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Educated guesses 
"It is the mark of an instructed mind to rest satisfied with the 
degree of precision which the nature of the subject permits 
and not to seek an exactness where only an approximation 
of the truth is possible. "-Aristotle 

by John A Adam 

~--------:~·· .... -

W
E MAY NOT BE AS ERU
dite as Aristotle, or as bril
liant as Enrico Fermi, but we 
can learn to apply elemen

tary reasoning to obtain "ballpark 
estimates" for problems (subse
quently named "Fermi problems") 
in the manner attributed to that 
great physicist. 

Several years ago a short article 
by David Halliday appeared in 
Quantum (May 1990). It was called 
"Ballpark Estimates," and in the 
context of a specific problem Halli
day showed how to obtain order-of
magnitude answers to problems by 
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breaking them down into their 
components and making appropri
ate common-sense estimates. The 
problem was to estimate how many 
"rubber atoms" are worn from an 
automobile tire for each revolution 
of the wheel. We shall consider a 
slight variant of this problem below, 
but what I find especially appealing 
in Halliday's article is the dialogue 
he provides en route with a typical 
reader's questions. While not neces
sarily a prerequisite to this article 
(having got you to read this far, I 
don't intend to let you go easily!), I 
urge you to read it nonetheless. 

Of course, the ideas expressed and 
methods used in such Fermi prob
lems go far beyond physics into the 
realm of everyday activities (though 
filling the Earth with sand may not 
qualify as an everyday activity). 
Two excellent resources I have en
joyed reading and using are 
Innumeracy by John Allen Paulos 
and Consider a Spherical Cow by 
John Harte. You'll recognize some of 
the problems cited here if you have 
already encountered these books. 
After a while you'll get comfortable 

with posing and estimating answers 
to your own Fermi problems. The 
book by Paulos will be an eye
opener for many: in particular, he 
shows the power of plausible as
sumptions coupled with simple cal
culations. The book by Harte is a 
good introduction to mathematical 
modeling (particularly environmen
tal problem solving) with little or no 
use of calculus. While we're on the 
subject of interesting books, The 
Universe Down to Earth by Neil de 
Grasse Tyson has some chapters ( 1 
and 3) relevant to the present article. 

In much of what follows, letters 
are used to represent typical dimen
sions or other quantities. This will 
enable you to obtain your own esti
mates, though you should resist the 
temptation to just "plug in" your 
numbers in the formula without fol
lowing the prior reasoning. Almost )> 

certainly we'll differ on typical sizes 
of objects (for instance, grains of -5?" 
sand). But almost as certainly we'll ~ 
choose typical dimensions in the 'al 
range (for this example) of ; 
10-1 mm~ d ~ 2 mm, so we probably ~ 
won't differ significantly in our ~ 



subsequent order-of-magnitude an
swers. Remember that it's to be un
derstood that whenever ratios of di
mensional quantities are to be 
sought, a conversion of units may 
be necessary in order to compare 
like quantities. For completeness, 
actual numerical estimates are 
given-some of their values may 
surprise you. 

Needless to say, the question will 
be asked: so what if I know how to 
estimate the number of grains of sand 
that would fill Buckingham Palace? 
(Now there's a thought!) Apart from 
a spell in jail for attempting to verify 
such an estimate, it's a great encour
agement to realize that a "back of the 
envelope" type of calculation can be 
carried out with a modicum of salient 
information for a "real world prob
lem." Not only might this save a con
siderable amount of money and com
puter time on occasion, it might also 
give you a greater appreciation for the 
power of arithmetic. I've seen the 
"lights go on" when intelligent, edu
cated people realize at last the distinc
tion between 106 seconds ( 11 ½ days) 
and 109 seconds (32 years). Some
times we need the right pegs to hang 
numbers (and concepts) on! 

Among the simplest estimation 
problems are those arising from ra
tios of lengths, areas, and volumes. 
Thus, if Dis a typical linear dimen
sion of a given object (for example, 
a classroom), and d < D is a typical 
linear dimension of a smaller object 
(for example, a piece of popcorn
we'll say popped!), then N = D3 / d3 is 

the approximate number of smaller 
objects that would fill the latter. 
Thus, by using appropriate choices 
of D and d we can come up with es
timates for the following questions. 

