicate 

analysis of samples split from within the same core interval when enough material was available.  

Replicate and Analytical error   

A total of 323 measurements (replicates included) were conducted for this study. 

Nineteen analyses were excluded based on either elevated cleaning indicators or low sample 

recovery weight: 10 were removed due to elevated Fe/Ca and Al/Ca (>100 μmol/mol) and 9 

were removed due to low sample recovery weight (<10 μg) after cleaning. After removing these 

data, the final total number of accepted analyses in the study was 304. The B/Ca ratios across the 

cores ranged from 147.8 μmol/mol to 187.4 μmol/mol with an average of 172.3 μmol/mol. 

Recurrent analysis of three matrix-matched consistency standards with B/Ca ratios of 100 

μmol/mol, 146 μmol/mol, and 201 μmol/mol yielded an analytical precision of ± 0.91%. It was 

determined that the 100 μmol/mol standard would not be included in the final calculations due to 

the higher range of measured B/Ca values measured in my samples. The calculated analytical 
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precision based on the 146 μmol/mol and 201 μmol/mol standards was 0.58 % or ± 1.00 

μmol/mol for B/Ca based on an average analyzed B/Ca ratio of 172.3 μmol/mol. The B/Ca 

differences between replicates ranged from 0.6 μmol/mol (0.33%) to 12.7 μmol/mol (7.34%) 

with an average of 5.6 μmol/mol (3.37 %). The combined replicate and analytical RSDs 

(√RSDA
2 +RSDB

2) yielded an average standard error of ± 5.8 μmol/mol and an RSD of ± 3.4 %. 

B/Ca based [CO3
2-] calculations 

The B/Ca ratios in the calcite tests of C. wuellerstorfi have been experimentally shown by Yu 

and Elderfield. (2007) to relate linearly to Δ[CO3
2-] based on a global compilation of core top 

measurements. C. wuellerstorfi B/Ca can be converted to Δ[CO3
2-] using a species-specific 

calibration (equation 1) that has an estimated accuracy of ±10 µmol kg-1 in reconstructed records. 

The relationship between B/Ca and Δ[CO3
2-] then allows for downcore [CO3

2-]in situ to be 

reconstructed based on equation 2. Seawater [CO3
2-]sat in the modern ocean was determined from 

[CO3
2-]in situ/ΩCalcite values where ΩCalcite is the saturation state of calcite at a given salinity, 

pressure, and temperature (Table 1). A constant value for [CO3
2-]sat was assumed throughout each 

core due to the small variability of salinity, temperature, and pressure over the late Pleistocene in 

the deep Pacific (Allen et al., 2015).  

(1) Δ[CO3
2-] = (B/Ca -177.1)/1.14 (µmol/kg) 

(2) Δ[CO3
2-] = [CO3

2-] - [CO3
2-]sat (µmol/kg) 

Modern day Δ[CO3
2-], [CO3

2-]sat, and ΩCalcite values (Table 2) for each core location were 

determined using Ocean Data View’s ocean calculator software package (Schlitzer, 2015). The 

hydrographic information needed to calculate the carbonate system components included 

pressure (dbar), temperature (℃), salinity (unitless), phosphate concentration (µmol/kg), silicate 
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concentration (µmol/kg), total alkalinity (µmol/kg), and total DIC (µmol/kg) (Table 1). 

Consistent with previous studies in the region, the equilibrium constants of Dickson and Millero 

(1987) and Mehrbach et al. (1973) were applied in the calculations. Modern [CO3
2- ]sat values of 

60.98 µmol/kg, 75.11 µmol/kg, 71.13 µmol/kg, 74.45 µmol/kg were used for cores 8JC, 17JC, 

TR163-22, and VM1928, respectively, based on the closest available hydrographic stations from 

the WOCE P19C transect (Tsuchiya and Talley, 1998) (Table 2). 

Core Pressure 

(dbar) 

Temperature 

(°C) 

Salinity 

(unitless) 

Phosphate 

(µmol/kg) 

Silicate 

(µmol/kg) 

Alkalinity 

(µmol/kg) 

DIC 

(µmol/kg) 

MV1014-02-

17JC 

2925 1.82 34.67 2.75 153 2437 2362 

MV1014-01-

8JC 

2071 2.04 34.65 2.80 146 2425 2359 

VM19-28 2730 1.61 34.68 2.64 147 2431 2349 

TR163-22 2925 1.82 34.67 2.75 153 2437 2362 

Table 1: EEP Hydrographic Properties. Modern bottom water hydrography for each core used 

in this study. 

