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Fig. 6. Three-level cascaded regression. RLarge , RMedium , RSmall are
regression modules for large, medium, and small vehicles respectively.

process could be negative, which cannot happen in our applica-
tion. Hence, the second regression method that we evaluate is
the Poisson regression that is mainly used to model count data.
For comparison purpose, we also evaluate the Bayesian Poisson
regression proposed in [23].

Gaussian Process: The regression model with Gaussian
noise is given by

y = f(x) + ε (2)

where ε is a random noise variable that is independent for
each observation, y is the count of a vehicle class, and x denotes
the feature vector. The Gaussian likelihood for the count is
given by

p(y|f(x)) = N (y|f, σ2I) (3)

where σ2 is the variance of noise. Based on the definition of a
Gaussian process, the Gaussian prior has the zero mean and a
Gram matrix K as the covariance

p(x) = N (x|0,K). (4)

The kernel function k(x, x′) that determines K is given by
adding the squared exponential function, a linear term, and a
constant.

k(x, x′) = θ1 exp

(
−θ2

2
|x − x′|2

)
+ θ3xT x′ + θ4 (5)

where θ = (θ1, θ2, θ3, θ4) are the hyperparameters and opti-
mized by maximizing the log likelihood p(y|θ). The linear and
constant terms in the kernel function are used to model the lin-
ear relation between input and output. The squared exponential
function could model the local nonlinearities that are caused by
occlusions and segmentation errors.

Suppose there is a new input x∗, let us define X =
(x1, . . . , xN )T and y = (y1, . . . , yN)T (N is the size of train-

Fig. 7. Sample images captured at different time intervals.

ing set), then the predictive distribution is given by

p(y∗|X , y , x∗) = N (m,σ2
∗ ) (6)

where

m = k(x∗,X )(K + σ2I)−1y

σ2
∗ = k(x∗, x∗)− k(x∗,X )T (K + σ2I)−1k(X , x∗)

Poisson Regression: As the vehicle count is a nonnegative
integer, the typical regression choice is the Poisson regression
where y ∼ Poisson(μ). The canonical link is the log,

log(μ) = η = wTφ(x). (7)

Iterative reweighted least squares could be applied to fit this
model. The update formula is w = (� R � )−1� T Rz , where
R = Diag(μi) is the weight matrix, zi = ηi + (yi − μi)/μi,
and � is the design matrix.

Bayesian Poisson Regression: A Bayesian model for count
regression is proposed in [23]. After approximations on the
posterior distribution p(w |X , y), the prediction distribution
could be modeled by a negative binomial distribution,

p(y∗|X , y , x∗) = NB(eμ� , σ2
η) (8)

with mean and variance

μη = k(x∗,X )(K +Σy )
−1t

σ2
η = k(x∗, x∗)− k(x∗,X )T (K +Σy )

−1k(X , x∗)

whereΣy=Diag(1/(y1+c), . . . , 1/(yN+c)) and t=log(y+c)−
cΣy 1. The kernel function we used here is same as the kernel
in (5).

IV. EXPERIMENTS

We remotely collected close to 70-minutes videos from a
local transportation department at different highway locations
at different time intervals. Image size is 352 × 240 and frame
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Fig. 8. Illustration of unreliable contour and SIFT features. (a) Two consecutive image frames. (b) Contours from the Canny method. (c) Contours from the
Laplacian of Gaussian method. (d) The SIFT feature points. The enlarged regions are from the same vehicles, which contain 12 SIFT features and 1 SIFT feature,
respectively.

Fig. 9. Five consecutive image frames and their corresponding foreground segments. Yellow segments contain unclassified vehicles and white segments contain
classified vehicles that have been classified in previous frame. All the segments are extracted from the pre-defined region of interest.

rate is only around 1 fps that may be caused by a slow network
transfer. In each image frame, we manually counted the new
entered vehicles according to their classes. These manually
counted results are used as the ground truth. A region of
interest (e.g., the region close to the camera) is selected for each
highway road. Fig. 7 shows sample images captured at different
time intervals.

Our algorithm is implemented using Matlab and can be run
in real time. The most time consuming part is the warping
algorithm, which is 0.16 ms on average. The prediction based
on the regression is around 3.4 × 10−4 ms per foreground
segment.

