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ABSTRACT

FINITE ELEMENT NONLINEAR RANDOM RESPONSE OF
COMPOSITE PANELS OF ARBITRARY SHAPE TO ACOUSTIC
AND THERMAL LOADS APPLIED SIMULTANEOUSLY

Roger R. Chen
Old Dominion University, 1995
Director: Dr. Chuh Mei

The nonlinear random response of composite plates to the simultaneously applied,
combined acoustic/thermal loads are investigated in this dissertation. A finite element
formulation for the nonlinear random response is developed. The three-node Mindlin
plate element with improved transverse shear is extended and employed. The extension
includes the development of the thermal geometric matrix, the mass matrix, the first-
order and second-order nonlinear stiffness matrices, and the thermal and mechanical
load vectors. An innovative solution procedure has been created which is believed to
be the first attempt to analyze nonlinear random response of complex composite panels
subjected to simultaneous acoustic and thermal loads. The acoustic pressure can be
normal incidence or grazing incidence. The solution procedure starts with obtaining the
static and dynamic equations. For the static equation, the Newton-Raphson method was
used. A modal transformation followed by the equivalent linearization technique and an
iterative scheme was employed for the dynamic equation.

Seven problems of thermal buckling and post buckling were studied in this disserta-

tion. The extension and bending coupling makes the plate bend out of its plane as soon

as the plate is heated, without the prebuckling stage. The most interesting phenomenon
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in this process is the mode shape change during thermal postbuckling. The described
solution procedure automatically obtains the mode change in the postbuckling stage as
long as the incremental step of temperature change is small enough regardless of the
presence of mechanical load. The effects of the number of layers, the ply angles and the

aspect ratio of the plate upon the thermoelastic response are studied.

The results show that three or four modes will give converged root mean square
(RMS) deflection. Anti-symmetrical modes are not included for normal incidence cases.
It is demonstrated that the peaks of the response are very close to the natural frequencies
at low sound pressure levels. However, at high pressure levels the response peaks are
shifted up and broadened. An interesting observation is that the anti-symmetrical modes
about the axis, which is perpendicular to the wave propagation direction, participate in
the response of the plate for grazing incident acoustic wave. It is also found that the RMS
maximum strain with temperature could be either smaller or larger than the one without
temperature. This is due to: (1) the temperature increases the thermal strain component,
and (2) the thermal postbuckling increases the nonlinear stiffness which reduces the RMS
deflection and it leads to smaller strain component. For plate with initial imperfection
in deflection, the nonlinear stiffness due to imperfection reduces the random responses
as compare to the flat plate. For a plate with an initial imperfection in deflection which
has the same maximum deflection as the thermal postbuckling deflection, the plate with

initial imperfection is stiffer and leads to smaller random responses.
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Chapter 1

INTRODUCTION

1.1 Background

“Jet Crash Off Italy Kills 35” The New York Times reported on January 11, 1954,
“Rome, Jan. 10 — Thirty-five persons were almost certainly killed when a British Comet
jet airliner crashed into the sea this morning about halfway between the islands of Elba
and Monte Cristo, off the Italian western coast.” It was Monday, when people went to
work, they read this news very sadly. The jet airliner was the Comet, the first propelled

by jet turbo engine.

The news surprised the world aircraft designers and manufacturers. After exhaustive
investigation and tests on components of the Comet, it was concluded that the accident
was caused by fatigue failure of the pressurized cabin. The small fatigue crack originated
from a corner of an opening in the fuselage. Since then, extra additional attention has
been focused on airframe fatigue design. It has been realized that such failures can
substantially increase the maintenance burden and life cycle cost of the aircraft.

In the late 1950’s, incidents were reported in which structural components close to
high intensity jet exhausts were reaching such high levels of vibration response, due to
acoustic excitation, that fatigue cracks could develop and spread quite rapidly. These in-
cidents alerted industry, university and research centers to the possibility of serious design
problems as the performance of aircraft and engines increased. Since then, acoustically

induced fatigue failures in aircraft have been one of the major design considerations.
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2
A considerable number of investigations sponsored by USAF and AGARD have been

carried out duﬁng the 1960°’s and early 1970’s. This series of research lead to design
nomograph of every type of metal. structures. It made it possible for aircraft designers
to produce satisfactory structures.

This was the situation toward the middle of the 1970’s. Although the power of the jet
engine was still increasing dramatically, the pressure levels were not increasing because
of the use of the higher bypass configurations in engine design which are needed to reduce
the community noise. This lead to a great reduction in the research and development

activity on sonic fatigue.

In the mid and late 1980s, new interest in random vibration was raised primarily
as a result of advances in high speed flight. The missions for these high speed flight
vehicles will expose structures to severe acoustic and thermal loads. These include the
F-22 advanced tactical fighter (ATF), the supersonic advanced short take-off and vertical
landing aircraft (ASTOVL), the national aerospace plane (NASP) and the high speed civil
transport (HSCT). The new vectored thrust propulsion systems on ATF and ASTOVL
provide short take-off and landing capability, and also increased maneuverability. Most
designs feature engine exhaust locations that are positioned near the aircraft mass center,
and exhaust jets are directed either onto, or nearly onto, the aircraft structure. Estimates
of acoustic loads indicate that for some vectored thrust directions most of the aircraft is
immersed in an acoustic field with levels well above 150 dB, with levels much higher
near the nozzle (Mixson, 1988). Exhaust temperatures may exceed 1000°F in the region
of the nozzle, and therefore the structure must withstand high thermal loads. In addition,
the HSCT, ATF and NASP will fly at supersonic/hypersonic speeds and will be exposed

to intense in-flight acoustic and thermal environments (Pozefsky et al., 1989). Due to
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3
aerodynamic heating, the structures will experience high temperatures with large thermal

gradients.

To meet increased performance requirements, new complex, lightweight structures
and advanced materials will be required. The complex structures under consideration
have significant uncertainties in fatigue behavior due to intense acoustic loads in the
presence of high temperatures. The thermal environment may affect acoustic fatigue by
introducing thermal inplane forces and thermal bending moments, as well as altering
(temperature dependent) material properties. Such thermal effects may also introduce
large distortions and snap-through (or oil-canning) behavior, alter buckling loads and
modify vibration characteristics. The intense acoustic loads can affect fatigue life by
introducing large deflection geometrical nonlinearities, modal coupling and multiple-
mode participation (Mei and Wolfe, 1986). Such high sound pressure levels may even
drive the structures to have damping nonlinearity (Mei and Prasad, 1987). Because of
high costs and difficulties with instrumentation in experiments at high acoustic intensity
and elevated temperatures, reliable experimental data is difficult to acquire. Thus, in the
design process, greater emphasis will be placed on analytical and computational methods.
This brings a tremendous challenge to the analysts for predicting nonlinear response of

complex structures subjected to acoustic and thermal loads.

A fundamental challenge of thermo-acoustic random response of aerospace structures
is the multi-disciplinary nature of the problem. The thermal environment strongly affects
the structural random response because of the development of restraint forces due to
thermal expansion and the change of material properties at elevated temperatures. Since
the structural response due to high levels of acoustic loads is highly nonlinear and strongly
dependent on the thermal effects, the problems are thus inherently multi-disciplinary and

nonlinear. It is, therefore, the purpose of this study to develop an analytical formulation to
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4

determine the nonlinear random response of composite laminates to combined acoustic

and thermal loads applied simultaneously.

1.2 Literature Survey

A limited number of papers studied the thermal postbuckling of laminated composite
plates. Noor and Peters (1983) have investigated the bifurcation buckling and postbuck-
ling response of composite plates subjected to combined axial compression and uniform
temperature distribution by the multiple-parameter reduced based technique. Recently,
they (Noor et al., 1992) have studied the thermo-mechanical buckling and postbuckling
response of composite plates subjected to combined axial and thermal loadings. The
analysis is based on a first-order and a third-order shear deformation, von Karman type
nonlinear plate theory. A mixed formulation is used with the fundamental unknowns
consisting of the generalized displacements and the stress resultants of the plate. An
efficient multiple-parameter reduction method is used in conjunction with mixed finite
element models. Sensitivity derivatives are evaluated and used to study the sensitivity
of the postbuckling response to variations in the different lamination and material pa-
rameters of the plate. In a paper presented at the 35th SDM conference (Noor et al.,
1994), a similar study of the composite plate with cutouts was conducted. Huang and
Tauchert (1986) used analytical continuum approach and studied the thermal buckling
and postbuckling behavior of simply-supported antisymmetric angle-ply plates subjected
to uniform temperature change. Their results illustrated the effects of the number of
layers, the ply angles and the aspect ratio of the plate upon thermoelastic response. Chen
and Chen (1989, 1991) have studied the thermal postbuckling behaviors of laminated
rectangular, antisymmetric angle-ply composite plates subjected to a nonuniform temper-

ature field by the finite element method. Based on the principle of minimum potential
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energy, the nonlinear stiffness matrix and geometric stiffness matrix are derived. Their
results revealed that the thermal postbuckling behavior of composite laminated plates
is influenced by lamination angles, plate aspect ratio, modulus ratio and the number of
layers. Their results also revealed that the effect of temperature-dependent mechanical
properties on the thermal postbuckling behavior is significant. Librescu et al. (Librescu
and Souza, 1991 and Librescu et al., 1994) recently studied the static postbuckling of
simply supported flat panels exposed to a stationary nonuniform temperature field and
subjected to a system of subcritical in-plane compressive edge loads. The study is per-
formed within a refined theory of composite laminated plates incorporating the effect of
transverse shear and geometric nonlinearities. Meyers and Hyer (1992) have analytically
studied thermal buckling and postbuckling of simply supported symmetric composite
laminates under uniform temperature change using the Rayleigh-Ritz method. Birman
and Bert (1993) investigated the effects of temperature on buckling and postbuckling
behavior of reinforced and unstiffened composite plates and cylindrical shells. First, the
equilibrium equations are formulated for a shell subjected to the simultaneous action of a
thermal field and an axial loading. These equations are then used to predict a general form
of the algebraic equations describing the postbuckling response of a shell. Conditions
for the snap-through of a shell subjected to thermo-mechanical loading are formulated.
The theory was also applied to predict the postbuckling response of flat large-aspect-ratio
panels reinforced in the direction of their short edges.