 

Core Latitude Longitude Depth 

(km) 

[CO3
2-] 

(µmol/kg) 

Ω [CO3
2-] sat 

(µmol/kg) 

Δ[CO3
2-] 

(µmol/kg) 

[O2] 

(µmol/kg) 

MV1014-02-

17JC 

0⁰10’ S 85⁰52’ W 2.9 67.58 0.90 75.11 -7.51 109 

MV1014-01-

8JC 

6⁰14’ N 86⁰2’ W 2.0 62.20 1.02 60.98 1.22 94 

VM19-28 2⁰22’ S 

 

84⁰39’ W 

 

2.7 

 

72.31 

 

0.97 

 

74.55 

 

-1.48 

 

122 

 

TR163-22 0⁰30’N 92⁰23’ W 2.8 67.58 0.95 71.13 

 

-3.55 110 

Table 2: EEP Carbonate Chemistry EEP location and modern bottom water carbonate chemistry 

for each core used in this study. 
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III. RESULTS 

B/Ca results 

The only core in my study from inside the Panama Basin (17JC: Figure 4, yellow line) 

exhibited the largest change in B/Ca across the last deglaciation. Starting before Heinrich Stadial 

2 (HS2) at 26 kyr, B/Ca ratios decreased from 167 μmol/mol to 153 μmol/mol near the beginning 

of HS2. Ratios remained low during HS2, but then dropped to the lowest recorded measurement 

of 147 μmol/mol at approximately 20 kyr. The overall LGM (18 kyr - 23 kyr) B/Ca average of 

157 μmol/mol for 17JC was the lowest glacial average out of the four records in my study. 

Following this glacial low, B/Ca ratios increased until the onset of HS1 when they dropped by 9 

μmol/mol to a deglacial low of 153 μmol/mol. Towards the end of HS1, B/Ca ratios began to 

recover and increased consistently across the Bølling–Allerød (BA), ultimately reaching a ratio 

of 176 μmol/mol. Following the start of the Younger Dryas (YD), ratios rapidly decreased from 

the previous peak to a low of 160 μmol/mol. In a similar trend to HS1, ratios quickly increased 

after this low during the YD and reached a high of 180 μmol/mol near the start of the Holocene. 

Throughout the mid-Holocene ratios exhibited two distinct maximums at ~5.4 kyr and ~7.5 kyr 

with B/Ca ratios of 184 μmol/mol and 180 μmol/mol, respectively. The late-Holocene was 

characterized by an overall decrease in B/Ca to near modern ratios at the core-top (see Results 

section 3.2). The average Holocene (0-11.7 kyr) B/Ca for 17JC of 174 μmol/mol was 17 

μmol/mol higher than the LGM average, the largest LGM-Holocene difference of the four B/Ca 

records created in this study.  
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Figure 4: EEP B/Ca-Δ[CO3
2-] Reconstructions. C. wuellerstorfi B/Ca records from the last 25 

kyr for the four cores used in this study. B/Ca was converted to seawater Δ[CO3
2-] using the 

original calibration of Yu and Elderfield (2007). Vertical Error bar represents ± 3.37 % 

(combined analytical and replicate variation RSD; see methods section 2.5 for details).  

 

Results from core VM19-28 (Figure 4, green line) from just south of the Panama Basin 

exhibited broadly similar patterns to those seen in the 17JC record. Ratios decreased slightly 

across HS2 and then increased to a glacial maximum of 171 μmol/mol. This was followed by a 

decrease to the lowest glacial ratio of 158 μmol/mol at approximately 20 kyr. B/Ca ratios 

increased throughout the remainder of the LGM until the start of HS1. From an early HS1 high 

of 174 μmol/mol, ratios decreased by 12 μmol/mol to a low of 162 μmol/mol at ~16.5 kyr. 

Following the end of HS1, B/Ca ratios rebounded and then experienced a slight reduction before 

the onset of the BA. Throughout the BA, B/Ca ratios increased until ~13 kyr, when a decrease 

marked the beginning of the YD. Ratios decreased from 174 μmol/mol to a low of 162 μmol/mol 

during the middle of the YD. Following this YD decrease, B/Ca ratios rapidly increased to an 
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early Holocene high of 180 μmol/mol. The mid-Holocene showed two distinct peaks in B/Ca at 

7.6 kyr and 4 kyr with measurements of 181 μmol/mol each time.  During the late-Holocene 

B/Ca ratios decreased towards modern day ratios with a core-top measurement of 173 μmol/mol. 

The average Holocene B/Ca measurement for VM19-28 was 176 μmol/mol compared to its 

LGM average of 165 μmol/mol. The overall LGM-Holocene difference of -9 μmol/mol was the 

smallest difference seen in the four constructed records.  

Core 8JC (Figure 4, blue line) from the shallowest depth (2 km) outside the Panama 

Basin to the north showed the second greatest difference between Holocene and LGM average 

B/Ca ratios. During HS2, ratios decreased slightly before rebounding to an LGM maximum of 

176 μmol/mol. From this maximum, B/Ca ratios decreased through the remainder of the LGM 

and showed the lowest ratios of 164 μmol/mol at approximately 18.2 kyr. Following this glacial 

low, B/Ca ratios rapidly increased to 176 μmol/mol at the beginning of HS1 and remained 

relatively constant until a slight decrease to 173 μmol/mol before the beginning of the BA. 