1. How many golf balls does it 
take to fill a suitcase! 

2. How many pieces of popcorn 
does it take to fill a room! 

3. How many soccer balls would 
fit in an average-size home! 

4. How many cells are there in a 
human body! 

5. How many grains of sand 
would it take to fill the Earth! 

Related problems involve volu
metric measures of fluids. 

6. What is the volume of human 
blood in the world! 

7. How many one-gallon buckets 
are needed to empty Loch Ness ( and 
thus expose the monster}! 

Sometimes everyday objects are 
obviously represented (or misrepre
sented) by cubes. Thus, if we are ask
ing how many objects with a typical 
linear dimension d will fill a space 
with linear dimensions a, b, c, the for
mula N = abc/d3 is appropriate. So for 
problem 1, we might suggest a= 20, 
b = 24, c = 8, and d = 1.5 inches, respec
tively, so N = 103. For problem 2, sup
pose a= 10 ft, b = 20 ft, c = 15 ft (class
room size), and d = 1 cm. Then, after 
conversion to metric units, 
N = 3,000 · 303 = 108. For problem 3, 
consider D = 30 ft and d = 1 ft, which 
givesN= 104. Problem4yields 1014, and 
the answer to problem 6 is less than 
1/200 mi3 (both of these are discussed 
below). For problem 5, values of 
D = 104 km and d = 1 mm yield 
N = (104 • 103 • 102 • 10)3 = 103°. A cubic 
Earth, you ask? Don't worry, you'll get 
over it without falling off (see the com
ment on problem 14 below). Using the 
fact that 1 ft3 of liquid (water, soup, 
blood, and so on) is about 7.5 gallons, we 
arrive at N = 1012 buckets to empty 
Loch Ness (problem 7). The loch has 
a volume of approximately 2 mi3, so 
2 • 5,2803 • 7.5 = 1012. And while we're 
talking about gallons, here's problem 8. 

8. One gallon of paint is used to 
cover a building of area A. How 
thick is the coat! 

Clearly, if A is in square feet, then 
the thickness d = l/7.5A ft. For the 

"cubical house" of problem 3 (full of 
soccer balls by now, you'll recall), A 
= 6. 302 = 5 . 10 3 ft2, sod= 10-5 ft= 
10-4 in. 

Questions of a more sophisticated 
nature require, not surprisingly, 
more terms in the estimation for
mulas. Thus we have the following 
problems. 

9. How much dental floss does a 
convict need! A recent newspaper 
article featured the story of an in; 
mate at a correctional center in 
West Virginia who escaped from the 
prison grounds by using a rope made 
from dental floss to pull himself 

over the courtyard wall. The rope 
was estimated to be the thickness of 
a telephone cord, and the wall was 
18 ft high. Taking 4 mm for the di
ameter of a telephone cord and 
1 /2 mm for the diameter of the 
floss, then the number of floss fibers 
in a cross section is (4 .,. 1/2)2 = 60, 
and if each packet of floss contains 
the standard length of 55 yards, the 
number of packets required is 
N = (20 · 60)/(55 · 3) = 7. 

10. Estimate the number P of pi
ano tuners in a certain city or re
gion. Consider a population in the 
region totalingN, with an average of 
p pianos per family (generally p < 1 ). 
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Suppose that pianos are tuned b 
times a year on average (generally 
we expect Os b < 2), so the number 
tuned per year is approximately 
Npb/n 1, wheren 1 is the average size 
of a household. If each tuner tunes 
n2 pianos a day (O < n2 < 4 in gen
eral), this corresponds to 250n~ pi
anos per year (for a reasonable work
ing year of 50 · 5 days). So the 
number of tuners in the region (city, 
town, country) is approximately 
Npb/250n 1n 2 . Let's pop in some 
numbers. If, for New York City, say, 
N = 107, n 1 = 5, b = 0.5, p = 0.2, 
n 2 = 2, then P = ( 107 • 10-1 )/(250. 10) 
= 4 . 102-that is, an order of mag
nitude of 102 to 103 . 