There are many survey articles which review analysis techniques and experiments of
nonlinear random structural responses. Mei and Wolfe (1986) have presented a discussion
on analytical and experimental techniques to predict the acoustic fatigue life of aircraft

structures. They discussed the problem and the steps taken to solve the problem and
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6
reviewed the analytical approaches to single degree-of-freedom (SDOF) and multi-degree-

of-freedom (MDOF) linear and nonlinear systems under random excitations. They also
reported the advances of analytical prediction and experiments. To (1987) has also
presented a comprehensive survey paper on the analysis of nonlinear systems subjected
to random excitation. Methods reported to be applicable to both SDOF and MDOF
systems include equivalent linearization techniques (EL), the Fokker-Planck-Kolmogorov
equation (FPK) and moment approaches. Clarkson (1994) has recently presented a very
comprehensive sonic fatigue technology review report. He reported that: “From the
early-1960s until the mid-1980s, there was very little theoretical development for sonic
fatigue prediction.” The design monographs for most common aircraft structures were
made based on simple theoretical models and results of specially designed tests. The use
of advanced composites in the 1980s generated an increasing interest in development of
more sophisticated theoretical models because the much wider range of parameters of
composite panels made creation of nomograph based on tests not possible.

A limited number of investigations on structural response subjected to intense acoustic
and thermal loads exist in the literature. Seide and Adami (1983) were the first who
studied large deflection random response of a thermally buckled simply supported beam.
Thermal load and acoustic pressure are thus considered to be applied in sequence. The
well-known classic Woinowsky-Krieger large amplitude beam vibration equation is used.
The Galerkin’s method and time domain numerical simulation are then applied to obtain

the random response.
The papers by Mei and Prasad (1987 and 1989) aim to explain the observed
broadening of the response peak and its increase in frequency by including nonlinear

damping as well as large amplitude displacements in the theory. This is a very valuable

formulation because damping is inherently nonlinear and its behavior and magnitude is
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one of the major unknowns in the work to date. In their work, a single mode analysis is
used and the results show the expected broadening and increase in frequency.

Most recently, the Galerkin/numerical simulation approach was applied to simply
supported metal and orthotropic composite rectangular plates by Vaicaitis and Arnold
(1990) and Vaicaitis (1991), the thermal and acoustic loads are considered to be applied
simultaneously. The classic von Karman large deflection plate equations including
temperature and orthotropic property effects are employed. The thermal effects on
rectangular isotropic plate random response have also been investigated thoroughly by Lee
(1993). The three thermal effects: (i) global expansion by uniform plate temperature, (ii)
local expansion by temperature variation over the plate, and (iii) thermal moment induced
by temperature gradient across the plate thickness, are included in the investigation. The
single mode Galerkin method and the EL (Roberts and Spanos, 1990) technique are
used. The analytical continuum approaches have been so far limited to uniform or linear
temperature distributions and to beams and rectangular plates of either simply supported
or clamped edges.

For over three decades, the finite element method has been the predominant method
for structural mechanics. However, there are only a few studies on nonlinear random
response of structures using the finite element method. Hwang and Pi (1972) have
investigated a simply supported rectangular isotropic plate subjected to rain-drop type
uniform intensity random acoustic loads. The high precision 18 degree-of-freedom (DOF)
triangular plate bending element developed by Cowper et al. was used. Both first and
second-order nonlinear stiffness matrices are developed to account for large deflections.
The finite element nonlinear equations of motion were treated as a linearized eigenvalue

problem with an iterative scheme. The acceleration spectra at the plate center were
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obtained at three pressure levels. No comparison was made with other approximate
solutions.

Busby and Weingarton (1973) used the finite element method only to obtain the
nonlinear differential equations of motion which are expressed in terms of the normal
mode coordinates. The EL method is then used for the solution of these equations. Mean
square deflections at the midspan are obtained for beams with both ends simply supported

and both ends clamped. However, comparisons with other solutions were not made.

Chiang (1988) has presented a finite element method for large defiection random
response of beams, plates and built-up panels subjected to acoustic loads. Geometrical
stiffness matrices to account for the induced inplane forces due to large deflections were
developed for an isotropic beam element and an isotropic rectangular plate element. Root-
mean-square (RMS) maximum deflections and RMS maximum strains are obtained for
beams and rectangular plates with simply supported and clamped boundary conditions.
The finite element results are in good agreement with single-mode Fokker-Planck-

Kolmogorov (FPK) equation and analytical equivalent linearization solutions.

Locke (1988) and Locke and Mei (1990) extended the finite element method to
isotropic beam and rectangular plate structures subjected to thermal and acoustic loads
applied in sequence. The thermal load considered is a steady-state temperature distribu-
tion AT(x,y). The thermal postbuckling structural problem is solved first to obtain the
deflection and thermal stresses. The deflection and thermal stresses are then treated as
initial deflection and initial stresses in the subsequent random vibration analysis. The
Newton-Raphson iterative method is used in the thermal postbuckling analysis. For the
nonlinear random vibration, the linear mode shapes of the thermally buckled structure are
used to reduce the order of the system equations of motion to a set of nonlinear modal

equations of a much smaller order. The EL technique is then used to iteratively obtain
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RMS responses. Excellent agreement has been obtained between the finite element and
the Galerkin/numerical simulation results by Seide and Adami.

Jay Robinson (1990, 1991) has derived a numerical integration routirie from a set of
unified single step integration algorithms using a weighted satisfaction of the equilibrium
equations governing the large deflection random response of laminated composite plates.
The equilibrium equations are derived using large deflection finite element formulations.
The in-plane inertia terms are considered in the formulation, however, rotary inertia
terms are assumed negligible. Probability density, spectral density and autocorrelation
functions of the maximum displacement and strain responses are presented for three
acoustic excitation levels. Classical thin plate boundary conditions and pseudo white

noise excitation are used in this investigation.

Chen (1990) and Chen and Yang(1991) have presented a finite element formulation
combined with stochastic linearization and normal mode methods, including the geo-
metrical nonlinearity for the study of random vibration responses of beams, frames and
composite plates subjected to simultaneously spatial and temporal Gaussian stationary
nonwhite and nonzero mean random excitations.

Chen and Mei(1993) presented a finite element formulation, solution procedure and
results of a study attempted to analyze nonlinear random response of beams subjected to

acoustic and thermal loads applied simultaneously.

1.3 Outline of the Study

The acoustic fatigue life prediction problem is very important to military and civil
aircraft. The problem consists of three major parts: (1) acoustic loading analysis; (2)
determination of the response of structures; and (3) estimation of the fatigue life of the

materials. In this study, only the second part will be considered.
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Since the structural response due to intense acoustic pressure levels is extremely
nonlinear and strongly dependent on the thermal environment, the method of superposition
is not applicable. Rather the thermal effects must be integrated and coupled directly into
the acoustic-structural analysis. The finite element formulations by Chiang, C. T. Chen
and Robinson did not consider temperature effects. The formulation by Locke treated
the two loads in sequence; thus there is no inter-dependence between the thermal effects
and the acoustic-structural response. In the aforementioned literature survey, it appears
that studies of the nonlinear random response of structures subjected to simultaneously
applied acoustic and thermal loads using the finite element method are not available in

the literature,

In addition, only normal incidence acoustic pressure loads have been considered in
all the existing investigations. It appears that studies of the nonlinear random response
of plates subjected to a grazing incidence acoustic wave using finite element method are
not available in the literature.

Therefore, this dissertation will develop a finite element formulation and solution
procedure which is believed to be the first attempt to analyze nonlinear random response
of complex composite panels subjected to simultaneous acoustic and thermal loads, and

the acoustic pressure can be either normal incidence or grazing incidence.

In Chapter 2, the formulation for the problem is derived. The formulation is based
on von Karman large deflection theory and the first order shear deformation theory. In
Chapter 3, the solution procedure is described. Using linear vibration modes of the
thermally buckled structure, the governing equations are reduced to a set of nonlinear
coupled modal equations. The equivalent linearization technique is employed, because
satisfactory results have been obtained using this technique. Finally, in order to uncouple

the linearized modal equations of motion, the modal transformation is utilized once more.
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In Chapter 4, the numerical results are presented. It includes thermal buckling and
postbuckling results, random response and acoustic-thermal combined response. Chapter

5 is concerned with conclusions and further work suggestions.
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Chapter 2

FORMULATIONS

In this chapter, the governing nonlinear equations of motion are derived for a plate
of arbitrary shape subjected to a set of simultaneously applied thermal and acoustic
loads. The thermal load is taken to be an arbitrary distribution, but steady-state, i.e.,
AT = AT(z,y,z). The acoustic loading is considered to be a stationary Gaussian
pressure wave with the extension such that in order to include in the travelling wave
a combination of wavelengths, the pressure at any one point is random but the whole
pattern moves in the direction A (normal incidence A=0° and grazing incidence A=90°)
with wave traveling speed c.

The following features are considered in the formulation:

(a) Initial imperfection deflection wo(x,y),

(b) In-plane initial forces {No},

(c) Arbitrary temperature distribution AT(x,y,z),

(d) Large deflections in von Karman sense,

(e) Composite materials with transverse shear deformation, and
(f) Acoustic waves directed with an inclination angle ).

The assumption regarding temperature independent material properties is utilized in
this study.

The three-node triangular Mindlin (MIN3) plate element with improved transverse

shear is extended and employed in this study. The element was initially developed by

12
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Tessler and Hughes (1985). This simple plate element of five degrees of freedom per

node in large-scale finite element structural analysis and, especially, in nonlinear analysis,
has great computational advantage. Tessler and Hughes have found that the transverse
shear energy was the major cause of difficulty, therefore a special interpolation scheme,
anisoparametric interpolation, was devised. In addition, the element transverse shear
energy was further enhanced by a suitable (element appropriate) shear correction factor.
Based on extensive numerical testing, MIN3 is an excellent element. They concluded:
“Due to its reliability, economy, and good stress recovery, it may be regarded as a
viable candidate for extension to shell, laminated composite and nonlinear analyses.”
The finite element formulation is described as follows for the nonlinear random response

of composite panels at elevated temperatures.
2.1 Element Displacement Functions

A typical triangular plate element is shown in Figs. 2.1 to 2.3 to discretize a
rectangular panel. The element displacement functions used in the derivation of the
equations of motion are:

Uy = u(z,y,t) + 29y(z,y,t)
uy = v(z,y,t) + 2¢z(z,y,1) (2.1)

u; = w(z,y,1)
where uz,uy,u, are the three displacement components at any point in the element; u,

v, w are the displacements of the middle surface; and v, and 1, are the rotations of the

normal around the x and y axes due to bending only.

