
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 2024

Privacy-Preserving Deep Learning Framework for IoT Malware Privacy-Preserving Deep Learning Framework for IoT Malware

Detection Detection

Sabbir Ahmed Khan
Old Dominion University, sabbir042@gmail.com

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

 Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Khan, Sabbir A.. "Privacy-Preserving Deep Learning Framework for IoT Malware Detection" (2024). Doctor
of Philosophy (PhD), Dissertation, Computer Science, Old Dominion University, DOI: 10.25777/vpxr-9x83
https://digitalcommons.odu.edu/computerscience_etds/180

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It
has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/180?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

PRIVACY-PRESERVING DEEP LEARNING FRAMEWORK FOR IOT MALWARE

DETECTION

by

Sabbir Ahmed Khan
B.S. March 2009, Bangladesh University of Engineering and Technology (BUET), Bangladesh

M.S. December 2022, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
August 2024

Approved by:

Danella Zhao (Co-Director)

Ravi Mukkamala (Co-Director)

Stephan Olariu (Member)

Chunsheng Xin (Member)

ABSTRACT

PRIVACY-PRESERVING DEEP LEARNING FRAMEWORK FOR IOT MALWARE
DETECTION

Sabbir Ahmed Khan
Old Dominion University, 2024
Co-Directors: Dr. Danella Zhao

Dr. Ravi Mukkamala

Cyberattacks on IoT devices are accelerating at an unprecedented rate, largely driven by IoT

malware activities. The IoT malware attacks typically comprise three stages: intrusion, infection,

and monetization. Existing IoT malware detection methods fail to identify malicious activities at

the intrusion and infection stages and thus cannot stop potential attacks timely. In our research, we

have leveraged power side-channel information as input to our deep learning model to identify mal-

ware at early stages of intrusion on IoT devices. But, deploying a resource-intensive deep learning

model on highly resource-constrained IoT devices is a significant challenge. Consequently, utiliz-

ing a Machine Learning as a Service (MLaaS) engine to offload computation tasks to edge servers

in the cloud becomes an attractive solution. However, edge computing introduces significant pri-

vacy concerns since client data from IoT devices is sensitive, and the model parameters at the edge

server are regarded as proprietary information. Therefore, we propose three privacy-preserved

deep learning frameworks to monitor side-channel power consumption in real-time and identify

its correlation to various malware infection activities without leaking client or server information.

Our first framework, DeepShield, is a secure inference-based IoT malware detection system char-

acterized by a novel hybrid cryptographic protocol. This protocol offloads most computation to

the edge and enables secret-sharing collaboration between the client and edge server. It takes the

most expensive computation of homomorphic operations offline, lightening online secure inter-

action. However, its detection strategy must catch up with the rapid pace of malware evolution.

Hence, we introduce our second framework, BoTShield, a novel privacy-preserved online training

method capable of detecting malware variants. We use a combination of homomorphic encryption,

secret sharing, and differential privacy approach to preserve the privacy of BoTShield. Though

BoTShield represents an advancement over DeepShield, it isn’t fully equipped to detect zero-

day malware attacks. Thus, we introduce MalwareShield, a privacy-preserved federated learning

framework based on a novel differential privacy approach equipped with an encoder-based unsu-

pervised model to detect zero-day malware attacks. Moreover, MalwareShiedl reduces the amount

of data communication between the client and the server. Our empirical experiments demonstrate

that these frameworks enable secure, accurate, real-time, and scalable malware detection.

iv

Copyright, 2024, by Sabbir Ahmed Khan, All Rights Reserved.

v

I dedicate this dissertation to my beloved family members, whose unwavering love, support, and

sacrifices have been the cornerstone of my academic journey. Additionally, I dedicate this work to

all those who endure the profound and enduring impacts of war. May their resilience inspire us to

strive for a world of peace, compassion, and understanding.

vi

ACKNOWLEDGMENTS

I am sincerely grateful to Dr. Danella Zhao for her invaluable guidance, insights, and unwa-

vering support throughout my Ph.D. journey. Her expertise has been instrumental in shaping my

academic path and personal growth.

I extend my gratitude to Dr. Ravi Mukkamala, my co-advisor; his encouragement has instilled

in me the determination and passion to tackle future challenges confidently. Additionally, I extend

my gratitude to committee members Dr. Stephan Olariu and Dr. Chunsheng Xin for their insight-

ful comments and steadfast support. I also wish to express appreciation to Dr. Michele Weigle,

the CS graduate program director, for her invaluable assistance and guidance throughout my Ph.D.

journey.

I would like to express my gratitude to Zhuoran Li and Woosub Jung for providing the power

dataset. Special thanks go to Zhuoran Li and Dr. Danella Zhao for their invaluable assistance with

writing this dissertation. I am also grateful to Dr. Gang Zhou, Dr. Chunsheng Xin and Qiao Zhang

for their contributions during the initial stages of this work.

vii

TABLE OF CONTENTS

Page

LIST OF TABLES.. ix

LIST OF FIGURES ... x

Chapter

1. INTRODUCTION ... 1
1.1 PROBLEM.. 2
1.2 CONTRIBUTIONS... 6
1.3 DISSERTATION ORGANIZATION ... 7

2. BACKGROUND ... 8
2.1 NON-INTRUSIVE POWER SIDE-CHANNEL MONITORING......................... 8
2.2 CONVOLUTIONAL NEURAL NETWORK (CNN) 10
2.3 BACKPROPAGATION .. 11
2.4 HOMOMORPHIC ENCRYPTION (HE) ... 12
2.5 ADDITIVE SECRET SHARING ... 13
2.6 DIFFERENTIAL PRIVACY (DP) .. 13
2.7 MULTI-PARTY COMPUTATION (MPC).. 14
2.8 FEDERATED LEARNING... 15
2.9 PRIVACY PRESERVING FEDERATED LEARNING (PPFL) 16

3. RELATED WORK... 19
3.1 POWER MONITORING BASED MALWARE DETECTION 19
3.2 NEURAL NETWORK INFERENCE AND TRAINING. 20
3.3 FEDERATED LEARNING... 21

4. DEEPSHIELD: LIGHTWEIGHT PRIVACY-PRESERVING INFERENCE FOR REAL-
TIME IOT BOTNET DETECTION ... 23

4.1 SUMMARY .. 23
4.2 SYSTEM DESIGN OF DEEPSHIELD.. 24
4.3 DEEPSHIELD’S SECURE COMPUTATION PROTOCOLS 28
4.4 SYSTEM EVALUATION ... 36

5. BOTSHIELD: PRIVACY-PRESERVING NEURAL NETWORK TRAINING AND MAL-
WARE DETECTION AT IOT-EDGE ... 46

5.1 SUMMARY .. 46
5.2 SYSTEM DESIGN OF BOTSHIELD ... 47
5.3 DESIGN OF BOTSHIELD TRAINING .. 50
5.4 SYSTEM EVALUATION ... 58

viii

Page

6. MALWARESHIELD: A PRIVACY-PRESERVED FEDERATED LEARNING FRAME-
WORK FOR ZERO-DAY MALWARE DETECTION ON IOT DEVICES 67

6.1 SUMMARY .. 67
6.2 SYSTEM DESIGN OF MALWARESHIELD.. 70
6.3 DESIGN OF MALWARESHIELD FRAMEWORK 73
6.4 SYSTEM EVALUATION ... 79

7. CONCLUSION ... 89

REFERENCES ... 91

VITA ...103

ix

LIST OF TABLES

Table Page

1. Dataset for our model ... 38

2. Comparison of the runtime (ms) and communication cost (MB) of convolution layer 41

3. Comparison of runtime and communication cost of fully connected layer....................... 43

4. Comparison of runtime of non-linear layers ... 44

5. Classification results of BoTShield model ... 59

6. Detection of malware variants for offline training method. .. 60

7. Detection of malware variants for online training method.. 61

8. BoTShield execution times for one client-server model ... 62

9. BoTShield execution times for 25 epochs and multiple client-server models. 63

10. BoTShield training time comparison with SecureML and SecureNN. 64

11. BoTShield backpropagation microbenchmarks in LAN settings 65

12. Per sample inference time (ms) and communication cost (MB) comparison 66

13. Classification performance comparison of various methods. .. 82

x

LIST OF FIGURES

Figure Page

1. Power data under idle, service and attack... 9

2. Internal architecture of Convolutional Neural Network (CNN). 10

3. System design of DeepShield ... 24

4. Illustration of interleaved inference per core .. 25

5. A test bed prototype of DeepShield .. 36

6. Comparison of online detection accuracy... 39

7. Impact of input dimensions on real-time detection accuracy... 40

8. System design of BoTShield... 48

9. BoTShield’s offline phase. ... 51

10. BoTShield’s online forward propagation phase. .. 52

11. Secure backpropagation. .. 53

12. Mask the gradient... 54

13. Random noise cancellation. .. 55

14. Final parameters update. .. 56

15. System design of MalwareShield. .. 70

16. Internal architecture of autoencoder model. ... 75

17. Secure federated learning. .. 77

18. Train loss for benign data. .. 80

19. Test loss for malware data. ... 81

20. Confusion matrix for test dataset ... 83

21. Classification accuracy for different numbers of data points per client............................ 84

22. Training time for different numbers of data points per client. 85

xi

Figure Page

23. The classification accuracy with varying numbers of clients. 86

24. Training time with varying numbers of clients. ... 87

25. Total training time of aggregator after 25 rounds when |C| = 10 88

26. Total training time of each client after 25 rounds when |C| = 10.................................... 88

1

CHAPTER 1

INTRODUCTION

The rising popularity of Internet of Things (IoT) technology has made IoT devices a favorite

target for cybercriminals due to its heavy resource constraints, constant Internet connection, and

lack of built-in security [2], [6]. IoT devices have grown exponentially in recent years, with a

projected 75 billion units by 2025, a significant rise from 35 billion units in 2021 [51]. However,

the rapid increase in IoT devices introduces unexpected risks and new threats. According to the

2023 report by siliconANGLE [71], the infamous Mirai family of malware continues to evolve,

posing a significant menace to the IoT landscape through its numerous variants. Cyberattacks on

IoT devices are accelerating at an unprecedented rate, primarily driven by IoT botnet activities [3].

For example, in 2016, a massive DDoS attack knocked down the DNS service Dyn and made

a catastrophic East Coast Internet outage, which Mirai Botnet caused. Since then, new variants

are evolving and exploring a variety of vulnerabilities in unsecured IoT devices. For instance,

IBM observed that a Mirai variant, Mozi malware, has accounted for 89% of the total IoT attacks

detected for 2020. It has become imperative to detect IoT botnet attacks promptly to expedite the

alerting and disconnection of compromised IoT devices from the Internet, which helps stop and

prevent ever-more sophisticated attacks.

IoT botnet attacks such as Mirai are typically performed through four distinct operations, e.g.,

propagation, infection, command and control (C&C) communication, and attack execution [41].

Various IoT botnet detection techniques have been developed to identify distinguishable footprints

at different operational steps. From the data perspective, some approaches focus on malware

2

source/binary analysis [24], [72] while others use host or network-based behavior features [9],

[57], [66]. Meanwhile, the dynamic analysis method has been applied to network-level traffic

analysis to determine the characteristics for building network intrusion detection systems [31],

[55]. Moreover, some other anomaly detection methods have been proposed in [28], [54] by ex-

tracting C&C network behavior. However, these approaches mainly focus on behavior analysis in

later steps of the IoT botnet attack process, i.e., C&C communication and attack execution. To

minimize the massive damage caused by IoT botnet attacks as early as possible, it is essential to

identify malicious activities at early steps, i.e., propagation and infection.

To this end, several recent research explore the correlation between malicious actions and phys-

ical responses at early steps, e.g., power observation via side channels [13], [19], [36]. This in-

spired us to analyze the infection activities of Mirai and its variants, which are among the main

threats to IoT devices, particularly when these malware execute brute-force scanning (to discover

credentials) and loading activities (to gain access and download and execute malware) on the victim

IoT device. Specifically, we find that device power consumption leaks distinguishable information

about Linux command execution to perform Mirai family functions compared with the normal op-

erations when the IoT device is idle or in service. The question is how to accurately identify such

runtime malicious behaviors by instantaneously auditing the power consumption of the IoT device

during malware execution. Few works have been done to address such an imperative problem.

1.1 PROBLEM

Detecting malicious activities in the early stages, particularly during propagation and infection,

is crucial to mitigate the extensive damage inflicted by IoT botnet attacks as swiftly as possible.

For the real-time detection of IoT botnets, we’ve proposed several deep-learning models that uti-

3

lize input from embedded current sensors to extract power features from malicious and legitimate

activities. While deep learning is rapidly advancing and proven to be an effective tool for run-

time behavior dynamic analysis [34], [64], [69], it is challenging to deploy resource-hungry deep

learning model on heavily resource-limited IoT devices. Therefore, it becomes appealing to use a

Machine Learning as a Service (MLaaS) engine to outsource computation tasks to edge servers in

the cloud, which supports live streaming of power data from the IoT devices to the server and on-

the-fly botnet detection at the server which has a well-trained deep learning model, as such we can

expedite the alerting and instantly prevent the botnet from propagation and potential massive at-

tacks. However, edge computing raises serious privacy issues [30], [84] as client data from IoT de-

vices is very privacy-sensitive, and model parameters at the edge server are considered proprietary

information. In this work, we develop a smart auditor that mediates between resource-constrained

IoT devices and edge server with a novel design of privacy-preserving interactions during MLaaS,

aiming to instantly monitor side-channel power consumption and identify its correlation to various

botnet infection activities without leaking client and server information.

1.1.1 Approach 1: DeepShield

Advanced cryptographic primitives, e.g., homomorphic encryption, have been introduced [21],

[37] to run CNN over encrypted data with high accuracy securely. However, heavy online ex-

ecution of cryptographic operations demands substantial hardware resources, which induce im-

practical computation and communication overhead (e.g., about 300-second secure inference in

CryptoNets [21]. Therefore, this type of resource-demanding computation can not be directly ap-

plied to the real-time detection of IoT Botnet attacks. On the other hand, computation performance

can be primarily optimized by lifting off the heavy cryptographic operations offline [18], [48], [63].

4

Unfortunately, using privacy-preserving primitives such as garbled circuits [83] for online execu-

tion still involves substantial computing resources. It has evolved as a timely challenge, among

the current works, to facilitate secure and efficient CNN online inference for the Internet of Things

and intelligent infrastructure. Our goal is thus to develop an extremely lightweight framework for

privacy-preserving CNN to achieve feature extraction and classification for real-time IoT botnet

detection under edge computing. We propose a novel lightweight privacy-preserving inference

framework, DeepShield, that can detect real-time malware attacks.

1.1.2 Approach 2: BoTShield

The above method is an inference model, and the training is conducted offline. Later, the

offline training model parameters are imported into the inference model to detect the malware.

However, owing to the rapid evolution of malware, traditional offline-trained on-device malware

detection methods must catch up with the swift evolution of the current IoT environment. Recent

reports in [4] have revealed that 560,000 new malware are detected daily, equating to more than

six new malware variants generated every second. In 2021, ransomware attacks occurred every 11

seconds, and this frequency is projected to increase to every 2 seconds by 2031 [15]. Hackers ex-

torted 1.1 billion in 2023, marking a twofold increase compared to 2022. Therefore, to effectively

detect IoT malware, online training with real-time collected malware data can provide consider-

able advantages to protect IoT devices. We propose BoTShield, a malware detection system that

utilizes a novel "secret sharing with two-party computation" approach to facilitate secure online

training. Specifically, this approach enables the rapid adaptation to new malware patterns upon

initial exposure. It is further fortified with multiple secure protocols to ensure the security of on-

line training against malware threats. The problem is modeled as follows: a set of M data owners

5

send their input data to the server. The servers run an interactive protocol with clients to train

a neural network over the data to produce a trained model that can be used for inference. The

privacy requirement is that no individual party or server learns any information about any other

party’s data; thus, our model is designed in a two-party semi-honest setting. In this model, we

adopt a hybrid cryptographic approach different from other state-of-the-art work [56], [78]. Most

of the state-of-the-art works take a long time to train the model. Therefore, we propose this hybrid

approach that computes the heavy cryptographic operation during the offline phase by using a se-

cret sharing protocol, thus significantly reducing the computation time of our model and achieving

real-time malware detection during online inference. Another unique feature of this model is to

enable activation without approximation because the client now computes it in plaintext form. The

client now computes it, thus ensuring that it is free of accuracy loss and the desired stability in

training.

1.1.3 Approach 3: MalwareShield

A zero-day attack on IoT devices exploits vulnerabilities in software or firmware that are not

yet known to developers or manufacturers. Malicious actors use these vulnerabilities to compro-

mise IoT devices, gain unauthorized network access, steal data, or launch larger-scale attacks. The

impact can be severe, especially if the compromised devices are part of critical infrastructure or in-

dustrial systems. Such devices can create botnets for distributed denial-of-service (DDoS) attacks,

infiltrate corporate networks for espionage or data theft, or disrupt essential services.

Traditional security solutions, like BoTShield discussed in Chapter 5, rely on supervised learn-

ing and require labeled malware data for training. This dependency limits their ability to detect

previously unseen malware, particularly zero-day attacks. To overcome this limitation, we pro-

6

pose MalwareShield, a privacy-preserving federated learning framework that employs our novel

differential privacy approach to detect new malware variants, including zero-day exploits. Unlike

BoTShield, MalwareShield is trained exclusively on benign data, eliminating the need for labeled

attack data.

