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Automated Filtering of Eye 
Movements Using Dynamic AOI 
in Multiple Granularity Levels
Gavindya Jayawardena, Old Dominion University, USA

Sampath Jayarathna, Old Dominion University, USA

ABSTRACT

Eye-tracking experiments involve areas of interest (AOIs) for the analysis of eye gaze data. While there 
are tools to delineate AOIs to extract eye movement data, they may require users to manually draw 
boundaries of AOIs on eye tracking stimuli or use markers to define AOIs. This paper introduces two 
novel techniques to dynamically filter eye movement data from AOIs for the analysis of eye metrics 
from multiple levels of granularity. The authors incorporate pre-trained object detectors and object 
instance segmentation models for offline detection of dynamic AOIs in video streams. This research 
presents the implementation and evaluation of object detectors and object instance segmentation 
models to find the best model to be integrated in a real-time eye movement analysis pipeline. The 
authors filter gaze data that falls within the polygonal boundaries of detected dynamic AOIs and 
apply object detector to find bounding-boxes in a public dataset. The results indicate that the dynamic 
AOIs generated by object detectors capture 60% of eye movements & object instance segmentation 
models capture 30% of eye movements.

Keywords
Area-of-Interest, Eye Tracking, Filtering

1. INTRODUCTION

Eye tracking can reveal objective and quantifiable information about the quality, predictability, and 
consistency of the underlying covert process of the human brain when carrying out cognitively 
demanding tasks (McCarley and Kramer 2008; Radach et al. 2003; Van der Stigchel et al. 2007). 
According to the eye-mind hypothesis (Just and Carpenter 1980), observers attend where their eyes are 
fixating. Thus, eye tracking measurements enable us to investigate cognitive behavior when visually 
exploring a stimulus. With the advancement of eye tracking technology, gaze tracking measurements 
have become reliable and accurate.

Eye gaze measurements include various metrics relevant to oculomotor control (Komogortsev 
et al. 2013) such as saccadic trajectories, fixations, and other relevant measures including velocity, 
duration, amplitude, pupil dilation (Krejtz et al. 2018). Studies have shown that the size of the 
pupil diameter correlates with the task complexity (Kosch et al. 2018) enabling the use of pupillary 
behavior as biomarkers of mental workload when completing a task. Several studies (Gehrer et al. 
2018; Jayawardena et al. 2020) have incorporated eye tracking to obtain insights into underlying 
covert processes. As a standard practice in the community, upon successful completion of the study, 
performance of users is measured, traditional positional gaze metrics and advanced gaze metrics are 
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calculated, and statistical significance of computed numerous metrics are evaluated (Gehrer et al. 
2018; Jayawardena et al. 2020).

Eye tracking experiments utilize area of interests (AOIs) to the aid the analysis process by 
extracting eye gaze metrics within a predefined AOIs. An AOI is a region of stimuli that is used to 
study the eye gaze metrics and link eye movement measures to the part of the area of the stimuli 
(Hessels et al. 2016). Studies in visual attention and eye movements (Noton and Stark 1971; Privitera 
and Stark 2000) have shown that humans only attend to a few AOIs in a given stimulus. Analysis of 
eye gaze metrics within AOIs can provide important cumulative clues to the underlying physiological 
functions supporting the allocation of visual attention resources. For instance, in the context of user 
interface interaction, the number of fixations within an AOI (e.g., a user interface component) indicates 
the efficiency of finding that component among others, whereas the maximum and average fixation 
duration within that AOI indicates the informativeness of that component (Goldberg and Kotval 1999). 
In addition, the fixation frequency and blink frequency within AOIs can indicate cognitive workload 
when interacting with the particular component of the user interface (Van Orden et al. 2001).

The analysis of eye movements in dynamic AOIs, such as in video sequences is not new (Marchant 
et al. 2009; Goldstein et al. 2007; Crossland et al. 2002; Timberlake et al. 2005). Studies with the 
primary focus on detecting fixation sequences within identified AOI have used clustering techniques 
to group gaze locations to determine the AOI (Nguyen et al. 2004), and various image processing 
algorithms (Privitera and Stark 2000) to automatically identify the AOI. For the analysis of cognitive 
workload and allocation of visual attention resources, many studies (Santella et al. 2006; Shanmuga 
Vadivel et al. 2015; Khosravan et al. 2016; Wang et al. 2019) have utilized saliency models of viewers 
in conjunction with visual information from video frames. In addition, computer vision techniques 
(Weibel et al. 2012) have been applied to generate AOI-mapped gaze coordinates by using a template 
of the desired object derived from a single frame of the eye tracking stimuli video. But it only works 
for pre-recorded eye tracking stimuli using the manual specification of the AOI template generated 
beforehand.

