
Old Dominion University
ODU Digital Commons
Electrical & Computer Engineering Faculty
Publications Electrical & Computer Engineering

2018

Fast Identification of High Utility Itemsets from
Candidates
Jun-Feng Qu

Mengchi Liu

Chunsheng Xin
Old Dominion University, cxin@odu.edu

Zhongbo Wu

Follow this and additional works at: https://digitalcommons.odu.edu/ece_fac_pubs

Part of the Electrical and Computer Engineering Commons, and the Theory and Algorithms
Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for
inclusion in Electrical & Computer Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information,
please contact digitalcommons@odu.edu.

Repository Citation
Qu, Jun-Feng; Liu, Mengchi; Xin, Chunsheng; and Wu, Zhongbo, "Fast Identification of High Utility Itemsets from Candidates"
(2018). Electrical & Computer Engineering Faculty Publications. 169.
https://digitalcommons.odu.edu/ece_fac_pubs/169

Original Publication Citation
Qu, J.-F., Liu, M., Xin, C., & Wu, Z. (2018). Fast identification of high utility itemsets from candidates. Information, 9(5), 119.
doi:10.3390/info9050119

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs/169?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

 information

Article

Fast Identification of High Utility Itemsets
from Candidates

Jun-Feng Qu 1,* ID , Mengchi Liu 2, Chunsheng Xin 3 and Zhongbo Wu 1

1 School of Computer Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
wzb_80@163.com

2 School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada; mengchi@scs.carleton.ca
3 Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA;

cxin48@126.com
* Correspondence: qmxwt@163.com; Tel.: +86-071-0359-3152

Received: 11 April 2018; Accepted: 7 May 2018; Published: 14 May 2018
����������
�������

Abstract: High utility itemsets (HUIs) are sets of items with high utility, like profit, in a database.
Efficient mining of high utility itemsets is an important problem in the data mining area. Many
mining algorithms adopt a two-phase framework. They first generate a set of candidate itemsets
by roughly overestimating the utilities of all itemsets in a database, and subsequently compute
the exact utility of each candidate to identify HUIs. Therefore, the major costs in these algorithms
come from candidate generation and utility computation. Previous works mainly focus on how to
reduce the number of candidates, without dedicating much attention to utility computation, to the
best of our knowledge. However, we find that, for a mining task, the time of utility computation
in two-phase algorithms dominates the whole running time of these algorithms. Therefore, it is
important to optimize utility computation. In this paper, we first give a basic algorithm for HUI
identification, the core of which is a utility computation procedure. Subsequently, a novel candidate
tree structure is proposed for storing candidate itemsets, and a candidate tree-based algorithm is
developed for fast HUI identification, in which there is an efficient utility computation procedure.
Extensive experimental results show that the candidate tree-based algorithm outperforms the basic
algorithm and the performance of two-phase algorithms, integrating the candidate tree algorithm as
their second step, can be significantly improved.

Keywords: high utility itemset; utility computation

1. Introduction

In recent years, high utility itemset (HUI) mining [1] has became one of the most significant
problems in the area of data mining. The problem derives from the frequent itemset mining problem [2],
but the former considers the values of itemsets like profits, and is different from the latter that only
takes the frequencies of itemsets into account. Efficient mining of high utility itemsets usually plays an
important role in many real-life applications such as market analysis [3–7].

Many algorithms for high utility itemset mining adopt a two-phase frame [8–11], as shown in
Figure 1. These algorithms first generate candidate itemsets, from which they subsequently identify
high utility itemsets. Previous works pay much attention to reducing the number of candidate itemsets,
which can result in performance improvement. However, these works neglect the identification process.
A elaborate identification process plays an important role in performance improvement. This work
focuses on the fast identification of high utility itemsets from candidates.

Information 2018, 9, 119; doi:10.3390/info9050119 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0003-2252-8757
http://dx.doi.org/10.3390/info9050119
http://www.mdpi.com/journal/information
http://www.mdpi.com/2078-2489/9/5/119?type=check_update&version=2

Information 2018, 9, 119 2 of 13

 Generate a set of

candidate itemsets
 Identify high utility

itemsets from candidates

Figure 1. A two-phase frame for high utility itemset mining.

1.1. Problem Definition

Let I = {i1, i2, i3, . . . , in} be a set of items and DB be a transaction database. DB is composed of
two tables: a utility table and a transaction table. Each item in I has a utility value in the utility table.
Each transaction labeled with a Tid in the transaction table is a subset of I , in which each item is
associated with a count value. Tables 1 and 2 show a sample database.

Table 1. The utility table of a sample database.

Item a b c d e f g

Utility 2 3 1 5 1 1 4

Table 2. The transaction table of a sample database.

Tid Transaction Count

T1 {a, c, f} {1, 1, 1}
T2 {a, b, c, d} {2, 1, 1, 3}
T3 {b, c, d, e} {1, 2, 1, 1}
T4 {a, b, f} {3, 1, 2}
T5 {b, c} {2, 2}
T6 {a, b, d, e, g} {2, 1, 1, 1, 1}

Definition 1. The external utility of item i, denoted as eu(i), is the utility value of i in the utility table.