Throughout the BA, B/Ca ratios consistently increased to a maximum of 180 μmol/mol just prior 

to the onset of the YD. During the YD B/Ca ratios decreased slightly, but then began to increase 

to an early-Holocene ratio of 181 μmol/mol. During the mid-to-late Holocene ratios remained 

relatively stable with an average of 182 μmol/mol. The core-top age of 8JC was 1.7 kyr and did 

not accurately reflect modern conditions at the core site. The Holocene average of 182 μmol/mol 

was the highest Holocene average of the four constructed records. The -13 μmol/mol difference 

between this Holocene average and the LGM average of 169 μmol/mol was the second largest of 

the four records. This difference was also the largest of the cores outside the Panama Basin.  

Finally, westernmost core TR163-22 (Figure 4, red line) from outside of the Panama 

Basin showed the least amount of millennial-scale variability of my four records. Ratios 
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decreased slightly across HS2 and the LGM, reaching a minimum glacial B/Ca ratio of 167 

μmol/mol. This was followed by a consistent increase across HS1 to a maximum of 184 

μmol/mol just before the start of the BA. During the BA, a maximum B/Ca ratio of 187 

μmol/mol was recorded. There were then a series of low B/Ca periods through the end of the BA 

and YD periods before an increase to 186 μmol/mol during the early-Holocene. Following this 

increase, ratios decreased and plateaued to near the Holocene average of 182 μmol/mol. When 

compared with the LGM average of 169 μmol/mol, TR163-22 had an LGM-Holocene difference 

of -12 μmol/mol, the second largest difference for the cores from outside of the Panama Basin. 

 Reconstructed [CO3
2-] Records 

  The combined B/Ca-Δ[CO3
2-] (methods section 2.6, equation 1) and modern [CO3

2-]sat  

(methods section 2.6, equation 2) resulted in a [CO3
2-] range from 49.4 μmol/kg to 84.1 μmol/kg 

with an average value of 67.2 μmol/kg across the four records (Figure 5). The pooled RSD on the 

B/Ca measurements of ± 3.37% equated to a standard error of ± 2.26 μmol/kg which was applied 

to each [CO3
2-] record. Two of the four cores (17JC and VM19-28) had core top ages that 

allowed for comparison of reconstructed [CO3
2-] to modern [CO3

2-]in situ.  The modern [CO3
2-] for 

17JC is 67.58 μmol/kg compared to the reconstructed value of 69.67 μmol/kg, while VM19-28 

has a modern [CO3
2-] of 72.31 μmol/kg compared to a reconstructed value of 71.32 μmol/kg 

(Figure 5). The closeness of the reconstructed and modern empirical values provided strong 

confidence in the B/Ca proxy to accurately reconstruct bottom water conditions. The two other 

cores, which had significantly older core tops, had higher calculated core top [CO3
2-] when 

compared with modern values at each site. These elevated values were likely due to increased 

[CO3
2-] during the middle-late Holocene at the core sites.  
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Figure 5: EEP [CO3
2-] Records. [CO3

2-] derived from B/Ca-Δ[CO3
2-] (see methods section 2.6) 

from the last 25 kyr for the four cores in this study. Vertical Error bar represents ± 3.37 % 

(combined analytical and replicate variation RSD; see methods section 2.5 for details). 

 

A depth profile of Holocene [CO3
2-] was created from the average [CO3

2-] data between 0 

and 11.7 kyr for each core (Figure 6). Though the overall [CO3
2-] was higher during the 

Holocene compared with modern EEP values, the profile closely reflected the structure of the 

modern EEP [CO3
2-] distribution with depth. The exception to this was the Holocene average for 

the westernmost core TR163-22, which had a higher [CO3
2-] when compared to the other cores at 

similar depths.  Furthermore, every record displayed lower average [CO3
2-] during the LGM than 

during the Holocene. The average glacial [CO3
2-] outside the Panama Basin was lower than the 

Holocene average by -12 µmol/kg, -11 µmol/kg and, -8 µmol/kg at cores 8JC, TR163-22, and 

VM1928, respectively. The largest LGM-Holocene difference was -16 µmol/kg, recorded at 

17JC inside the Panama Basin. The records both inside and outside the Basin showed their 

lowest overall values during the glacial period. The [CO3
2-] values began to rise during the 
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deglaciation in all cores at approximately 19.5 kyr (Figure 5). Due to the variability in each 

record and the combined uncertainty of the age models and B/Ca-Δ[CO3
2-] proxy, it was not 

feasible to assign a more precise timing for the initial shift following the glacial minimum.   