The nodal displacement vector is defined as follows:

{w}T = I.I.wa7 L“/’J’ I_meJ
= “.wl y W2, w3_| ’ |_¢z1a "pzZ, ¢'z37 1pyl, ¢y27 ¢y3J 2 (22)

I_uh uz,us3, v1,v2, v3JJ
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The interpolation functions for the MIN3 element are

w(z,y,t) = |Hy){ws} + | Hwy | {¥}

2.3)

= |&1,&2,&]{ws} + | L1, La, L3, My, M, M3 ) {3}
Ya(2,,1) = [Hy, | {9} = [&1,62,63,0,0,0]{)} 2.4)
Yo 0:8) = [Hy, {9} = 10,0,0,61, 2, €] {#} (2.5)
u(z,y,t) = [Huf{wm} = |£1,62,6,0,0,0]{wn} (2.6)
v(z,9,) = | Hol {wm} = |0,0,0,41, 62, &) {wm} @7

where {1, £2,¢3 are the area coordinates, and the transformation between x,y and ¢; is

1 &
1 1 1
zy=|z1 z2 z3|K&
Yi Y2 Yy3
y &3
£ 1 (2.8)

1 (T2¥3—T3y2 Y2—Y3 T3 — T2

b p = 24 |TWI— T3 Y3~y @1—z3f{<
T1Y2 = T2Y1 Y1—Y2 T2 — T

€3 y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15
where 24 = (z2 — z1)(y3 — 1) — (z3 — z1)(y2 — ¥1), A is the area of the triangular
element, (z;,y;) is the coordinate of the node i; and

L=

(o 2]

(b3 Ny — b2 Ng), Lo = -;-(611\75 — b3 Ny)
Ly = %(szs —biNs), My = -;-(ast —a3Ny)
M; = -;-(asM —a1Ns), M3 = -é—(ale — a3 Ng)
Ny =468, Ns =488, Ne =464 2.9)
a1 = 33, a2 =713, 63 = T2,
b1 =y23, b2=ya, b3=1y12

Tij = Ti — Tj, Yij = Yi —Yj

kl'm!
kelpm - :
/§§§ dA—2A(2+k+l+m)! (2.10)
A
2.2 Nonlinear Strain-Displacement Relations
The von Karman strain-displacement relations are given as
€x
{e =1 &  ={} +2z{x} (2.11)
Txy

where {¢°} is the in-plane strain vector, and {«} is the curvature vector such that

u,x 1 W'Zx w’xwo’x
{°} = vy + ) w2 + W,yWo,y
Uy + Vx 2wawy W xWo,y + W,yWo,x
= {em} + {3} + {3}

Py x
{s} = Yxy (2.13)
¢y,y + "‘l)x,x

(2.12)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

where subscripts m, b and o denote that the inplane strain components due to membrane,

bending and initial imperfection deflection respectively. The shear strain-displacement

Yyz Wy Pz
{1} = { } = { } + { } (2.14)
Yzz Wz 'rl’y

where the “,” denotes derivative.

relations are given by

2.3 Constitutive Law

For the k-th layer of a laminate with an orientation ¢, the stress-strain relations are

ox Qu Qiz Qi
{oh = {Uy } = [912 Qa2 926} ({e} = {eat},) + {ono}
k k

Txy Qs Q25 Qs
= [Q]({e} = {ear};) + {owo} 2.15)
Tyz A A Tyz
- _ |Qaa Q45] A
{rhe = = |Gn Gely [=[0dn)
Tzz ) Yzz
where the free-expansion thermal strain vector is
147 ai
¢ s —c3
{eathi=qoy p AT=|s* ¢ cs ag » AT
9%s —9cs (c2_82) . (2.16)
Qzy ) 0 ),

c=cos¢, s=sin¢

where [Q], is the transformed reduced stiffness matrix for the k-th lamina, and {oy,}

is the initial stress vector corresponding to {N,}.
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2.4 Resultant Laminate Forces and Moments

The resultant forces, moments and shear forces per unit length acting on a laminate

are obtained by integration of the stresses in each layer through the laminate thickness

Lo

(NL MY = [ {oh(l2)de @.17)

-
2

and
h

2 [Ty,
{R} = / { ’ } dz (2.18)
b \Tzz j

where {N} is the resultant force, {M} is the moment and {R} is the shear force vector.

The laminate shear stiffness is

h
2

_ [[Qu Qs
l4s] = ,/ [Q54 st]dz 219

i

For a lamina in the material axes, the so-called reduced stuffiness are

1 —vizvm (2.20)

Q44 = G23

@55 = G13
where G12,G23 and G113 are the shear modulus of the materials. Then the transformed
reduced stuffiness are
[Q] = [T Q"
¢ g 2sc
T)=1|s & —2s¢ (2:21)
—38C 8C CZ - 82
s=sing, ¢c=cos¢
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The above equations, Egs. (2.17) and (2.18) can be written as

uf =l o{EH-{an {7}

M B D||« MAaT 0 (2.22)
{R} = [A.){}

where [A], [B] and [D] are the laminate extensional, extension-bending and bending

stiffness, respectively, and [A,] is the laminate shear stiffness. The free-expansion thermal

resultant force and moment vectors are

>

({Nar}, {Maz}) = / (0], {ear}e(t, 2)dz 2.23)

.3

and {N,} is a known initial force vector.
2.5 The Principle of Virtual Work

The virtual work done by internal and external forces are

Win = [ (1610 + (0T + alonTRY) A (220

Wt = /A [Sw(p(x,y, ;) — phw 41)

+6u(—phu,u) + 5V(—ph V,gt,)]dA

where p(x,y,t;A) is the acoustic excitation, A is an incidence angle for normal or grazing

(2.25)

acoustic wave, p is the mass density of the laminate, and « is a shear correction factor,

1

1=4,9
1+ 0.5-2-—,%“

It is assumed that the rotory inertia effect is negligible for relatively thin plate (a/h>50).
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Some geometric matrices are defined below:

wy 0 Wo,yz
(6] = |:0 u”y:l’ [60] = [

wm W,z

Wo,y

19

0
Wo,y
Wo,z

w
i (2.27)
{G} = { } = [Cys}{ws} + [Cyy] {¥}
W,y
1 o1
{5} = '2'[9]{6'}, {6} = '2'5([0]{G}) = [0]{6G}
- 3 ]
'a'EI.HuJ
9 y3 y31 yiz 0 0 O
[Cm] = a—y[HvJ =§Z 0 0 0 z32 13 91 (2.28)
9 5. T32 T13 T21 Y23 Y1 Y12
5;leJ+5§LHﬂJ
0
| Hy]
oz " 1 lya3 ya1 ylZ]
Cul = = 2.
[Cul =19 | "7 [m v o (2.29)
Oy
2| Hu)
[Cou] = Oz _1 [Cw;n Cyprz Cyp1s Cyyprs  Cyyis C¢¢1s]
;—[Hw o) | 2AlCwm Cwn Cywzs Cysn Cyuns Cuus
)
- - (2.30)
2 |y,
) 110 0 0 wys yu y2
[Col = | 5 [ Hs.) =5glem s em 0 0 0| (3D
8 F) Y23 Y31 Yi2 T332 T13 ZT21
|55 [Hue] + 5 Ly, -
0
7= [ Hu)
Jy 1 [3332 T13 3«'21]
Copl = =
[C] 9 |Ha] 24 y23 ¥s1 Y12 2:32)
dz- "
7]
== | Huw] + | Hy. ]
[Crel = |
%I_Hmb.l + I.H'/’y_' !
_ [C¢¢21 +& Cyypr+8& Cyyaz+8 Cyyae Cyypas Cyyas
Cyy11 Cypr2 Cypis  Cypra+8& Cyyis +&  Cyyps +(gs N
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where the C¢¢ij’s (:=1,2; j =1,2,...,6) are related to the area coordinates and the

coordinates of the three nodes given in the Appendix A.

Substituting Eqgs. (2.28)-(2.33) into Eqgs. (2.12)-(2.14), one obtains
{(6°Y" = {60} [Cal” + {6us}T [Cys) T [0 + {60)7 [Cy) T 161

+{80s)T [Cyn) T10a1T + (60} [Cys) " [001"

(N} = (A€} + [Bl{s} ~ {Naz} + (Vo)
= [A)Cul{wm} + 514101 (O] ) + [Cyu 1) + AIE) O] o)

+AJ(6] [Cyy] {0} + [BICsH{#} ~ {Nar} + {No}

60T = {5037I0HT
{M} = [B{e’} + [D]{x} — {Mar}
= [B][Cm{wm} + %[B]M([Cm {ws} + [Cyu] (#) + [BIO1[Cys] {wso}
+[BI8) [Cyy] {0} + [DICH|{$} — {Mar}

{67} = {6w}T [Cop) " + {68} [Coy)

{R} = [As][Cyp] {ws} + [4s] [Cyy) {¥}

The virtual work principle gives

6VVint =4 Wezt

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)
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Finally, from Eq. (2.24):

Wins = / (16eYT (N} + {6)7 (M} + a{61)7 {R) ) dA
A

= / {160m Y (Cnl” ([ANCm o} + SAIG [Cys s} + {461 [Cy) (9}
A
+HAYO [Con] {wno} + [AVO) [Cyu] {80} + [BIICH{Y} — {Naz} + {No})
+6w) T [Ca) 101 ((AICm] (wm} + STAI6 Con] fus} + S1AI61 [Cog] ()
+AIO) [Cys) {wso} + (AN} [Cyu) (¥} + [BICH#} - {Naz} + {No})
H8Y [Cys) 101 ([ANClom} + 511G O] f} + 5 AN [Coy] )
+HAIO)[Cy] {wso} + (AT [Cyy] {0} + [BICHY} — {Nar} +{No})
+5wn)T [Cos] 10T (1ACml ) + STANA[Cya] fus} + 5LATENCyo {5}
+1AJI8) [Cys] {wso} + [AI0) [Cyo) {0} + [BIICH{#} — {Nar} + {No})
+{9Y [Cye] 10017 ([ANICHwom} + 5 (AT [Cys] {8} + A0 Coy] )
HAYO [Coa] {wra} + [AIG] [Cyy] (B0} + [BICHHY} — {Naz} + {No})
+{o0Y (Gl (IBICml{wm} + 3BUAN [Cas] (s} + 5 BII [Cy] {4}
+{BI61[Cya] {wio} + [BII) [Cou] {0} + [DICI {6} - {MAT})
+afow}” [Cp]” (14d[Cos] ws} + (A4 [Coy] ()