Definition 2. The internal utility of item i in transaction T, denoted as iu(i, T), is the count value of i in T in
the transaction table.

Definition 3. The utility of item i in transaction T, denoted as u(i, T), is the product of eu(i) and iu(i, T),
namely u(i, T) = eu(i) × iu(i, T).

For example, for the database in Table 1, eu(a) = 2, iu(a, T4) = 3, and u(a, T4) = eu(a) × iu(a, T4) = 2 × 3 = 6.
An itemset is a subset of I and is called a k-itemset if it contains k items.

Definition 4. The utility of itemset X in transaction T containing X, denoted as u(X, T), is the sum of the
utilities of all items in X in T, namely u(X, T) = ∑i∈X∧X⊆T u(i, T).

Definition 5. The utility of itemset X, denoted as u(X), is the sum of the utilities of X in all transactions
containing X in DB, namely u(X) = ∑T∈DB∧X⊆T u(X, T).

Definition 6. An itemset is called a high utility itemset if its utility exceeds a user-specified minimum utility
threshold denoted as “minutil”.

Note that if X * T, u(X, T) = 0. When a minutil is a percentage, high utility itemsets are those
which utilities exceed the product of the minutil and the total utility of DB. For example, for the sample
database, its total utility is u(T1, T1) + u(T2, T2) + u(T3, T3) + u(T4, T4) + u(T5, T5) + u(T6, T6) =
4 + 23 + 11 + 11 + 8 + 17 = 74, and u({a}) = u({a}, T1) + u({a}, T2) + u({a}, T4) + u({a}, T6) = 2 + 4 + 6 + 4 =
16, u({abd}) = u({abd}, T2) + u({abd}, T6) = 22 + 12 = 34, u({abcd}) = u({abcd}, T2) =23. If the minutil
is equal to 40%, {abd} is a high utility itemset while {a} and {abcd} are not. Given a database and a
minutil, the problem of high utility itemset mining is to find all high utility itemsets from the database.

Information 2018, 9, 119 3 of 13

1.2. Previous Solutions

After the formal introduction of the problem in [1] as above, a number of algorithms for high
utility itemset mining have been proposed, such as TP [8], FSH [12], DCG [13], FUM [14], DCG+ [14],
IHUPTWU [9], UP-Growth [10], and UP-Growth+ [11]. These algorithms employ a uniform two-phase
framework as follows. Firstly, they generate a set of candidate itemsets from a mined database by
roughly overestimating the utilities of all itemsets, and the set is a superset of the set of all high
utility itemsets. Secondly, the exact utilities of all candidate itemsets are computed by a database scan,
and thereby high utility itemsets are identified.

The two major costs in these algorithms are candidate generation and utility computation.
It is obvious that the fewer candidate itemsets an algorithm generates, the lower the candidate
generation and utility computation costs in the algorithm. Therefore, previous works put much
effort into how to reduce the number of candidate itemsets. Recent two-phase algorithms such as
UP-Growth+ have been able of efficiently reducing candidates. Table 3 shows the numbers of candidate
itemsets generated by TP, FUM, UP-Growth, and UP-Growth+, given database chain and minutil 0.06%.
The numbers of candidates in TP and FUM were taken from [14]. We implemented the last two
algorithms and obtained the numbers of candidates in them. The database chain will be introduced in
Section 5.

Table 3. Numbers of candidate itemsets in Chain (minutil = 0.06%).

Algorithm (Year) TP (2005) FUM (2007) UP-Growth (2010) UP-Growth+ (2012)

#Candidates 15,343 11,959 4485 4464

The running time of these algorithms mainly consists of the time for candidate generation in phase
I and that for exact utility computation in phase II. Although the candidate generation time can be
reduced significantly due to the decrease in the number of generated candidate itemsets, the exact
utility computation time is still very large for a mining task. For example, when the minutil is 0.004%,
0.005%, and 0.006%, respectively, the running times of the two phases of the UP-Growth+ algorithm
for database chain are depicted in Figure 2. It is very clear that the utility computation time dominates
the whole running time of the algorithm.

0.004 0.005 0.006
0

200

400

600

800

1000

1200

R
u

n
n

in
g

 T
im

e
 o

n
 D

a
ta

b
a

s
e

 C
h

a
in

 (
s
e

c
.)

Minimum utility (%)

Phase I of UP−Growth+

Phase II of UP−Growth+

Figure 2. Running times of the two phases of UP-Growth+.

However, there is little effort to improve the performance of utility computation in previous
works. To the best of our knowledge, a formal algorithm for exact utility computation is not even
given in previous literature, although the algorithm should be simple.

Information 2018, 9, 119 4 of 13

1.3. Contributions

In this study, we focus on the fast identification of high utility itemsets from candidates, the core of
which is the efficient utility computation for candidates. The main contributions of the paper are
as follows.