We incorporate federated learning into the framework because traditional centralized deep

learning (CDL) methods do not ensure the privacy and security of IoT devices, as they involve

transmitting data from all participating devices to a central cloud server. By combining edge com-

puting with deep learning, MalwareShield brings intelligence closer to the data generation points,

addressing issues such as data privacy, high communication costs, extensive memory requirements,

long training times, and high latency. MalwareShield facilitates collaborative deep learning in dis-

tributed IoT devices without sharing private data with the central cloud server, thus ensuring data

privacy, minimizing communication costs, and reducing training time. By leveraging deep learning

techniques, MalwareShield can detect abnormal patterns indicative of malware with high accuracy,

even for previously unseen attack data.

1.2 CONTRIBUTIONS

The main contribution of our work include:

• We propose a novel lightweight privacy-preserving inference framework, DeepShield, to

securely offload over 90% of CNN inference operations to the edge and enable efficient

secret-sharing collaborative computation between smart auditor and edge server with small

overhead communication overhead. Since most of the calculation is delegated to the edge

server, it facilitates low-cost and scalable implementation of a smart auditor to monitor an

extensive collection of IoT devices simultaneously.

7

• Due to the rapid evolution of malware, traditional offline-trained on-device malware detec-

tion methods cannot keep up with the swift changes in the current IoT environment. There-

fore, we propose BoTShield, a novel privacy-preserved online training method that can de-

tect malware variants within seconds level. Our extensive experiments on different datasets

demonstrate stable training without accuracy loss and 1.39 to 4.43 times speedup compared

to the state-of-the-art system.

• We propose MalwareShield, a privacy-preserved federated learning framework, to detect

zero-day malware attacks without data privacy concerns. This approach ensures minimal

communication costs and expedited training times. The effectiveness of the MalwareShield

is compared with state-of-the-art deep learning (DL) methods DeepAuditor [35], ThingNet[46]

and DeepShield[39].

1.3 DISSERTATION ORGANIZATION

The remainder of this dissertation is organized as follows. We discuss the necessary back-

ground and related work in Chapter 2 and Chapter 3, respectively. Chapter 4 describes the system

architecture of the DeepShield model. In Chapter 5, we present our design of the BoTShield

model. The zero-day malware attack detection framework MalwareShield is introduced in 6, and

Chapter 7 concludes this dissertation.

8

CHAPTER 2

BACKGROUND

This chapter briefly discusses power auditing, Convolutional Neural Network (CNN), Feder-

ated Learning, and Cryptographic tools used in our scheme.

2.1 NON-INTRUSIVE POWER SIDE-CHANNEL MONITORING

using external current sensors has demonstrated effectiveness in extracting malicious signals

from IoT device supply power [19], [35]. To instantaneously audit the power consumption, We

reuse the current sensors integrated into the IoT device1. The current sensor samples the CPU

power consumption under various states (i.e., idle, service, and attack). When observing the power

pattern during the infection process of the Mirai family, abnormal power spikes occur when Linux

commands are executed on the device during the scanning and loading phases. The power data

during idle state (e.g., when no service is running on the IoT device), IoT device standard service

(e.g., when service is running on the device), and botnet intrusion2 and infection3 are illustrated in

Figure 1A, Figure 1B and Figure 1C respectively.

To identify distinct power features correlated to malicious infection activities, it is essential to

design an effective sliding window approach [16]. The continuous power data stream is partitioned

1Without loss of generality, current sensors [74] are integral components of modern heterogeneous multicore ar-

chitectures for DVFS (dynamic voltage frequency scaling) power management
2During the phase of Scanning of Mirai, the bot scans open Telnet port of the victim IoT device, launches brute-

force attack to obtain login credentials.
3Upon discovering the credential, the loader server is commanded by the C&C server to gain shell access of the

victim device and instruct it to download and execute the malicious binary in the phase of loading.

9

A

B

C

Figure 1. Power data under idle, service and attack. (A) When device is idle. (B) When device is

under service. (C) Under botnet intrusion and infection (I would like to thank Zhuoran Li for

providing me with this figure).

10

into separate sequences of botnet infection activities for supervised learning-based detection. A

fixed-size overlapping sliding window approach is employed to divide the sequence of events into

a set of time-ordered and overlapping sliding windows to achieve better classification accuracy.

Aiming to distinguish malicious activities from normal behaviors while identifying identical or

similar abnormal events among Mirai variants, the power data stream is segmented according to the

Mirai (and its variants) infection events such as scanning, loading, or event transition. Accordingly,

the size of the sliding window is set for effective mapping to event labels (e.g., 2.5-second window

sizing with 1
3 overlapping as shown in Figure 1C.

2.2 CONVOLUTIONAL NEURAL NETWORK (CNN)

Convolutional neural network (CNN) is a deep learning network architecture that learns di-

rectly from data as depicted in Figure 2. CNNs are effective for classifying effectively time serial

signal data, e.g., power patterns [33].

Figure 2. Internal architecture of Convolutional Neural Network (CNN).

11

The CNN is composed of the following layers:

• Convolutional Layer. In this layer, all neurons share the same weights www and bias bbb, defining

a kernel or filter of size n. Each neuron is connected to a specific region of n neurons in the

input layer. Denoting n-element xxxi, each of which is distinctly assigned with one of www’s n

elements, as the i-th region of input xxx, the i-th element, zzzi, of output zzz is computed with the

dot products between the filters and local regions of the input that overlaps with the filters,

i.e., zzzi = www · xxxi +bbb.

• ReLU Layer. The activation layer applies elementwise non-linearity to the linear output,

e.g., the convolutional layer. The rectified linear unit (ReLU) is used in our CNN model

with the activation function f (x) = max{x,0}.

• Max-Pooling Layer. After the ReLU Layer, the pooling layer downsamples the feature maps

to minimize computation and manage overfitting. Over the feature maps, max-pooling out-

puts the maximum value inside a pooling window.

• Fully-Connected Layer. In this layer, every neuron is fully connected to all inputs xxx from the

previous layer. The matrix multiplication is performed between xxx and the mmm filters, each of

which has the same size as xxx, and the i-th filter and bias is denoted as wwwi and bbbi. Thus the

i-th element of the output zzz is zzzi = wwwi · xxx+bbbi.

2.3 BACKPROPAGATION

An essential artificial neural network (ANN) training strategy is backpropagation, which stands

for "backward propagation of errors." This supervised learning method minimizes errors by mod-

12

ifying the neural network weights to reduce the discrepancy between the intended and expected

outputs.

The backpropagation works as follows:

Forward Pass (Inference): During the forward pass, the neural network receives layers of

input data. After computing a weighted sum of its inputs and applying an activation function, each

neuron in a layer sends the output to the layer below. This procedure is repeated until the last

output layer generates a prediction.

Error Calculation: When the output is generated, a loss function (e.g., mean squared error for

regression or cross-entropy for classification) is calculated to quantify the error, also known as the

loss, between the actual target output and the predicted output.

Backward Pass (Backpropagation): The method traverses the network backward in the back-

ward pass, beginning at the output layer. Using the calculus chain rule, the gradient of the loss

function for each weight and bias in the network is determined. The gradient shows the relative

contributions of each weight and bias to the mistake. These gradients are then utilized to update

the network’s weights and biases to reduce error in the subsequent training iteration.

Gradient Descent: Gradient descent or its variants (e.g., Adam, stochastic gradient descent)

are standard optimization algorithms used with backpropagation to iteratively alter the weights and

biases in the direction that minimizes the error. The learning rate determines the gradient descent

iteration’s step size.

2.4 HOMOMORPHIC ENCRYPTION (HE)

A homomorphic encryption scheme [22] is a public key encryption technique that allows linear

operations to be performed directly on the ciphertexts. Specifically, homomorphic encryption

13

consists of a tuple of algorithms HE = (KeyGenerator,Encr,Decr,Compute) with the following

syntax:

• HE.KeyGenerator→ (pk,sk). HE.KeyGenerator is a randomized algorithm that outputs a

public key pk and a secret key sk.

• HE.Encr(pk,m)→ c. The encryption algorithm HE.Encr outputs a ciphertext c = [m] as

the encryption of m when the public key is pk and a message m.

• HE.Decr(sk,c)→ m. The decryption algorithm HE.Decr outputs the message m contained

in c = [m] when the secret key is sk and a ciphertext c,

• HE.Compute(pk,c1,c2,L)→ c′. HE.Compute outputs a new ciphertext c′ = [L(m1,m2)]

encrypting L(m1,m2) after getting the public key pk, two ciphertexts c1, c2 encrypting mes-

sages m1 and m2, and a linear function L,

As HE operations such as the ones in HE.Compute are expensive, we offload them into offline

preprocessing so that the online inference is efficiently computed in plaintext. This contributes to

real-time and privacy-preserving detection of IoT Botnet attacks.

2.5 ADDITIVE SECRET SHARING

Given an element x, a 2-of-2 additive secret sharing for x is a pair ([x]1, [x]2) = (x – r,r) where

r is a random number. In this scheme, x can be reconstructed by adding the two shares: x =

([x]1 + [x]2). The value x is perfectly hidden when only one of the shares, either [x]1 or [x]2, is

known.

14

2.6 DIFFERENTIAL PRIVACY (DP)

Differential privacy is a concept in data privacy that aims to protect individuals’ privacy when

their data is used for analysis or research. It provides a mathematical framework and a set of

techniques for ensuring that the results of statistical studies do not reveal information about specific

individuals in the dataset.

The basic principle of differential privacy is to introduce random noise into the data to preserve

the dataset’s statistical features while maintaining the privacy of the individual users. This noise is

carefully adjusted to strike a compromise between the degree of privacy protection offered and the

usability of the data

Differential privacy has become increasingly important in big data, machine learning, and data-

driven research, where large datasets are often used to extract valuable insights. By implementing

differential privacy mechanisms, organizations and researchers can comply with privacy regula-

tions, gain public trust, and mitigate the risk of re-identification attacks on individuals whose data

is included in the analysis.

Overall, differential privacy provides a rigorous framework for achieving privacy-preserving

data analysis, ensuring that the benefits of data-driven research and analysis can be realized without

compromising the privacy rights of individuals.

2.7 MULTI-PARTY COMPUTATION (MPC)

Several parties can collaboratively compute a function over their inputs while maintaining the

privacy of those inputs according to a cryptographic framework called multi-party computation

(MPC). Enabling collaborative computation while keeping confidential information hidden from

15

all involved parties is the aim of MPC. The MPC protocol works as follows:

Input Sharing: Every participant enters their data in private. Typically, these inputs are di-

vided into shares or encrypted using cryptographic methods like secret sharing.

Secure Computation: Using cryptographic protocols, the parties collaboratively compute the

desired function over their shared inputs. This computation ensures that at no point does any party

have access to the complete input data of another party.

Output Reconstruction: After computation, the parties can reconstruct the output of the func-

tion without any party learning more than what is revealed by the output itself.

The challenges to building an MPC framework are listed below:

Computational Overhead: MPC protocols can be computationally intensive, requiring care-

ful optimization to scale to large datasets and complex computations.

Communication Complexity: Performing MPC procedures requires effective communication

between parties, especially in cases where participants are far out geographically.

Protocol Design: Designing MPC protocols that are secure against various attack scenarios

and ensuring interoperability across different platforms and environments.

2.8 FEDERATED LEARNING

Federated learning is a machine learning technique that lets several parties work together to

train a common model while maintaining the privacy and decentralization of their data. Feder-

ated learning uses locally available data to train local models on each device or server instead of

transmitting raw data to a central server for training. Without sharing the raw data, these local

models are combined to produce a global model incorporating insights from all the data sources.

This decentralized strategy facilitates model refinement through cooperation amongst dispersed

16

data sources while maintaining data confidentiality and privacy.

The benefits of federated learning are coupled with robust privacy protection mechanisms in a

privacy-preserved federated learning approach. Model updates from various devices are securely

aggregated on a central server without exposing individual contributions. Techniques like secure

multi-party computation (SMPC) or homomorphic encryption are deployed to ensure privacy dur-

ing this aggregation process. Additionally, differential privacy techniques are applied to model

updates, introducing noise or randomness to prevent adversaries from deducing sensitive informa-

tion about individual data points. Data encryption is implemented during transmission and storage,

safeguarding it from unauthorized access. Through these privacy-preserving measures, federated

learning enables organizations to utilize distributed data sources while upholding privacy and con-

fidentiality standards throughout the collaborative model training process.

2.9 PRIVACY PRESERVING FEDERATED LEARNING (PPFL)

Privacy-preserving Federated Learning (PPFL) is an emerging approach in machine learn-

ing that addresses concerns about data privacy and security while leveraging decentralized data

sources. It combines the benefits of federated learning with privacy-preserving techniques to en-

able collaborative model training without the need to centralize sensitive data.

Critical concepts of PPFL are listed below:

Federated Learning (FL): FL is a decentralized approach where multiple parties (often de-

vices or edge nodes) collaboratively train a shared machine-learning model without sharing their

raw data with a central server. Instead of sending raw data to a central server, each participant

trains a local model using its data and sends only model updates (gradients) to a central aggregator,

which then aggregates these updates to update the global model.

17

Privacy Concerns in FL: Traditional FL can still pose privacy risks because model updates can

reveal sensitive information about the local datasets, especially when the aggregator is untrusted

or compromised. PPFL aims to mitigate these risks by integrating privacy-preserving techniques

into the federated learning process.

Privacy-Preserving Techniques:

Differential Privacy: Adding noise to the gradients before aggregation masks individual con-

tributions and prevents inference of sensitive information.

Secure Aggregation: Using cryptographic techniques such as homomorphic encryption or

secure multi-party computation (MPC) to ensure that model updates are aggregated so that the

aggregator cannot decipher individual contributions.

Local Model Updates: Limiting the amount of information shared during model updates to

only what is necessary for global model improvement while keeping raw data local.

PPFL can be applied in various domains, including but not limited to:

Healthcare: Collaborative training of predictive models using patient data from different hos-

pitals while preserving patient privacy.

IoT: Training models on edge devices without transmitting sensitive data to cloud servers.

Finance: Fraud detection and risk assessment using data from multiple financial institutions

without sharing proprietary customer data.

Some challenges in implementing PPFL include:

Computational Overhead: Implementing privacy-preserving techniques can introduce addi-

tional computational costs and complexity.

Communication Overhead: Securely aggregating model updates requires efficient communi-

cation protocols to minimize latency and bandwidth usage.

18

Security Concerns: Ensuring the security of cryptographic protocols and protecting against

potential attacks on federated learning systems.

19

CHAPTER 3

RELATED WORK

The security research community has been increasingly focused on the growing menace of

IoT malware. While network-based detection remains a prevalent research avenue, there’s a shift

toward exploring low-overhead side-channel detection solutions. This chapter will discuss the

prior work on privacy-preserved neural networks, power monitoring-based malware detection, and

the federated learning approach.

3.1 POWER MONITORING BASED MALWARE DETECTION

Several studies have been conducted for IoT security against botnet attacks, mainly network-

based approaches [20], [52], [66], [70]. Network-based anomaly detection [54], [57] or signature-

based detection [28] has been commonly used for protecting IoT systems. More research is needed

to explore the effect of botnet attacks on detailed IoT device behaviors. Malware detection using

power consumption monitoring has recently drawn attention for embedded medical devices [13]

and mobile devices [40]. A power-signature-based mobile malware-detection approach was pro-

posed in [40] targeting previously unknown energy-depletion threats. WattsUpDoc was designed

to monitor the behavior of embedded systems via power side channels for anomaly detection [13].

A code execution tracking-based malware detection scheme was proposed in [49] by observing the

power consumption of the microcontrollers. Recent work has detected offline IoT botnet intrusion

via power modeling, which relies on an expensive external power monitor [36]. [35] proposes an

online intrusion detection system called for IoT devices via power auditing. However, this is an

20

inference model only, so the client’s data is not protected during the offline training. Moreover,

only a few Mirai variants are used to evaluate the system. We are the first to realize a distributed

privacy-preserved online training system for botnet intrusion detection on multiple IoT devices via

ubiquitous power auditing. Our work selects the power side-channel signal because it is easy to

collect, closely correlated with the system’s workload, and can detect the early propagation stage

of IoT botnets. Our approach attempts to discover detailed information about the infection ac-

tivities of IoT malware by fine-grained analysis of its correlation to malicious botnet activities to

increase detection accuracy. Additionally, our model preserves the privacy of the client’s data and

server model even during the training phase, which is the first approach in the intrusion detection

domain.

3.2 NEURAL NETWORK INFERENCE AND TRAINING.

In recent years, privacy-preserving machine learning has received considerable research atten-

tion. There are four major approaches. The first approach for privacy preservation was introduced

by using homomorphic encryption. Perhaps the very first to consider secure neural network pre-

diction was the work of Gilad-Barach et al. [21], who used homomorphic encryption techniques to

provide a secure prediction. As the non-linear function cannot be computed directly in a privacy-

preserved model, they approximated non-linear functions, such as the ReLU activation function,

to a quadratic function. But, this simple approximation results in a loss in accuracy; there have

been works that approximate ReLU using higher degree polynomials [11], garbled circuit [83] but

incur higher cost. CHET [17] is another homomorphic-based inference protocol that replaces all

ReLUs with polynomials. Approximations for better efficiency, harming large networks’ accuracy.