+a {8} [Cry]” ({4l [C){ws} + (4 [Coy) (1) }dA
(241)
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and from Eq. (2.25):

Wear = [{(1600)7 {Hu} + (68)" (Hov})

A

(p(m, Y,4;A) — ph (LHwJ {Ws} + | Huy) {¢}))

(2.42)

~ph {60 )T ({Hu} Hol {Bn}) — ph{6m )} ({Ho} Ho) {im}) }dd

2.6 Element Equations of Motion

The application of the principle of virtual work to derive the element equations of
motion and the element matrices is lengthy and tedious. There is a total of 56 terms in
the expressions of virtual work. The equations of motion for the MIN3 plate element
may be written in the matrix form as

wp
0 0 0 [ko]b [ko]w, [kO]bm
0 [kly [Klym | + |[kolyp [koly [kolym P
0 [k]m',b [klm [ko]mb [kolmw 0

Wy
(kwvaTly  [knaTlhy O [knvols  [ENolsy O
- (l:[kNAT],I,b [kNAT],/, Ojl - [[kNoLpb [kNo]¢ 0}) ¥
0 0 0 0 0 0
{;‘,,

1 0 [nllyy [Py, [nloly  [nloly, 0O
+3 [nl]y,  [nlly  [pllym | + [[Plolys [2ll), O P
P11l [71]ng 0 0 0 0

Wm

(Continued on the next page)
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w
1 ([ Plamly  [RlNmly, O n1nsly  [nlnsley O
+§- [nle]tbb [nleLb 0| + [nle]¢b [nle]¢ 0 (!
0 0 0 0 0 0
wp wp "
1 [[nz]b [n2],y 0] [[ks]b [ks)p 0}
+z|lr2lyy [R2ly, 03¢ pteflksly [kl, 0|{¥
310 0 0 0 0 0
Y "
m], [mly, O .
+ {[mly [ml, 0 P
0 0 [m],
{r()}y 0 {paTo}s 0 {pNoo}s
=4 {pp(®)}, ¢ +{ {PaT}ly {43 {PaTo}y 7 +40 + 4 {PNooly
0 {PaT}m 0 {pNo}m 0
(2.43)
or in the short form,
(K] + (ko] — [knaT] + kno)){w}
+5(0a1] + [alo] + lal] + [l )}
(2.44)

+3lzl{w} + olkel{w} + [ml{5}

= {pp(t)} + {paT} + {PATo} + {PNo} + {PNoo}
where [m], [k] and {p} denote the element mass, linear stiffness matrices and load
vector, respectively, and [nl] and [n2] denote the first and second-order nonlinear
stiffness matrices, respectively. The subscripts b, 1 and m denote the transverse,
rotation and in-plane components, respectively. The subscripts s, 0, No, NAT, Nm, Nb
denote the stiffness matrices which are due to transverse shear, wo(x,y), {No}, {Na;},
{Nm}(=[A]{€2,}), and {Np }(=[B]{«}), respectively. The expressions for element linear

stiffness, nonlinear stiffness, mass matrices and load vectors are given in Appendix B.
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2.7 Grazing Acoustic Wave

The grazing incidence acoustic wave applied on a plate can be treated as an extension
of the plane wave which includes in the travelling wave a combination of wavelengths
such that the pressure at any one point is random but the whole pattern moves in the
direction A with wave traveling speed c¢. The pressure distribution on a plate is then

given by (Clarkson, 1986)

(o,

p(w,y,t)=§1; / P(w)ei(t-2sind) g, (2.45)

~00
where x is the coordinate along the wave travelling direction, and assume that the pressure
distribution is independent of y. This model is suitable to represent the waves in the

progressive-wave test facility, Fig. 2.4.

For a random plane wave, the pressure at a point can be written in the Fourier

integral form:
1
_ D 1wt
=5 / P(w)e**dw (2.46)

Physically, this is equivalent to representing the oncoming wave as the sum of an infinite

number of waves of different wavelength.

The nodal force vector of an element can be calculated, Eq. (B.69), as:

{pp(t)} = / {Ho}p(z,y, £ \)dA

. o0 (2.47)
- / P(w)et / ~i26in) (1 VdAdw
Let
{Y(w)}= / ~emnd o }dA 2.48)
A
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then we have

oo

) =57 [ POV @)as 2.49)

—00
where {H,} is defined in Eq. (2.3) as

{ws}

w(z,y,1) = {Hw}T{{¢} } = {(Hu(z,9)} {ws} + {Huy )" {8} (2.50)

and the nodal displacement components {w;} and {1} are defined in Eq. (2.2). Therefore,

. P(w){Y(w)} is the Fourier transform of {p,(¢)}. The spectrum density of {p,(t)} js
(Clarkson, 1986)

{87@)} = Jim ZIP@1{Y@)

= Sp(){Y (@)}’

(2.51)
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{No} known

Vo known

Fig. 2.1 An Initially Deflected and Stressed Plate

Z,W 7

Z 1 «—>——» xu

Fig. 2.2 A Typical MIN3 Element.
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Fig. 2.3 A Mindlin Triangular Plate Element
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Fig. 2.4 Grazing Acoustic Wave
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Chapter 3

SOLUTION PROCEDURE

3.1 Static Component and Dynamic Component

The system equations of motion can be written as

(MI{W } + (K] + (K] — [Kwar] + [Kno){W)
+5INI{W} + VW) + oKL 1W) 3.1)
= {Pp(t)} + {PaT} + {PaTo} + {PNo} + {Proo}
where {W}T = | W}, U, Wi ). The subscripts s, 0, No, NAT, Nm, Nb denote the stiffness

matrices which are due to transverse shear, wo(x,y), {No}, {Nao1}, {Nm}(=[Al{ed, D).

and {N, }(=[Bl{«}), respectively. And

Nl = > ([n1] + [nlym] + [nlwe] + [n1o]) (3.2)

assembly

In order to solve the system equations of motion (Eq. (3.1)), an innovative solution
procedure is described as follows. First, the response is assumed to be the sum of {W},
and {W},, ie. {W} = {W}, + {W},, where {W}, denotes the time-independent or
static component and {W}, the time-dependent or dynamic component. The displacement
{W}, represents a stable static equilibrium position due to thermal load and the mean

of the random excitation E[{P,(t)}]; while {W}, represents the zero-mean random

28
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response. Substituting {W} into Eq. (3.1) and regrouping the terms, the equation is
of the form F({W},) = G({W},) with

F({W},) = (K] + o[K,] + [Ko] — [KnaT] + [KNo]){W},

1 : (33)
+5 V1, {W}, + 5(N2,,{W}, - {Par} — E{R))}]
G{W},) = [M]{W}t + (K] + ofKs)] + [Ko] = [Knar] + [Kno)){W},
1 2 1
3 (I + 5101, ) W3, + 1o, ot

A3 IV WY+ (V2 + N2, + VL)), + {7},
—{B®)} + E{RD)]
In Eq. (3.3), the load vectors {PaT,},{Pno} and {Py,,} are temporarily dropped. The
left-hand-side of the equation, F({W},), is indepéndent of time t; while the right-hand-
side, G({W},), is time dependent. Therefore, the only possibility for both F and G to
exist is that both F and G equal zero, and the following two equations are thus obtained:
([K] + o K] + [Ko] - [KnaT] + [Kno]){W),

1 : (3.5)
+5IV1{W}, + 3[N2),,{W}, = {Par} + E{By(t)}]
[M]{W}t + ([K] + ofKs] + [Ko] — [KnaT] + [Kno){W},
1 1 1
+(GIV1,+ 32L,) (93, + v ), 56

+3IVILAW Y, + (N2, + N2, + N2 (W, + (W),

= {B(1)} - E{P(t)}]

where the subscript [ ], denotes that the corresponding stiffness matrix is evaluated with

the static deflection, and [ |, is evaluated with the dynamic deflection.

Examination of Egs. (3.5) and (3.6) reveals that both equations are nonlinear. The
Newton-Raphson iterative method is used to determine {W}, from Eq. (3.5). Combined

normal mode method and equivalent linearization technique are then applied to Eq. (3.6)
to obtain {W},.
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In Eq. (3.6), the matrix [N1]s which is ignored in reference (Locke, 1988) is due

to the membrane component of thermally postbuckling displacement {Wa7}. The term
[N2]ss{W}; is due to the combined effect of {War} and {W},, which has a different
coefficient in Locke’s formulation(1988).

When comparing the SeQuential Load method(SQL)(Locke, 1988) with the
SiMultaneous Load method (SML), the SML is mathematically more logical, straightfor-
ward, and easier to formulate nonlinear problems with combined loading. The solution
procedure itself can take care of the inter-dependence between the thermal effects and
the acoustic-structural response. In the SQL method engineering judgment is essential,

otherwise some terms might be missed.
3.2 Thermal Buckling and Large Thermal Deflection

To obtain the critical buckling temperature change AT, (z,y) for a plate, it is
assumed that the prebuckled configuration is flat and without coupling between bending

and extension. The linear system equation in membrane (see Eq. (2.43))

[Km]{wm} = {PmAT} (3.7

is solved for an assumed temperature distribution AT first. Once {W,,,} is obtained, one
can calculate the first-order nonlinear stiffness matrix [N1y,,]. Because the nonlinear

term due to transverse deflection does not exist, the stability equation of the investigated

plate becomes

AW,
([Kb]—[KNAT]+[N1Nm]){ }=0 (3.8)
AU
where
_ {00 Kgp Kby
o) = [0 wa] +a[Ka¢b Kw] (39)
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Examination of Eq. (3.8) reveals that [K}] is independent of temperature, and

(—=[KnaT] + [N1nm]) is proportional to temperature change. Therefore Eq. (3.8)

describes an eigenvalue problem. The critical buckling temperature change is
ATy = MAT (3.10)

where A is the lowest eigenvalue. For a non-symmetrically laminated plate, the AT,
from Eq. (3.10) is referred to as the reference temperature, AT,;.