• A basic algorithm for high utility itemset identification is formally presented.
• A novel structure called the candidate tree is proposed for storing candidate itemsets.
• A candidate tree-based algorithm is developed for the fast identification of high utility itemsets.
• Extensive experimental results that show the performance difference between the basic algorithm

and the candidate tree-based algorithm are reported.

As shown in Figure 2, the running time of phase II dominates the total running time of a two-phase
algorithm. The proposed structure and algorithms are devoted to the decrease in the time of phase II
and thereby can result in performance improvement. The proposed structure and algorithms are
all-purpose and can be integrated into any previous two-phase algorithm as its second step.

The rest of this paper is organized as follows. After the basic algorithm is introduced in
Section 2, the candidate tree and related algorithm are proposed in Section 3 and analyzed in Section 4.
Experimental results are reported in Section 5, and the paper ends with the conclusion of Section 6.

2. Basic Identification Algorithm

In this section, we show a basic identification algorithm (BIA) and discuss its core procedure.

2.1. Pseudo-Code of the BIA

Algorithm 1 shows the pseudo-code of the BIA.

Algorithm 1: Basic Identification Algorithm
Input: C is a set of candidate itemsets;

DB is a transaction database;
minutil is a minimum utility threshold.

Output: all high utility itemsets
1 foreach candidate itemset c ∈ C do
2 utility[c] = 0;
3 end
4 foreach transaction t ∈ DB do
5 foreach candidate itemset c ∈ C do
6 utility[c] = utility[c] + u(c, t);
7 end
8 end
9 foreach candidate itemset c ∈ C do

10 if utility[c] ≥ minutil then
11 output c;
12 end
13 end

Information 2018, 9, 119 5 of 13

Firstly, a vector utility indexed by the names of candidates is initialized, and utility[c] stores the
utility of candidate c. Subsequently, for each transaction, the algorithm accumulates the utility of each
candidate in the vector. At last, the algorithm outputs those candidates, the utilities of which exceed
the minimum utility threshold.

When both a set of candidates C and a database DB can be stored in memory, or when C can be
stored in memory but DB cannot, the BIA works well. If DB can be stored in memory but C cannot,
it is better to exchange the two loops in line 4 and line 5 for reducing the I/O cost.

2.2. Utility Computation

In the BIA, the core procedure is the computation of the utility of itemset c in transaction t in
line 6, which is listed in Procedure 2.

Procedure 2: u(c, t)
Input: c is a candidate itemset;

t is a transaction.
Output: the utility of c in t

1 i = 1;
2 j = 1;
3 util = 0;
4 while i≤length(c) and j≤length(t) do
5 while j≤length(t) and c[i] >t[j] do
6 j = j + 1;
7 end
8 if j>length(t) or c[i] <t[j] then
9 break;

10 else // c[i]==t[j]
11 util = util + u(t[j], t);
12 i = i + 1;
13 j = j + 1;
14 end
15 end
16 if i>length(c) then // c ⊆ t
17 return util;
18 else
19 return 0;
20 end

In the procedure, length(c) and length(t) are the numbers of items in c and t, c[i] denotes the ith
item in c and t[j] denotes the jth item in t. For each c[i], a search for it is performed in t. If there is
such t[j] that t[j] is equal to c[i], the utility of the item in t, namely u(t[j], t), is added to variable util
storing the accumulated utility for c. If the condition in line 16 is met, which means that t contains
c, util is returned. The procedure is actually a two-way comparison procedure, in which the atom
operations are item comparisons (lines 5 and 8) and utility accumulations (line 11).

The procedure is based on the assumption that items in both c and t are ordered. The items in a
candidate itemset can be sorted before it is stored. The items in a transaction are generally ordered,
and otherwise they can also be sorted after the transaction is loaded in memory. For u(t[j], t) in line 11
in the procedure, we can compute it once and employ many. For example, the sample database can be
transformed into the view in Table 4.

Information 2018, 9, 119 6 of 13

Table 4. A database view.

Tid Item Util. Item Util. Item Util. Item Util. Item Util.

T1 a 2 c 1 f 1
T2 a 4 b 3 c 1 d 15
T3 b 3 c 2 d 5 e 1
T4 a 6 b 3 f 2
T5 b 6 c 2
T6 a 4 b 3 d 5 e 1 g 4

3. Identifying HUIs by a Candidate-Tree

In the process of computing the utilities of candidate itemsets, two main operations
are comparisons and accumulations. For example, u({ab}, T2) = 0 + u(a, T2) + u(b, T2) = 0 + 4 + 3 = 7,
and there are 2 comparisons and 2 accumulations. Suppose {ab}, {abc}, {abd}, and {abcd} are candidates,
and then u({ab}, T2) = 0 + u(a, T2) + u(b, T2), u({abc}, T2) = 0 + u(a, T2) + u(b, T2) + u(c, T2), u({abd}, T2)
= 0 + u(a, T2) + u(b, T2) + u(d, T2), and u({abcd}, T2) = 0 + u(a, T2) + u(b, T2) + u(c, T2) + u(d, T2).
It is obvious that there are many repeated comparisons and accumulations in these utility computations.