The second approach is a 2PC(secure two-party)-based protocol. SecureML [56] is a 2PC-based

21

protocol that is the first work to provide secure protocols for neural network training and prediction

with non-linear activations, using a combination of arithmetic and Yao’s garbled circuit techniques.

MiniONN [48] uses the SPDZ protocol that further optimizes the protocols of SecureML by reduc-

ing the offline cost of matrix multiplications and increasing the online cost. GAZELLE [37] uses an

efficient HE-based protocol for linear layers, while garbled circuits compute non-linear activations.

However, its reliance on heavy cryptographic operations in the online phase results in a computa-

tionally expensive protocol compared to our model. DeepSecure [65], the protocol of Ball et al.

[5], and XONN [62], all use circuit garbling schemes to implement constant-round secure infer-

ence Protocols. The third approach is a 3PC(secure three-party)-based protocol. Chameleon [63],

SecureNN [78], ABY [18] and Falcon [43] are 3-PC based protocol. These works have explored

how adding a third party can greatly improve efficiency for secure machine learning applications.

The fourth approach is TEE(trusted execution enclaves)- based protocols: (a) inference via server-

side enclaves, where the client uploads their input to the server’s enclave, and (b) inference in

client-side enclaves, where the client submits queries to a model stored in the client-side enclave.

Slalom [76] and Privado [75] are examples of protocols that rely on server-side enclaves. ML-

Capsule [32] describes a system for performing inference via client-side enclaves. TEE-based

cryptographic inference protocols offer better efficiency than protocols that rely on cryptography,

such as DELPHI, but this improved efficiency comes at the cost of a weaker threat model. In con-

trast to all the above works, we provide protocols for non-linear activation functions by avoiding

garbled circuits, thus dramatically reducing the communication complexity of non-linear layers.

3.3 FEDERATED LEARNING

[7] presented a practical system for secure aggregation in federated learning, ensuring that

22

individual participant updates remain confidential, even to the aggregator. Similarly, [53] pro-

posed the Federated Averaging (FedAvg) algorithm, which aggregates locally computed updates

into a global model without transferring raw data, using cryptographic techniques for the secure

summation of encrypted updates. [26] investigated differentially private federated learning, while

[44] surveyed various privacy-preserving federated learning methods, summarizing advanced tech-

niques such as homomorphic encryption, secure multiparty computation, and differential privacy.

[81] presented a communication-efficient and privacy-protected architecture for federated learning.

[80] developed a decentralized trust framework for federated learning, which enhances privacy and

security by leveraging blockchain technology and smart contracts to ensure trustworthy and trans-

parent collaboration among participants. [12] explores Privacy-Preserving Federated Learning

through Functional Encryption, allowing computations to be performed on encrypted data. This

approach ensures that only the final aggregated results are decrypted, keeping individual contri-

butions confidential. Federated learning with non-IID data, as discussed by [86], addresses the

challenge of training accurate and robust machine learning models across decentralized datasets

with differing distributions.

23

CHAPTER 4

DEEPSHIELD: LIGHTWEIGHT PRIVACY-PRESERVING INFERENCE FOR

REAL-TIME IOT BOTNET DETECTION

4.1 SUMMARY

With the rapid proliferation of IoT devices, botnets have exploited their vulnerabilities. Yet,

detecting the initial intrusion on IoT devices before large-scale attacks remains challenging. Re-

cent research has leveraged power side-channel data to spot this intrusion behavior, but real-time,

precise models for widespread botnet detection still need to be improved. A key challenge is

how to effectively unfold the details of malicious activities executed on the IoT devices to enable

fine-grained real-time detection of botnet infection, minimizing the loss of botnet attacks. Deep

learning has evolved as a powerful dynamic analysis method of normal and abnormal behavior.

However, deploying resource-repletion deep neural networks on resource-constrained IoT devices

with intelligent infrastructure and smart cities may be challenging. Though cloud-based deep

learning is popular, it raises serious issues of data privacy and response latency. The contribution

of our work is two folds: (a) we propose a non-intrusive power side-channel auditing approach

leveraging the low-cost current sensors to infer fine-grained analysis of malicious behaviors in IoT

botnet infection; (b) we propose DeepShield, a novel lightweight deep neural network online in-

ference model for real-time privacy-preserving feature extraction and classification based on edge

computing. The strength of our approach lies in the critical novelty of a hybrid cryptographic

protocol that offloads the majority of online computation to the edge and enables secret-sharing

24

collaborative computation between the smart auditor and edge server. It further takes the most

expensive calculation of homomorphic operations offline, lightening online secure interaction. In

addition, the non-linear activation is securely outsourced and resolved in an unencrypted form on

the client side. We adopt this approach for the non-linear layer because generating and transmitting

garbled circuits is time-consuming, particularly for complex data and computation-intensive tasks.

We demonstrate that DeepShield can secure high-accuracy, real-time, and scalable botnet infection

detection through theoretical analysis and empirical experiments.

4.2 SYSTEM DESIGN OF DEEPSHIELD

Figure 3. System design of DeepShield (I would like to thank Dr Danella Zhao for providing me

with this figure).

Aiming at accurate detection of botnet malware (e.g., Mirai, Mirai variants, LuaBot, Qbot, Ran-

25

somware) infection activities by monitoring power fingerprints, we develop an IoT botnet detection

system, dubbed DeepShield, entailing built-in current sensors and data preprocessing techniques

to extract the malicious signal. As shown in Figure 3, the DeepShield system mainly consists of a

smart auditor deployed at the client side and an edge server equipped with the MLaaS engine that

runs convolutional neural network (CNN) inference for secure IoT botnet detection on the fly.

Figure 4. Illustration of interleaved inference per core (I thank Dr Danella Zhao for providing me

with this figure).

4.2.1 Smart Auditor and Interleaved Data Streaming

The key to generating datasets is to collect and preprocess suspicious power signals to obtain

distinguishable features for activity inference. The smart auditor is designed to facilitate efficient

data collection, preprocessing, and offline and online computation as involved in the secure inter-

action protocol described in Section 4.3. During data collection, the power data is sampled via the

on-device current sensor and live-streamed to the smart auditor for preprocessing.

System optimization is further performed by exploring scalability. To support real-time moni-

toring of N number of IoT devices in the system (e.g., a smart city surveillance camera system), a

26

Multi-Stream Interleaved Queuing (MSIQ) scheme is developed to support simultaneous detection

of N devices using thread-level parallelism via multicore. We can further speed up detection with

hyper-threading and model-level pipelining [79], which are beyond the scope of this work. With-

out loss of assumption, let the times of power data generation and secure CNN inference be l and

m milliseconds, respectively. As the detection procedure is dominated by the dataset generation,

i.e., l≫m, real-time system-wide detection can be achieved with a n-core CPU. That is nl
m ≥ N. A

parallel TCP/IP socket interface with multithreading is implemented to support the live streaming

power data from N devices. As illustrated in Figure 4, with interleaving and system-level pipelin-

ing, we can support concurrent detection on l/m devices with a single core. We will evaluate the

system scalability in Section 4.4.

4.2.2 Infection Detection and Offline Training

For high detection accuracy and real-time and low-cost hardware implementation, a 1D Con-

volutional Neural Network (CNN) is developed by learning the correlation between 1D device

power signals and malware infection activities such as the Linux commands execution during Mi-

rai Brute-force scanning and loading. The edge server offline trains the 1D CNN, which consists

of a sequence of layers that transform an input layer into an output layer: Convolutional, ReLU,

Max-Pooling, and Fully connected Layers. Based on the offline training model, a lightweight

CNN inference model named DeepShield is developed to lift the burden of CNN inference off the

resource-constrained IoT device while preserving privacy and accuracy. The key idea is the design

of a novel online/offline cryptographic protocol, which is discussed in Section 4.3.

27

4.2.3 Threat Models

Our model can detect botnet infection by non-intrusively analyzing side-channel power data

from vulnerable IoT devices. There are two types of attacks that adversaries may launch at the

client side: 1) Attacking the power sensor by exploiting its vulnerabilities. 2) Launching com-

plicated post-processing to interfere with detection. Adversaries can perform complicated post-

processing jobs to generate different power traces. For example, rebooting the infected device can

create longer and more complicated power patterns. To address the former issue, we assume that

the IoT devices in a system are equipped with sensor attack detection and mitigation methods [14],

[38]. For the later issue, our inference model is trained by collecting power patterns of normal and

abnormal activities under various device states, i.e., idle, service, and attack, to detect sophisticated

unknown patterns.

Adversaries can also target the client-server-secured interaction protocol. The threat model is

similar to what has been discussed in Gazelle [37], SecureML [56], MiniONN [48], and DeepSe-

cure [65] systems. More specifically, DeepShield is designed under a two-party semi-honest setting

where the client (denoted as C) tries to query the model to learn the model parameters. In contrast,

the server (denoted as S) wants to understand the privacy-sensitive client data. Our goal is to make

C oblivious of the model parameters while preventing S from obtaining C’s private data. We will

prove that the proposed model is secure under semi-honest corruption using the ideal/real security

analysis [27], [59]. Various attacks have been emerging to comprise neural networks [23], [68],

[77]. For example, the S can initiate a membership inference attack [68] by comparing C’s input

with S’s pre-trained dataset. C can launch the model extraction attack [77] to extract the inference

model parameters by exploiting the linear transformation. The model inversion attack [23] utilizes

28

Scipy’s numeric gradient approximation and complete knowledge of softmax probability vectors to

find the input that maximizes the classification probability. To counter such an attack, S can return

only the predicted label, not the probability vector. Some other attacks try adding small perturba-

tions to the input, leading to misclassification [50], which won’t fit our privacy-induced scenario.

Protecting the model is usually sufficient through protecting the model parameters, which are the

most critical information for a model. Therefore, our protocol only partially hides the whole net-

work architecture; however, we argue that it does hide the vital model parameters that are likely to

be proprietary. First, the protocol hides all the weights of the convolution and the fully connected

layers. Secondly, the protocol hides the kernel and stride size in the convolution layers and infor-

mation on which layers are convolutional and fully connected. However, our protocol does reveal

the number of layers, the size (the number of hidden nodes) of each layer, and the dimensions of

input data. We assume that the sensors and valid users are always available and secure communi-

cation channels between entities are available.

4.3 DEEPSHIELD’S SECURE COMPUTATION PROTOCOLS

We develop a series of secure computation protocols based on the additive secret sharing tech-

nique to enable secure interaction between the client (smart auditor) and the edge server within our

designed DeepShield system (detailed in Section 4.2), aiming to preserve the privacy of both parties

while achieving real-time detection. Specifically, a hybrid cryptographic framework is employed

to offload computationally demanding cryptographic operations, e.g., homomorphic multiplica-

tion and encryption, on the client by an offline preprocessing while utilizing lightweight plaintext

operations to streamline an online secure neural network inference. The challenge is enabling

the highly computation-efficient and semantically secure two-party computation (2PC) protocols

29

against semi-honest adversaries in the resource-constrained and real-time-demanding IoT botnet

detection system to execute online inference without degrading detection accuracy. So, we’d like

to elaborate on DeepShield’s secure computation protocols for offline preprocessing and online

inference in this section.

Protocol 1: Secret Linear Sharing

Client Node Edge Node

Input: rrrl Input: wwwl , nnnl

Output: cccl Output: sssl s.t. cccl + sssl = wwwl · rrrl−nnnl

Enc(rrrl) 1
−→
[rrrl] Comp(wwwl · [rrrl]− sssl−nnnl) 2

=[wwwl · rrrl− sssl−nnnl]=[cccl]

Dec([cccl]) 3
←−
[cccl]

4.3.1 Offline Linear Sharing Protocol

Before executing online inference, the model parameters, e.g., weights and biases, are precom-

puted by the offline training and stored on the server. During preprocessing, the client and server

jointly share a linear output, i.e., the dot product between a noised vector, rrrl ∈ Rm×1, from the

client and the weights, wwwl ∈Rn×m, from the server, which enables the client to protect its data via

that noised vector while producing the correct linear result for the subsequent computation during

online inference. Here wwwl represents the weight matrix at l-th layer in the Convolutional Neural

Network (CNN), e.g., Convolution layer (Conv) or Fully Connected (FC) layer, and mmm and nnn are

the input and output dimensions, respectively. The client generates that noised vector rrrl and sends

it to the server to calculate the share of the linear output wwwlrrrl as (wwwlrrrl − nnnl), which is then sent

30

back to the client. Here nnnl ∈ Rn×1 is a randomly generated by server. The secret linear sharing

protocol is defined below.

• As illustrated in Protocol 1, to protect the privacy of the random vector rrrl , client encrypts rrrl

by Homomorphic Encryption (HE), e.g., packed additive homomorphic encryption (PAHE)

technique [37], into Enc(rrrl) = [rrrl], which is sent to the server at step 1 .

• Upon receiving [rrrl] from client, the server homomorphically computes wwwl ·[rrrl] = [wwwl ·rrrl], e.g.,

utilizing PAHE based matrix-vector multiplication in [37], where “·” denotes the dot product

operation1. On the other hand, directly sending [wwwl · rrrl] back to the client could enable the

client to deduce the weight parameters from decrypting [wwwl · rrrl] with high probability [85].

Therefore, as shown in step 2 , the server randomly generates two random vectors, the

server’s share for (wwwl · rrrl − nnnl) as sssl ∈ Rn×1 and nnnl ∈ Rn×1, and forms the other additive

share for client as

[cccl] = wwwl · [rrrl]− sssl−nnnl = [wwwl · rrrl− sssl−nnnl].

• At step 3 , the server sends [cccl] to client, which decrypts [cccl] into Dec([cccl]) = cccl . It is easy

to verify that

cccl + sssl = wwwl · rrrl− sssl−nnnl + sssl = wwwl · rrrl−nnnl.

Therefore, at the end of Protocol 1, the client and server each hold a share of (wwwl · rrrl − nnnl)

without client knowing server’s weight parameters wwwl and server knowing client’s input rrrl .

1“·” can either be homomorphic or plaintext weight-matrix multiplication depending on the involved items are

ciphertext or plaintext. Similar logic is applied to +/− in the remaining chapter. The “comp(f)” denotes the compu-

tation process defined in f .

31

It is worth mentioning that Protocol 1 is an offline process independent of real input from the

client. Thus, the client can periodically generate new rrrl , and both client and server can then jointly

share the new linear output, (wwwl · rrrl − nnnl), at offline without affecting the performance of online

inference as to be discussed next.

4.3.2 Efficient Online Inference Protocol

To facilitate fast online computation without degrading detection accuracy, DeepShield makes

the client calculate the nonlinear CNN operations, such as Rectified Linear Unit (ReLu) and Max

pooling, using the client’s plaintext output of linear computation. The challenge here is how to

obliviously perform linear transformation between the two parties such that the client finally ob-

tains the real linear output to subsequently calculate nonlinear operations without knowing the

model parameters, e.g., weight matrix and biases. We address this challenge with a secure linear

transformation protocol between the client and server, as shown in Protocol 2. Here we denote

client’s plaintext input as xxxl−1 ∈Rm×1.

Protocol 2: Efficient Online Inference

Client Node Edge Node

Input: xxxl−1, cccl , rrrl Input: wwwl , bbbl , sssl , sssl

Output: f (zzzl−nnnl) s.t. cccl + sssl = wwwl · rrrl−nnnl

Comp(xxxl−1− rrrl) 1
−−→
x̃xxl−1 Comp(wwwl · x̃xxl−1 +bbbl + sssl) 2

Comp(f (z̃zzl + cccl)) 3
←−
z̃zzl

= f (zzzl−nnnl)

32

• Recall that the client and server preshare the linear result, (wwwl · rrrl − nnnl), as cccl and sssl by

Protocol 1. Therefore, the client first disturbs its input as x̃xxl−1 = xxxl−1− rrrl , which is then sent

to server as shown in step 1 . Note that rrrl is randomly generated by client, which makes

x̃xxl−1 random to server.

• At step 2 , the server performs a linear transformation, z̃zzl = wwwl · x̃xxl−1 +bbbl + sssl , and sends z̃zzl

back to the client. Note that sssl is randomly generated by server, which makes z̃zzl random to

client.

• Upon receiving z̃zzl , client recovers the noisy linear result, zzzl − nnnl = wwwl · xxxl−1 + bbbl − nnnl , by

adding z̃zzl with cccl , as shown in step 3 . It is easy to verify that

z̃zzl + cccl = wwwl · (xxxl−1− rrrl)+bbbl + sssl + cccl = wwwl · xxxl−1 +bbbl−nnnl,

which is a noisy linear output of l-th layer. The nonlinear function f , e.g., ReLu, is then

applied to the linear output in plaintext to finally get the nonlinear output, f (zzzl−nnnl), for l-th

layer.

The process in Protocol 2 is repeated until the last layer where client gets the linear result

(zzzllast −nnnllast), and obtains the classification result by choosing the label with maximum in (zzzllast −

nnnllast). In this way, the client and server jointly calculate linear and nonlinear results within one

round for each layer in plaintext, enabling efficient and secure detection performance for our

DeepShield system.

