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Comparative analysis of Bragg fibers 
  Shangping Guo, Sacharia Albin  

Photonics Laboratory, Department of Electrical & Computer Engineering 
Old Dominion University, Norfolk, Virginia 23529 

sguo@odu.edu 

Robert S. Rogowski 
Non-destructive Evaluation Science Branch, NASA Langley Research Center, Hampton, Virginia 23681 

Abstract: In this paper, we compare three analysis methods for Bragg 
fibers, viz. the transfer matrix method, the asymptotic method and the 
Galerkin method. We also show that with minor modifications, the transfer 
matrix method is able to calculate exactly the leakage loss of Bragg fibers 
due to a finite number of H/L layers. This approach is more straightforward 
than the commonly used Chew’s method. It is shown that the asymptotic 
approximation condition should be satisfied in order to get accurate results. 
The TE and TM modes, and the band gap structures are analyzed using 
Galerkin method. 
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1. Introduction 

The confined modes in a circular Bragg fiber with air core and periodic coaxial claddings 
were first analyzed by Yeh et al. [1]. This kind of fiber is of particular interest in guiding light 
through a hollow waveguide in UV and far-infrared regions [2]. Recently it has attracted 
much attention in many applications because of its extraordinary properties and significant 
experimental and theoretical studies. Unlike the conventional index-guiding fiber, light in 
Bragg fiber is confined in a low index core due to a photonic band gap (PBG) by Bragg 
reflection. The fundamental mode is a non-degenerate TE01 mode without azimuthal 
dependence. The TE01 mode has the lowest loss since the Fresnel reflection for TE 
components is larger than TM components, and the mode confinement is always the best in 
the case of TE01. In addition, it effectively eliminates the polarization mode dispersion [3, 4]. 
By employing a hollow core, the absorption loss due to fiber materials is reduced 
significantly. However, the leakage loss introduced by imperfect PBG confinement or by a 
finite number of layers is not negligible. The leakage loss can be controlled by proper design 
of the structure, and it is largely different for different modes, which can effectively 
differentiate various modes [3, 4]. Hence asymptotic single mode propagation can be 
achieved in a Bragg fiber even with a very large air core [5].  

The invention of perfect dielectric mirror [6-9] enables great improvements in the 
properties of Bragg fibers, especially in reducing the leakage loss by several orders of 
magnitude. By applying high index/low index (H/L) materials with a high index contrast 
(both refractive indices are much higher than the refractive index of air), one avoids the 
Brewster angle where no reflection occurs for TM components, and a complete band gap for 
all polarizations is formed. In the band gap, light with any polarization at any incident angle 
will be reflected perfectly. Such Bragg fibers, also called Omniguide fibers, have been 
fabricated successfully [6] and used for CO2 laser guiding at 10.6µm [10], with a loss 
<1.0dB/m, which is much lower than the intrinsic material losses. Theoretical study shows 
that in hollow Omniguide fiber, the leakage loss can be reduced further than the lowest loss 
(0.2dB/km) in conventional glass fibers [5], leading to potential applications in long distance 
communications. 

Several numerical approaches have been used to analyze the modal properties of Bragg 
fibers. Yeh et al. analyzed Bragg fibers successfully using transfer matrix method [1], where 
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the Bragg modes were considered as quasi-modes with minimum radiation loss. In [11], the 
photonic band gap concept was used in the transfer matrix method. It obtained the band gap 
by searching for the fast increasing solutions. The increasing numerical errors make the field 
calculation very sensitive to the propagation constants. In [12-15], periodic alternate layers 
were approximated by planar Bragg stacks using asymptotic approximation of Bessel 
functions; therefore, Bloch theorem can be used to obtain an analytical eigen-equation. In Ref. 
[9], plane wave expansion for photonic crystal calculation was used along with the supercell 
concept. Since Bragg fiber is not a strictly photonic crystal, plane wave method is not quite 
suitable or efficient. In [16], we proposed a full vectorial Galerkin method to treat circular 
symmetric fibers with arbitrary index profile and the dispersion relations of TE modes in 
Bragg fibers  were obtained. 

In this paper, we briefly review the calculation methods for Bragg fibers including 
transfer matrix method, asymptotic method and Galerkin method. Even though Chew’s 
method [17] has been prevalent in treating the leakage loss in Bragg fibers [4, 5, 18-22], we 
will show that the transfer matrix method can be modified for this purpose in a more 
straightforward way. Our work on Galerkin method is extended to include the calculations of 
the modes and the band gap structure. 