3.1. Candidate-Tree

To speed utility computation up, repeated comparisons and accumulations should be avoided.
First of all, we can store all candidate itemsets in a candidate tree. A candidate tree is a modified
prefix-tree [15], in which itemsets containing the same prefix share a common path. For example,
the candidate tree in Figure 3 can represent itemsets {ab}, {abc}, {abd}, and {abcd}. Besides the pointers
for maintaining the tree structure, each node in a candidate tree contains an item and an util. A node
represents an itemset composed of the items in the path from the node to the root. The util of a node is
used to store the utility of the itemset represented by the node. For example, the node numbered 5 in
Figure 3 represents itemset {abd}. In a candidate tree, not all nodes represent candidate itemsets.

91+

4533

61

71+

81+ 91+

+

,

-

.

/

0

26>9;96@: ;@:=?:@?1

B67C

B678C

B6789C

B679C

;@:= 1 A@;<

Figure 3. Candidate itemsets and a candidate tree.

Definition 7. In a candidate tree, a node is called a count node if it represents a candidate itemset.

For the candidate tree in Figure 3, the nodes numbered 2, 3, 4, and 5 are count nodes, and the
node numbered 1 is not.

The method of constructing a candidate tree is similar to the method of constructing a
prefix-tree [15]. In the implementation of a candidate tree, the util of a count node is initialized
with 0, and that of a node that is not a count node is initialized with −1. In this way, all count nodes of
a candidate tree are marked during the candidate tree construction.

3.2. Fast HUI Identification

After a candidate tree is constructed, a fast identification algorithm (FIA) can efficiently compute
the utilities of all candidates stored in the tree and subsequently identify high utility itemsets. The FIA
is shown in Algorithm 3, the core procedure of which is shown in Procedure 4.

Information 2018, 9, 119 7 of 13

Algorithm 3: Fast Identification Algorithm
Input: root is the root node of a candidate tree;

DB is a transaction database;
minutil is a minimum utility threshold.

Output: all high utility itemsets
1 foreach transaction t ∈ DB do
2 ComputeUtility(t, 1, root, 0);
3 end
4 IdentifyHUI(root, ∅, minutil);

Procedure 4: ComputeUtility(t, k, n, utility)
Input: t is a transaction;

k indicates the position of an item in t;
n is a node in the candidate tree;
utility stores the sum of the utilities of the items contained in all n’s ancestor nodes in t.

1 while k≤length(t) and t[k] <n.item do
2 k = k + 1;
3 end
4 if k>length(t) or t[k] 6=n.item then
5 return k;
6 else // t[k]==n.item
7 utility = utility + u(t[k], t);
8 if n is a count node then
9 n.util = n.util + utility;

10 end
11 next = k + 1;
12 foreach child node c of n do
13 next = ComputeUtility(t, next, c, utility);
14 end
15 return k+1;
16 end

Like Procedure 2, items in transactions and itemsets are considered as ordered in Procedure 4.
In the procedure, n.item and n.util denote the item and util contained in n. Suppose node n
represents itemset X, and then parameter utility stores u(X-n.item, t). Firstly, the procedure searches
t[k] (k ≤ length[t]) for n.item. If t does not contain n.item, the subtree rooted at n is no longer checked
(line 5). Otherwise, utility is updated and is added to n.util if n is a count node (line 9), and subsequently
all child nodes of n are recursively processed. Parameter k keeps track of the position of an item in
t before which each item in t is contained in an ancestor node of n and is no longer compared with
n.item. After the subtree rooted at n is recursively processed, the utils of the count nodes in the
subtree representing the itemsets contained in t are updated. To facilitate the understanding of
Procedure 4, Figure 4 demonstrates the procedure when T2 in Table 4 and the candidate tree in Figure 3
are processed.

After all transactions in DB are processed, all high utility itemsets can be identified by a candidate
tree traversal as shown in Procedure 5.

Information 2018, 9, 119 8 of 13

A8/

<=;;

>8

?8/

@8/ A8/

:FBE =FCD

> 3

? 2

@ 0

A 04

MLHJHLN 9 /

I

K

A8/

<=;;

>8

?8/

@8/ A8/

:FBE =FCD

> 3

? 2

@ 0

A 04

MLHJHLN 9 / . 3

I
K

A8/

<=;;

>8

?8/

@8/ A8/

:FBE =FCD

> 3

? 2

@ 0

A 04

MLHJHLN 9 3 . 2

I
K

A8/

<=;;

>8

?86

@8/ A8/

:FBE =FCD

> 3

? 2

@ 0

A 04

MLHJHLN 9 6 . 0

I

K

A8/

<=;;

>8

?86

@87 A8/

:FBE =FCD

> 3

? 2

@ 0

A 04

MLHJHLN 9 7 . 04

I

K
A812

<=;;

>8

?86

@87 A8/

:FBE =FCD

> 3

? 2

@ 0

A 04

MLHJHLN 9 6 . 04 K
A812

<=;;

>8

?86

@87 A811

:FBE =FCD

> 3

? 2

@ 0

A 04

MLHJHLN 9 /

I

,0- ,1- ,2- ,3-

,4- ,5- ,6-

I

Figure 4. Utility computation on a candidate tree.