Two of the cores located outside the basin (8JC and TR163-22) showed a gradual 

increase in [CO3
2-] through the deglaciation into the early Holocene and then decreased towards 

modern values (Figure 5). The two other records (17JC and VM19-28) showed an overall 

deglacial increase with two periods of noted decrease in [CO3
2-] during HS1 (17.5 kyr -16.5 kyr) 

and the YD (12.9 kyr -11.7 kyr). During HS1, [CO3
2-] decreased from 72 µmol/kg to 61 µmol/kg 

in VM1928 and from 64 µmol/kg to 55 µmol/kg in 17JC. A comparable change in [CO3
2-] was 

recorded during the YD from 72 µmol/kg to 62 µmol/kg in VM1928 and from 74 µmol/kg to 60 

µmol/kg in 17JC. The four records exhibited a slight early Holocene maximum in [CO3
2-] and 

then an overall decrease throughout the Holocene to near modern values.  During the middle-late 

Holocene, 17JC and VM1928 displayed a series of roughly covarying minor oscillations, while 

TR163-22 and 8JC maintained a more stable plateau in [CO3
2-] (Figure 5). 
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Figure 6: EEP Carbon Storage Comparison.  Depth profiles of modern [CO3
2-] (blue 

dots) from the WOCE P19C transect (Tsuchiya and Talley, 1993) plotted with benthic 

foraminiferal B/Ca derived [CO3
2-] averages for the Holocene (0–11.7 kyr) and LGM (18.1 kyr–

23.0 kyr) from the EEP. A, Averages from this study (yellow) and previously published records 

including: B, De la Fuente et al., 2017 (green), C, Doss and Marchitto, 2013 (red), and D, 

Umling and Thunell, 2018 (blue).  
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IV. DISCUSSION 

Throughout the modern deep ocean, including the EEP, patterns of [CO3
2-] are largely 

influenced locally by the degradation of organic matter and regionally by changes in source 

waters (Broecker and Peng, 1982). The generation of CO2 from the respiration of marine organic 

matter has the effect of increasing DIC and decreasing [CO3
2-] by lowering the pH of a water 

mass (Yu and Elderfield, 2007). As a result, modern deep water [CO3
2-] decreases proportionally 

as organic matter is respired and the water mass ages (Yu and Elderfield, 2007). This 

relationship is the cause for the very low [CO3
2-] in older Pacific deep waters when compared to 

equivalent depths in younger Atlantic waters (Yu and Elderfield, 2007).  Although the 

mechanism that controls respired CO2 storage in the deep Pacific during the LGM remains 

unclear, reconstructions of [CO3
2-] have provided evidence for increased respired CO2 storage 

(Doss and Marchitto, 2013; De La Fuente et al., 2017; Umling and Thunell, 2018, Yu et al., 

2013, Allen et al., 2015; Allen et al., 2020).   

LGM – Holocene [CO3
2-] differences in the EEP 

My new results from cores at depths of 2.9 km (17JC) inside the Panama Basin, and 2.8 

km (TR163-22), 2.7 km (VM19-28), and 2.0 km outside the Panama Basin (8JC) all show that 

benthic foraminiferal B/Ca ratios were lower during the LGM (Figure 4), indicating lower  

[CO3
2-]. When comparing the 17JC (2.9 km) [CO3

2-] reconstruction from inside the Panama 

Basin with the [CO3
2-] records from outside the basin at similar depths (VM19-28 (2.7 km) and 

TR163-22 (2.8 km)), it is clear that 17JC has the largest LGM-Holocene [CO3
2-] difference of -

16 µmol/kg (Figure 6, yellow diamond). TR163-22 has a difference of -11 µmol/kg (Figure 6, 

yellow triangle) while VM19-28 has the smallest of -8 µmol/kg (Figure 6, yellow square). These 

LGM [CO3
2-] differences suggest that waters at the same depth just south and west of the 
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Panama Basin may have contained less respired CO2 as compared to the waters inside the basin 

during the LGM.  

De La Fuente et al. (2017) generated a benthic foraminiferal B/Ca based [CO3
2-] 

reconstruction from a core at a depth (2.9 km) inside the Panama Basin near 17JC and also found 

lower glacial [CO3
2-] (Figure 6, green circle). Their LGM – Holocene [CO3

2-] difference was -11 

µmol/kg, although their overall calculated [CO3
2-] for both the LGM and the Holocene were 

higher than those in 17JC and also higher than the modern concentration.  Another record from a 

core inside the Panama Basin reported the largest LGM-Holocene [CO3
2-] difference of -15 

µmol/kg at 3.2 km (Doss and Marchitto (2013) (Figure 6, red square). At a similar depth outside 

the basin (3.2 km) Umling and Thunell (2018) found a difference of -13 µmol/kg from the LGM 

to Holocene (Figure 6, blue triangle). This series of comparisons suggest that during the LGM, 

waters inside the Panama Basin had overall lower [CO3
2-], suggesting the storage of a greater 

amount of respired CO2 relative to waters at equivalent depths outside the basin. The increased 

carbon storage inside the Panama Basin and in the greater EEP during the LGM provides further 

evidence that the deep Pacific was indeed enriched in respired CO2 during the LGM and 

contributed to the lower pCO2 at that time. 