The iterative solution scheme is to seek a solution {W}, of F({W},) = 0. The
Newton-Raphson iterative method is a well established procedure for solving time-

independent nonlinear problems. This method involves a repeated solution of the equation

for the i-th iteration
[‘K]T,i{AW}s,i+1 = {AP }s,i (3.11)

Then [K ]T’,- 41 and {AP}s,,- +1 are updated using {W}s’,- 1= {W}s’i+{AW}3,,- +1- The
solution process seeks to reduce the load imbalance, and consequently {AW},, to a

specified small quantity. The tangent-stiffness matrix is determined from

_[aFqWY)T _
K= | Ty = U1+ ol + Ko 6.1
+ [KNO] - [KNAT] + [N]']s + [N2]ss
where [K] includes oK), [K,] and [Ky,]. The load imbalance vector is
(AP}, = (P}, = ([K]+fK.] + [KG] + (K
(3.13)

- (o] + 5V, + N2, ) (),

where {P}, = {Par} + E[{P,(t)}]. The linear buckling mode shape from Eq.(3.8)

multiplying a scale factor is usually taken to be the initial trial solution of Eq. (3.11).
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3.3 Nonlinear Random Response

After solving for {W}, from Eq. (3.5) and evaluating the matrices [N1], and [N2],,,
Eq. (3.6) is ready to be solved. First, Eq. (3.6) is reduced to a system of coupled
nonlinear modal equations with reduced degrees-of-freedom. The linear vibration modes
of the deformed structure are used to transform the system equation of motion to modal
céordinates. The resulting nonlinear modal equations of motion are then linearized using
the equivalent linearization method. Finally, in order to uncouple the linearized equations

of motion, a modal transformation is used once more.

Coupled nonlinear modal equations

From Eq.(3.6), the linear frequencies and mode shapes of the deformed structure can

be obtained by solving the eigenvalue problem
([K]+ oK) + [Ko] — [KnaT] + [Kno] + [N, + [N2],,){4},

(3.14)
= wi[M}{¢},

where it is assumed that

V11, {W}, = NI, (W}, + S [V1L, (W}, (3.15)
and
N2, (W}, = gIN2 (W), + 5V W), + SIN2L, (W), G

Actually, from numerical tests this assumption doesn’t introduce significant error. Solving

Eq. (3.14), the truncated modal matrix is given by

[¢] = {8h: {¢}ar- .-, {}A] (3.17)

where N is the number of modes to be used for the analysis of Eq. (3.6). Now {w},

can be written in terms of the modal amplitudes as

N
W) =1el{a} =) {¢},tn (3.18)

n=1
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Using Eq. (3.18), the first-order nonlinear system stiffness matrix can be written in terms

of {q} as the sum of first-order nonlinear system modal stiffness matrices

N
N1, =Y galN2I™ (3.19)
n=1
and
VY = 3 (lnl] + nlwm] + [nLo] + (1) ™ (3.20)
1 1
SIVIAW}, = 5[K1],{g) (3.21)
SN2, + N2 )WY, = 212, {a) (622
1 1y ()
§[N2]u{W}s =3 Z_:l an[K 2] {q} (3.23)

where the ith column in [K1],,[K2],, and [K2]\™ are
{K1}y; = INUO{W )5 (K2} = (N2, + [N2],,) (W),

N
{K2}3) = Y N (W),

r=]1

(3.24)

The second-order nonlinear system stiffness matrices as the sum of second-order

nonlinear system modal stiffness matrices are

N
N2y =Y anlN2IY) (3.25)
n=1
and
V2P = Y [ (3.26)
assembly
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[N2],, = an[Nzl‘“’ (3.27)
n=1
NP = S 2l (3.28)
similarly
[N2], = Z Z anar[V2)S) (3.29)
n=1 r=1
V) = > o) (3:30)

assembly

where superscripts [ ]™ and [ ]™ denote the corresponding nonlinear modal stiffness

matrices evaluated with the modes {¢}, and {4},.

Substituting these nonlinear modal stiffness matrices into Eq. (3.6), a set of nonlinear

coupled modal equations of motion can be expressed as

(81" GUW},) = [MI{G} + [K tinear (g}
+ 10 (i, + [K213,){q}+ LS gk i)

n=1
LY (S dwv Lo Yo @
n=1
+ [¢]T( > anqr[Nzl‘"”) [#l{g} - {f} =0
n=]1r=1
where the modal force vector and the diagonal modal mass and linear stiffness matrices
are
{f} =41 {P}, (3.32)
mq 0
[M] = [¢]" [M][¢] = [ } (3.33)
0 my
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1R Dtear = (87 (U1 + o]+ 2]~ vt + i) + 3N, + 32, )

|:wfm1 0

0 wﬁ,mN

(3.34)
{P}, = {R®)} - E{P()}] (335)
and [ | denotes a diagonal matrix. Equation (3.31), is a set of coupled nonlinear modal

equations, which is linearized using the equivalent linearization method (Atalik and Utku,
1976, and Roberts and Spanos, 1990).

Equivalent linearization and coupled linearized modal equations

Rewriting Eq. (3.31) in the form

{s({eh} + M[{g} = {£} (3:36)

the corresponding linear form of Eq. (3.31) can be expressed as

[K){q} + [M){§} = {f} (3.37)

where [I_{ ] is an equivalent linear modal stiffness matrix. The error vector involved

in using Eq. (3.37) instead of Eq. (3.36) is given by the difference between the two

equations as

{e} = {s({ah)} - [K]{q} (3.38)

The equivalent linear stiffness matrix [K] can be found by requiring that the mean square
value of error be a minimum. Thus we have

OF (e} {e}]

T =0 n,r=1,2,...,N (3.39)
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Substituting {e} and {g({g})} into Eq. (3.39), the equivalent stiffness matrix [K] can

be determined from the equation

E[{a}{a}"] (K] = E[{aHs}"] (3.40)
The right-hand side of Eq. (3.40) can be evaluated as
Blta6)") = E[(aHa)"] 1K + B[t} 0" [0 (5180 + )]
32E[q,,{q}{q} ) [ te2]
+ 3 Elantatal”] " (Gl + v+ gval?) o
+5 2 2 B marla} )" vt ]
= E[{aHa)"] K Jiear + E [{aHa)"] [[¢1 (31, + [Kzlst)]T
+ 32T E[nala) o)) (2"

(3.41)

since E [qn{q}{q}T] = 0 for Gaussian process, and
(K2 = 28T IN (g (3.42)

If the covariance matrix E [{q}{q}T] is known, the equivalent linear stiffness matrix [K]
can be determined from Eq. (3.40). However, {¢} has to be obtained from Eq. (3.37)
and [K] is not known. In order to solve Eq. (3.37), modal coordinate transformation is

used once again with an iterative scheme.
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Uncoupled linear modal equations

The modal transformation is used once more and it is determined from the equation

[K]{8} = 02rm) {3} (343)

and the modal transformation matrix is defined as

tat=[{8},. {8}, {3}, ] tm = [ tm} (3.44)

Equation (3.37) thus becomes a set of uncoupied modal equations

iij + €nj + Qn; = f; i=12...,N (3.45)
where 7
{3
fi= (3.46)
T -
m; = {8}, [M1{3}. (3.47)

and £n; = 2wy %; is the modal damping term which has been added to Eq. (3.45), and

wyy is the first linear frequency of the deformed system, which is obtained from Eq. (3.14).

Solutions for the uncoupled modal equation of motion (Eq. (3.45)) for the case of

Gaussian white noise uniform random load p(t) are given in the following form

Elnjn] = Spfifeljn (3.48)

where
7 4
Ijp= / Hj(w) Hy(—w)dw = . mé (3.49)
5 (% -04) 26 (% + 08) + 1
where
1
Hj(w) = Tt ie (3.50)
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and Sp is the double sided loading spectrum density. Using Eq. (3.44), the covariance

matrix of the coupled modal amplitude becomes

E[{q}{q}T] = E[[qﬁ] {nHn}" [53] Tl 65
= [8]E[mm] 4]
The deflection spectrum density is as follows:
Gy = Spfj frHj(w)Hy(~w)
(3.52)

T
7 7 T
(Gl = [41[3] [Grini] [9] 191
For grazing incidence, the covariance terms for the case of ideal white noise excitation

can be expressed as

Elnim] =2 [ $,()125(0)2(0) 1H(0) i -w)ldo (353)
0
where
1 (T
7i() = {8} W (Y ()} (3:54)
and

{Ywi= > / [cos (wmiino)—isin (“’“ci“o)]{zw }dA (3.55)
wy

element 4
In order to calculate E[n;n:] from Eq. (3.53), & simple numerical integration method
is used, the cut off frequency is 1.5 * Qy.

Iterative solution procedure

Therefore, Egs. (3.40), (3.41) and (3.51) can be used to determine [K] and
E [{q}{q}T] . However, since each of these quantities is dependent on the other and
these equations are nonlinear, they must be solved by an iterative method.