Procedure 5: IdentifyHUI(n, X, minutil)
Input: n is a node in the candidate tree;

X is a prefix itemset;
minutil is the minimum utility threshold.

1 X = X ∪ n.item;
2 if n is a count node and n.util≥minutil then
3 output X;
4 end
5 foreach child node c of n do
6 IdentifyHUI(c, X minutil);
7 end

4. Complexity Analysis

The main operations in the BIA and FIA are item comparisons and utility accumulations.
Since items in a k-itemset X and a transaction T containing m items are ordered, for computing
u(X, T), the comparison number denoted as CN holds in Properties 1 and 2, and the accumulation
number denoted as AN holds in Properties 3 and 4.

Property 1. If T contains X, then k ≤ CN ≤ m.

Property 2. If T does not contain X, then 1 ≤ CN ≤ max(k, m), and max(k, m) denotes the larger between
k and m.

Property 3. If T contains X, then AN = k.

Property 4. If T does not contain X, then 0 ≤ AN ≤ (k− 1).

Suppose there are a transaction with m items and n candidates that contain s1, s2, s3,. . . , sn items,
respectively. The candidates have the same prefix itemset with s items (s ≤ si, 1 ≤ i ≤ n). To compute
the utilities of the candidates in the transaction, the numbers of comparisons and accumulations
performed in the BIA and FIA, on condition that all the candidates are or are not contained in the
transaction, are listed in Table 5.

Information 2018, 9, 119 9 of 13

Table 5. Numbers of comparisons and accumulations. FIA: fast identification algorithm; BIA: basic
identification algorithm.

Comparison Number Least Most

BIA (contained) ∑n
i=1 si m + m + m+. . .+m = m× n

FIA (contained) s + (s1 − s)+. . .+(sn − s) m + (m− s) + (m− s)+. . .++ (m− s)
= (∑n

i=1 si)− (n− 1)× s = m× (n + 1)− n× s

BIA (not contained) 1 + 1 + 1+. . .+1 = n ∑n
i=1 max(m, si)

FIA (not contained) 1 max(m, s) + ∑n
i=1 max(m− s, si − s)

Accumulation Number Least Most

BIA (contained) ∑n
i=1 si ∑n

i=1 si

FIA(contained) s + (s1 − s) + (s2 − s)+. . . (sn − s) s + (s1 − s) + (s2 − s)+. . . (sn − s)
= (∑n

i=1 si)− (n− 1)× s = (∑n
i=1 si)− (n− 1)× s

BIA (not contained) 0 (s1 − 1) + (s2 − 1)+. . . (sn − 1)
=(∑n

i=1 si)− n
FIA (not contained) 0 s + (s1 − s− 1)+. . . (sn − s− 1)

=(∑n
i=1 si)− n− (n− 1)× s

For example, when the utility of the candidate with si items is computed, for the BIA, the number
of comparisons is si at least or m at most according Property 1, if the transaction contains the candidate.
Then, the total number of comparisons for all the candidates is (s1 + s2 + s3+. . .+sn) at least or
(m + m+. . .+m = m× n) at most, if the transaction contains these candidates. When these candidates
are stored in a candidate tree, the n candidates can be considered as (n + 1) candidates that contain s,
(s1− s), (s2− s), . . . , (sn − s) items respectively. Therefore, for the FIA, the total number of comparisons
for the (n + 1) candidates is s + (s1− s) + (s2− s)+. . .+(sn − s) = (s1 + s2 + s3+. . .+sn)− (n− 1)× s
at least or m + (m− s) + (m− s)+. . .+(m− s) = m× (n + 1)− n× s at most. The remaining numbers
in the figure can be analyzed similarly.

In the worst case, the complexities of the BIA and FIA are all O(m× n) with respect to comparisons,
but compared with the BIA the number of comparisons in FIA factually decreases by n× s, which is a
large factor, especially for a large s. It is also observed that the number of accumulations in the FIA
decreases by about n× s in the worst case, compared with that in the BIA.

5. Experiments

In this section, the BIA is compared with FIA.
We first implemented a famous algorithm UP-Growth+ [11] in C++. UP-Growth+ is a standard

two-phase algorithm, and it first generates a set of candidate itemsets and subsequently computes
the exact utilities of candidates to identify high utility itemsets. However, the utility computation
of UP-Growth+ is not discussed in detail in [11]. Therefore, we integrated the BIA and FIA
into UP-Growth+ as its second step, respectively. In the following, BIA-UP-Growth+ denotes
the combination of UP-Growth+ with the BIA, and FIA-UP-Growth+ denotes the combination of
UP-Growth+ with the FIA.