As mentioned in the related work, different features (e.g.,
contours and feature points) could be extracted for traffic analy-
sis [2], [3], [7]–[11], [17]. These features could be used to fit
into a 2-D/3-D vehicle model or be tracked over image frames.
Fig. 8 shows the extraction of two kinds of contour features
(the contours in the background have been removed) and the
SIFT feature points. As most contours are mixed together and
not distinguishable, they cannot be easily used to fit into one
vehicle model. As the vehicle resolution is small, the number of
the SIFT features is very limited even we set the peak threshold
of the DoG scale space to the minimum. These SIFT features
are also highly inconsistent over image frames, which makes
the modeling and tracking difficult.

For instance, SIFT features need to be matched and tracked
in the foreground segments in [7]. Motion vectors are then
grouped by a hierarchical clustering algorithm. As shown in
the enlarged regions in Fig. 8(d), the same vehicle in two
consecutive image frames contains 12 SIFT features and 1 SIFT
features, respectively. Therefore, it would be very difficult to
match and track these SIFT features.

We believe that other similar feature extraction methods,
such as the Harris corner, would have the same problem. As
a result, many existing algorithms (e.g., [2], [3], [7]–[11], [17])
are not suitable for low quality videos and could easily fail to
extract features so that counting and classification are highly
inaccurate.

Many existing algorithms also need to segment individual
vehicles either before or after tracking. This segmentation itself
could be a difficult problem when vehicle resolution is small
and severe occlusions present. As a result, in many existing
algorithms (e.g., [7], [13], [14], [20], [21]), we can only find
segmentation of around two occluded vehicles.

Fig. 9 shows the five image frames and their corresponding
foreground segments. Because of the low frame rate, vehicles
often become very small after one image frame and are almost
invisible after two image frames. There are severe occlusions
in foreground segments. Each foreground segment could easily
contain many vehicles. The assumption of the weak perspective



LIANG et al.: COUNTING AND CLASSIFICATION OF HIGHWAY VEHICLES BY REGRESSION ANALYSIS 2885

TABLE I
PERFORMANCE COMPARISON BY USING THREE REGRESSION METHODS AND DIFFERENT FEATURES. BASED ON ALL FEATURES, THE BEST

CLASSIFICATION RATES FOR LARGE, MEDIUM, AND SMALL VEHICLES ARE 92.7%, 63.4%, AND 79.9%, RESPECTIVELY,
WHICH ARE CORRESPONDING TO MEAN ABSOLUTE ERRORS 0.146, 0.732, AND 0.401

Fig. 10. The ground truth of small size vehicles in a traffic video (around 30 minutes).

projection that has been used in some existing algorithms is also
not valid here.

Three different regression methods are evaluated, in which
training and testing data are completely separated. The absolute
error for each vehicle class (err = 1

N

∑
|ĉi − ci|, where ĉi

and ci are the estimated and true counts in the ith foreground
segment, and N is the number of foreground segments) is com-
puted. Table I shows the counting results for all the features and
different categories of features. In order to obtain an accurate
evaluation, the image frames that contain no or few vehicles
are removed in this experiment as these image frames are not
challenging and could greatly reduce the absolute errors. For
the selected image frames, the number of small and medium
size vehicles in one foreground segment could reach up to 11
and the number of large size vehicles could reach up to 4. On
average, there are around 4 small and medium vehicles and 2
large vehicles in each foreground segment. We can find that
the performance by using all the features is better than the
performance only using one kind of features. Our algorithm is
accurate and robust to count large size vehicles. For example,
the mean absolute error using all features and the Poisson
regression is 0.146 per foreground segment, which means the
algorithm could miscount 15 large size vehicles for every
100 foreground segments that contain around 200 large size
vehicles. For small and medium size vehicles, our algorithm
is less accurate. For example, the mean absolute error using
all features and the Bayesian Poisson is 0.732 per foreground
segment. Therefore, based on all features, the best classification

rates for large, medium, and small vehicles are 92.7%, 63.4%,
and 79.9%, respectively, which are corresponding to mean
absolute errors 0.146, 0.732, and 0.401. As shown in Fig. 6,
the counting results for small and medium vehicles also reply
on the counting results of large vehicles. Therefore, the errors
made in the first-level regression would be propagated to the
second and third level regression.