Vertical differences in LGM [CO3
2-] in the EEP 

In addition to the geographic influence of the Panama Basin on deep water carbon 

storage, my new records suggest differences in the vertical distribution of respired CO2 storage 

in the EEP during the LGM. In addition to 17JC at 2.9 km, Doss and Marchitto (2013) 

reconstructed [CO3
2-] records at three depths inside the basin (2.2 km, 3.2 km and 3.6 km) and 

showed lower LGM [CO3
2-] values in all three records. In their deepest core at 3.6 km they 

record an LGM-Holocene difference of -8 µmol/kg (Figure 6, red triangle). Moving upward the 
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values decrease to the largest LGM-Holocene difference of -15 µmol/kg at 3.2 km (Figure 6, red 

square). 17JC at 2.9 km shows the largest LGM-Holocene difference inside the basin of -16 

µmol/kg. Finally, the shallowest core from Doss and Marchitto (2013) at 2.2 km shows the 

smallest LGM-Holocene difference of -5 µmol/kg (Figure 6, red circle). This profile suggests 

that there was a vertical gradient in the storage of respired CO2 inside the basin with an increase 

from 2.2 km to 3.2 km and then a subsequent decrease below 3.2 km (Figure 6). The vertical 

difference of -11 µmol/kg between waters at 2.2 km and 2.9 km demonstrates that inside the 

basin, respired CO2 storage increased with depth reaching a maximum [CO3
2-] difference near 

2.9 km. 

 The cores from this study outside the Panama Basin also show lower glacial B/Ca ratios 

indicating lower [CO3
2-]. Umling and Thunell (2018) recorded lower glacial [CO3

2-] from several 

cores outside the basin at 3.2 km, 2.8 km, and 2.7 km (Figure 6, blue symbols).  They record 

their largest LGM-Holocene difference of -13 µmol/kg at 3.2 km depth (Figure 6, blue triangle). 

Moving upward, from this study, TR163-22 shows a difference of -11 µmol/kg at 2.8 km and 

VM19-28 shows a difference of -8 µmol/kg at 2.7 km (Figure 6, yellow triangle and Figure 6, 

yellow square). From two cores at nearly equivalent depths, Umling and Thunell (2018) report a 

difference of -0.7 µmol/kg and -9 µmol/kg at 2.7 km and 2.6 km, respectively (Figure 6, blue 

triangle and Figure 6, blue square). The shallowest core is my new record from 8JC at 2.0 km 

and it shows an LGM-Holocene difference of -12 µmol/kg (Figure 6, yellow circle). This profile 

constructed from outside the basin suggests that there was not a vertical gradient in respired CO2 

storage outside the basin. The difference between 8JC at 2.0 km and TR163-20B at 3.2 km is -1 

µmol/kg, with no major variations occurring between these two depths. When compared with the 

magnitude of the -11 µmol/kg difference recorded from inside the basin, a vertical gradient in 
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respired CO2 storage likely did not exist outside the basin. This provides further evidence that the 

waters inside the Panama Basin stored a greater amount of respired CO2 relative to the rest of the 

EEP, and likely acted as an important carbon reservoir during the LGM. 

Millennial-scale Deglacial [CO3
2-] changes inside the Panama Basin 

Due to the lower resolution of all the previously generated [CO3
2-] records, millennial 

scale changes in respired CO2 storage in the EEP were difficult to interpret and as a result, only 

differences on glacial-interglacial timescales were determined. The new high-resolution record 

from 17JC allows for the unique opportunity to go beyond glacial-interglacial changes and 

discern millennial-scale variations in respired CO2 storage inside the Panama Basin across the 

last deglaciation (Figure 7). Several large deglacial shifts can be noted in 17JC’s [CO3
2-] record 

that occur during NH cold periods. During the last glacial period, [CO3
2-] values decrease across 

HS2 to values similar to those during the LGM (Figure 7). During the last deglaciation, two NH 

cold periods elicit a similar response in the [CO3
2-] record. During HS1 (17.5 kyr – 16.5 kyr) 

values decrease compared to the background deglacial trend. Following this drop, values steadily 

increase across the BA (14.5 kyr -13.5 kyr), a period of warming in the NH. The [CO3
2-] values 

again decrease at the start of the YD (12.9-11.5) (Figure 7). These two decreases in [CO3
2-] 

during the last deglaciation are large deviations from the overall deglacial increase from 20 kyr 

to 11 kyr. These periods of lowered [CO3
2-] suggest greater storage of respired CO2, possibly 

indicating the EEP acted as a sink for atmospheric pCO2 during these cold climate intervals.  
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Figure 7: EEP Millennial-Scale [CO3
2-] Record. B/Ca-[CO3