Eight databases were used in our experiments. The database chain was downloaded from
NU-MineBench 2.0 [16], and the other databases were downloaded from the FIMI Repository [17].
Databases accidents, chess, kosarak, mushroom, and retail derived from the real world, and synthetic
databases T10I4D100K and T40I10D100K were generated by the IBM Quest Synthetic Data Generation
Code. Except for chain, the other databases do not provide the external utility and internal utility for
each item, and thus we generated the utility and count values of each item as the settings in previous
works [9–11]. The statistical information about these databases is shown in Table 6, including the size
on disk, the number of transactions, the number of distinct items, the average number of items in a
transaction, and the maximal number of items in the longest transaction(s). The experiments were

Information 2018, 9, 119 10 of 13

performed on a machine with a 2.8 GHz Intel Core i5 CPU, 4 GB of physical memory, and a 32-bit
Linux operation system.

Table 6. Statistical information about databases.

Database Size (MB) #Trans #Items AvgLen MaxLen

accidents 56.89 340,183 468 33.8 51
chain 60.63 1,112,949 46,086 7.3 170
chess 0.56 3196 75 37 37

kosarak 47.55 990,002 41,270 8.1 2498
mushroom 0.92 8124 119 23 23

retail 5.79 88,162 16,470 10.3 76
T10I4D100K 5.86 100,000 870 10.1 29

T40I10D100K 22.69 100,000 942 39.6 77

5.1. Running Time for Phase II

For each experimental database, it was transformed into a physical view in memory as in Table 4,
and thereby u(t[j], t) in both Procedures 2 and 4 was directly available. After a set of candidate itemsets
or a candidate tree was generated in memory, the utility computation time of the two algorithms was
recorded, as depicted in Figure 5. We varied the minimum utility in the experiments. The lower the
minimum utility is, the more high utility itemsets an algorithm generates, and thus the greater the
running time is.

FIA-UP-Growth+BIA-UP-Growth+

14 15 16 17 18 19
10

2

10
3

10
4

Minimum Utility (%)
(a) Runtime for phase II on accidents

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

0.004 0.005 0.006 0.007 0.008 0.009
10

2

10
3

10
4

Minimum Utility (%)
(b) Runtime for phase II on chain

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

18 20 22 24 26 28
10

1

10
2

10
3

10
4

Minimum Utility (%)
(c) Runtime for phase II on chess

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

Minimum Utility (%)
(d) Runtime for phase II on kosarak

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

2 2.5 3 3.5 4 4.5
10

1

10
2

10
3

10
4

Minimum Utility (%)
(e) Runtime for phase II on mushroom

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

0.012 0.014 0.016 0.018 0.02 0.022
10

0

10
1

10
2

10
3

Minimum Utility (%)
(f) Runtime for phase II on retail

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

0.005 0.01 0.015 0.02 0.025 0.03
10

0

10
1

10
2

10
3

10
4

Minimum Utility (%)
(g) Runtime for phase II on T10I4D100K

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

0.1 0.2 0.3 0.4 0.5 0.6
10

−1

10
0

10
1

10
2

10
3

10
4

Minimum Utility (%)
(h) Runtime for phase II on T40I10D100K

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

Figure 5. Performance comparison.

It can be observed that FIA-UP-Growth+ always outperforms BIA-UP-Growth+. For the databases
accidents, chain, and chess, in Figure 5a–c, FIA-UP-Growth+ is several times faster than BIA-UP-Growth+.
For the databases kosarak, mushroom, and retail, in Figure 5d–f, FIA-UP-Growth+ is about an order of
magnitude faster than BIA-UP-Growth+. For databases T10I4D100K and T40I10D100K, in Figure 5g,h,
FIA-UP-Growth+ is two orders of magnitude faster than BIA-UP-Growth+.

5.2. Running Time for Phase I

In phase I, the difference between BIA-UP-Growth+ and FIA-UP-Growth+ is that the former
directly stores each generated candidate itemset in a memory pool, while the latter inserts each
candidate itemset into a candidate tree immediately after generating it. Therefore, in theory,
BIA-UP-Growth+ is faster than FIA-UP-Growth+ in the phase. The third column in Table 7 lists
the first phase time of the two algorithms running on the eight databases for the lowest minutils in our

Information 2018, 9, 119 11 of 13

experiments, and in this case, the algorithms generate the largest numbers of candidate itemsets and
high utility itemsets.

Table 7. Experimental results of BIA-UP-Growth+ (denoted as Basic) and FIA-UP-Growth+ (denoted as Fast).