It’s worth mentioning that we add the noise into the CNN network such that the linear result

is disturbed by nnnl . With a negligible drop in detection accuracy (see more details in Section 4.4),

the client recovers only the noisy linear result without revealing the actual linear result zzzl , which

33

effectively prevents the client from deducing the model parameters by accumulating zzzl [77]. We

have provided a proposition with proof in Section 4.3.3 that DeepShield protects both clients’ and

servers’ sensitive data.

4.3.3 Security Analysis

Proposition 1. The accumulated linear results {zi = wiai−1+bi}d reveal nothing but the linear

combination of weights and bias from which the matrices wi and bi cannot be reconstructed by the

client.

proof. Let m be the number of neurons, and the function group obtained by the client after one

forward propagation is zi
m×1 = wi

m×mai−1
m×1 + bi

m×1. The function group does not reveal the actual

values of the matrices wi and bi but the subspaces that are linearly combined by infinitely many

possible matrices solutions. Therefore, the client cannot successfully reconstruct model parameters

wi and bi.

Theorem 1. According to [1] the accumulated noisy linear results {z̄i = wiai−1 + bi− ni}d

reveal nothing if ni = N(0, σ2

B2), where N is the Gaussian distribution with mean 0 and standard

deviation σ

B , σ is the noise level and B is the mini-batch size.

We also use the ideal/real-world paradigm [59] to prove the security of DeepShield. Specifi-

cally, we introduce the following definitions.

Definition 1. A protocol Π securely implements the ideal functionality f Ideal in the semi-honest

adversary setting with static corruption if it ensures the following guarantees:

- Corrupted server. We require that a corrupted and semi-honest the server does not learn

any information about the values in the client’s private input x. Formally, there should exist a

Probabilistic Polynomial Time (PPT) simulator simS such that viewΠ
S

c≈ simS (MMM,out), where

34

viewΠ
S denotes the view of the server in the real protocol execution (including the server’s input,

randomness, and the transcript of the protocol). simS (MMM,out) is the simulation based on S ’s

input, i.e., the model parameters MMM (including weights and bias), and its final output ‘out,’ e.g., the

share of a linear function. The “
c≈” denotes “computationally indistinguishable”.

- Corrupted client. We require that a corrupted and semi-honest client does not learn any

information about the server’s model parameters beyond some generic meta-parameters, i.e., the

number of input and output channels and the number of layers. Formally, there should exist a

PPT simulator simC such that viewΠ
C

c
≈ simC (xxx,out), where viewΠ

C denotes the view of the client

in the real protocol execution (including the client’s input, randomness, and the transcript of the

protocol). simC (xxx,out) is the simulation based on C ’s input, e.g., the input data xxx, and its output

‘out’, e.g., the result of linear function.

Based on the above definitions, we show a simulator for different corrupted parties, i.e., the

server and the client.

Security against a corrupted client: We define a simulator simC for the corrupted client and

it conducts as follows:

1. In the offline phase:

• Chooses a uniform random tape for client C , sends a random input rrrl to f Ideal and receives

the share of (wwwl · rrrl−nnnl) as out.

• Encrypts out with C ’s public key, sends the encrypted out to C and outputs whatever C

outputs.

2. In the online phase:

35

• Sends the random input rrrl and input data xxxl−1 to f Ideal and receives the noised linear result

(zzzl−nnnl) as out.

• Sends (zzzl−nnnl) to the client and outputs whatever the client outputs.

In the offline phase, C ’s view in the real world is the share of (wwwl ·rrrl−nnnl), which is identical to

that in simulated execution. In the online phase, C ’s view in the real world is the noised linear re-

sult (zzzl−nnnl), which is identical to that in simulated execution. As such, the output of simC (rrrl,out)

is computationally indistinguishable to viewΠ
C in offline, and the output of simC (xxxl−1,out) is com-

putationally indistinguishable to viewΠ
C in online. Therefore, the protocol is secure against a cor-

rupted client.

Security against a corrupted server: Similarly, we define a simulator simS for the corrupted

server S and it conducts as follows:

1. In the offline phase:

• Sends the model parameter MMM to f Ideal and gets the None as out.

• Randomly picks a public key, encrypts all-zero input as a ciphertext, and sends it to the

server.

• Outputs whatever the server outputs.

2. In the online phase:

• Sends the model parameter MMM to f Ideal and gets the None as out.

• Randomly picks a vector x̃xxl and sends it to the server.

• Outputs whatever the server outputs.

36

In the offline phase, the S ’s view in real world is client-encrypted ciphertext for input rrrl while

the one in simulated execution is a ciphertext of all-zero input. In online phase, the S ’s view in

real world is (xxxl−rrrl) which is indistinguishable to x̃xxl in simulated execution. As the HE algorithm

is secure, the ciphertext in the real world is computationally indistinguishable from that in the

simulated execution. Therefore, the protocol is secure against a corrupted server.

4.4 SYSTEM EVALUATION

In this section, we conduct experiments by implementing a test bed prototype of the DeepShield

system as shown in Figure 5 to evaluate the performance of DeepShield.

Figure 5. A test bed prototype of DeepShield (I would like to thank Zhuoran Li for providing me

with this figure).

37

The test bed consists of a victim IoT device built from Hardkernel Odroid-XU3, two worksta-

tions as a client (smart auditor), an edge server, and an attack machine built on a Dell Precision

5520 Laptop. The client workstation is equipped with a dual-core Intel Core i5-5100 CPU @1.60

GHZ and 6GB RAM, and the server is equipped with a 4-core Intel Core i7-9850H CPU @2.60

GHZ and 16GB RAM. The client and server communicate via a local area network (LAN) with

a bandwidth of 1 Gbps. Odroid-XU3 has four integrated power consumption monitoring sensors

(e.g., TI INA231 current sensor). The CPU power consumption data will be acquired at the highest

sampling rate of 1kHz under three different device statuses: idle, service, and attack. To launch

the botnet attack, the Mirai family botnet scanning, loading, and CnC modules are compiled and

installed on the attack machine. We build a test bed prototype of DeepShield to assess its perfor-

mance.

4.4.1 Data Collection for Malware Family

To validate DeepShield’s robustness, power datasets are collected in three different states: Idle

(i.e., the IoT device is not running any app or service), IoT service (i.e., the device is running an

app), and Botnet attack (i.e., the device is under botnet attack). The model takes the input of power

instances and classifies them into one of the three classes.

As given in Table 1, about 12000 instances are acquired for the idle class, 12000 cases for

the IoT service class, and 15000 instances for the botnet attack class, respectively, to evaluate

the model. We split the dataset into 80:20 rule, so 80% of the data is used for training and 20%

for testing. The experiment tested the following malware, namely Mirai, Mirai variants, LuaBot,

Remaiten, IRCBot, Qbot, and Ransomware (MedusaLocker).

38

Table 1. Dataset for our model

Class Description Samples

Idle No service 12000

IoT service Running an app 12000

Botnet

Mirai 1500

Mirai Varinats 10500

Qbot 500

IRCBot 1500

Ransomware 1500

LuaBot 1500

4.4.2 Offline Training and Online Detection Accuracy

The CNN model is trained offline with Tensorflow 2.2, given the training datasets in Table 1.

It has four hidden layers, namely convolution, ReLU, max pooling, and the fully connected layer.

The input layer has a dimension of 1× 2550, and the output is a 3-element vector containing

the classification probabilities of the three classes (i.e., idle, service, and botnet attack). Hyper-

parameter selection and tuning are then conducted to get the best model. Specifically, the model is

fine-tuned by evaluating its performance under different kernel sizes (e.g., 1×32, 1×64, 1×128)

and strides (e.g., 1× 8,1× 16,1× 32 of the convolution layer. The number of kernels/filters in

the convolution layer is 10. For the max-pooling layer, the pool size and strides are both 1× 4.

It is essential to highlight that our method does not employ any approximations for the nonlinear

39

computation required in state-of-the-art works. Consequently, the accuracy of offline training and

online detection remains consistent.

���� ��� ������
�������

��

��

��

��

��

���

	�
�

��
��
��
���

�

����
�����

����
�
��
	��
��
�����
��

���� ��� ������
�������

��

��

��

��

��

���

	�
�

��
��
��
���

�

�����������

����
�
��
	��
��
�����
��

Figure 6. Comparison of online detection accuracy.

In our next experiment, we have compared our model with DeepAuditor [35]. The accuracy,

precision, and recall results are summarized in Figure 6 compared with DeepAuditor. As we can

see, DeepShield can achieve an overall detection performance of 96.82%, 96.33%, and 96.66% in

accuracy, precision, and recall, respectively. We also calibrate the noise level and try to find out the

maximum accuracy in DeepShield. In our experiment, DeepShield achieves a maximum accuracy

of 88%, 93%, and 96% when different noise levels σ = 8, 4, and 2 are introduced into the model,

respectively. When N(0, σ2

B2)≈ 0, then the noise ni ≈ 0 , resulting in an accuracy of 98.5%, which

40

is comparable to the accuracy of DeepAuditor.

������� �������� ��������� �������� �������� ��������
������
���������

�

�

��

��

��

��

��

��

���
	

��
�

��
��
�

�������

��	������

Figure 7. Impact of input dimensions on real-time detection accuracy.

Next, experiments are carried out to fine-tune our model’s input dimensions, which are essen-

tial for real-time detection. Figure 7 shows that our model cannot converge to a global optimal

point when input dimensions are 1×500. This is because this small amount of data does not con-

tain much meaningful information to extract distinguishable power features. When the dimensions

increase, the model accuracy improves accordingly, resulting in the best performance at input di-

mensions of 1×2550.

41

4.4.3 Microbenchmarks

The runtime performance of linear and nonlinear operations of DeepShield is evaluated and

compared to the state-of-the-art secure inference models such as GAZELLE[37], DeepAuditor [35],

SecureNN [78] and Muse [42].

Table 2. Comparison of the runtime (ms) and communication cost (MB) of convolution layer

Input Kernel Stride Method
Time (ms) Communication (mb)

Offline Online Offline Online

1 × 2550

1 × 32 8

GAZELLE — 2033 — 4.044

DeepAuditor — 400 — 15

SecureNN — 120 0 9.1

Muse 2600 55 15 1.3

DeepShield 760 7 8.65 0.045

1 × 64 16

GAZELLE — 3956 — 8.033

DeepAuditor — 500 — 18

SecureNN — 140 0 11.1

Muse 2900 72 18 2.3

DeepShield 784 7.2 8.65 0.032

42

Linear Computation

As convolution operations are the most computationally expensive, we evaluate the runtime

cost of the convolution operation of DeepShield with varying kernel sizes and compare it with

other privacy-preserving CNN models. The offline runtime of convolution operations for all three

models is defined as the duration when the client encrypts the input data, sends it to the server, and

then receives and decrypts the convolution share. The online runtime of DeepShield’s convolution

operation is the time required for the client to send the plaintext input data to the server and receive

the convolution results. The online plaintext computation for linear operation gives DeepShield

a substantial performance upgrade compared to other crypto-based approaches. As shown in Ta-

ble 2, DeepShield demonstrates up to 1461×, 77×, 24× and 13× speedup when compared with

GAZELLE, DeepAuditor, SecureNN, and Muse under the kernel size of 1×128 and stride of 32.

Meanwhile, the stride-based convolution operation in GAZELLE involves several non-stride

computations, which results in a relatively large runtime cost. Furthermore, DeepShield involves

an offline process to preshare a random input and calculate HE operations. We adopt this ap-

proach to detect malware in real-time. The offline method is data-independent, so it doesn’t affect

DeepShield’s real-time performance. Regarding the communication cost, DeepShield has less

transmission load in the online phase as it only involves plaintext data. As such, DeepShield re-

duces online communication costs over 641×, 600×, 568× and 128× compared with GAZELLE,

DeepAuditor, SecureNN, and Muse with the kernel size of 1×128 and stride of 32.

Next, we evaluate in Table 3 DeepShield’s runtime cost of dot product operation compared with

GAZELLE, DeepAuditor, SecureNN, and Muse. Similarly, we define the offline runtime of dot

product operation for all four models as the duration when the client encrypts the input data, sends

43

Table 3. Comparison of runtime and communication cost of fully connected layer

Input Method
Time (ms) Comm.(mb)

Offline Online Offline Online

1 × 790

GAZELLE — 143 — 0.506

DeepAuditor — 120 — 0.506

SecureNN — 1.2 — .012

Muse 220 0.41 4.5 0.025

DeepShield 95 0.08 1.38 0.006

1 × 390

GAZELLE — 141 — 0.503

DeepAuditor — 105 — 0.398

SecureNN — 0.9 — .008

Muse 180 0.29 3.2 0.015

DeepShield 83 0.06 1.38 0.003

it to the server, receives and decrypts the dot product share. The online runtime of DeepShield’s

dot product operation is the time required for the client to send the plaintext input data to the server

and receive the dot product results. DeepShield shows its significant advantage of online runtime

with up to 2700×, 1960×, 14×, and 4.4× speedup compared with GAZELLE, DeepAuditor,

SecureNN, and Muse when the input dimensions of the fully connected layer are 1× 190. The

fundamental advantage lies in DeepShield’s plaintext computation in online reference.

44

Table 4. Comparison of runtime of non-linear layers

Input Method
Time (microseconds)

ReLU Max-pooling

315 × 10

GAZELLE 1020000 1238000

DeepAuditor 113000 125000

SecureNN 133000 145000

Muse 99800 102000

DeepShield 192 687

Non-Linear Computation

We finally examine DeepShield’s performance of nonlinear computation, i.e., ReLU and Max

pooling, and compare the results with GAZELLE, DeepAuditor, SecureNN, and Muse as given

in Table 4. GAZELLE uses the Garbled Circuits (GC) based protocol to obtain the nonlinear

result, where computation cost is proportional to the input dimension with multiple communication

rounds between client and server. GAZELLE’s cost for nonlinear computation is much higher

than that of DeepShield, as the GC-based protocol is more expensive than DeepShield’s plaintext

computation.

Scalability

Last but not least, we evaluate the scalability of DeepShield. The power dataset generation time

(around∼ 833ms) dominates the detection latency, whereas online inference only takes about 8ms.

45

By applying interleaving and pipelining, ∼ 104+ IoT devices can be detected simultaneously in

real time with a single-core hardware architecture. By applying multi-threading assisted by multi-

core, the system can support concurrent detection of 104n+ devices with a n-core configuration

while the detection time remains the same.

Our scheme outperforms previous work by several orders of magnitude regarding the runtime.

This is mainly because we don’t rely on any heavy cryptographic primitives. In addition, gener-

ating and transmitting garbled circuits are time-consuming; thus, we refrain from using garbled

circuits in the non-linear layers. It is evident from the above experiments that the state-of-the-art

listed in Section 4.4 fails to detect IoT malware attacks in real time, whereas DeepShield can detect

IoT botnets with high accuracy because of its advantageous design.

46

CHAPTER 5

BOTSHIELD: PRIVACY-PRESERVING NEURAL NETWORK TRAINING AND

MALWARE DETECTION AT IOT-EDGE

5.1 SUMMARY

The proliferation of Internet of Things (IoT) devices, with a projection of 75 billion by 2025,

has made them the prime targets for cybercriminals [51]. The characteristics of IoT devices, op-

erating with limited resources and lacking proper defense mechanisms, make them vulnerable to

exploitation by attackers. Malware detection for IoT devices by using side-channel data analysis

and deep learning techniques, as indicated by studies [6], [19], [36], [46], have shown promise

in identifying malicious activities. However, owing to the rapid evolution of malware, traditional

offline-trained on-device malware detection methods need to catch up with the swift evolution of

the current IoT environment. Recent reports in [4] have revealed that 560,000 new malware are

detected daily, equating to more than six new malware variants generated every second. Online

training with real-time collected malware data can provide considerable advantages in detecting

IoT malware and protecting IoT devices effectively. This work is primarily motivated by the need

to develop an online training malware detection strategy capable of keeping up with the fast pace of

malware evolution. Previous studies have predominantly focused on either offline training [58] or

on-device online training with limited functionality [47]. However, these approaches must be better

suited for large-scale infrastructures, such as major global businesses and governments, which of-

ten encompass hundreds or thousands of IoT devices within their networks. Hence, our secondary

47

motivation is to devise a large-scale malware detection method capable of simultaneously provid-

ing malware detection services for all connected IoT devices. Therefore, we propose BoTShield, a

distributed privacy-preserved online training model for inferring malicious activities by analyzing

power side-channel signals from IoT devices. We use a hybrid cryptographic approach with secret

sharing to protect the privacy of the client’s data and the server model parameters during forward

propagation. To maintain privacy during backpropagation, we safeguard gradients from the server

by adding a mask to the gradients before the client transmits them to the server. In this way, the

server is oblivious to the actual weights and cannot figure out the activations. Through theoretical

analysis and empirical experiments, we demonstrate that BoTShield can detect infection activities

of different IoT malware with high accuracy in real time. Our extensive experiments on various

datasets demonstrate stable training without accuracy loss and 1.39 to 4.43 times speedup com-

pared to the state-of-the-art system. Moreover, these techniques allow us to achieve an 8 to 500

times improvement in BoTShield’s inference prediction latency compared to the state-of-the-art

prior work.

5.2 SYSTEM DESIGN OF BOTSHIELD

BoTShield, a dedicated IoT malware detection system, achieves accurate and practical detec-

tion of open-world malware infections by auditing power side-channel fingerprints. BoTShield

comprises multiple smart gateways for data streaming, collection, and preprocessing, along with a

novel secure online training module for the client and server, as depicted in Figure 8.