2-] record for 17JC across the last 

deglaciation. NH cold periods are indicated with a blue bar: HS2, HS1, and YD. NH warm 

periods are indicated with a yellow bar: BA. (Error bar represents the combined analytical 

standard error and replicate standard error for each measurement of ± 2.26 µmol/kg) 

 

Mechanisms for [CO3
2-] changes in the EEP across the last deglaciation   

Bottom water oxygenation 

As respired [CO2] increases in a water mass, due to either poor ventilation of the source 

waters or increased respiration of exported surface organic matter, dissolved oxygen content 

decreases (McManus et al., 2005). In order to determine if the changes in the [CO3
2-] records 

from this study are the result of poor ventilation of source waters in the glacial Pacific or 

increased local export production, a separate bottom water oxygenation proxy is necessary. 

Authigenic Uranium (aU) concentrations have been successfully used in previous studies to 

evaluate the oxygen content of bottom waters throughout the Pacific (Jaccard et al., 2009; 

Jaccard et al., 2016; Loveley et al.,2017; Bradtmiller et al.,2010, Marcantonio et al., 2020).    



28 
 

 

There are two major controls on bottom water oxygenation that influence the 

concentration of aU in sediment: the rain of reducible organic material from the surface ocean, 

which consumes oxygen as it is respired thus increasing aU (Francois et al., 1993), and the 

oxygen content of the source water bathing the ocean floor, which is primarily influenced by 

ventilation (Thomson et al., 1990). If a deep-water mass becomes isolated from interaction with 

surface waters (i.e. poor ventilation) it will accumulate nutrients in addition to an increase in 

respired CO2 concentration and a decrease in dissolved oxygen content due to respiration 

(therefore increasing aU concentrations) (Thomson et al., 1990). This poor ventilation can 

influence bottom water oxygen content, and therefore increase aU concentrations, independent of 

any export production changes.  

The previously referenced studies from throughout the Pacific inferred greater respired 

CO2 storage based on higher aU concentrations (lower oxygen) in deep waters of the Pacific 

during the LGM. The spatial and temporal consistency of these aU records lends support to the 

idea that the entire Pacific was influenced by a poorly ventilated deep water mass enriched in 

respired CO2 as opposed to each record being influenced by increases in regional export 

production alone. Here, the new [CO3
2-] records are compared with the previously published aU 

records for 17JC (Loveley et al., 2017) and 8JC (Marcantonio et al., 2020) in order to determine 

if either reduced water mass ventilation or increased export production had a controlling 

influence on respired carbon storage in the EEP (Figure 8 and Figure 9). Marcantonio et al. 

(2020) noted that the aU records for both cores are very similar despite the depth difference 

between 17JC and 8JC (2.8 km and 2 km, respectively) as well as the geographic differences 

(17JC inside the Panama Basin along the equator and 8JC farther north outside the basin). The 

aU concentrations reconstructed from both cores have ranges from 8-12 ppm with the highest aU 
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concentrations (and hence lowest bottom water [O2]) occurring between 19 and 20 kyr during the 

LGM (Figure 8D and Figure 9D).  

                                 

Figure 8: 17JC Intra-Core Proxy Comparison. Proxy data from core MV1014-02-17JC: A, 

[CO3
2-] (orange line), a proxy for respired CO2 storage, (this study), B 230Th-normalized xsBa 

flux (green line), a proxy for export production (Loveley et al., 2017), C) 230Th-normalized 232Th 

flux (red line), a proxy for dust flux (Loveley et al., 2017), D) Authigenic Uranium (blue line), a 

proxy for bottom-water oxygenation (Loveley et al., 2017), E) Atmospheric CO2 record from 

Antarctic ice cores (Bereiter et al., 2012) (grey line), F) NGRIP d18O record (Johnson et al., 

2004) (black line) 
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Figure 9: 8JC Intra-Core Proxy Comparison. Proxy data from core MV1014-01-8JC: A, 

[CO3
2-] (blue line), a proxy for respired CO2 storage, (this study), B 230Th-normalized xsBa flux 

(green line), a proxy for export production (Marcantonio et al., 2019), C) 230Th-normalized 232Th 

flux (red line), a proxy for dust flux (Marcantonio et al., 2019), D) Authigenic Uranium (orange 

line), a proxy for bottom-water oxygenation (Marcantonio et al., 2019), E) Atmospheric CO2 

record from Antarctic ice cores (Bereiter et al., 2012) (grey line), F) NGRIP d18O record 

(Johnson et al., 2004) (black line) 