2. Transfer matrix method 

In each uniform cylindrical layer, the four field components (Ez, Hφ, Hz, Eφ) can be expressed 
as a linear combination of any two types of Bessel functions [1]. In matrix form, they can be 
expressed as: 
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where ki and ni are the transverse propagation constant and the refractive index of the ith layer, 

respectively. 2
0

22
0 knkk ii β−= , k0 is the wave vector in free space, β is the 

propagation constant and β/k0 is the effective index of the mode; A, B, C and D are the 
coefficients, and m is the azimuthal modal number. When m=0, the modes are decoupled into 
two polarizations, TE and TM modes. 

2.1  Bragg fibers with infinite number of H/L layers 

If we assume the Bragg fiber has an infinite number of layers, the propagation constant β and 
the coefficients A, B, C and D are all real numbers, leading to perfectly confined modes. In 
each layer, the field is a standing wave and the power flux of the incoming and outgoing 
waves are equal [1].  

The four field components are continuous across the interfaces. Using this boundary 
condition, a transfer matrix [T] for a β-ω pair (or λ-neff) is obtained to relate the coefficients 
in the innermost layer (i=1) and the outermost layer (i=N) [1, 11]: 
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Giving arbitrary values to the coefficients for the 1st layer or the last layers, the coefficients 
for the last layer or first layer can be easily evaluated. It is also known that B1=D1=0 since 
Ym(r) goes to infinite at the origin. 

Since the effective indices (neff) of Bragg modes are in the range of [0,1], for a given 
wavelength, all possible modes with neff in this range are evaluated. If the mode is inside the 
band gap, the mode increases rapidly due to the increasing numerical error. 

As an example, we use the same parameters in [11]; the fiber has an air core with a radius 
of 5.0µm, refractive indices of the alternate layers are nH=2.0 and  nL=1.0, along with widths 
dH=1.0µm and dL=1.0µm, respectively. Fifteen periods (N=30) are used in the calculation. To 

confirm if a state is inside the gap or not, we use the value of 222
1

2
1 NN BABA ++ to 

ascertain whether the field increases fast. A rough value to compare with is (nH/nL)N/2 for TE 
(~105) and a smaller number (~102) for TM, based on their different Fresnel reflection. The 
band gap and the Bragg modes for TE and TM polarizations are shown in Fig. 1. The curves 
with ‘x’ in Fig.1 are allowed modes in the cylindrical fiber that satisfy the condition of B1=0 
and D1=0. The white area is the band gap. A TE01 and TM01 modes are supported in the 
fundamental gap, and one TM and three TE modes are supported in the second gap. 
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Fig. 1. Bragg modes and band gap structures calculated by transfer matrix method. Left: TE, 
Right: TM. 

The calculation of mode field of the Bragg modes in the gap is sensitive to the 
propagation constants. In order to get a decaying mode field, the propagation constant should 
have a high accuracy, which can be obtained by finding the root to satisfy B1=0 and D1=0. 
When k0=1.2, the effective indices are 0.7859081 for TE01 and 0.5270 for TM01. The 
calculated fields for k0=1.2 are shown in Fig. 2, which are normalized to its maximum. Both 
the effective indices and the mode fields agree well with results in [11]1. 

                                                           
1 Note: In both Fig. 9 and 10 of [11], there are several minor mistakes: the solid lines are actually for 
r1/2Hz, and dashed lines are for r1/2Ez, and the β values given in [11] are actually the effective indices neff. 
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Fig. 2. TE01 and TM01 at k=1.2 in the Bragg fiber, calculated by transfer matrix method. Left: 
TE, Right: TM. 

2.2 Bragg fibers with finite number of H/L layers 

Bragg fibers, in practice, have a finite number of H/L layers, and the outermost layer is a large 
uniform cladding. In this case, the guiding modes are leaky since the confinement is not 
perfect, and leakage loss induced by the imperfect structure is a very important parameter for 
practical applications. 

A complex propagation constant is introduced to take into account of the leakage loss. In 
most published works, Chew’s method [17] was used [4, 5, 19, 20], where only Ez and Hz 
were used to track the field in each layer. A 2x2 reflection matrix and a 2x2 transmission 
matrix were used to relate adjacent layers. This approach is not so straightforward. Here we 
show that with minor modification of the transfer matrix method, the complex propagation 
constants can be calculated accurately. 