The first approximation of [K| and E [{q}{q}T] is obtained by neglecting the cross

terms in E [{q}{q}T] , (ie. Elgngs] = 0 for n # r), and assuming that all the equations
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in Eq.(3.37) are uncoupled. The diagonal terms in the equivalent linear stiffness matrix

[K] can be expressed from Egs. (3.40) and (3.41) as
Run = Kn + 3(K200) "™ E[g?] (3.56)

where (K 2,,,,)(’"') are the diagonal terms of the second-order nonlinear stiffness matrix,
the subscript nn denotés the diagonal term and the superscript (nn) denotes the term is

due to the n-th mode {¢},. From Eq. (3.43) Q% can be written as

02 = Ko _ o2 4 3K B[ 5, 337

n
and E[gZ] is found from Eq. (3.48), for this uncoupled first approximation (7, =

qn, }:l = fn/mn), to be

2
Elq] = $p % ( gm) (3.58)

Using Egs. (3.57) and (3.58), E[g?] is determined to be

E[¢}] = (VBT +4C - B)2 (3.59)

where
B = Kp/3(K %)™
(3.60)
C = Spf2in/3tmp(K 2nn)™

To begin the iteration process the cross terms are no longer neglected. The cross
correlation terms E[gng,] are evaluated using Eq. (3.48) with Eq. (3.49) and (3.51). Using
Eqgs. (3.40) and (3.41), the equivalent linear stiffness can be computed. After obtaining
[K], a new iterative cycle begins. The iterative process goes on, until some convergence

criteria are satisfied, (e.g., Mﬁ?}j’ﬁ < 1076 for all n). The covariance matrix

is found from

E[w} AW} | = WIE[{aHa)"] 6" (3.61)
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3.4 Strain Formulas

After the displacements for a given combination of thermal and acoustic load
condition are known, the element strains can be calculated using Egs. (2.11), (2.12),
(2.13) and (2.14). Because the displacements consist of two parts, dynamic and static,

the strains are expressed as

{e} = {°} + 2{r} = {e}, + {¢}; (3.62)
{7} ={}s + {7} (3.63)
where 1
{e}s = [Cal{wn}, + 5[0]3([0,,,,,] {ws}s + [Cyp] {#1,) 368
+001, ([Cul {wso} + [Cyp] {wo}) + 2IChl{¥},
and
N N N
{ee = _{ehigi+ Y. ) {ehojnaiae (3.65)
j=1 7=1 k=1
where

{e}1; = [Cml{dm}; + [6);([Cys) {wro} + [Cyy)]{¥0}) + Z[Cb]{¢¢}j (3.66)

{elojr = ‘21‘[0]j([0¢b]{¢b}k + [Cys} {0 }1) (3.67)

wy, 0
[9] =10 W,y
w,y 'w’z

w.e (3.68)
{ } = [Cys){ts}; + [Cyy] {d0};
Wy ) j
and the shear strain,
{1}s = [Co)]{ws}, + [Cry] {¥}, (3.69)
and
N N
=Y ([Cnliea); + [Crol {89}, )ai = - thyyas (3.70)
Jj=1 j=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using the above {e}, and {¢},, the stain vector can be expressed as

E[{edel]] = )3 (2tesHenis}" + {ehilehy; ) Blaigs]

=1 j=1
N N N N

+ Z Z Z Z {5}2ij{€}gklE gigigrai]

=1 j=1 k=1 I=1
and

N N
B[(n}int] = 2 X (rhiln T Blaias]

1=1 j=1
where

Elgiqgjarql] = Elgigj|Elgral] + Elgiqr)Elgjql] + Elgiai] Elgjax]

41

(3.71)

(3.72)

(3.73)



Chapter 4

NUMERICAL RESULTS AND DISCUSSION

4.1 Formulation and Computer Program Validation

4.1.1. Twisted Ribbon Tests

A cantilevered, thin rectangular plate subject to a twisting moment at the free end is
regarded as a severe test for plate bending elements under large aspect ratio distortions
(Robinson, 1979). Herein, the mesh A (Figs. 4.1 and 4.2) results has been repeated.
The tip deflection results are compared with the results produced by the popular nine
degrees-of-freedom, thin triangles, namely, BCIZ1, HSM, HCT and DKT, are shown in
Figs. 4.1 and 4.2. In this comparison, the MIN3 which is adopted for the present random

analysis appears to outperform the other triangular elements.

4.1.2. Static Analysis of a Rhombic Cantilever

This problem deals with the analysis of a rhombic cantilevered plate subjected to a
uniform load. The geometry and material properties are given in Figure 4.3. Experimental
results of this problem are available for comparison (Clough and Tocher, 1965). A 4 by
4 mesh (32 elements) is used and the results obtained with MIN3 and test are given in
Table 4.1. It is observed that even with this coarse mesh, the MIN3 element gives results

that are in good agreement with the experimental values (Batoz et al., 1980).

42
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4.1.3. Thermal Buckling and Post Buckling

For this problem, a square plate with two boundary conditions is calculated, one is
simply supported and the other is clamped. The results are compared with the results by
Paul (1982) and Singh (1993), the same data are obtained.

For the simply supported square plate, the results are given below:
AT, = 1.77T7°F

AT War _ @y

AT = 2.0 — = 0.852
For the clamped support square plate, the following is obtained:
AT, = 4.67°F

AT War _

AT 1.19 5 = 0.58 “
AT _ 140 WaT_ g5 '
AT, h

AT War

=162 ——=1.

AT 1.6 5 1.054

4.1.4. Random Response and Strain Validation

The plate used by Chiang (1988) was analyzed as a validation example. The plate

is of the following dimension and material properties:

Young’s modulus E =10.5 x 10%psi

mass density p =0.2588 x 10731b — sec?[in.t
damping ratio ¢=0.01

length a = 15n.

width b=12in.

thickness h = 0.04in.

Poisson’s ratio v =033

The results obtained by the present study and Chiang are shown in Table 4.2. Because
the elements used are different, the difference of strain values for N=4 is relatively large.

The others are close.
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4.2 Thermal Buckling and Postbuckling Results

In order to better understand the response of a plate to combined acoustic and thermal
load, the thermal buckling and postbuckling behavior of a composite plate is studied in

this section. Seven cases are investigated. The graphite-epoxy material properties are

taken as:
Young’s moduli E1 =225 %108, Ey = 1.17 x 105psi
Shear moduli Gaz = 0.4 x 105, G2 = Gy3 = 0.66 x 108psi
Poisson’s ratio vi2 = 0.22
Therm. expan. coeff. o1 = —0.04 x 1078/F°, ap = 16.7 x 10~8/ F°

The finite element results are presented as follows:

4.2.1. Effect of Extension and Bending Coupling

The bending and extension coupling is studied first. A two-layer Gr/Ep rectangular
laminate ( 15x12x0.048 in.) with the stacking sequence of (0/90) is considered. For this
case the extension and bending coupling matrix [B] is not equal to zero, therefore a critical
buckling temperature does not exist. When the laminate is subjected to the temperature
change, the bending deflection occurred immediately. The postbuckling deflection is
shown in Fig. 4.4 for the simply supported boundary condition. The AT used in the
figure is 13.37F°. This value of AT, is only for reference purpose and it has no physical
meaning. In the calculation, the full plate is discretised with 128 elements as an 8x8x2

mesh. From the figure one can see that there is no bifurcation critical temperature.
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4.2.2. Isosceles Triangular Plate

The second problem investigated is an isosceles right triangular plate with symmet-
rical stacking sequence of (0/45/-45/90)s. The length of two perpendicular sides is 12
in. The plate is simulated by 144 elements. In Fig. 4.5, the postbuckling behavior is
shown for simply supported and clamped boundary conditions. These two conditions are
theoretically idealized, the boundary conditions in the real world are somewhere between

them, therefore they can be considered as the upper and lower bounds.

4.2.3. Effect of Shear Deformation

The plates studied are the same as the first case, i.e. 15x12 in., but the stacking
sequence is (0/45/-45/90)s. The ratio of length tc»- thickness investigated are a/h=312.5,
200, 100, 50 and 20. The critical buckling temperature is shown in Fig. 4.6. As expected,
the results show that when a/h is greater than 100, the shear deformation can be neglected.

But for thick laminates the shear deformation is important.

4.2.4. Effect of Number of Layers

The dimension of the plate studied in this problem is 15x 12x0.08 in., and the mesh
used is 8x8x2 (128 elements). The boundary support condition is simply supported.
The plate consists of (45/-45),. In Fig. 4.7, it is shown that the increase of number of
layers reduces the response due to the reduction of the extension and bending coupling.

4.2.5. Postbuckling Mode Change

The fifth problem studied is a 36x12x0.048 in. rectangular laminate. The stacking
sequence is (60/-60). The full plate is modeled by a 18x6x2 mesh i.e., 216 elements.
The results are shown in Figs. 4.8 and 49. The laminate is subjected only to a
uniform temperature change without transverse mechanical load. For this load case,

the postbuckling deflection is close to a (3,1) mode shape at low temperature. When
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the temperature change AT is greater than 20°F, there is a mode shape change and the

deflection is close to a (4,1) mode.

4.2.6. Thermo-Mechanical Postbuckling

The plate investigated in the sixth problem has the same dimensions and stacking
sequence as the previous problem. The mechanical load of uniformly distributed 0.01
psi is applied simultaneously with the uniform temperature change. Figures 4.10 and
4.11 show the thermo-mechanical deflection and the deflection shapes. It is interesting to
note that the maximum deflection exhibits slightly softened behavior at low temperature
change due to increase in thermal compressive in-plane forces. The deflection shape at
this low temperature is a combination of (1,1) and (3,1) modes due to the presence of
mechanical load. However, the deflection at the high temperature is changed to a (5,1)
dominated mode shape. The mechanical load is to simulate the static pressure difference

applied to the aircraft skin panels.

4.2.7. Effect of the Skew Angle of the Plate

In this problem, the skew angle 5 (see Fig. 4.12) of the plate varies, but the height
(12 in)) of the parallelogram is kept the same. The length of the plate is 15 in. and
the thickness is 0.048 in. The height of the plates studied is equal to 12 in. Figure
4.12 shows the postbuckling response. When the skew angle § increases the deflection
reduces. This is due to the fact that the length of 90° fibers are relatively shorter thus
making the plate stiffer.
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4.2.8. Conclusions

Seven problems were studied in this section. The extension and bending coupling
makes the plate bend out of its plane immediately when the plate is heated without
prebuckling stage. The most interesting aspect in this study is the mode shape change
and the described solution procedure which can automatically obtain the mode change
of postbuckling deflection as long as the incremental step of temperature change is small

enough, regardless of the presence of mechanical load.

4.3 Nonlinear Random Response

The numerical results of random response to normal incident acoustic pressure only
are presented in this section. An eight-layer rectangular laminate (15x12 in.) with the
stacking sequence of (0/45/-45/90); is considered first. The plate is clamped at all four
edges and with immovable inplane boundary conditions. Hereafter this plate is referred

to as Panel 1. The material properties, mass density, and damping ratio are taken as:

Young’s moduli Ey =225 x 108, E; = 1.17 x 10%psi

Shear moduli Go3 = 0.4 x 105, G2 = Gy3 = 0.66 x 108psi
Poisson’s ratio vio = 0.22

mass density p =145 x 1074 — sec?fin.4

damping ratio ¢ =0.02

The root mean square (RMS) of the maximum deflection response to a normal incidence
is shown in Fig. 4.13. The corresponding RMS maximum micro strain is shown in
Fig. 4.14. The location of the maximum strain is at the middle of the long edge, the
strain is along y axis. The response consists of three symmetrical modes (1st, 5th and
6th). The three antisymmetric modes (2nd, 3rd and 4th) do not appear in the response

because of normal incidence wave. The frequencies are shown in Table 4.3. Figure 4.15
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shows the spectrum density distribution of response vs. frequencies. When the applied

acoustic load is low, the response is linear. The peak of curve is very close to the natural
frequencies. But at high pressure levels the peaks are shifted up, when the SPL reaches
130 dB, the first peak appears at 358 Hz.