 

For both 17JC and 8JC, the reconstructed [CO3
2-] records resemble the aU records 

(Figure 8D and Figure 9D). In both cores, aU reaches its highest concentration (lowest bottom 

water oxygenation) during the LGM at the same point that [CO3
2-] values reach their lowest in 
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each core (highest concentration of respired CO2). This indicates that the bottom waters bathing 

each core location were lowest in oxygen and highest in respired CO2 at the same time during the 

LGM. While the overall relationship for the aU and [CO3
2-] records for both cores follow the 

same long-term trends, there are millennial-scale variations in the record for 17JC not present in 

8JC. This likely indicates that on longer timescales oxygen concentrations and respired CO2 

storage at the core locations for 8JC and 17JC are being influenced by the same mechanism. On 

shorter, millennial timescales, oxygen concentrations and respired CO2 storage at the core 

location for 17JC are being influenced by a different mechanism independent of the long-term 

change seen in the waters at 8JC’s core location. This in part supports the theory that a poorly 

ventilated deep Pacific water mass could have influenced the EEP as a whole and acted as a 

reservoir for CO2 during the glacial period leading to lower atmospheric pCO2. Additionally, 

based on the comparison of the 17JC records the influence of localized productivity cannot be 

overlooked as a large factor on changes in regional deep water respired CO2 storage. 

Dust Flux and surface water productivity in the EEP  

Although the surface waters at site 17JC receive abundant nutrients due to upwelling, 

productivity in this region is limited today by the micronutrient Fe (Dugdale & Wilkerson, 1998; 

Martin et al., 1994). In two previous studies from 17JC and 8JC, deglacial 232Th records were 

interpreted to reflect iron rich continentally derived dust fluxes to the core sites (Figure 8C and 

Figure 9C). Loveley et at. (2017) hypothesized that during NH cold periods, the ITCZ shifted as 

far south as the equator, thus increasing dust flux to the EEP. This increased dust flux relaxed the 

normal Fe limitation of the region and allowed for productivity to increase. Increased dust fluxes 

were recorded at both 17JC and 8JC across the last deglaciation (Figure 8C and Figure 9C).  
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When compared with the previously generated 232 Th flux record from Loveley et al. 

(2017) the [CO3
2-] record from this study appears to have an inverse relationship (Figure 8A and 

8C). Periods of lower [CO3
2-] occur during times of increased 232 Th flux. This inverse 

relationship between increased dust flux and decreased bottom water [CO3
2-] appears in 17JC 

during HS2, the LGM (~20 kyr), briefly during HS1, and briefly during the YD (Figure 8C). All 

four of these are NH cold stadials are associated with an overall increase in NH dust and a 

southward shift of the ITCZ near the equator (Loveley et al., 2017). It is theorized that the 

increase in dust flux during these cold periods associated with a southward displacement of ITCZ 

increased export production by relaxing the normal Fe limitation in the region. Therefore, in 

addition to the previously noted poorly ventilated Pacific deep-water influence, increased export 

production likely acted as a complementary mechanism increasing the amount of CO2 stored in 

the waters bathing 17JC inside the Panama Basin.  

Sea surface productivity recorded by xsBa in the EEP 

Barite (BaSO4) makes up the majority of the biogenically produced barium in the ocean, 

and in the modern ocean, barium enrichment occurs in sediments that underlie highly productive 

surface waters (Drymond et al 1992). By removing the continentally-derived aluminosilicate Ba 

from the total sedimentary Ba load, the excess Ba (xsBa) from barite produced authigenically 

(i.e., precipitated) can be estimated (McManus et al., 1998).  As result, fluxes of xsBa have been 

used to determine changes in paleoproductivity in marine environments (Griffith and Payton, 

2012).  

Excess Ba records were previously published for cores 17JC (Loveley et al., 2017) and 

8JC (Marcantonio et al., 2020) (Figure 8B and Figure 9B), allowing for evaluation of the 

relationship between paleoproductivity and [CO3
2-] changes in the EEP.  The xsBa records for 
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17JC and 8JC differ in both their average value and overall variability. The deglacial range of 

xsBa flux for 17JC (~2-10 µg cm-2) is much larger than that of 8JC (~1.2-2.8 µg cm-2). In 

addition, the overall average xsBa flux for 17JC (~4 µg cm-2) is greater than that in 8JC (~2 µg 

cm-2) (Figure 8B and Figure 9B).  