If the cascaded regression framework is not applied for small
and medium vehicles (i.e., the counts of different vehicles
in one segment are mutually independent), the counting and
classification performance is further reduced. For example,
if the Poisson regression and all features are applied in this
experiment, the mean absolute errors could be increased from
0.752 (0.298) to 0.893 (0.429) for medium size vehicles and
from 0.401 (0.281) to 0.820 (0.231) for small size vehicles,
where the numbers in the parentheses are the corresponding
standard deviations.

The performance of Gaussian process is worse than other
two regression methods. Standard Poisson regression is slightly
better than the Bayesian Poisson regression proposed in [23].
One of possible reasons could be that vehicle counts (e.g., up to
11) generally are much less than the pedestrian counts (e.g., up
to 50). There are no enough local nonlinearities so that squared
exponential kernel function is not very useful comparing with
the linear kernel.

Figs. 10 and 11 show the count estimates using standard
Poisson regression and ground truth of small size vehicles
over a moderate traffic video. The video length is close to
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Fig. 11. Our estimation of small size vehicles in the same traffic video used in Fig. 10.

Fig. 12. The ground truth between 1000th and 1100th image frame in Fig. 10.

Fig. 13. Our estimation between 1000th and 1100th image frame in Fig. 11.

30 minutes. We can find that these two distributions are similar.
This indicates that our estimation can be used to approximate
the traffic density distribution. In terms of each image frame,
it is also common that there is a difference of 1 or 2 vehicles
between the ground truth and our estimation. We believe that it
could be difficult to further reduce the errors unless image res-
olution and frame rate are increased. Figs. 12 and 13 show the
results between 1000th and 1100th image frame of Figs. 10 and
11.

V. DISCUSSION

In many segmentation based algorithms, the boundary of an
individual vehicle or the boundaries shared by multiple vehicles
need to be estimated. However, the boundary estimation could
be considered as a more difficult problem than the vehicle
counting itself. One advantage of using regression analysis is
that the vehicle boundary estimation is not required and the
counting problem can be addressed directly. The major factor
that affects our algorithm performance is the feature vector
extracted from the foreground segment. Normalization of these
features based on the smoothing splines is an important step
to reduce the effects from perspective projection. Without this
step, the small size vehicles close to the camera could have
some similar features with the large size vehicles far away from
the camera.

Another advantage of using regression analysis is that pre-
diction stage of regression is often very fast. All the regression
methods we used could make predictions in real time. It is

also possible to choose other supervised learning techniques to
learn the relation between the feature vector and the vehicle
count, such as a neural network. For sufficiently large number
of hidden units, a two-layer neural network could have a similar
performance of Gaussian process.

Our algorithm is mainly designed to count and classify
highway vehicles. Without finding individual vehicles, it is not
easy to extend our algorithm to other applications, such as
detection of complex events for urban traffic. This could be one
limitation of the algorithm.

Our algorithm is currently trained and evaluated at different
time intervals during daytime. However, our algorithm still
cannot handle many different weather conditions, such as the
“transition” weather condition presented in [29]. This is another
limitation of the algorithm. For example, our experiments are
currently conducted when small shadow areas present. How-
ever, features could be strongly affected by large shadow areas.
In order to improve robustness, it could be useful to add shadow
removal to our framework. Our algorithm also could not be
applied during nighttime. One reason is that vehicle features
could not quite different during daytime and nighttime. In
order to partially solve the problem, we could train multiple
regression models based on different time intervals.

VI. CONCLUSION

In this paper, we present a counting and classification algo-
rithm for highway vehicles. Unlike many existing algorithms,
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our algorithm requires no explicit segmentation of individual
vehicles. Our algorithm also does not rely on tracking of robust
features. Given a set of low level features, we apply a cascaded
regression model to count and classify vehicles directly. We
have tested our algorithm on low quality videos that last more
than one hour. We show that our algorithm can deal with the
traffic with severe occlusions and very low vehicle resolutions.
Our algorithm is suitable for vision based systems that are
non-intrusive and can be mounted many places near highways.
Our algorithm could be further applied for estimation of traffic
density and vehicle emissions. Looking into the future, there are
many areas that could be improved. One immediate step is to
apply more sophisticated algorithms for background estimation
and shadow removal.
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