11. Estimate the number C (for 
cobbler) of shoe repairers in a city or 
region. If such a person spends on 
average t hours on a repair job in an 
average working day that's T hours 
long, T/t is the average number of re
pairs performed per day. Clearly, 
some shoes are worth repairing and 
some are not. Suppose the "average 
pair of shoes" is repaired on average 
every n years, leading to a repair rate 
of 1/n per year. For a 250-day working 
year, our cobbler can perform an av
erage of 250T/t repair jobs a year, and 
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in a population of N, repairsN/n pairs 
of shoes each year. This leads to an 
estimate of Nt/250nT cobblers in the 
region. Thus, if we take as our region 
this time the whole of the United 
States (we're being a little ambitious 
here, of course, but this is a question 
I'm constantly being asked), thenN = 
2.5 . 108, t = 1/2, T = 10, n = 2; so C = 
(2.5 • 108 . 1/2)/250. 2. 10) = 104 . 

12. Estimate how fast human 
hair grows (on average) in mph. If 
the hair is cut every n months (usu
ally n s 2) and the average amount 
cut off is x inches, then x/n inches 
per month = x/n · 1/(5,280 • 12) · 
1/(30 • 24) mph = 10-8(x/n) mph. If 
n = 2 and x = 1, then the rate of hair 
growth is approximately 10-8 mph. 

Now back to the blood problem 
(number 6). 

6. (redux) Estimate the total vol
ume of human blood in the world. 
For a population of 5 • 109 with an 
average of 1 gallon of blood per per-

.,. 
' 

,. 

son, V=5-10 9/7.5=7· 108 ft3 .This, 
as Paulos points out, could be con
tained in a cube of side length 
(7. 108)113 = 900 ft. Putting things 
a little more prosaically, since 
Central Park has an area of 
1.3 mi 2, all this blood would cover 
Central Park to a depth of about 
(7 • 108)/[l .3 • (5,280)2] = 20 ft. Hmm. 

13. Estimate the number of ciga
rettes smoked annually in the US. 
Let f be the fraction of people in the 
population who smoke and n the 
average number of cigarettes smoked 

per day. Then N = 2.5 • 108 • 365 • fn = 
1011, if f = 10-1 and n = 10. 

14. The asteroid problem. In the 
light of the impact(s) of ex-comet 
Shoemaker-Levy on Jupiter's outer 
atmosphere, the question has been 
raised: could it happen here on 
Earth? It may have happened al
ready-one theory for dinosaur ex
tinction (not Gary Larson's) 1 is that 
about 65 million years ago such an 
encounter occurred-this time with 
an asteroid. Eventually dust from 
the impact settled back on the sur
face of the Earth, having done a su
perb job of blocking sunlight and 
thus devastating plant and animal 
life. According to one hypothesis, 
about 20% of the asteroid's mass 
was uniformly deposited over the 
(now rather inhospitable) surface of 
the Earth-about 0.02 gm/cm 2 . 

Question: how large was the asteroid? 
(You may feel that at this point, a 
more appropriate question would be: 
"What was the name of the bus 
driver?" But don't worry, we'll get to 
that later.) Okay-the mass is clearly 
about 4rrR2 • 0.02 • 5 if R is the radius 
of the Earth in centimeters. This 
must be equated to density times vol
ume for a cube of side length L (this 
is the simplest geometry to consider: 
the largest sphere that can be in
scribed in a cube of side L differs in 

1 His memorable cartoon shows 
several tough-looking dinosaurs 
standing around, smoking cigarettes. 
The caption reads: "The real reason 
dinosaurs became extinct. "-Ed. 



volume from that cube by a factor 
rc/6 = 1/2, so this won't affect our or
der-of-magnitude estimate). Suppose 
we take a typical rock density of 
2gm/cm 3, so that2L 3 =0.4rcR2, which 
gives us L = (0.2rcR2 )113 . Since R = 
4,000 • 1.6 • 105 cm (converting miles 
to centimeters) = 6.4 • 108 cm, then 
L = 6 • 105 cm, or 6 km (10 km by or
der of magnitude). This is not unrea
sonable for an asteroid (even though 
the dinosaurs may disagree). 

15. Thickness of an oil layer. Per
haps no one likes to take their medi
cine. Rumor has it that Benjamin 
Franklin noted that 0.1 cm 3 of oil 
(was it cod-liver oil?) dropped on a 
lake spread to a maximum area of 
40 m 2 . If d is the thickness of the 

,...., 

layer in meters, then 40d = 10-7, so 
d = 25 • 10-10 m, or 25 angstroms. In
terestingly, this corresponds to a 
"monomolecular layer" of 10-12 at
oms (with atom-space-atom- ... for 
a molecule), which is about right for 
a molecule of "light" oil. 