All layers except the outermost cladding are treated the same way as in Eq. (1). The 
coefficients and propagation constants are not real numbers any more, indicating a nonzero 
net power flux across the interfaces. In the outermost cladding, there will be no incoming 
waves since there is no reflection from outside, and we rewrite the four field components 
equivalently in Hankel functions: 
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where iYJH I +=  and iYJH II −= . HI and HII represent the outgoing and incoming 
wave, respectively. A similar transfer matrix [T’] is obtained to relate the coefficients in the 
first and last layers: 
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where [T] is the transfer matrix obtained in the same way as in the case of infinite fiber.  
Using B1=D1=0 and BN=DN=0, we obtain: 
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The nontrivial solution condition is:  

 0det
4341

2321 =








′′
′′

TT

TT
.  (7) 

The complex propagation constant is the root of above equation. Since the imaginary part 
is much less than the real part, we expect that the real part of the propagation constant to be 
close to that of the infinite fiber. Using it as the initial value in a multi-variable root finder, for 
example, the ‘fsolve’ function in MATLAB’s optimization toolbox, the complex propagation 
constant can be calculated easily.  
Using the example of Fiber A in [20], which has an air core (n=1.0) of radius 1.3278µm, 
followed by 16 pairs of alternating H/L layers (nH=1.49, dH=0.2133µm and nL=1.17, dL=0.346 
µm), and an infinite medium of the higher index (n=1.49) as the outer cladding, we have 
obtained identical results as by Chew’s method. At λ=1.0µm, the values of neff are 
0.8910672175+1.422605×10-8i and 0.7920859031+1.819323×10-3i for TE01 and TE02 modes, 
respectively2. The loss in dB/m can be calculated from the imaginary part of the effective 
index using the relation [22]: 

 ( )effnLoss Im
10ln

40

λ
π=  (8) 

And the loss is 7.76387×10-1dB/m for TE01 and 9.92897×103dB/m for TE02. 

3. Asymptotic method 

According to Erdogan et al. in [3], TE/TM and other low order azimuthal hybrid modes are 
very close to modes in 1D planar stacks. Asymptotic method approximates the Bessel 
functions for the cladding layers with their asymptotic expressions [3, 14, 15, 23]; therefore , 
the periodic cylindrical claddings are approximated as planar Bragg stacks. In this approach, 
only the core and the first several layers are evaluated by analytical form, which is able to 
reduce computation time significantly. The advantage of this method is that it provides an 
analytical eigen-equation for the propagation constant in the case of air core Bragg fibers. The 
calculated results at k0=1.2 (λ=5.2360µm) for the same Bragg fiber as in section 2.1 are: 
neff=0.79935 (TE01), 0.57850 (TM01).  

                                                           
2 Two extra digits are given here to differentiate from the results in Ref. [20]. The loss in dB/m for TE02 
in Table 1a of Ref. [20] has a typo. 
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Fig. 3. Mode field of TE01, TM01 at k=1.2 by asymptotic method. Left: TE, Right: TM.  

 
The calculated mode fields are shown in Fig. 3. Eφ or Hφ from Hz or Ez has some 

discontinuities at the first several interfaces that might lead to incorrect results. In this 
example, nL of the low-index material is close to the index of air core, and kir in the first low-
index layer is not large enough (~5 for TE mode) and asymptotic approximation of Bessel 
functions introduces an error of ~4%. When the asymptotic approximation condition is 
satisfied well, for example the Omniguide fiber with nL much higher than the index of air, this 
method is generally able to provide reliable mode properties. 

In Ref. [24], Xu et al. extended the asymptotic method to include the leakage loss. For 
the same Fiber A as in [20], the asymptotic method gives: neff=0.9091923789-6.86126×10-9i 
and 0.7869166381-3.56600×10-3i for TE01 and TE02 respectively. Though the real parts are 
close to the accurate values obtained by transfer matrix method, the imaginary parts have 
much large errors with even a negative sign. The same reason as mentioned above introduced 
this error. 

4. Galerkin method 

Galerkin method makes use of a set of orthogonal associated Laguerre-Gauss functions to 
approximate the guided modes, and it has been used to calculate LP modes in conventional 
circular fibers with small index differences [25-28]. Vectorial Galerkin methods using double 
series sine functions [29] or Hermite-Gauss functions [30,31] were employed to solve the 
transverse fields in fibers with large index differences in a two-dimensional Cartesian 
coordinate, however, these methods did not make use of the fiber’s circular symmetry. In 
[16], we proposed a vectorial Galerkin method to analyze TE/TM modal properties in circular 
fibers with arbitrary index profiles. By adding an imaginary uniform cladding with index 
close to zero, the Bragg fiber was approximated as a conventional fiber with microstructures. 
The calculated TE modes in Bragg fibers were in good agreement with other methods. Here, 
we extend our work to include the modes and the band gap structure. 