5.2.1 Smart Gateway and Multi-Thread Data Streaming, Collection and Preprocessing

The smart gateway/client is connected to each IoT device in the user site to collect power con-

48

Figure 8. System design of BoTShield (I would like to thank Zhuoran Li for providing me with

some parts of this figure).

sumption traces. The core of dataset generation lies in collecting and preprocessing power side-

channel signals to derive representative features essential for malware infection detection. We use

multiple smart gateways to support data collection from various IoT devices. The smart gateway

is designed with a focus on two purposes: firstly, it is designed to efficiently and practically col-

lect data through multi-thread data streaming; secondly, it incorporates a secure offline and online

training capability, as elaborated in Section 5.3. During the data collection, the power side-channel

data is sampled via the on-device current sensor and live-streamed to the smart gateway for prepro-

cessing. Subsequently, the collected power side-channel data is segmented with appropriate sliding

window size and overlap ratio and then pushed into a local queue, awaiting retrieval as an instance

for the training module. We use sliding window protocol because overlapping input instances of

the Convolutional Neural Network (CNN) classifier can help to achieve better detection accuracy.

However, if the smart gateway sends those overlapping windows to the server sides, this will lead

49

to networking redundancy. Hence, 0.5 seconds of segmented data is sent to the smart gateway to

generate input instances. After receiving three consecutive packets, the smart gateway assembles

the last three packets and sends them to the server for online training. To facilitate real-time moni-

toring of a system comprising multiple IoT devices, such as an intelligent city surveillance camera

system, we’ve developed a multi-thread data stream strategy that supports the simultaneous detec-

tion of various devices through thread-level parallelism across multi-core.

5.2.2 BoTShield’s Secure Online Training Overview

The bottleneck of secure online training is the highly costly computation time and accuracy

loss; therefore, we adopt a multiple-client, one-server paradigm for our system to reduce latency.

We discuss in Section 5.4 that reducing the latency to 0.5 seconds is only possible with multiple

clients and single server models. The most computationally intensive operation in our model is

cryptographic operations. So, we would like to offload these operations in the offline phase. The

smart gateway doesn’t receive the power consumption data during the offline phase. That means

we conduct the offline phase before the IoT devices send the data. In this phase, we introduce a

novel resource-wise algorithm, where randomly generated noise is utilized as a critical component

to ensure privacy during forward propagation between the client and server. To ensure privacy,

the noise is encrypted via homomorphic encryption and shared between both parties during the

offline phase. During the online training process of forward propagation, our model uses these

precomputed cryptographic operations; thus, heavy cryptographic computations are bypassed dur-

ing the online phase to enable real-time detection during the inference phase. To avoid accuracy

loss and reduce computational cost, we didn’t use approximation functions such as garbled circuits

to imitate nonlinear activation functions. Hence, the nonlinear activation is securely outsourced

50

and resolved in an unencrypted form on the client side. To maintain privacy during backpropa-

gation, we safeguard gradients from the server. Exposing private data, such as gradients, to the

server poses a risk of privacy breaches. An innovative approach is designed in which the client

employs random masking on the gradients before transmitting them to the server. In this way, the

server is oblivious to the actual weights and cannot figure out the activations. The client removes

the random mask before nonlinear activation to recover the original values post-activation. More

details are discussed in Section 5.3.

5.2.3 Threat Models

The threat model is the same as Subsection 4.2.3.

5.3 DESIGN OF BOTSHIELD TRAINING

This section introduces the BoTShield training algorithm for multi-party semi-honest settings.

We propose using resource-intensive homomorphic encryption for offline secret sharing and ef-

ficient algorithms for online training. Subsections cover offline secret sharing, secure forward

propagation, and backpropagation, featuring a novel approach using random noise and gradient

masking for privacy preservation.

5.3.1 Offline Secret Sharing

The BoTShield’s forward propagation framework employs offline secret sharing and an on-

line phase, as depicted in Figure 9 and Figure 10, respectively. The client input cb
i serves as a

random masking vector, while the server inputs consist of initial weight wI
i , initial bias bI

i , and

random masking vector sb
i . Here, i denotes a linear layer, b denotes the batch size, and n is a

51

Figure 9. BoTShield’s offline phase.

server-imposed bound. During the offline phase, the client generates public and secret keys (pk,

sk), encrypts cb
i with pk, and sends it to the server. The server homomorphically computes the

weighted sum wI
i [c

b
i]− sb

i and sends the resulting ciphertext back to the client. The client decrypts

this encrypted weighted sum, yielding gb
i = wI

i c
b
i − sb

i for each linear layer. The server holding sb
i

for a specific layer enables the client and server to possess an additive secret sharing of wI
i c

b
i for

that particular layer. This approach directly executes linear operations on secret-shared data during

online processing, bypassing resource-intensive cryptographic operations. This optimization sig-

nificantly enhances BoTShield’s computational efficiency, facilitating real-time detection during

inference when power data is accessible.

5.3.2 Secure Forward Propagation

During the online phase, in the input layer, the client sends a real input vector (power data) ab
i−1

to the server by introducing noise cb
i . Subsequently, the server executes the linear layer operation,

a linear transformation denoted as z̄b
i ← [w̄I

i (a
b
i−1− cb

i)+ bI
i − sb

i], and forwards z̄b
i to the client.

Here, wI
i and bI

i denote the initial weights and biases of the model. Since nonlinear operations are

52

Figure 10. BoTShield’s online forward propagation phase.

performed on the client side, it becomes necessary to eliminate noise from z̄b
i . Consequently, the

client invokes Figure 13 method to obtain qi and adds it to gb
i = wicb

i − sb
i to eliminate noise from

z̄b
i , followed by performing nonlinear operations at the client. This process repeats until it reaches

the softmax layer, after which Figure 11 method initiates secure backpropagation. Note that as the

client recovers zb
i = wI

i ai−1 + bI
i , the client can accumulate ab

i−1 and zb
i for every i ∈ [layer] over

several iterations to solve the linear equation wI
i a

b
i−1 + bI

i = zb
i for wI

i and bI
i . In a layer with p

neurons, there are p2 + p unknowns, consisting of p2 weighted connections and p biases. During

a single iteration, a set of p linear equations can be established, potentially enabling the client to

53

extract the model after p+2 iterations, which could lead to data leakage [77]. To mitigate this risk,

the server introduces a threshold n, randomly selected from the interval (1, p+ 2), which sets an

upper limit on how long a client’s data can be continuously used for training. Once n is reached,

the next client is selected. If training requires more iterations than n, the server can return to the

same client for future training sessions without exceeding the n limit.

Figure 11. Secure backpropagation.

54

5.3.3 Secure Backpropagation

In Figure 11, the backpropagation process commences at the softmax layer, where the error δi

between the output y and the true label t is calculated. This error propagates through the network

to adjust weights wi and biases bi across all linear layers using gradients ∆wi and ∆bi. However,

to safeguard client data privacy, δi is encrypted before transmission to the server for computing

[m̄i+1] = [δi+1]w̄i+1. Subsequently, the server returns [m̄i+1] to the client for decryption and noise

removal, facilitating input gradient computation for later use. Weight and bias updates follow

through backpropagation equations: wi = wi− η∆wi and bi = bi− η∆bi, where η denotes the

server’s learning rate. The gradients of linear layers, ∆wi and ∆bi, are determined as ∆wi = ai−1δi

and ∆bi = δi, where ai signifies the activation from the i-th layer. For non-linear layers, δi is

updated as δi = δi+1∆ f (aiwi + bi) to use in linear layer gradient updates. During the linear layer

computation, weight and bias updates occur on the server side, but the server should not have

access to the actual gradients to prevent privacy leaks. To address this, the client invokes the

Figure 12. Mask the gradient.

Figure 12 method to mask the gradients as ∆w̄i and ∆b̄i before sending them to the server. The

55

injected randomness sums rwc
i and rbc

i are also computed in Figure 12. To ensure the recovery

of original values after activation in non-linear layers and prevent the accumulation of masked

errors, the client invokes Figure 13 method in each iteration, extracting mi+1 from the masked

representation m̄i+1 = δi+1w̄i+1. Additionally, the client tracks cumulative true gradients ∆wc
i and

∆bc
i , along with injected randomness sums rwc

i and rbc
i , crucial for final model parameter update,

as shown in Figure 14.

5.3.4 Secure Weight and Bias Gradient Updates

To protect the gradients from the server during backpropagation and prevent the potential

derivation of activations and client data, the client adds random vectors to the gradients before

transmitting them. This method is inspired by the potential risk of the server reverse-engineering

Figure 13. Random noise cancellation.

activations and client data using equations like ∆wi = ai−1δi and ∆bi = δi, which could compro-

mise client privacy, and therefore lately by the utilization of techniques like the Moore-Penrose

56

inverse [10] in fully connected networks to estimate client data a through operations such as

ã = wT (wwT)−1(z−b), where z = f−1(a1) represents the inverse of the activation function. With

the secure gradient updates method, the client generates uniformly distributed random vectors rw
i

and rb
i over Rn, where i ∈ [layer]. These random vectors are incorporated into the gradients using

Figure 12 method, updating the gradients as ∆w̄i = ∆wi +(1/ηrw
i) and ∆b̄i = ∆bi +(1/ηrb

i). The

Figure 14. Final parameters update.

server updates the model parameters without knowing the true gradients as

w̄i = w̄i−η(∆wi + rw
i /η) = w̄i−η∆wi− rw

i ,

b̄i = b̄i−η(∆bi + rb
i /η) = b̄i−η∆bi− rb

i

(1)

In this manner, the client ensures that the actual weights and biases remain concealed from the

server, preventing it from deducing the activations. Notably, during forward propagation, the client

removes accumulating random noises from z̄ and supplements δi+1rw
i+1 to m̄i+1 during backprop-

agation to eliminate noises and restore original values post-activation as shown in Figure13. The

server remains unaware of the actual weights throughout the training process, so the accurate

weights must be updated with the server upon completion. Since the gradients are masked with

57

random vectors, the server updates the final weights in one step by subtracting the cumulative sum

of actual gradients, as depicted in Figure 14.

5.3.5 Security Analysis

In this section, we perform a security analysis of our model, specifically assessing its resilience

against well-known equation-solving attacks within the semi-honest model [77].

Proposition 1. The accumulated linear results {zi = wiai−1 +bi}d reveal only the linear com-

bination of weights and biases, making it impossible for the client to reconstruct the matrices wi

and bi when b≤ n.

proof. Let p be the number of neurons, and the function group obtained by the client after

one forward propagation is zi
p×1 = wi

p×pai−1
p×1 +bi

p×1. As long as the client is trained for b <= n,

the function group does not reveal the actual values of the matrices wi and bi, but infinitely many

possible matrices solutions linearly combine the subspaces. Therefore, model parameters wi and

bi cannot be successfully reconstructed by the client with b≤ n.

Proposition 2. The server is oblivious to the actual wi and bi, so it cannot take input from one

party, generate an output, and figure out the activation and client’s data.

proof. The ideal and real world paradigm [59] is utilized to prove this proposition. The funda-

mental concept revolves around a Probabilistic Polynomial Time (PPT) simulator, which can take

input from one party, generate an output, and demonstrate that it gains no knowledge other than

the outcome. Let the client select r j, and rk be selected by a server such that both r j and rk ∈Rn,

hereR is a finite ring. The probability that r j equals rk is bounded by Pr j = rk ≤ 1−e−2/|Rn| [67],

where |Rn| denotes the size of a finite field. Given the independence of the random masks, the

server can accurately construct matrices of rw
i and rb

i with probabilities Pr = rw
i ≤ (1−e−2/|Rn|)m2

58

and Pr = rb
i ≤ (1− e−2/|Rn|)m. Given that |Rn| is a large value, the probability of the server suc-

cessfully deriving the gradients approaches zero. Consequently, the server remains oblivious to the

actual weights and biases, making it incapable of deducing the activations and the client’s data.

Proposition 3. The final parameter update groups {wF
i = wI

i −η∆wc
i ,b

F
i = bI

i −η∆bc
i }i reveal

nothing but the subspaces of gradients from which the matrices ∆wi and ∆bi in the previous itera-

tion cannot be reconstructed.

proof. In the final parameter update, the client transmits the summation of the correct gradients

∆wc
i and ∆bc

i to the server. Given that we have set n as the upper limit for client training iterations,

the server obtains n−1 sets of randomized gradients ∆w̄i and ∆b̄i. Regarding the weight and bias

matrices, a total of n linear equations exist for each element, involving 2n−1 unknown parameters

(comprising n−1 random numbers and n gradients for each backward propagation). As n is greater

than 1, this function group does not disclose any information regarding the precise values of ∆wi

and ∆bi. Instead, it reveals the subspaces that numerous potential matrix solutions can linearly

combine. Consequently, the server cannot reconstruct the intermediate gradients.

Theorem 1. According to [1] the weight gradient ∆w and bias gradient ∆b reveal nothing if

rw
i and rb

i = N(0, σ2Iiter
B2), where N is the Gaussian distribution with mean 0 and standard deviation

σ Iiter
B , Iiter is the number of training iterations, σ is the noise level and B is the mini-batch size.

5.4 SYSTEM EVALUATION

5.4.1 Experiment Setup and Data Collection

The test bed consists of a victim IoT device built from Hardkernel Odroid-XU3, with multiple

workstations as the smart gateway (client) and the server. Various clients communicate with the

59

server via a local area network (LAN) with a bandwidth of about 1 Gbps. Our power datasets are

collected under three different states: Idle (e.g., the IoT device is not running any app or service),

IoT routine service (e.g., the device is running an app), and malware infection (e.g., the device

is under botnet infection). 12,000 instances were collected for the idle class, 12,000 for the IoT

service class, and 17,000 instances for the botnet attack class to train the model. We split the

dataset into 80:20 rule, so 80% of the data is used for training and 20% for testing. The experiment

tested the following malware, namely Mirai, Mirai variants, LuaBot, Remaiten, IRCBot, Qbot, and

Ransomware (MedusaLocker).

Table 5. Classification results of BoTShield model

Class Accuracy Precision Recall FPR

Two-class 98.4 97.2 99.5 2.87

Three-class 97.1 95.4 98.6 4.95

5.4.2 Performance of Secure Online Training

Our model has four hidden layers, namely convolution, ReLU, the fully connected layer, and

the soft-max layer. The input layer has a dimension of 1× 2550, and the output is a 3-element

vector containing the classification probabilities of the three classes (i.e., idle, service, and botnet

attack). Hyper-parameter selection and tuning are then conducted to get the best model. Specif-

ically, the model is fine-tuned by evaluating its performance under different kernel sizes (e.g.,

60

1×32, 1×64, 1×128) and strides (e.g., 1×8,1×16,1×32 of the convolution layer. The number

of kernels/filters in the convolution layer is 16.

We remark that this is the first work to show the feasibility of secure training to detect IoT

botnet attacks that achieve high levels of accuracy. Our secure training model achieves an average

overall accuracy of 97.1% for a three-class classification. Considering that our system targets IoT

botnet detection, it can be simplified from a three-class (Idle, IoT service, and Botnet) classifier to

a two-class (Botnet and Non-Botnet) classifier to identify whether an IoT device is infected into

a bot. For two-class classification, our model achieves an accuracy of about 98.4% and a false

positive rate (FPR) of 2.87%. The results are listed in Table 5

To illustrate the necessity of the online model, we want to compare the results of offline and

online training models. Initially, we trained an offline model exclusively using the original Mirai

infection data and tested it against Mirai variants and ransomware. The primary objective is to

Table 6. Detection of malware variants for offline training method.

Input Metric Satori Katana IRCBot QBot Ransomware

Mirai

Accuracy 77 80 75 78 76

Recall 68 72 65 80 69

Precision 80 75 79 72 75

determine if the offline model can detect unknown malware. The results are listed in 6. The

61

average detection accuracy is around 75%, suggesting that the current offline training approach

is not effectively addressing the detection of unknown malware. This limitation arises because

the training model is trained with original Mirai power data only, leading it to learn unrelated

features that do not exist in new malware while attempting to identify potential new variants. But,

Table 7. Detection of malware variants for online training method.

Input Metric Satori Katana IRCBot QBot Ransomware

Mirai

Accuracy 94 97 95 98 93

Recall 91 97 93 94 96

Precision 96 92 96 99 93

in our online training model, the new variants data can be fed directly into the model in real-time.

Therefore, the online training model performs much better than the offline model. The detection

accuracy of online results for various malware is shown in Table 7.

5.4.3 Performance Comparison with State-Of-The-Art Works

We evaluate our protocols for secure training in the LAN settings. In our experiment, multiple

clients communicated with the server via LAN; otherwise, we couldn’t bring the latency time to

under 0.5 seconds. The clients collect the data from the IoT device and then send it to the server.

After that, the client communicates back and forth with the server to evaluate the whole model.

First, we want to assess our model when only one client communicates with the server.