The second example is the same as the first one except for the stacking sequence.
It is a (0/90) two-layer laminate. This panel is referred to as Panel 2. The root mean
square of the maximum response to & normal incidence is shown in Fig. 4.16. The
corresponding RMS micro strain shown in Fig. 4.17. Figure 4.18 shows the spectrum
density distribution of response vs. frequencies.

The third example is a swept rectangular plate shown in Fig. 4.19. The lay-up for
this plate is the same as in Panel 1. This panel is referred to as Panel 3. The root mean
square of the maximum response to a normal incidence is shown in Fig. 4.20. The
corresponding RMS micro strain is shown in Fig. 4.21. Figure 4.22 shows the spectrum

density distribution of response vs. frequencies.

4.4 Acoustic-Thermal Response

The numerical results presented in this section concern the response to combined

acoustic and thermal loads.

4.4.1. Effect of Number of Modes

In order to evaluate the convergence characteristics of the present modal analysis
formulation and determine the required number of modes for reasonable accuracy, an
eight-layer Gr/Ep rectangular laminate (15x12 in.) with the stacking sequence of (0/45/-
45/90); is analyzed by mode numbers N=1, N=2, N=3 and N=4. Anti-symmetrical modes
are not included. The plate is clamped at all four edges and with immovable inplane

boundary conditions (u=v=0 at all four edges). The full plate is modeled with 8x8x2
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mesh or 128 MIN3 elements. For convenience, this plate is referred to as the baseline

configuration. The material properties, mass density, and damping ratio are taken as:

Young’s moduli Ey =22.5 x 108, E; = 1.17 x 10%psi

Shear moduli G23 = 0.4 x 105, G132 = G13 = 0.66 x 10%psi
Poisson’s ratio vi2 = 0.22

mass density p =1.45 x 10~4b — sec?/in.%

damping ratio ¢ =0.02

The result of RMS(Wmax/h) without temperature at SPL=130 dB is shown in Table
4.4. The first 12 mode characteristics are (1,1), (1,2), (2,1), (2,2), (1,3), (3,1), (2,3),
(3,2), (1,4), (4,1), (4,3) and (3,3). The first 12 frequencies are shown in Table 4.5.The
critical buckling temperature change is 37.38°F. The result shows that the use of three
modes obtained satisfied displacement results. Therefore, in the following calculation,

three modes are used.

4.4.2. Effect of Thermal Load

The above configuration is analyzed again with uniform AT /AT, = 0.0, 2.0, 3.0. |
For simplicity, this panel is called the baseline configuration. The root mean square
(RMS) of the maximum deflection response to & normal incidence and temperature change
is shown in Fig. 4.23. The corresponding RMS meaximum micro strain is shown in Fig,
4.24. The response consists of symmetrical modes. For this laminate the 2nd, 3rd and
4th modes are antisymmetric, and they do not appear in the response. The frequencies
are shown in Table 4.4. Figure 4.25 shows the spectrum density distributions of response
vs. frequencies at AT/AT, = 0 and 3.0 and 130 db. When the applied acoustic load
is low, the response is linear. The thermal loads increase the nonlinear stiffness and the

response is reduced due to the large temperature rise. The peak of the curve is very close
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to the natural frequencies. But at high pressure levels the peaks are shifted up, when the

SPL reaches 130 dB and AT/AT,, = = 3, the first peak appears at 2248 rad/sec.

For the simply supported boundary condition, the displacement response is much
larger than clamped case, but the strain is kept at about the same amount. The results
for the simply supported condition are shown in Figs. 4.26, 4.27 and 4.28. The strain
with temperature (Figs. 4.24 and 4.27) could be smaller or larger than the one without
temperature. It illustrates that two effects are occurred. The thermal postbuckling
increases the nonlinear stiffness which reduces the RMS deflection, the strain component
due to the RMS deflection is thus also reduced. On the other hand, the thermal strain

increases the strain component.

4.4.3. Antisymmetric Cross-ply Laminate

The material properties and dimension of this clamped antisymmetric cross-ply
laminate (0/90) are the same as the baseline configuration. Figures. 4.29, 4.30, and
4.31 show the mode shapes of this panel at AT =0, 97.792 and 149.688°F, respectively.
In these figures two features should be noticed: the mode sequence is changed with
temperature rise; and, some mode shapes are not exactly symmetric or antisymmetric as
in the case of isotropic material. Figure 4.32 shows the displacement response while Fig.

4.33 shows the micro strain distribution vs. sound pressure level.
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4.4.4. Skewed Panel and Non-uniform Temperature

The planform of this panel is shown in Fig. 4.19. The material property is the same
as the baseline configuration. The non-uniform temperature change is that at the edge
grid points the temperature change is zero, at interior grids is uniform. The boundary
condition is clamped. The results are shown in Figs. 4.34 and 4.35. The critical buckling
temperature changes for uniform and non-uniform temperature distributions are 67.36°F
and 76.32°F, respectively. It can be seen from the figures that the responses and strains
for uniform temperature and nonuniform temperature have very little difference. This
illustrates that the temperature gradient along the edge has little influence on random

responses.

4.4.5. Grazing Incidence Wave

The plate studied in this case is the same as the baseline configuration. But the
boundary condition is simply supported for transverse displacement and immovable for
in-plane displacements. The thickness of the plate is 0.048 in. The dimension is 15 in.
by 12 in. The stacking sequence is (0/45/-45/90)s.

The result of this example is very interesting. Because the acoustic wave is travelling
along the positive direction of x axis with a speed c, the acoustic pressure on the plate
along the x-axis is not uniform and the antisymmetric modes about y-axis participates
in the response of the plate. Therefore the maximum deflection point moves forward

slightly as shown in Fig. 4.36. The deflection spectrum density is shown in Fig. 4.37.

4.4.6. Effect of Initial Imperfection

If the plate has some initial imperfection in defiection, the nonlinear stiffness due to
initial deflection reduces the response as compared to flat plate. It is also stiffer than

thermal postbuckling deflection, assuming that they have the same maximum deflection
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as shown in Fig. 4.26. For thermal postbuckling, the panel is also subjected to certain

thermal stress. For initial deflection, the plate has only geometric stiffness which reduces
the random response; while thermal postbuckling plate has thermal stresses and thermal

deflection. The results are shown in Figs. 4.38, 4.39 and 4.40.
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Table 4.1 Results for a rhombic cantilever plate

53

Deflection at locations (in.)

1 2 3 4 5 6
MIN 3 result 0.263 0.178 0.108 0.103 0.048 0.019
Experiment value | 0.297 0.204 0.121 0.129 0.056 0.022

Table 4.2 Results of RMS (Wmax/h) and Micro-strain for simply supported plate

(N=number of modes)

SSL Present:N=1  Present:N=2  Present:N=4 Chiang:N=1  Chiang:N=4
RMS Micro RMS Micro RMS Micro RMS Micro RMS Micro

(dB) . . . . .

W strain W strain W strain W strain W  strain
110 104 645 104 805 107 777 1030 874 1031 1120
120 189 2132 189 2745 196 2592 1902 2565 1905 3610
Table 4.3 Linear Natural Frequencies(Hz) of Panel 1
1st 2nd 3rd 4th 5th 6th 7th
100.3 1849 2104 286.0 3210 360.8 413.6

The 2nd, 3rd and 4th are antisymmetric modes.
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Table 4.4 Convergence of RMS(Wmax/h) with Number of the Modes

No. of Modes N=1 N=2 N=3 N=4

RMS(Wmax/h) 2.0252 1.9626 1.8676 1.8695
Table 4.5 The Natural Frequencies (rad/sec.)

1st 2nd 3rd 4th Sth 6th

62995 1161.6 13220 1796.8 2016.6 2267.0

7th 8th 9th 10th 11th 12th

2598.7 2758.1 3125.7 33934 3526.6 3734.8

Table 4.6 Frequencies for the baseline configuration (rad/sec.)

AT/ATer  1st 2nd 3rd 4th Sth 6th

0.0 630.0 1161.6 13220 1796.8 2016.6 22670
20 8119 8483 1135.6 1406.0 1784.2 21228
3.0 1046.2 1100.7 1265.0 1421.6 1940.2 22514
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Fig. 4.3 Rhombic cantilever plate
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Fig. 44 Wmax/h vs. AT/ATref. for (0/90) composite plate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58



] L
- (0/45/-45/90)s,
12X12X0.048 in.
10k 144 elements
5
=
E L
E
; -
05
- Simply supported
~——0——  Clamped
0.0 1 1 4 1
0 100 200

AT(deg. of F)

Fig. 4.5 Wmax/h vs. AT for an isosceles triangular plate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59



70 T T T
(0/45/-45/90)s
15X12Xh in.
i Simply Supported
8X8X2 mesh (128 elements)
N ]} —{1
60 |- -
e~
S
=
50 | -
40 Y 1 2 1 (] 2
0 100 200

300 400

Length to thickness ratio (a/h)

Fig. 4.6 Dimensionless critical temperature vs. a/h for a rectangular laminate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60



Wmax/h

{1 n=t
i (45/-45)n & n2
15X12X0.08 in. A
Simply Supported n=3
02 8X8X2 mesh (128 elements) —O—
I ——f— n=20
0.0 . L . . : :
/0 80 90 100

AT

Fig. 4.7 Wmax/h vs. AT for various number of layers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61



0.8 - T
0.6 | -
g Mode change
£ 04 -1
2
(60/-60)
02 36X12X0.048 in. 7
Simply Supported
18X6X2 mesh ( 216 elements)
0.0 ; ? . A
1 20 30

ATer AT

Fig. 4.8 Wmax/h vs. AT for a long rectangular laminate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62



1 . ‘ ’ y v ' . Y

—{}— AT=18deg.F

—®— AT=26deg.F

Wh

0.0 0.2 0.4 0.6 0.8 1.0

x/a
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Fig. 4.29 Continued
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4th mode, Temn. Change=97.792 (deg. F)
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6th mode, Tem. Change=97.792 (deg. F)
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1st mode, Tem. Change=149.688 (deg. F)

Fig. 4.31 The mode shapes of (0/90) clamped panel
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Chapter §

CONCLUSIONS

Using the three-node Mindlin plate element with improved shear defomaﬁon, the
governing nonlinear equations of motion have been derived for composite structures
subjected to a combined acoustic/thermal loading. In order to simulate the acoustic
waves in the progressive wave test facility, a grazing incidence wave model is used in
the derivation. An innovative solution procedure has been created and the equations of

motion were solved for applications of thermal postbuckling and large deflection random

response of thermally buckled structures.