Assuming ( ) ( )rfrE =φφ ,  for TE modes, and ( ) ( )rgrH =φφ ,  for TM modes, the 

wave equations in cylindrical coordinate are [32]: 
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Since the Bragg modes decay fast in the first several layers, we terminate the periodic 
cladding after a finite number of layers with an infinite uniform cladding. The refractive index 
ncl of the imaginary cladding is close to 0, so that all the modes with effective indices larger 
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than ncl will be confined by total internal reflection. Thus, we expect that it can obtain the gap 
structure in addition to the Bragg modes. Figure 4 shows the same Bragg fiber as in section 
2.1 terminated by an imaginary cladding after 10 periods. The core radius is a and the core 
includes all microstructures. The index profile of the fiber is n(r). The refractive indices of the 
core and cladding are nco and ncl.  nco could be an arbitrary value different from ncl. 
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Fig. 4. The index profile of a Bragg fiber in Galerkin method. 

We define several normalized parameters: 
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where σ is an arbitrary positive number, and h(r) is the normalized profile. V number and 
normalized propagation constant b are defined as in the case of conventional optical fiber. V2 
could be negative if nco is chosen to be less than ncl. h(r) is zero in the cladding region. The 
choice of σ may affect the computation and convergence. A larger σ leads to a longer 
computation time but a better convergence, therefore there is a tradeoff. σ is chosen to be a in 
our cases and a satisfactory speed and convergence are achieved. 

Expanding the mode fields using orthonormalized mth order (m=1 for TE/TM modes) 
associated Laguerre-Gauss functions [33],  
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where ϕ(x) is the Laguerre-Gauss function, ( )( )xL m
i  is the associated Laguerre polynomial, 

and N is the number of Laguerre-Gauss functions used.  
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The Galerkin method [16] transforms Eq (9) or (10) into a system of eigenvalue 
equations: 

  [M][A]=b[A] (16)  

where [A] is the coefficient eigenvector and [M] is a square matrix with a dimension of NxN. 
For a given wavelength, the normalized propagation constants of all allowed modes are 
calculated. The profile dependent matrices are calculated only once for different wavelengths. 

One important advantage of this method is its versatility in treating circular fibers with 
arbitrary index profiles, and it is not limited in treating step index profile. The calculated band 
gap structure and Bragg modes are shown in Fig. 5 using 300 functions. Both the gap and 
Bragg modes have a good agreement with the results from transfer matrix method (See Fig 1). 
When the mode is close to the cutoff, which is shown in the figure as the region of low 
effective index, the mode is close to the radiation mode of the introduced waveguide and 
Galerkin method gives complex propagation constants. 
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Fig. 5. Band gap and Bragg modes obtained by Galerkin method. Left: TE, Right: TM. 

The mode fields for TE and TM modes at k0=1.2 are also calculated as  shown in Fig. 6. 
The TE mode matches very well with the result obtained using  transfer matrix method.  Hφ of 
TM mode also has a good match in the core and the first cladding, but it decays faster than it 
should. This is because Hφ is not smooth and the high frequency components are not fully 
included when  using a finite number of functions. 
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Fig. 6. Mode fields of Bragg mode by Galerkin method. Left: TE, Right: TM. 

 
We illustrate the calculated effective indices of the TE/TM modes for the fiber in section 

2.1 by these three methods in Table 1. The errors are evaluated with respect to the results by 
transfer matrix method. 
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Table 1. Comparison of calculated effective indices by three methods at k0=1.2 

 TE01 Error TM01 Error 
Transfer matrix method 0.7859080 - 0.5270 - 
Asymptotic method 0.79935 1.7×10-2 0.5785 9.8×10-2 
Galerkin method 0.7858  -1.4×10-4 0.5335 1.2×10-2 

 

5. Conclusions 

In conclusion, we have reviewed and compared the calculation methods for Bragg fibers. 
Transfer matrix method is most accurate, but it has no explicit form to obtain the propagation 
constants. In order to obtain the field distribution of Bragg modes, highly accurate 
propagation constants may be needed. Asymptotic method provides an explicit form for the 
propagation constants, and is generally stable if the asymptotic condition is satisfied. The 
transfer matrix method can be modified to calculate the leakage loss due to a finite number of 
H/L layers, which is more straightforward than the commonly used Chew’s method. Galerkin 
method is generally stable and gives good results when the mode is away from the cutoff 
region. The main advantage of this method is that it is able to analyze circular fibers with 
arbitrary index profiles without modifications. 
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