When compared with their respective [CO3
2-] records, the xsBa flux record in 17JC 

displays a distinct relationship, while the 8JC records show no such association (Figure 8A and 

Figure 9A). In 17JC, the two periods of highest xsBa flux (highest surface water productivity) 

coincide with the lowest [CO3
2-] values (greatest respired CO2 storage) during the LGM at ~20 

kyr and across the deglaciation during HS1 (17.5 kyr – 16.5 kyr) (Figure 9B). This suggests that 

increased export production during these periods was great enough to modify carbon storage 

inside the Panama Basin. The fact that the 17JC [CO3
2-] and xsBa flux records show similar 

trends while 8JC does not is likely due to the geographic position of the cores. 17JC is located 

within the heart of the eastern Pacific cold tongue that is characterized by strong upwelling 

(Loveley et al., 2017). Because the equatorial EEP is a HNLC region, productivity is very 

sensitive to aeolian Fe supply. As suggested in Loveley et al. (2017) a southward shift of the 

ITCZ to near the equator during Northern Hemisphere cold periods likely had a large impact on 

productivity at 17JC.  On the other hand, 8JC is located farther north and outside the influence of 

the upwelling zone, so productivity at this location is not expected to be as sensitive to aeolian Fe 

supply (Marcantonio et al., 2020).  Therefore, based on the relationship between xsBa and 

[CO3
2] for 17JC, it is likely that changes in paleoproductivity had a significant impact on bottom 

water [CO3
2].   

It is interesting to note that there is little apparent relationship between dust flux and 

bottom water [CO3
2-] in 8JC (Figure 9C). This too can be explained by the lack of a consistent 
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nutrient supply to the surface waters above the core. Even if Fe were being supplied by 

continentally derived dust, the lack of available macronutrients would mean that productivity 

would still be limited. It can be concluded, therefore, that the changes in bottom water 

oxygenation (as seen from the aU record) and [CO3
2-] at 8JC are due to variability in water mass 

ventilation, and not export production. Whereas the [CO3
2-] changes in 17JC, in addition to the 

impact of the previously noted poorly ventilated water mass, are significantly influenced by both 

changes in surface water productivity and carbon export. 
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V. CONCLUSIONS 

The new benthic foraminiferal B/Ca-Δ[CO3
2-] records presented in this study from within 

and outside the Panama Basin illustrate that during the LGM, carbonate ion concentrations were 

at their lowest levels over the last 25 kyr. This indicates that respired CO2 storage increased in 

the EEP at depths from 2 km – 2.9 km at the same time that atmospheric CO2 was at its lowest 

levels. The increased storage in this depth range supports the hypothesis presented by Sigman 

and Boyle (2000) that the deep Pacific acted as a respired CO2 reservoir and aided in lowering 

atmospheric CO2 during the last glacial period. The offset in the magnitude of the LGM-

Holocene [CO3
2-] differences between the cores inside the basin (17JC) and outside the basin 

(8JC, VM19-28, and TR163-22) demonstrates that waters inside the basin stored a greater 

amount of respired CO2 relative to waters at similar depths outside the basin. By including 

previously published [CO3
2-] records from a variety of depths from both inside and outside the 

Panama Basin, [CO3
2-] depth profiles show that during the LGM there was a vertical gradient in 

respired CO2 storage inside the basin, increasing from 2.2 km to a maximum occurring near 2.9 

km. Further, the depth profile created from cores outside the basin shows that respired CO2 

storage was generally homogeneous from 2 km to 3.2 km during the LGM. The sub-millennial 

scale [CO3
2-] record for 17JC indicated that respired CO2 storage inside the Panama Basin 

underwent two large millennial scale increases (low [CO3
2-]) during the last deglaciation during 

HS1 and the YD, both NH cold stadials.  

The [CO3
2-] records for 17JC and 8JC were compared with previously generated xsBa, 

232Th, and aU records from Loveley et al. (2017) and Marcantonio et al. (2020). The [CO3
2-] 

record generated here for 8JC closely followed the aU record, while showing no relationship to 

the xsBa or 232Th records. It can be concluded, therefore, that increased glacial CO2 storage at 
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this core location was unrelated to export productivity and likely was a result of a Pacific-wide, 

poorly ventilated water mass rich in respired CO2. The [CO3
2-] record for 17JC also resembled 

the aU record indicating this core location was also influenced by a Pacific-wide, poorly 

ventilated water mass. However, unlike 8JC, the [CO3
2-] record for 17JC displayed a relationship 

with previously generated 232Th and xsBa records. Therefore, it can be concluded that in addition 

to the previously noted water mass influence, respired CO2 storage at this core location was 

further enhanced by increased export production that was driven by dust derived iron 

fertilization. This enhanced storage due to increased productivity is likely the source for the 

difference between the magnitude of changes within and outside the Panama Basin.  By 

sequestering carbon away from the atmosphere and surface ocean, deep waters in the Panama 

Basin and surrounding EEP likely played an important role in lowering glacial atmospheric CO2. 

Further, as a result of several periods of enhanced surface productivity across the deglaciation, 

the efflux of CO2 was likely dampened in the region, possibly slowing the deglacial increase in 

atmospheric CO2 during HS1 and the YD.  
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