The critical temperature change that produced panel buckling was determined by the
incremental equations of motion. The first buckling mode was used as the initial shape
of the postbuckling solution. Newton-Raphson iteration method was used to solve for
the deflections corresponding to a given temperature rise distribution. The extension and
bending coupling makes the plate bend out of its plane immediately when the plate is
heated without prebuckling stage. The most interesting aspect of this study is the mode
shape change. The described solution procedure automatically obtains the mode change
in the postbuckling stage as long as the incremental step of temperature change is small

enough, regardless of the presence of mechanical load.

In order to solve the system equation of motion, an innovative solution procedure
is described. The response is assumed to be the sum of static component and dynamic

component. Substituting the total displacements into the system equation of motion and
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112
regrouping the terms, the equation is of the foom F({W},) = G({W},). The left-

hand-side of the equation, F({W},), is independent of time t; while the right-hand-side,
G({W},), is time dependent. Therefore, the only possibility for both F and G to exist
is that both F and G equal zero, and two equations are thus obtained. For the dynamic
components, the modal transformation was used to reduce the number of equations.
Then the equivalent linearization method is utilized to obtain the coupled linear equation.
Finally, the modal transformation was used to uncouple the equation of motion, and an
iterative procedure was used to obtain the random response.

The most significant contributions of the present study are the formulation and
solution procedure, including grazing wave, of nonlinear modal equations used to describe
the random response of composite structures to combined acoustic and thermal loads.
These general equations are applicable not only to the present research, but also to
other dynamic problems like gust response and buffet response of an aircraft. As
compared to the SeQuential Load method(SQL), this SiMultaneous Load method(SML)
is mathematically more logical and straightforward and easier to formulate nonlinear
problems with combined loading. The solution procedure itself can take care of the
inter-dependence between the thermal effects and the acoustic-structural response. In the
SQL method engineering judgment is essential, otherwise some terms might be missed.

From the results, an interesting observation is that the antisymmetric modes partici-
pate in the response of the plate for grazing incidence acoustic wave. It is demonstrated
that three or four modes will give converged RMS deflections. It is also found that
the RMS maximum strain with temperature could be either smaller or larger than the
one without temperature. This is due to that: (1) the temperature increases the thermal
component, and (2) the thermal postbuckling deflection increases the nonlinear stiffness

which reduces the RMS deflection and it leads to smaller strain component. Uniform
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and nonuniform temperature distribution effect on random responses is investigated. The
nonuniform temperature considered is that there is a temperature gradient along the edge
of the plate. The results show that there is very little difference in random responses for
the two temperature distributions studied. For plate with initial imperfection in deflection,
the nonlinear stiffness due to imperfection reduces the random responses as comparing to
the flat plate. For plate with initial imperfection in deflection which has the same maxi-
mum deflection as the thermal postbuckling deflection, the plate with initial imperfection

is stiffer and leads to smaller random responses.
Future improvements of grazing wave model and numerical integration methods are

needed. The correlation study between numerical results and test results is very important

if one wants to use this method to a practical problem.
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Appendix A

THE FORMULATIONS FOR C¢¢ij’s

1
Cyyu = 5(yi2é2 — yafa)yzs (A1)
1
Cyyp12 = -2-(y23§3 — y1261)Y31 (A2)
1
Cyp13 = §(y31€1 — y23é2)y12 (A3)
1 1 1
Cyypra = 5(331353 — z2162)y23 — -2-$21€1y31 + 521361912 A4
1 1 1
Cyyp15 = 5(9821{1 —~ £3283)Y31 — -2-303252?/12 + -2-w21€2y23 (A.5)
1 1 1
Cypr6 = -2-(383252 — z1361)y12 — §$13€3y23 + 59332633/31 (A.6)
1 1 1
Cyy21 = 5(3/1262 — y31£3)x32 — zeu61ya1 + 521361912 (A7)
1 1 1
Cypoz = -2-(y23£3 — y1261)z13 — -2-$32§2y12 + -2-3321621/23 (A.8)
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1 1 1
Cyypos = 5(3/3151 — y23é2)zo — 55813532/23 + §m32€3y31

(71383 — z21€2)T32

DN | =

Cyyoa =
Cyypos = -2-(1?2151 — z3283)213

1
Cyypas = 5(333252 —z13é1)z01
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(A9)

(A.10)

(A.11)

(A.12)



Appendix B

THE ELEMENT MATRICES

Linear stiffness matrix

(K], = / CTDIChldA
A

Ky = / (G [Bl[CrmldA
A

Kl = ] ClT[BIICH]dA
A

= [ (CalTACnIdA
A

Linear stiffness matrix due to wy(X,y)

ey = [ [Cw) 0o (A8 [Cunla
A

(s = [ [l 0" BYCA+ [ [Conl 1071410 [Co] 4
A A
el = [ [Co] 0T (AIC}dA

A

(s = [ (iTBI0) Culda+ [ [Col 0TI [Coi) 4
A A
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(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)
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ol = [ [Cosl 0TBICHA + [ (OBl [Cos)as
A

A

+ [ Col 0T LATEA [Cus) A
A

lelym = [ [Cos] 10T (AIC}iA
A

ol = / [CnlT[A]I06) [Cpy) dA
A

Linear stiffness matrix due to {Na}

[kvarly = / [C¢b]T[NAT] [Cys]dA
4

[kvarlsy = f [Cys) T [NaT][Cuy) dA
A

(enatlyy = [ [Cos] "Warl[CurldA
y

[knatly = / [Cyu) T INaT] [Cy)dA
A

Linear stiffness matrices due to {N,}

[kNo]b = / [C¢b]T[No] [C¢b] dA
A

[kNolsy = / [Cys] T (Vo] [Cy) dA
A
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(B9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)
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[knolys = / [Cy]” (Vo] [Cys)dA
A

[kNoly = / [Cup] T [No][Cyy)dA
A

First-order nonlinear stiffness matrix

iy = [ [Cul BT (BG4
A

(21l = [ [Cot] "7 ACldA
A

il = [ (G BB [CudA
A

il = [ 1CHBIACos1aA+ [ [Cos] T BYGA
A A

1y = [ [Cos] O AIGldA
A

nl]., = / [Cr]T(AII6][C 1] dA
A

1],y = / [Crm] " [All6][C ) dA
A

First-order nonlinear stiffness matrix due to wo(X,y)

[nlo], = / [Cys] 161 [A1[60)[Cys) dA + / [Cus) T 0T LAII0)[Cys) dA
A A
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(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B27)
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oty = [ [Corl 01410 [Coulda + [ [Col 0 A Cuslda - @28)
A A

[rlolys = / [Cuu) T O [A)86] [Cys] dA + / [Co] T 1AI0) [Ci)dA  (B29)
A A

1l = [ [Cosl O IAIACssdA + [ [Cys] T AIAN[Cys] A B30)
A A

First-order nonlinear stiffness matrix due to {Ny}(=[A{€%})

[Plym], = / [Cy) T INm][C ) dA (B.31)
A

lnmlyy = / [Cy]” [Nen] [C,,,¢]dA (B.32)
A

[P1Nmlys = / [C,/,,,,]T[Nm] [Cys)dA (B.33)
A

intwmly = [ [Cos) Wil [Cou] ®.34)
A

First-order nonlinear stiffness matrix due to {Ny}(=[B]{x})

[nlne)y = / [Cys) " N3 [Cys] dA (B35)
A

ity = [ [Cul 19 [Cos]dA (B.36)
A
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[n1nblgp = / [Cyu] " N6 [Cya] dA
A

[rlnely = / [Cyp) T [Ns)[Cyy] dA
a

Second-order nonlinear stiffness matrix

(n2ly = 5 [ [Co] O (AN [Cur)
A

[n2),, = g / [Cus) T 1617 [A)6] [Cy) dA
A

2y, =5 [ [Cu) O 1A [Curl 24
A

(2 =5 [ [Cvs] 1461 G a4
A

Linear stiffness matrix due to shear

by = [ [Ca] (Al [ClA
A

e = [ O] IA[Cr] 4
A

lgs = [ (O] 14 (O] A
A
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(B.37)

(B.38)

(B.39)

(B.40)

(B.41)

(B.42)

(B.43)

(B.44)

(B.45)



[ks]w = f [C‘ﬂﬁ]T[AS] [C‘nb]dA
A

Load vectors

{paT}n = / ClT{NaT}dA
A

{PNotm = [ —[Cml" {No}dA
/

{paro)s = [ (Gl " (Mo}
A

{PVoo}y = — / [Cys) " 167 {N,}dA
A

{paTo}y = / [Cus] " 107 {Nar}dA
A

{pNoo}¢ = —/ [C¢¢]T[GO]T{No}dA
A

{par}y = / (O {Mar}dA
A

{woby = [ [H"p(z, 0, 1)d

A
1 7 s g
=5 / P(w)e™! / e~ e A, [T dAdw
—00 A
1 o0
— 1wt

= / P@){Y(w)}e!dw

-00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

(B.46)

(B.47)

(B.48)

(B.49)

(B.50)

(B.51)

(B.52)

(B.53)

(B.54)



T
(pr}y = / [Hay] Pz, 3, 1)d4
1 o o]
- / P(w)e! / e~ AT, 01T dAduw
—0Q

- / P(w){ Yy (w) }etdw

(For Egs. (2.107) and (2.108) see Ref.[Clarkson])

Mass matrix

il = [ (" pblH1dA
A

[y = / (HoT ph[Hopg) dA

A

mlgs = [ [Hus] " oblHu1dA
A

mly = [ (o] "oh{HoldA
A

= [ (U + (L) o] + L)) A
A
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