Database/Minutil Algorithm Phase I (s) Phase II (s) Memory (KB) #Candidates #HUIs

accidents/14% Basic 3.79 4981.55 8512 276,392 950
Fast 3.83 895.26 5440

chain/0.004% Basic 48.03 1005.56 832 72,503 18,480
Fast 53.20 290.07 1440

chess/18% Basic 13.32 5628.51 1,387,808 31,670,469 34,870
Fast 18.21 1042.78 623,008

kosarak/0.5% Basic 10.91 49.76 64 3931 183
Fast 10.93 6.22 96

mushroom/2% Basic 5.99 4065.73 675,328 16,681,768 3,583,596
Fast 8.24 185.00 331,552

retail/0.012% Basic 0.83 313.11 4768 163,650 23,505
Fast 1.17 14.40 4000

T10I4DX/0.005% Basic 1.51 1818.70 20,416 1,007,230 313,509
Fast 3.48 9.23 20,736

T40I10DX/0.1% Basic 62.94 >>10,000 342,208 8,608,882 2,054,784
Fast 48.81 106.25 179,104

Even though there is a very large number of candidates, the time for constructing a candidate
tree is small. For example, when the minutil is 18% for database chess, the first phase runtime of
FIA-UP-Growth+ is 18.21 seconds and that of BIA-UP-Growth+ is 13.32 seconds, and then the time of
constructing the candidate tree can be considered as 4.89 (=18.21 − 13.32) s. It is interesting that the
first phase runtime of FIA-UP-Growth+ is even shorter than that of BIA-UP-Growth+ for database
T40I10D100K, when the minutil is 0.1%. We believe the reason is that, for the mining task, the time of
constructing the candidate tree is relatively short, while FIA-UP-Growth+ holds better data locality
than BIA-UP-Growth+ due to the smaller memory consumption.

5.3. Memory Consumption

FIA-UP-Growth+ generates candidate itemsets as BIA-UP-Growth+ does [11], and thus they
consume the same amount of memory for candidate generation. On the other hand, there is no
considerable memory consumption in their second phases, namely in the FIA and BIA. Therefore,
we paid attention to the memory consumption of the two algorithms for storing candidate itemsets,
as shown in the fifth column in Table 7.

Since a candidate tree is a compact data structure [15], the size of a candidate tree-storing candidate
itemsets is smaller than the size of a memory pool storing them, if the number of the candidate
itemsets is large enough and thus there are many shared paths. For example, for databases chess,
mushroom, and T40I10D100K, in Table 7, FIA-UP-Growth+ only consumes half the amount of memory
BIA-UP-Growth+ does. However, a candidate tree also stores the tree structure information, namely
pointers for linking nodes, and thus FIA-UP-Growth+ consumes more memory than BIA-UP-Growth+
if there is a small number of candidate itemsets.

5.4. Discussion

FIA-UP-Growth+ significantly outperforms BIA-UP-Growth+ in our experiments. The reasons are
as follows.

Firstly, a high utility itemset mining algorithm generally generates a very large number of
candidate itemsets, as shown in the sixth column in Table 7, and therefore there are numerous

Information 2018, 9, 119 12 of 13

comparisons and accumulations when computing their utilities. The numbers of comparisons and
accumulations can be reduced efficiently if utility computation is performed on a candidate tree.

Secondly, using a candidate tree, the utility computation for the candidates sharing the same prefix
but not contained in a transaction can be terminated once and for all. For example, for the candidate
tree in Figure 3, when T1 in Table 4 is processed, the utility computation for the four candidates can be
terminated immediately after two comparisons according to the FIA. If these candidates are stored in
a memory pool, there are eight comparisons according to the BIA. Actually, for many mining tasks,
the number of high utility itemsets is far less than the number of candidate itemsets, as shown in
the last column in Table 7. Therefore, for a transaction, there should be a considerable number of
candidates that are not contained in it.

Thirdly, if the number of candidate itemsets is so large that there are many shared paths,
a candidate tree storing them occupies less memory than a memory pool storing them, and thereby the
FIA can gain better data locality than the BIA.

Fourthly, although the first phase runtime of the algorithm integrating FIA is increased due to the
candidate tree construction, the increase in the first phase runtime of the algorithm can be balanced by
the decrease in the second phase runtime of the algorithm.

6. Conclusions

In this paper, we addressed the problem of identifying high utility itemsets from candidates.
The high utility itemset identification is an indispensable part of most mining algorithms, but it is not
discussed in these algorithms in detail. As a supplement to previous works, we first gave a basic
identification algorithm, i.e., the BIA. Subsequently, we proposed a novel data structure called
candidate tree for storing candidate itemsets and developed a candidate tree-based algorithm, i.e.,
the FIA, for the fast identification of high utility itemsets. The main operations in the BIA and FIA are
comparisons and accumulations. For an identification task, the FIA performs fewer comparisons and
has less accumulations than the BIA. Extensive experimental results show that (1) the time for high
utility itemset identification dominates the whole running time for a mining algorithm; and (2) the FIA
significantly outperforms the BIA in various databases.

It should be noted that FIA works well if a candidate tree can be completely in memory. However,
this study does not consider the case that a tree is too large to be completely stored in memory. We plan
to study the fast identification of high utility itemsets from candidates in disk in a future study.

Author Contributions: J.-F.Q. designed and developed the model. J.-F.Q., M.L. and C.X. wrote the manuscript.
Z.W. carried out the experimental tests.

Funding: This work was supported by Natural Science Foundation of HuBei Province of China (Grant No.
2017CFB723).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yao, H.; Hamilton, H.J.; Butz, C.J. A Foundational Approach to Mining Itemset Utilities from Databases.
In Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, FL, USA,
22–24 April 2004.

2. Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases.
In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington,
DC, USA, 25–28 May 1993; pp. 207–216.

3. Krishnamoorthy, S. Efficient Mining of High Utility Itemsets with Multiple Minimum Utility Thresholds.
Eng. Appl. Artif. Intell. 2018, 69, 112–126. [CrossRef]

4. Zhang, L.; Fu, G.; Cheng, F.; Qiu, J.; Su, Y. A Multi-Objective Evolutionary Approach for Mining Frequent
and High Utility Itemsets. Appl. Soft Comput. 2018, 62, 974–986. [CrossRef]

5. Mai, T.; Vo, B.; Nguyen, L.T.T. A Lattice-Based Approach for Mining High Utility Association Rules. Inf. Sci.
2017, 399, 81–97. [CrossRef]

http://dx.doi.org/10.1016/j.engappai.2017.12.012
http://dx.doi.org/10.1016/j.asoc.2017.09.033
http://dx.doi.org/10.1016/j.ins.2017.02.058

Information 2018, 9, 119 13 of 13

6. Wu, J.M.-T.; Zhan, J.; Li, J.C.-W. An ACO-Based Approach to Mine High-Utility Itemsets. Knowl-Based Syst.
2017, 116, 102–113. [CrossRef]

7. Guo, Z.; Yue, X.; Yang, H.; Liu, K.; Liu, X. Enhancing social emotional optimization algorithm using local
search. Soft Comput. 2017, 21, 7393–7404. [CrossRef]

8. Liu, Y.; Liao, W.; Choudhary, A.N. A Two-Phase Algorithm for Fast Discovery of High Utility Itemsets.
In Proceedings of the 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining,
PAKDD 2005, Hanoi, Vietnam, 18–20 May 2005; pp. 689–695.

9. Ahmed, C.F.; Tanbeer, S.K.; Jeong, B.; Lee, Y. Efficient tree structures for high utility pattern mining in
incremental databases. IEEE Trans. Knowl. Data Eng. 2009, 21, 1708–1721. [CrossRef]

10. Tseng, V.S.; Wu, C.-W.; Shie, B.-E.; Yu, P.S. Up growth: An efficient algorithm for high utility itemset mining.
In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, 25–28 July 2010; pp. 253–262.

11. Tseng, V.S.; Shie, B.-E.; Wu, C.-W.; Yu, P.S. Efficient algorithms for mining high utility itemsets from
transactional databases. IEEE Trans. Knowl. Data Eng. 2012, 25, 1772–1786. [CrossRef]

12. Li, Y.-C.; Yeh, J.-S.; Chang, C.-C. A fast algorithm for mining share-frequent itemsets. In Proceedings of the
7th Asia-Pacific Web Conference on Web Technologies Research and Development—APWeb 2005, Shanghai,
China, 29 March–1 April 2005; pp. 417–428.

13. Li, Y.-C.; Yeh, J.-S.; Chang, C.-C. Direct candidates generation: A novel algorithm for discovering complete
share-frequent itemsets. In Proceedings of the International Conference on Fuzzy Systems and Knowledge
Discovery, Changsha, China, 27–29 August 2005; pp. 551–560.

14. Li, Y.-C.; Yeh, J.-S.; Chang, C.-C. Isolated Items Discarding Strategy for Discovering High Utility Itemsets.
Data Knowl. Eng. 2008, 64, 198–217. [CrossRef]

15. Han, J.; Pei, J.; Yin, Y.; Mao, R. Mining frequent patterns without candidate generation: A frequent-pattern
tree approach. Data Min. Knowl. Discov. 2004, 8, 53–87. [CrossRef]

16. NU-MineBench: A Data Mining Benchmark Suite. Available online: http://cucis.ece.northwestern.edu/
projects/DMS/MineBench.html (accessed on 8 April 2018).

17. Frequent Itemset Mining Dataset Repository. Available online: http://fimi.ua.ac.be/ (accessed on
8 April 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.knosys.2016.10.027
http://dx.doi.org/10.1007/s00500-016-2282-z
http://dx.doi.org/10.1109/TKDE.2009.46
http://dx.doi.org/10.1109/TKDE.2012.59
http://dx.doi.org/10.1016/j.datak.2007.06.009
http://dx.doi.org/10.1023/B:DAMI.0000005258.31418.83
http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html
http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html
http://fimi.ua.ac.be/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Old Dominion University
	ODU Digital Commons
	2018

	Fast Identification of High Utility Itemsets from Candidates
	Jun-Feng Qu
	Mengchi Liu
	Chunsheng Xin
	Zhongbo Wu
	Repository Citation
	Original Publication Citation

	Introduction
	Problem Definition
	Previous Solutions
	Contributions

	Basic Identification Algorithm
	Pseudo-Code of the BIA
	Utility Computation

	Identifying HUIs by a Candidate-Tree
	Candidate-Tree
	Fast HUI Identification

	Complexity Analysis
	Experiments
	Running Time for Phase II
	Running Time for Phase I
	Memory Consumption
	Discussion

	Conclusions
	References