62

Table 8. BoTShield execution times for one client-server model

Batch Size IoT to Client (ms) Per Sample time (ms)

1 500 2155

8 1000 930

32 3500 650

64 6500 580

Table 8 summarizes the result in LAN settings when the epoch is 25 and batch size varies from

1 to 32. The smart gateway receives the packet every 0.5 seconds from the IoT device; therefore,

our model couldn’t achieve real-time malware detection for one client-server model. During this

client-server interaction, the latency between IoT and the client is vast compared to the detection

latency. Thus, we employ multiple clients to reduce the latency time. We vary the batch size

between 8 and 64 to evaluate the computation time of BoTShield when six clients simultaneously

communicate with the server to support 50 to 100 IoT devices.

Table 9 presents the results when the batch size is varied, and the number of epochs is fixed

to 25. Our model detects malware within 0.5 seconds and achieves considerable accuracy when

the number of epochs is 25, the batch size is 32, and the number of clients is six. Our design out-

performs one client-server detection latency when we employ multiple clients. The reason behind

this is that when we use various clients to pack data and send it to the server, the vectorization

computation of the model is improved. Millisecond is abbreviated as ms in the following tables.

Now, we compare the computation speed of BoTShield with SecureML [56] and SecureNN [78].

63

Table 9. BoTShield execution times for 25 epochs and multiple client-server models.

Batch Size Accuracy LAN (hours)

Per Sample Time (ms) Total Time (hrs)

8 98.1 670 6.09

16 97.8 441 4.02

32 97.3 300 2.73

64 96.5 297 2.71

As we’ve already said, the offline phase is completed before the client receives the training data, so

we only consider the online phase time the total time. We compare our protocols with their work

in Table 10. In the LAN setting, our protocol is roughly 1.39× faster than SecureNN and 4.43×

faster than SecureML 3-server settings.

Table 11 presents the microbenchmarks of our model. Forward propagation (FP) latency time

is smaller than backpropagation (BP). We can see from Table 11 that most of the time in our model

is spent on the fully connected (FC) and the convolution (ConV) layer of the backpropagation. This

is because we must encrypt the loss function operations in these phases to protect data privacy in

the training phase. Even though our model couldn’t achieve real-time detection for the training

phase, it achieved real-time detection during the inference phase. it achieved

The performance of BoTShield protocols is evaluated in the context of secure inference, with

Table 12 summarizing the comparison with state-of-the-art secure inference protocols. As de-

picted in Table 12, the inference model exhibits impressive speedups of up to 550×, 55.55×,

64

Table 10. BoTShield training time comparison for batch size 32 and 25 epochs with SecureML

and SecureNN.

Model LAN (hours) Per Sample Time (ms)

Offline Online Total

SecureML 5.8 5.5 12.10 1240.24

SecureNN 0 3.8 3.8 417

BoTShield 1.84 0.89 2.73 300

16.67×, 7× and 2.36× when compared to GAZELLE [37], DeepAuditor [35], SecureNN [78]and

MUSE [42] respectively, especially when dealing with convolutional layers (CONV) of a kernel

size of 1×64 and a stride of 16. Regarding communication cost, the model incurs significantly less

transmission load during the online phase, primarily involving plaintext data. Consequently, the

proposed inference method reduces online communication costs by more than 250×, 200×, 20×,

6.8×, and 2.5× compared to GAZELLE, DeepAuditor, SecureNN, and MUSE when using a ker-

nel size of 1×64 and a stride of 32. Furthermore, in the fully connected layer (FC), the proposed

model demonstrates a substantial advantage in online runtime, achieving speedups of up to 2350×,

1.45×, 8×, and 7× compared to GAZELLE, DeepAuditor, SecureNN, and MUSE, as outlined in

Table 12. Our scheme outperforms previous work by several orders of magnitude regarding the

runtime. This is mainly because we don’t rely on any heavy cryptographic primitives. In addi-

tion, generating and transmitting garbled circuits is time-consuming, particularly for such data and

computation-intensive tasks; thus, we avoid using garbled circuits in the non-linear layers. It is

65

Table 11. BoTShield backpropagation microbenchmarks for per sample and 25 epochs in LAN

settings.

Batch Size FP Backpropagation (ms)

SoftMax FC ReLU ConV

8 25.3 0.6 215.21 0.05 448.85

16 12.50 0.6 149.60 0.05 289.25

32 7.20 0.5 106.80 0.05 185.30

64 7.01 0.5 105.80 0.05 184.64

evident from the above experiments that the state-of-the-art listed in Section 5.4 fails to detect IoT

botnet attacks in real-time, whereas BoTShield can detect IoT botnets with high accuracy because

of its advantageous design.

66

Table 12. Per sample inference time (ms) and communication cost (MB) comparison of various

protocols

Layer Method Time (ms) Communication (mb)

Offline Online Offline Online

Conv

GAZELLE — 3956 — 8.033

DeepAuditor 0 400 0 15

SecureNN 0 120 0 9.1

Muse 2600 55 15 1.3

BoTShield 350 7.2 8.65 0.032

FC

GAZELLE — 141 — 0.503

DeepAuditor 0 120 0 2

SecureNN 0 1.2 0 0.012

Muse 220 0.41 4.5 0.025

BoTShield 60 0.6 1.38 0.003

67

CHAPTER 6

MALWARESHIELD: A PRIVACY-PRESERVED FEDERATED LEARNING

FRAMEWORK FOR ZERO-DAY MALWARE DETECTION ON IOT DEVICES

6.1 SUMMARY

With the Internet of Things (IoT) becoming a fundamental aspect of our daily routines, these

devices bring considerable convenience and efficiency but also introduce unforeseen risks and

emerging threats. IoT devices are particularly attractive to cybercriminals due to their constrained

resources, continuous internet connectivity, and lack of robust security features. Recently, numer-

ous high-profile attacks on IoT devices have been reported [2], [3]. These compromised devices

can be used to execute Distributed Denial of Service (DDoS) attacks [2] or Permanent Denial of

Service (PDoS) attacks. Botnet attacks pose a significant cybersecurity threat to the Internet of

Things (IoT) networks [8], [60]. A botnet is a network comprising numerous malware-infected de-

vices which can be used to launch cyber-attacks from within. For example 2016, a massive DDoS

attack knocked down the DNS service Dyn. It made several Internet platforms and services, such

as Amazon, Netflix, PayPal, and Twitter, temporarily unreachable to numerous users in Europe and

North America, which Mirai Botnet caused. Since then, new variants are evolving and exploring

a variety of vulnerabilities in unsecured IoT devices. In May 2023, a new Mirai variant named

HinataBot was identified, requiring less than 1% of Mirai’s resources yet generating substantial

traffic comparable to Mirai’s most aggressive attacks [4]. Since then, new variants are evolving

and exploring a variety of vulnerabilities in unsecured IoT devices. In 2021, ransomware attacks

68

were reported every 11 seconds, with projections indicating this frequency could accelerate to ev-

ery 2 seconds by 2031 [15]. Current research categorizes IoT malware attacks into three stages:

intrusion, infection, and monetization [57]. To minimize the loss caused by IoT malware, identify

these malicious activities as early as possible, e.g., the intrusion stage.

Malware detection methods typically fall into two main categories: network-based and host-

based approaches. Network traffic analysis [29], [55] is frequently employed to safeguard IoT

systems. Detecting botnet attacks on IoT devices remains challenging despite clear intrusion pro-

cedures, primarily due to the subtle nature of malicious network traffic in the early stages of an

attack. Deploying network-based botnet detection systems across various IoT devices and vendors

is heavyweight and intrusive to users in this scenario. An alternative approach is to use host-based

security mechanisms [73] to detect these activities. However, IoT devices are typically resource-

constrained, making it challenging to support comprehensive detection solutions. Moreover, these

devices are designed based on diverse principles and mechanisms, complicating applying a single,

universal detection approach across all device types. A practical approach to addressing this issue

involves leveraging power side-channel information to detect malware attacks. This method is ro-

bust and versatile because power traces are difficult to compromise and can capture aggregated ac-

tivities across diverse devices, including various hardware, vendors, and operating systems. More-

over, adversaries find it nearly impossible to mimic normal power consumption behavior during

attacks. Early work in this field utilized power side-channel data to detect malicious behavior on

mobile devices in the early 2010s [40], [82]. Still, these studies require validation for application

in IoT environments today.

Recent research has explored the correlation between malicious activities and side-channel ef-

fects, i.e., power consumption [19], [35], [45], [46]. These studies have predominantly focused

69

on offline or online training with limited functionality. Thus, there are more suitable approaches

for detecting new malware variants. Some researchers proposed detection models to detect botnets

on IoT devices through Federated Learning (FL) [60], [61]. While these existing distributed ap-

proaches have successfully constructed botnet attack detectors, they still need to be more optimal in

effectively addressing zero-day malware attacks. Detecting these attacks in IoT networks presents

challenges due to the absence of prior knowledge regarding such malicious incidents across most

IoT devices. But, with the rapid expansion of IoT applications, timely detection of such attacks

within the IoT domain is crucial. Therefore, this work is primarily motivated by the need to de-

velop an online training malware detection strategy capable of keeping up with the rapid pace of

malware evolution.

Federated Learning (FL) is a popular paradigm that can detect malware attacks on IoT devices.

Despite this, federated learning still poses privacy risks. For instance, research has demonstrated

that servers (aggregators) can potentially recover private information about target users by ana-

lyzing their uploaded local models [25], [87]. However, user data from IoT devices is privacy-

sensitive, and model parameters at the server are considered proprietary information. So, the FL

framework can leak privacy-sensitive information. To address such security issues, we propose

MalwareShield, a privacy-preserving federated learning (PPFL) framework that can detect zero-

day malware attacks on IoT devices. Our MalwareShield framework has an autoencoder model

to learn complex patterns, e.g., of various IoT device states. We extract statistical features that

capture behavioral snapshots of benign IoT traffic and train individual deep autoencoders for each

device to learn normal IoT behaviors. These autoencoders aim to compress snapshots, and failure

to accurately reconstruct a snapshot strongly indicates malware attack behavior. We only train

MalwareShield with benign data, and no malware data is seen during the training phase, only in

70

the test phase. Therefore, it perfectly simulates real-world zero-day malware attack scenarios.

Figure 15. System design of MalwareShield.

6.2 SYSTEM DESIGN OF MALWARESHIELD

To detect zero-day malware infections accurately, we have developed an IoT malware detection

system called MalwareShield, which monitors power side-channel signals. This system utilizes

current sensors, data acquisition, and preprocessing techniques to extract malicious signals effec-

tively. Our objective is to perform a detailed analysis of how malware execution leaves detectable

traces in the power data of IoT devices. We aim to experiment with deep learning techniques to

evaluate their effectiveness and efficiency in detection. MalwareShield consists of IoT devices,

71

a mediator, multiple clients for data collection, preprocessing, and local training, along with an

innovative privacy-preserving federated learning module for the client and server (aggregator), as

illustrated in Figure 15. In this section, we outline the system architecture of MalwareShield and

discuss the methods used to generate power datasets for effective feature extraction.

6.2.1 System Overview

MalwareShield depicted in Figure 15 comprises IoT devices, multiple clients, and an aggrega-

tor. A low-cost current sensor is integrated into the device to monitor an IoT device’s power con-

sumption continuously. This sensor samples the direct current (DC) power supplied to the device

under two states (i.e., benign and attack). Through an in-depth analysis of the malware infection

process, we discovered that abnormal power spikes occur when Linux commands are executed on

the device during the scanning and post-processing phases. Multiple IoT devices are connected to

a single client, each with its local model. Each IoT device sends its power data to the client in a

separate channel. We deploy an autoencoder model on the client side, while the aggregator has

the initial model parameters. The mediator is responsible for generating noises (r1,r2, ...rn) and

providing them to the client to ensure the privacy of the client’s data. The mediator also receives

noise (s) from the server and sends it to the client at the beginning of each iteration.

6.2.2 Datset Generation and IoT-Client Interaction

The critical aspect of dataset generation is collecting and preprocessing suspicious power sig-

nals to extract distinguishable features. The client is engineered to streamline efficient data collec-

tion, preprocessing, and local training. During data collection, the power data is sampled by the

on-device current sensor and live-streamed to the client for preprocessing. As multiple IoT devices

72

are connected to a single client, each client is designed to efficiently and practically collect data

through multi-thread data streaming. The collected power side-channel data is segmented using

an appropriate sliding window size and then placed into a local queue, awaiting retrieval as an in-

stance for the training module. The malware infection period, including brute-force scanning and

post-processing, is shorter than 0.3 seconds. Thus, the sliding window is set to 0.3 seconds. In our

prototype system, the sampling rate of the integrated current sensor is 1 kHz, and the size of the

sliding window is 0.3 seconds, resulting in an input instance size of 1×300.

6.2.3 Overview of Client-Mediator-Aggregator Interaction

The bottleneck of the privacy-preserving federated learning approach is the highly costly com-

putation time and accuracy loss. Therefore, we avoid using an encryption-based federated learning

approach to build the framework. We use a differential privacy-based approach to build Mal-

wareShield. We adopt a noise removal approach in the aggregator to reduce the accuracy loss.

Each client has its own local model to ensure the privacy of the client’s data. Despite this, feder-

ated learning still poses privacy risks. Research has shown that aggregators can potentially recover

private information about target users by analyzing their uploaded local models [25], [87]. There-

fore, we introduce a mediator entity in our framework. The mediator’s purpose is to generate

random noises and send these noises to the client to mask the model parameters (weight gradi-

ents). When the train finishes for the current iteration, each client will send their updated model

to the aggregator. The aggregator cannot recover private information from the client’s data as the

noises are added to the updated model parameters. However, the noises accumulate in the aggre-

gator, so removing the noises before the start of the next iteration is essential. We will discuss

the noise removal approach in Subsection 6.3.3. The purpose of the aggregator is to provide the

73

initial model parameters to the client. Later, when it receives the updated model parameter from

the client, it aggregates all the model parameters to initiate the next iteration. We also inject the

random noise (s) into the model parameter on the aggregator side so that the attacker cannot infer

the model parameters. The privacy requirement of MalwareShield is that it prevents the aggregator

and attacker from accessing the client’s private data. Moreover, it also prevents attackers from

inferring model parameters.

6.3 DESIGN OF MALWARESHIELD FRAMEWORK

This section discusses the MalwareShield framework for multiparty semi-honest settings. Sub-

sections cover malware detector training on the client side, the internal structure of the autoencoder

model, and secure federated learning.

6.3.1 Malware Detector Training on the Client Side

Our malware detector employs deep autoencoders, each client maintaining a separate model

and connecting multiple IoT devices to a single client. An autoencoder is a neural network de-

signed to reconstruct its inputs after compressing them, which helps it learn meaningful patterns

and relationships among input features. When trained exclusively on benign instances, an au-

toencoder will effectively reconstruct normal observations but struggle with malware instances

(unknown concepts). Significant reconstruction errors thus signal potential malware attacks, al-

lowing us to classify such observations accordingly.

We optimize the hyperparameters of each trained model to maximize the true positive rate

(TPR) and minimize the false positive rate (FPR) when evaluating unseen traffic. We use two

datasets to enable the model to learn normal activity patterns. The training set (Dtrain) trains the

74

autoencoder, adjusting input parameters such as the learning rate and the number of epochs. We

train the model using only the normal data. We use the attack data as validation and normal data

to generate reconstruction errors for both the normal and attack data. The validation set (Dval) is

used to iteratively refine hyperparameters such as the learning rate and number of epochs until the

mean squared error (MSE) between the model’s input (original feature vector) and output (recon-

structed feature vector) stabilizes. This process helps prevent overfitting and improves detection

accuracy with new data. The validation data set is further employed to optimize a threshold (tr)

for distinguishing between benign and malicious observations to minimize FPR. Once the model

training and optimization are complete, the normal threshold (tr) is determined. To determine

this threshold, we select a value of one standard deviation above the mean reconstruction error.

This approach provides a balanced measure of detection sensitivity and specificity. This threshold,

above which an instance is classified as malware, is computed as the sum of the sample mean (µ)

and standard deviation (σ) of MSE across the validation set (refer to Equation2).

tr = µ(MSEDval +σ(MSEDval) (2)

6.3.2 The Structure of Autoencoder

An autoencoder network is a specialized, unsupervised neural network within deep learning.

It consists of two primary components: an encoding network and a decoding network, as shown

in Figure 16.and decoding networks. The encoding network compresses and reduces the dimen-

sionality of the input data, while the decoding network reconstructs the original input from this

compressed representation. The network’s loss function quantifies the error between the original

input and the reconstructed output. Training the autoencoder involves minimizing this loss func-

75

tion through iterative gradient updates, which defines the network’s operational mechanism.

Figure 16. Internal architecture of autoencoder Model.

The autoencoder model is designed to be used for malware detection. In an autoencoder, en-

coding refers to transforming the input layer to the hidden layer, while decoding involves changing

from the hidden layer to the output layer. The encoder takes the input feature vector and uses

ReLU activation functions in the hidden layers to generate new features. The first layer of this

model is the input layer, and the dimensions of this layer are 1×300. The next layer is the dense

layer, followed by a non-linear ReLU layer. The number of neurons in this layer is 256. The total

trainable parameters of this hidden layer are 300 × 256 = 76800. The next dense layer contains

76

only 128 neurons. Therefore, during the encoding phase, our model downsamples the input to a

smaller dimension until it reaches a dimension 1× 16. The input to the decoder model is 1× 16.

Then, it upsampled the input until it reached an exact dimension of the input layer, 1 times300.