16. The number of leaves on a 
tree. If r is the typical radius of a 
tree's canopy, the surface area of the 
canopy is 4m 2; and if d is (in the 
same units as r) a typical leaf size, an 
estimate for the number of leaves is 
4rcr2/d 2 . Clearly leaves don't cover 
the "surface" of the canopy continu
ously; this does, however, compen
sate for the fact that there are many 
leaves on branches inside the canopy. 

For a small tree (for example, a 15- to 
20-year-old yew), the leaf canopy has 
a radius r = 4 ft and d = 1 in, so N = 
3. 104-that is, an order of magnitude 
of 104-10 5 in general, if we include 
larger trees as well. 

17. Weekly supermarket revenue. 
If there are n 1 checkout lines serving 
an average of n 2 customers per hour, 
the average customer receipt is x dol
lars, and the store stays open an aver
age of n3 hours a day, then in an av
erage week R = 7n 1n2n3x dollars. If, 
forexample,n 1 = 10,n 2 = 10, andn 3 = 
14, then we find that R = 105 dollars. 

18. Daily death rate in a city or 
region. If in a city or region of popu
lation n 1 the average number of 
deaths per day (as listed, for ex
ample, in the obituary section of the 
local newspaper) is n?, we can by a 
simple proportion get an estimate of 
the daily death rate d in the coun
try (with a population N). Thus, 

d = Nn 2/n 1. Clearly there are limits 
to the validity of this crude analysis. 
Death rates vary considerably from 
country to country. Nevertheless, 
one can get "lower bound" esti
mates for world death rates in a 
similar fashion. Thus, if n 1 = 106 and 
n2 = 30, then N = 2.5 . 108. 

19. The number of blades of grass 
on the Earth. If 40% of the Earth's 
surface is covered by land, a fraction 
f 1 of this land is covered by grass. If 
the average number of blades of 
grass per square inch is n, then N = 
(0.4)4rcR 2f 1n for R measured in 
inches. Thus, for R = 4,000 · 5,280 · 12, 
f1 = 10-2 or 10-1 (this is difficult to es
timate without a little research), and 
n = 20, then N = 1016 or 1017. 

Now let's return to a variant of. 
the car tire problem. 

20. What is the average depth of 
tread lost per revolution of a car tire! 
This can be answered by a simple pro
portion: the distance d we require is 
to a typical tread t (for a new tire) as 
tire circumference 2rcR is to length of 
useful mileage L. Thus, d = 2rcRt/L, 
which for R = 1 ft, L = 5 . 104 mi, 
t = 5 mm corresponds to (after con
versions!) to d = 10-7 mm. 

21. Population square. If each 
person on Earth were given enough 
space to stand comfortably on the 
ground without touching anyone 
else, estimate the length of the side 
of a square that would contain ev
erybody in this way. If we give ev
eryone a square 1/2 m on a side, then 
the side of the large square is 
L = (5. 109 )112 . 1/2. 10-3 km= 35 km. 

22. Human surface area and vol
ume. To estimate these quantities 
crudely but quickly, consider a cyl
inder of radius rand height h: if r = 
1/2 ft and h = 6 ft, then V = rcr2h = 
5 ft3, and S = 2rcrh = 20 ft2. Since 1 ft 
= 0.3 m, V = 0.1 m 3 • Now we're in a 
position to return to problem 4. 

4. (redux) Estimate the number of 
cells in the human body. If we as
sume an average cell diameter of 
10 microns, or 10-5 m, then since 
1 ft = 0.3 m, V from problem 22 is 
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approximately 10- 1 m3, so N = 
10-1;(10-s)3 = 1014 cells. 

23. The average rate of growth of 
a child frorp birth to 18 years. Over 
this time span the "speed" equals ap
proximately (h18 -h 0)/18 = 1/18 m/yr= 
lo-3/(20 • 400 • 20) km/h= 10-8 km/h
that is, about the same order of mag
nitude as the speed of hair growth! 
Perhaps we could label children as 
super- or subfollicular 
depending on whether 
or not they grow faster 
than their hair! 