The decoder output is denoted as x̄. x̄ is an estimated value our model generates. During the first

phase, feed-forward propagation is performed for each input x to obtain the estimated output value

x̄. The error of our model is |x - x̄|. In the second phase, the error will be backpropagated through

the network to revise the weights/neurons. In the adjusting phase, we tweak the hyperparameters

at each layer to get the best results from the model. We found during the experiment that if we use

the number of neurons as depicted in Figure 16, our model produces the best result.

6.3.3 Secure Federated Learning

Our secure Federated Learning (FL) system consists of one server, mediator, and N clients, as

depicted in Figure 17. Let D j denote the local database held by the client C j, where j ∈ 1,2, , ...,N.

At the server, the goal is to learn a model based on data that resides at the N associated clients.

An active client participating in the local training must find a vector Wi, where i ∈ 1,2, ...,M of

the autoencoder model to minimize a certain loss function. M denotes the maximum number of

iterations/communication rounds the model needs to reach the optimal value. Formally, the server

aggregates the weights sent from the N clients as

Wi+1 =
N

∑
i=0

kiWi, Wi =Wi−η∆Wi (3)

where wi is the weight trained at the i-th client, w is the weight after aggregating at the server,

∆wi is the weight gradient, η is the learning rate, N is the number of clients, ki =
|Di|
|D| ≥ 0 with

∑
N
i=0 ki = 1 and |D|= ∑

N
i=0 |Di| is the total size of all data samples.

77

Figure 17. Secure federated learning.

If we do the aggregation as described in Equation 3, the researcher has demonstrated that

servers (aggregators) can potentially recover private information about target users through analy-

sis of their uploaded local models [25], [87]. Therefore, the client cannot send the original weight

gradients ∆w to the aggregator. One way to hide the gradient from the server is to mask the gradient

before sending it to the aggregator. But, if all the clients mask the gradient, the error will accu-

mulate in the aggregator during aggregation. As a result, the accuracy of our model will be poor.

To resolve this issue, we introduce a Mediator in our framework. The Mediator will be involved

during the training phase of MalwareShield, but it serves no purpose during the test phase. In each

iteration of the training phase, the mediator first calculates the number of clients participating in

78

collaborative training. Suppose there are N active clients during that particular iteration. Then, the

mediator generates N random noises to satisfy the following equation.

N

∑
j=0

r j = 0 (4)

In Equation 4, r j is the random noise generated for the j-th client. Then the mediator sends the

noises to all the clients, e.g., client1 receives noise r1. Each client has its autoencoder model. The

mediator sends the random noises to the client after the client starts training to improve the com-

putation time. The training process takes longer than the communication time from the mediator

to the client; therefore, we can hide the communication latency if we send a random noise after the

client enters the training phase. After the training iteration, the updated weight gradient is ∆wi
c j for

the j-th client. Then the j-th client masks its weight gradient during i-th iteration as follows:

∆wi
c j− r j (5)

After each iteration, the client sends its updated gradient to the server. If any attacker probes the

communication channel, it only gets ∆wi
c j− r j but not the original gradient. Hence, by masking

the gradient, we can protect it from the attacker. After the server receives the gradient from all the

clients, it will aggregate it to update the weight for the next iteration. In this case, the server gets

the ∆wi
c j− r j from j-th client; therefore, the aggregator cannot recover private information about

the target client by analyzing their uploaded local models. The aggregated weight is calculated as

follows:

Wi+1 =Wi−η∆wi, ∆wi =
∑

N
j=0 ∆wi

j− r j

N
(6)

From Equation 2 we know that ∑
N
j=0 r j = 0. Therefore, when the server does the aggregation, all

the noises are canceled out, and the only thing the server gets is the aggregated weight gradient

79

∆w. Then, the server again sends the updated weight to the client to initiate the next iteration. The

server also masks the updated weight as follows:

∆Wi− si (7)

where si is the random noise generated by the server. The reason behind this is that the attacker

may probe the communication channel between the server and the client; therefore, the masked

weight protects the privacy of server parameters. After the client receives the updated weights, the

mediator gets the random noises ri and si. Before the client enters the training phase, the noises

from the weight Wi− si are removed by adding si. If we don’t remove the noise from the weight,

the performance of our model will be degraded. To improve the privacy of our framework, the

mediator generates random noises in each iteration and sends these to the client after the client

starts the training process.

Theorem 1. According to [1] the weight gradient ∆wi and bias gradient ∆bi reveal nothing if

ri = N(0, σ2Iiter
B2), where N is the Gaussian distribution with mean 0 and standard deviation σ Iiter

B ,

Iiter is the number of training iterations, σ is the noise level and B is the mini-batch size.

6.4 SYSTEM EVALUATION

We evaluate the classification accuracy, including precision and recall, to validate MalwareShield’s

detection performance. We present MalwareShield’s detection accuracy and microbenchmark

based on the power data from the IoT devices (i.e., Raspberry Pi 3 model-based security cam-

era). We compare the detection performance with state-of-the-art privacy-preserving systems such

as DeepAuditor [35], ThingNet[46] and DeepShield[39].

80

6.4.1 Data Collection

To validate the robustness of MalwareShield, we collect power datasets under two different

states: Normal (i.e., the IoT device is not running any app or the device is running security camera

services) and Attack (i.e., the device is under malware attack). The model takes the input of power

instances and classifies them into one of these classes. We have collected around 20000 samples

of benign data and 22000 samples of attack data to feed into the model. We split the dataset into

80:20 rule, so 80% of the data is used for training and 20% for testing. Only the benign data is

used during the training phase, but both benign and attack data are used during the validation and

testing phase.

Figure 18. Train loss for benign data.

81

6.4.2 Performance of MalwareShield

The training objective for the MalwareShield framework is to minimize the reconstruction

error—the difference between the input data and the reconstructed output. Suppose we train the

model on benign data. In that case, it learns a reconstruction function that works well for normal-

looking data (low reconstruction error) and poorly for malware data (high reconstruction error).

We can then use reconstruction error as a signal for malware detection. In Figure 18, the train

loss/error for benign samples from the training set is plotted on the X-axis, and the number of

training samples is plotted on the Y-axis. If we set the threshold value for benign data to 0.025, most

benign samples will be classified accurately. In Figure 19, the test loss/error for malware samples

Figure 19. Test loss for malware data.

from the test set is plotted on the X-axis, and the number of test samples is plotted on the Y-axis.

82

In this example, most samples’ test loss is over 0.025. Some sample errors are below 0.025, so

those samples are falsely classified as benign data. But we can see from the figure that this number

is minimal. So, the false positive of our model is very low. If we go back to figure 18, we can see

that some of the sample’s errors are over 0.025. Therefore, those samples are falsely classified as

malware data. However, this number is also tiny compared to the total number of samples. The

false negative of our model is also very low. In our next experiment, we compared our model with

Table 13. Classification performance comparison of DeepShield, DeepAuditor, ThingNet, and

MalwareShield.

Accuracy Precision Recall

DeepShield 58.20 63.12 65.30

DeepAuditor 60.16 66.15 60.34

ThingNet 65.28 72.60 59.69

MalwareShield 95.16 95.63 94.19

DeepShield, DeepAuditor, and ThingNet. The results in terms of accuracy, precision, and recall are

summarized in Table 13 compared with DeepShield, DeepAuditor, and ThingNet. From the table,

it is evident that MalwareShield outperforms all the state-of-the-art models. Figure 20 presents the

confusion matrix for our test sets. True label ’0’ represents attack data, and ’1’ represents benign

data. Out of 4480 samples of attack data, 4301 samples are classified correctly. For the attack

83

Figure 20. Confusion matrix for test dataset

class, the false positive rate is around 3.99%. On the other hand, out of 4120 samples of benign

data, 3873 samples are classified correctly. Therefore, the false negative rate for the benign class

is around 5.99%.

In federated learning, the classification accuracy of an intermediate model is affected by both

the number of data points each client has and the total number of clients involved. To evaluate

the impact of these factors, we record our framework’s classification accuracy and training time

across different numbers of clients and varying amounts of data points per user. Here, we utilize

the power dataset and use the symbols |C| and |D| to represent the number of clients and data

points per client, respectively. We experimented with |C| = 10 clients, each randomly assigned

|D| = 500, 1000, or 2000 data points from the power dataset. Figure 21 and Figure 22 presents

the classification accuracy and training time for different numbers of data points per user, where a

84

Figure 21. |C| = 10, classification accuracy with different data points per client.

communication round refers to an update of the intermediate model between the aggregator and the

clients. In Figure 21 and Figure 22, we observed that increasing the number of data points per client

improves the accuracy of the intermediate model and also extends the training time. However,

when the number of data points reaches certain thresholds (e.g., 1000 or 2000), the accuracy gains

become marginal while the training time increases. Therefore, in future experiments, it is important

to select an optimal number of data points per client to avoid unnecessary computational overhead.

In a follow-up experiment, we investigated the effects of varying the number of clients on

classification accuracy and training time. We conducted this experiment with three different con-

figurations: |C| = 6, 8, and 10 clients. Each client was randomly assigned |D| = 2000 data points

from the dataset. Figure 23 and Figure 24 present the classification accuracy and the training time

for different numbers of clients. The results indicate that increasing the number of clients leads

85

Figure 22. |C| = 10, training time with the different number of data points per client.

to improvements in the accuracy of the intermediate model. This improvement can be attributed

to the broader data distribution and diversity among clients, which enhances the model’s learning

capability. However, this increase in the number of clients also results in additional training time

due to the increased volume of data and communication overhead. In Figure 23 and Figure 24, we

observe that while the accuracy benefits from having more clients, the training time also rises. The

detailed breakdown in Figure 21 and Figure 23, shows that the intermediate model converges after

approximately 25 rounds of training. This convergence point signifies that the model has reached

a satisfactory level of performance within this number of rounds.

Based on these observations, we decided to perform further experiments using the power

dataset. We will record the training time after 25 rounds, capturing data from both the aggregator

and the client sides. This approach will provide a comprehensive understanding of how training

time and accuracy are impacted by the number of clients and data points in a federated learning

86

Figure 23. |D| = 2000, classification accuracy with varying numbers of clients.

setup.

In a federated learning setup, clients process their local datasets and transmit updates to the

central aggregator, usually as gradients or model parameters. Thus, the aggregator’s computational

load is more closely linked to the aggregation of these parameters rather than the size of the clients’

datasets. As a result, the aggregator’s workload remains relatively stable, provided the number of

parameters remains constant, regardless of the varying amounts of data each client manages. The

analysis of the training process is presented in two key figures: Figure 25 and Figure 26.

Figure 25 illustrates the cumulative training time of the aggregator over 25 rounds of train-

ing, considering different numbers of data points per client. Interestingly, the training time for

the aggregator remains almost constant, regardless of the increase in data points per client. This

phenomenon can be attributed to the fact that the aggregator’s training time is primarily influenced

by the number of parameters uploaded in each round, rather than the volume of data held by each

87

Figure 24. |D| = 2000, training time with varying numbers of clients.

client.

Figure 26, on the other hand, focuses on the total training time for each client after 25 rounds,

again varying with the number of data points per client. In contrast to the aggregator, the training

time for individual clients shows a linear increase as the number of data points per client rises. This

linear trend occurs because the local training time for each client, which significantly impacts the

total training time, expands proportionally with the increase in data points. The more data points

a client has, the longer it takes to complete the local training phase, leading to a direct and linear

escalation in the total training time for each client.

In summary, while the aggregator’s training time is largely unaffected by the number of data

points due to its dependence on parameter uploads, the clients experience a linear growth in training

time as their data volume increases, driven by the demands of local training.

88

Figure 25. Total training time of aggregator after 25 rounds when |C| = 10, for varying numbers

of data points per client.

Figure 26. Total training time of each client after 25 rounds when |C| = 10, for varying numbers

of data points per client.

89

CHAPTER 7

CONCLUSION

We investigate the complex correlation between data on power usage and the frequency of

malware assaults in the Internet of Things (IoT) ecosystem. Based on an intricate knowledge of

the dynamics of IoT malware infection, we carefully design a multi-pronged strategy to improve

intrusion detection performance while preserving user privacy.

Our research centers on developing multiple novel deep learning-based intrusion detection sys-

tems. The strength of power side-channel analysis is carefully harnessed by these technologies,

making it possible to identify possible IoT malware infections. Our approach makes it easier to

identify botnet attacks in the early stages and performs better than traditional network-based mod-

els, which frequently have to catch up when it comes to early intrusion detection.

At the core of our effort is creating DeepShield, a groundbreaking framework that ushers in a

new era in edge computing-based real-time privacy-preserving feature extraction and categoriza-

tion. DeepShield is an online Convolutional Neural Network (CNN) model that is lightweight

and carefully designed to enable quick and precise identification of Internet of Things (IoT) mal-

ware trespassing. An innovative hybrid cryptography protocol that balances processing workloads

between the edge and the central server is essential to its effectiveness. A smooth and effective

functioning is ensured by this thoughtful resource allocation, which greatly reduces computing

overhead.

We introduce BoTShield, an advanced privacy-preserving online training methodology in re-

sponse to the ever-evolving landscape of malware threats. BoTShield represents a significant leap

90

forward by integrating cutting-edge techniques such as homomorphic encryption, secret sharing,

and differential privacy. By leveraging these state-of-the-art methodologies, BoTShield enhances

privacy and exhibits a remarkable capability to detect diverse malware variants. However, ac-

knowledging its supervised nature, we recognize BoTShield’s inherent limitations in preemptively

identifying zero-day attacks.

To address this critical gap, we unveil MalwareShield, a groundbreaking federated learning

framework fortified by a novel approach to differential privacy. MalwareShield is uniquely equipped

with an encoder-based unsupervised model designed explicitly to detect zero-day malware incur-

sions. Through meticulous theoretical analysis and empirical experimentation, we substantiate our

frameworks’ efficacy, security, and scalability in facilitating secure, real-time, and accurate mal-

ware detection within the IoT ecosystem.

91

REFERENCES

[1] M. Abadi and et. al, “Deep learning with differential privacy,” Proc. of ACM SIGSAC Conf.

on Computer and Communications Security, Oct. 2016.

[2] K. Angrishi, “Turning internet of things (IoT) into internet of vulnerabilities (IoV): IoT

botnets,” CoRR, vol. abs/1702.03681, 2017. arXiv: 1702.03681.

[3] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric,

J. A. Halderman, L. Invernizzi, M. Kallitsis, et al., “Understanding the mirai botnet,” in 26th

USENIX Security Symp., Aug. 2017, pp. 1093–1110.

[4] D. Baek, Around 560,000 malware are generated every day, 2023. [Online]. Available:

https://www.linkedin.com/pulse/around-560000-malware-generated-every-

day-david-sehyeon-baek--i0h1f.

[5] M. Ball, B. Carmer, T. Malkin, M. Rosulek, and N. Schimanski, “Garbled neural networks

are practical,” IACR Cryptol. ePrint Arch., vol. 2019, p. 338, 2019. [Online]. Available:

https://api.semanticscholar.org/CorpusID:115197351.

[6] E. Bertino and N. Islam, “Botnets and internet of things security,” Computer, vol. 50, no. 02,

pp. 76–79, Feb. 2017.

[7] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A.

Segal, and K. Seth, “Practical secure aggregation for privacy-preserving machine learning,”

in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, ser. CCS ’17, Dallas, Texas, USA: Association for Computing Machinery, 2017,

92

pp. 1175–1191, ISBN: 9781450349468. DOI: 10.1145/3133956.3133982. [Online]. Avail-

able: https://doi.org/10.1145/3133956.3133982.

[8] T. M. Booij, I. Chiscop, E. Meeuwissen, N. Moustafa, and F. T. H. d. Hartog, “ToN_IoT:

The role of heterogeneity and the need for standardization of features and attack types in IoT

network intrusion data sets,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 485–496,

2022. DOI: 10.1109/JIOT.2021.3085194.

[9] D. Breitenbacher, I. Homoliak, Y. L. Aung, N. O. Tippenhauer, and Y. Elovici, “HADES-

IoT: A practical host-based anomaly detection system for IoT devices,” in Proc. of ACM

Asia Conf. on Computer and Communications Security, 2019, pp. 479–484.

[10] S. L. Campbell and C. D. Meyer, “Generalized inverse of linear transformations,” SIAM,

2009.

[11] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff, “Privacy-preserving clas-

sification on deep neural network,” IACR Cryptol. ePrint Arch., vol. 2017, p. 35, 2017.

[Online]. Available: https://api.semanticscholar.org/CorpusID:42011253.

[12] Y. Chang, K. Zhang, J. Gong, and H. Qian, “Privacy-preserving federated learning via func-

tional encryption, revisited,” IEEE Transactions on Information Forensics and Security,

vol. 18, pp. 1855–1869, 2023. DOI: 10.1109/TIFS.2023.3255171.

[13] S. S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. M. Sorber, W. Xu, and K. Fu, “WattsUp-

Doc: Power side channels to nonintrusively discover untargeted malware on embedded med-

ical devices,” in 2013 USENIX Workshop on Health Information Technologies, Aug. 2013.

[14] L. F. Combita, A. A. Cardenas, and N. Quijano, “Mitigating sensor attacks against industrial

control systems,” IEEE Access, vol. 7, pp. 92 444–92 455, 2019.

93

[15] D. Conroy, Ransomware: Protecting your business from increasing cyberthreats, 2024. [On-

line]. Available: https://www.nar.realtor/blogs/emerging-technology/ransomware-

protecting-your-business-from-increasing-cyberthreats.

[16] D. J. Cook, Activity Learning from Sensor Data. Wiley, 2015.

[17] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki, M. Musuvathi, and T.

Mytkowicz, “CHET: An optimizing compiler for fully-homomorphic neural-network infer-

encing,” ser. PLDI 2019, Phoenix, AZ, USA: Association for Computing Machinery, 2019,

ISBN: 9781450367127. DOI: 10.1145/3314221.3314628. [Online]. Available: https:

//doi.org/10.1145/3314221.3314628.

[18] D. Demmler, T. Schneider, and M. Zohner, “ABY - a framework for efficient mixed-protocol

secure two-party computation,” in Proc. of Network and Distributed System Security Sym-

posium, Jan. 2015.

[19] F. Ding, H. Li, F. Luo, H. Hu, L. Cheng, H. Xiao, and R. Ge, “DeepPower: Non-intrusive and

deep learning-based detection of IoT malware using power side channels,” in Proceedings of

the 15th ACM Asia Conference on Computer and Communications Security, 2020, pp. 33–

46.

[20] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning DDoS detection for consumer

internet of things devices,” in 2018 IEEE Security and Privacy Workshops (SPW), 2018,

pp. 29–35.

[21] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. E. Lauter, M. Naehrig, and J. R. Wernsing,

“CryptoNets: Applying neural networks to encrypted data with high throughput and accu-

racy,” in Proc. of the 33rd Int’l Conf. on Machine Learning, 2016, pp. 201–210.

94

[22] T. Elgamal, “A public key cryptosystem and a signature scheme based on discrete loga-

rithms,” IEEE Transactions on Information Theory, vol. 31, no. 4, pp. 469–472, 1985. DOI:

10.1109/TIT.1985.1057074.

[23] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence

information and basic countermeasures,” in Proc. of the 22nd ACM SIGSAC Conf. on Com-

puter and Communications Security, 2015, pp. 1322–1333, ISBN: 9781450338325.

[24] S. S. G, A. Darki, M. Faloutsos, N. Abu-Ghazaleh, and M. Sridharan, “IDAPro for IoT

malware analysis?” In 12th USENIX Workshop on Cyber Security Experimentation and Test,

Aug. 2019.

[25] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients - how easy is

it to break privacy in federated learning?” CoRR, vol. abs/2003.14053, 2020.

[26] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated learning: A client level

perspective,” CoRR, vol. abs/1712.07557, 2017. arXiv: 1712.07557. [Online]. Available:

http://arxiv.org/abs/1712.07557.

[27] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive proof-

systems,” in Proc. of the 7th Annual ACM Symp. on Theory of Computing, 1985, pp. 291–

304, ISBN: 0897911512. DOI: 10.1145/22145.22178.

[28] M. Goyal, I. Sahoo, and G. Geethakumari, “HTTP botnet detection in IoT devices using

network traffic analysis,” in Int’l Conf. on Recent Advances in Energy-efficient Computing

and Communication, 2019, pp. 1–6.

[29] G. Gu, P. Porras, V. Yegneswaran, and M. Fong, “BotHunter: Detecting malware infection

through IDS-Driven dialog correlation,” in 16th USENIX Security Symposium (USENIX Se-

95

curity 07), Boston, MA: USENIX Association, Aug. 2007. [Online]. Available: https:

//www.usenix.org/conference/16th-usenix-security-symposium/bothunter-

detecting-malware-infection-through-ids-driven.

[30] S. Guynes, J. Parrish, and R. Vedder, “Edge computing societal privacy and security issues,”

SIGCAS Comput. Soc., vol. 48, no. 3–4, pp. 11–12, Feb. 2020.

[31] I. Hafeez, M. Antikainen, A. Y. Ding, and S. Tarkoma, “IoT-KEEPER: Detecting malicious

IoT network activity using online traffic analysis at the edge,” IEEE Trans. on Network and

Service Management, vol. 17, no. 1, pp. 45–59, 2020.

[32] L. Hanzlik, Y. Zhang, K. Grosse, A. Salem, M. Augustin, M. Backes, and M. Fritz, “MLCap-

sule: Guarded offline deployment of machine learning as a service,” CoRR, vol. abs/1808.00590,

2018. arXiv: 1808.00590. [Online]. Available: http://arxiv.org/abs/1808.00590.

[33] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning for

time series classification: A review,” Data Mining and Knowledge Discovery, vol. 33, no. 4,

2019.

[34] C. Jindal, C. Salls, H. Aghakhani, K. Long, C. Kruegel, and G. Vigna, “Neurlux: Dynamic

malware analysis without feature engineering,” in Proc. of the 35th Annual Computer Secu-

rity Applications Conf., 2019, pp. 444–455.

[35] W. Jung, Y. Feng, S. A. Khan, C. Xin, D. Zhao, and G. Zhou, “DeepAuditor: Distributed

online intrusion detection system for IoT devices via power side-channel auditing,” CoRR,

vol. abs/2106.12753, 2021. [Online]. Available: https://arxiv.org/abs/2106.12753.

[36] W. Jung, H. Zhao, M. Sun, and G. Zhou, “IoT botnet detection via power consumption

modeling,” Smart Health, vol. 15, 2020.

96

[37] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A low latency frame-

work for secure neural network inference,” in Proc. of the 27th USENIX Conf. on Security

Symposium, 2018, pp. 1651–1668.

[38] L. Kang and H. Shen, “Attack detection and mitigation for sensor and can bus attacks in

vehicle anti-lock braking systems,” in 29th Int’l Conf. on Computer Communications and

Networks, 2020, pp. 1–9.

[39] S. A. Khan, Z. Li, W. Jung, Y. Feng, D. Zhao, C. Xin, and G. Zhou, “DeepShield: Lightweight

privacy-preserving inference for real-time IoT botnet detection,” in 37th IEEE International

System-on-Chip Conference, 2024.

[40] H. Kim, J. Smith, and K. G. Shin, “Detecting energy-greedy anomalies and mobile malware

variants,” in Proceedings of the 6th International Conference on Mobile Systems, Applica-

tions, and Services, 2008, pp. 239–252.

[41] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT: Mirai and other

botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[42] R. Lehmkuhl, P. Mishra, A. Srinivasan, and R. A. Popa, “MUSE: Secure inference resilient

to malicious clients,” in 30th USENIX Security Symposium (USENIX Security 21), USENIX

Association, Aug. 2021, pp. 2201–2218, ISBN: 978-1-939133-24-3.

[43] S. Li, K. Xue, C. Ding, X. Gao, D. S. L. Wei, T. Wan, and F. Wu, “FALCON: A fourier

transform based approach for fast and secure convolutional neural network predictions,”

CoRR, vol. abs/1811.08257, 2018. arXiv: 1811.08257.

97

[44] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods,

and future directions,” CoRR, vol. abs/1908.07873, 2019. arXiv: 1908.07873. [Online].

Available: http://arxiv.org/abs/1908.07873.

[45] Z. Li, B. Perez, S. A. Khan, B. Feldhaus, and D. Zhao, “A new design of smart plug for

real-time IoT malware detection,” in 2021 IEEE Microelectronics Design & Test Symposium

(MDTS), 2021, pp. 1–6.

[46] Z. Li and D. Zhao, “ThingNet: A lightweight real-time mirai IoT variants hunter through

cpu power fingerprinting,” in Design, Automation & Test in Europe Conference & Exhibition

(DATE), IEEE, 2022.

[47] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han, “On-device training under

256kb memory,” Advances in Neural Information Processing Systems, vol. 35, pp. 22 941–

22 954, 2022.

[48] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network predictions via MiniONN

transformations,” in Proc. of ACM SIGSAC Conf. on Computer and Communications Secu-

rity, 2017, pp. 619–631.

[49] Y. Liu, L. Wei, Z. Zhou, K. Zhang, W. Xu, and Q. Xu, “On code execution tracking via

power side-channel,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, 2016, pp. 1019–1031.

[50] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang, “Trojaning attack on

neural networks,” in In 25th Annual Network and Distributed System Security Symp., 2018.

98

[51] G. D. Maayan., The IoT rundown for 2020: Stats, risks, and solutions, https://securitytoday.

com/articles/2020/01/13/the-iot-rundown-for-2020.aspx, [Online; posted

January-13-2020].

[52] C. D. McDermott, F. Majdani, and A. V. Petrovski, “Botnet detection in the internet of things

using deep learning approaches,” in 2018 Int’l Joint Conf. on Neural Networks, 2018, pp. 1–

8.

[53] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated learning of deep

networks using model averaging,” CoRR, vol. abs/1602.05629, 2016. arXiv: 1602.05629.

[Online]. Available: http://arxiv.org/abs/1602.05629.

[54] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher, and Y.

Elovici, “N-BaIoT—network-based detection of IoT botnet attacks using deep autoencoders,”

IEEE Pervasive Computing, vol. 17, no. 3, pp. 12–22, 2018.

[55] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An ensemble of autoencoders

for online network intrusion detection,” in Proc. of Network and Distributed System Security

Symp., Jan. 2018.

[56] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-preserving machine

learning,” in 2017 IEEE Symposium on Security and Privacy (SP), Los Alamitos, CA, USA:

IEEE Computer Society, May 2017, pp. 19–38.

[57] T. D. Nguyen, S. Marchal, M. Miettinen, M. H. Dang, N. Asokan, and A. Sadeghi, “DÏoT:

A federated self-learning anomaly detection system for IoT,” in IEEE 39th Int’l Conf. on

Distributed Computing Systems, 2019, pp. 756–767.

99

[58] R. Oak, M. Du, D. Yan, H. Takawale, and I. Amit, “Malware detection on highly imbalanced

data through sequence modeling,” in Proceedings of the 12th ACM Workshop on artificial

intelligence and security, 2019, pp. 37–48.

[59] G. Oded, Foundations of Cryptography: Volume 2, Basic Applications, 1st. Cambridge Univ.

Press, 2009, ISBN: 052111991X.

[60] S. I. Popoola, R. Ande, B. Adebisi, G. Gui, M. Hammoudeh, and O. Jogunola, “Federated

deep learning for zero-day botnet attack detection in IoT-edge devices,” IEEE Internet of

Things Journal, vol. 9, no. 5, pp. 3930–3944, 2022. DOI: 10.1109/JIOT.2021.3100755.

[61] V. Rey, P. M. S. Sánchez, A. H. Celdrán, G. Bovet, and M. Jaggi, “Federated learning for

malware detection in IoT devices,” CoRR, vol. abs/2104.09994, 2021.

[62] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter, and F. Koushanfar, “XONN:

xnor-based oblivious deep neural network inference,” CoRR, vol. abs/1902.07342, 2019.

arXiv: 1902.07342. [Online]. Available: http://arxiv.org/abs/1902.07342.

[63] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and F. Koushanfar,

“Chameleon: A hybrid secure computation framework for machine learning applications,”

in Proc. of Asia Conf. on Computer and Communications Security, 2018, pp. 707–721.

[64] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of malware behavior

using machine learning,” J. Comput. Secur., vol. 19, no. 4, pp. 639–668, Dec. 2011.

[65] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSecure: Scalable provably-secure deep

learning,” CoRR, vol. abs/1705.08963, 2017.

100

[66] G. Sagirlar, B. Carminati, and E. Ferrari, “AutoBotCatcher: Blockchain-based p2p botnet

detection for the internet of things,” in IEEE 4th Int’l Conf. on Collaboration and Internet

Computing (CIC), 2018, pp. 1–8.

[67] B. Schneier, Applied Cryptography: Protocols, Algorithms and Source Code in C, 20th.

John Wiley, 2015.

[68] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against

machine learning models,” CoRR, vol. abs/1610.05820, 2016.

[69] L. Singh and M. Hofmann, “Dynamic behavior analysis of android applications for mal-

ware detection,” in 2017 Int’l Conf. on Intelligent Communication and Computational Tech-

niques, 2017, pp. 1–7.

[70] S. Sriram, R. Vinayakumar, M. Alazab, and S. KP, “Network flow based IoT botnet attack

detection using deep learning,” in IEEE INFOCOM 2020 - IEEE Conference on Computer

Communications Workshops, 2020, pp. 189–194.

[71] D. Strom, How the mirai botnet continues to threaten business networks, https://https:

//siliconangle.com/2023/05/30/mirai-botnet-continues-threaten-business-

networks, [Online; posted May-30-2023].

[72] J. Su, D. V. Vasconcellos, S. Prasad, D. Sgandurra, Y. Feng, and K. Sakurai, “Lightweight

classification of IoT malware based on image recognition,” in IEEE 42nd Annual Computer

Software and Applications Conf., vol. 02, 2018, pp. 664–669.

[73] H. Sun, X. Wang, R. Buyya, and J. Su, “CloudEyes: Cloud-based malware detection with

reversible sketch for resource-constrained internet of things IoT devices,” Software: Practice

and Experience, vol. 47, pp. 421–441, 2017. DOI: 10.1002/spe.2420.

101

[74] Texas Instruments, Bidirectional current/power monitor with I2C interface. [Online]. Avail-

able: https://www.ti.com/product/INA219/.

[75] S. Tople, K. Grover, S. Shinde, R. Bhagwan, and R. Ramjee, “Privado: Practical and secure

DNN inference,” CoRR, vol. abs/1810.00602, 2018. arXiv: 1810.00602. [Online]. Avail-

able: http://arxiv.org/abs/1810.00602.

[76] F. Tramèr and D. Boneh, Slalom: Fast, verifiable and private execution of neural networks

in trusted hardware, 2019. arXiv: 1806.03287 [stat.ML].

[77] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing machine learning

models via prediction apis,” CoRR, vol. abs/1609.02943, 2016.

[78] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure computation for neural

network training,” Proceedings on Privacy Enhancing Technologies, vol. 2019, pp. 26–49,

Jul. 2019. DOI: 10.2478/popets-2019-0035.

[79] X. Wei, Y. Liang, X. Li, C. H. Yu, P. Zhang, and J. Cong, “TGPA: Tile-grained pipeline

architecture for low latency cnn inference,” in IEEE/ACM Int’l Conf. on Computer-Aided

Design, 2018, pp. 1–8.

[80] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, S. Kadhe, and H. Ludwig, DeTrust-FL: Privacy-

preserving federated learning in decentralized trust setting, 2022. arXiv: 2207 . 07779

[cs.CR].

[81] H. Yang, “H-FL: A hierarchical communication-efficient and privacy-protected architecture

for federated learning,” CoRR, vol. abs/2106.00275, 2021. arXiv: 2106.00275. [Online].

Available: https://arxiv.org/abs/2106.00275.

102

[82] Q. Yang, P. Gasti, G. Zhou, A. Farajidavar, and K. S. Balagani, “On inferring browsing

activity on smartphones via usb power analysis side-channel,” IEEE Transactions on Infor-

mation Forensics and Security, vol. 12, no. 5, pp. 1056–1066, 2017.

[83] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual Symposium on Foun-

dations of Computer Science (sfcs 1986), 1986, pp. 162–167. DOI: 10.1109/SFCS.1986.

25.

[84] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data security and privacy-preserving

in edge computing paradigm: Survey and open issues,” IEEE Access, vol. 6, pp. 18 209–

18 237, 2018.

[85] Q. Zhang, C. Wang, H. Wu, C. Xin, and T. Phuong, “GELU-Net: A globally encrypted,

locally unencrypted deep neural network for privacy-preserved learning,” in Proc. of Int’l

Joint Conf. on Artificial Intelligence, Jul. 2018, pp. 3933–3939.

[86] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning with non-IID

data,” CoRR, vol. abs/1806.00582, 2018. arXiv: 1806.00582. [Online]. Available: http:

//arxiv.org/abs/1806.00582.

[87] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” CoRR, vol. abs/1906.08935,

2019.

103

VITA

Sabbir Ahmed Khan

Department of Computer Science

Old Dominion University

Norfolk, VA 23529

PATENT

1. G. Zhou, W. Jung, C. Xin, D. Zhao, Y. Feng, and S. A. Khan, "Privacy-preserving online

botnet classification system utilizing power footprint of IoT connected devices," Patent of-

fice: US, Patent number: 12015622, June 18, 2024.

PUBLICATIONS

1. S. A. Khan, Z. Li, W. Jung, Y. Feng, D. Zhao, C. Xin, and G. Zhou, "DeepShield: Lightweight

Privacy-Preserving Inference for Real-Time IoT Botnet Detection" in 37th IEEE Interna-

tional System-on-Chip Conference (SOCC), September 16-19, 2024. (Accepted)

2. W. Jung, Y. Feng, S. A. Khan, C. Xin, D. Zhao and G. Zhou, "DeepAuditor: Distributed On-

line Intrusion Detection System for IoT Devices via Power Side-channel Auditing," in 2022

21st ACM/IEEE International Conference on Information Processing in Sensor Networks

(IPSN), Milano, Italy, 2022, pp. 415-427, doi: 10.1109/IPSN54338.2022.00040.

3. Google scholar link: https://scholar.google.com/citations?user=mJNY8gIAAAAJ&hl=en, to

see the full list of publications

	Privacy-Preserving Deep Learning Framework for IoT Malware Detection
	Recommended Citation

	tmp.1728308443.pdf.c8cB4