The remaining es
timation problems 
concern SETI (the 
search for extraterres
trial intelligence) and 
interstellar launches. 
The astronomer 
Frank Drake has 
done the work for us 
in providing the famous Drake for
mula for the number N of extant 
technical civilizations in the galaxy. 
Here "technical" can be taken to 
mean at least as technologically ca
pable as we are on planet Earth. 
Thus, if n

5 
equals the mean number 

of stars in the galaxy, f the fraction 
of these stars with pfanetary sys
tems, nP the mean number of plan
ets suitable for life per planetary sys
tem, f b the fraction of planets where 
life actually evolves, fi the fraction 
of thosen/b on which intelligent or
ganisms have evolved, fc the fraction 
of those intelligent species that have 
developed communicative civiliza
tion, and / 1 the mean lifetime of 
those civilizations in terms of the 
age of the galaxy, then 

N = nJpn/JJcf1• 
Of the seven quantities on the right 
of this expression, the first is astro
nomical in nature and well known 
to be about 4 • 1011. The next two 
numbers are really educated astro
nomical guesses. The two following 
(fb and fi) are biological in nature, 
and here we're on pretty shaky 
ground, because we only have a 
sample space of one (ourselves!). 
The final two numbers are sociologi
cal in nature, and so in this context 
they're pure guesswork! Thus it hap-
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pens that the numbers one puts in 
are indicative of one's philosophical 
stance: like it or not, we all have pre
suppositions about the universe we 
inhabit. Just for fun, let's see where 
this leads for the optimist and the 
pessimist. In both cases we might 
take fp = 0.2 (remember that almost 
half the stars in our galaxy are 
thought to be binary systems at least) 

and nP = 0.1. For the remaining four 
numbers, our optimist takes 1.0, 1.0, 
0.5, and 106/10 10 = 10-4, respectively, 
yielding N = 105-10 6. Our pessimist, 
on the other hand, takes the last four 
numbers to be 0.1, 0.1, 0.1, and 
104/10 10 = lQ-6 1 respectively, yielding 
N = 10. Which are you? 

At this point, a timely reminder: 
whether for a debate or a mathemati
cal model or merely an estimate, 
the argument is only as good as the 
weakest assumption built into it. 

24. Mean distance between two 
civilizations. Our galaxy has the 
shape of a disk 105 light-years (LY) in 
diameter and about 104 LY "thick." 
Obviously stars are concentrated 
more toward the galactic center, but 
we can get a crude upper-bound esti
mate of the mean distance between 
two civilizations by dividing the vol
ume of the galaxy [n(l0 5 )2/4]. 104 = 
1014 cubic LY by the optimist's figure 
of N = 106• (Remember that 1 LY= 
6 . 1012 mi is the distance light trav
els in one year. Work 
it out for yourself.) 
Taking the cube root 
of 108 gives us approxi
mately 500 LY. On the 
other hand, if N = 10 
(the pessimist's esti
mate), the distance 
is 2 · 104 LY. 

25. How many launches of inter
stellar space vehicles might we ex
pect per year{ Suppose that on aver
age each civilization is able to 
launch s such vehicles per year. If 
N = 106-our most optimistic esti
mate-there will be (at steady state) 
some 106s vehicles arriving per year 
somewhere or other within the gal
axy. Suppose there are approxi

mately 10 11 inter
esting places to visit 
(each star!). Then 
we can expect 
106s/10 I1 = 10-5s ar
rivals at a given "in
teresting place" per 
year. Suppose it is 
claimed that here 
on Earth we receive 
v such visits per 
year. The mean 
launch rates should 

then be 105v per year, or a total of 
1011v launches per year within the 
galaxy. This corresponds to 
1011-10 14 if v = 1-10 3 . All in all, it 
seems rather excessive, especially if 
you try to compute the quantity of 
material required to make such large 
numbers of spacecraft! 

Oh, yes-one more thing. In prob
lem 14 I asked (among other things) 
what was the name of the bus driver. 
There's a good chance it's John. 
Why? A simple estimate will suf-. 
£ice. Taking a "typical" sample, 
there are 28 full-time faculty in my 
department (Mathematics and Statis
tics). Seven of us have the first name 
John. From this I draw the inescap
able conclusion that one person on 
four (yes, even including women) is 
named John. Of course, this is only an 
estimate. . . 00 
John A. Adam teaches mathematics at 
Old Dominion University in Norfolk, 
Virginia. He does not drive a bus in his 
spare time. 
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