To overcome these challenges, we propose a computer vision-based deep neural network approach 
to identify the AOIs in video streams in real-time to filter gaze locations that fall into the identified 
AOIs for the analysis of both positional and advanced eye gaze metrics. We focus on two filtering 
techniques to dynamically generate AOI-mapped gaze locations on video streams:

•	 Pre-trained object detectors to identify bounding boxes of dynamic AOI in video sequences, and;
•	 Object instance segmentation models for offline detection of dynamic AOI via precise pixel-

wise masks.

Since computer vision techniques can be adapted to detect a wide range of objects, we apply 
computer vision techniques to extract dynamic AOI-mapped eye movement data. We use transfer 
learning to remodel existing image classifiers for dynamic AOI detection. Upon detection of dynamic 
AOIs, we extract eye movement data which falls within the detected dynamic AOIs by checking if the 
gaze coordinate falls within any dynamic AOIs’ polygonal boundaries. Our approach represents two 
levels of granularity in AOIs, (1) a lower level of granularity (i.e. bounding box), and (2) a higher level 
of granularity (i.e. pixel-wise mask). We evaluate our filtering methodology in terms of the percentage 
of the eye movements captured from each filtering technique proposed. We utilize our prior work on 
Real-Time Advanced Eye Movements Analysis Pipeline (RAEMAP) (Jayawardena 2020) designed 
to analyze traditional positional gaze measurements as well as advanced eye gaze measurements.

In contrast to the existing studies on analyzing eye movements within static AOIs (often pre-
determined), which only works for pre-recorded eye tracking stimuli, our proposed methodology could 
extract eye movement data from dynamically detected AOIs in real time. In this study, we present 
pre-trained object detectors and object instance segmentation models for the detection of dynamic 
AOIs as the initial step towards extracting eye movement data from dynamically detected AOIs in 
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real time. We evaluate the object detectors and object instance segmentation models to be integrated 
into our RAEMAP eye movement analysis pipeline.

We are particularly interested in using these dynamic AOIs in real-time to label individual faces 
to allow estimation of gaze switching within faces between the eyes, mouth, and nose, as well as 
between faces. We are most interested in extending the results of this work over static face stimuli by 
capturing gaze attention during live social interactions. In particular, we want to record gaze transitions 
within and among AOIs, i.e., on faces as well as on specific objects during social interactions. From 
the application point-of-view, dynamic AOI-based filtering can be applied to screen-magnifiers for 
low-vision users using automatic zooming of AOI of the context across frames (Aydin et al. 2020), 
and applications on neurodiverse (e.g. Autism Spectrum Disorder and Attention-Deficit/Hyperactivity 
Disorder) population during social interactions.

We begin by outlining existing studies that incorporate AOIs for the analysis of AOI-mapped gaze 
data. Next, we discuss existing methodologies to generate the AOI-mapped gaze location and present 
our implementation and evaluation for the extraction of dynamic AOI-mapped eye movement data.

2. RELATED WORK

Eye tracking experiments usually involve AOIs for the analysis of eye gaze data as they could reveal 
potential cognitive load and attentional patterns of the participants. Static AOIs are widely used to 
capture eye gaze metrics for detecting neurocognitive indices of Attention-Deficit / Hyperactivity 
Disorder (ADHD) symptomatology (G. Jayawardena et al. 2019), including various gaze features 
within AOIs to predict a diagnosis of ADHD with 86% accuracy. Similarly, (Gehrer et al. 2018) 
explored eye gaze patterns and statistically compared gaze transitions between static AOIs in a group 
of antisocial violent offenders through an emotion recognition task. Analysis of gaze patterns was 
based on four predefined AOIs, i.e., left eye, right eye, nose, and mouth. The eye gaze metrics were 
processed in various static AOIs of the face (such as eyes, mouth, and nose) to reveal insights into 
the underlying categorization process of emotions.

The analysis of eye movements using dynamic AOIs, such as in videos, has recently gained traction 
(Kurzhals et al. 2014; Burch et al. 2013; Zhang et al. 2018; Fichtel et al. 2019). This includes visually 
and statistically analyzed viewers’ experience using eye movement data on video feeds (Marchant 
et al. 2009), and eye movements of 20 normal visioned subjects as each watched six movie clips, to 
examine the similarities in their viewing behaviors (Goldstein et al. 2007). The centers of interest in 
movie scenes were calculated using the areas of the best-fit bi-variate contour ellipses (Crossland 
et al. 2002; Timberlake et al. 2005) obtained from the gaze points of subjects. In terms of potential 
applications, the dynamically controlled magnification around these centers of interest can aid people 
with visual impairments.

Shot-based, spatio-temporal clustering (Kurzhals and Weiskopf 2013) of data has also been used 
to find potential AOIs in a time sequence to identify the objects that received more attention. The 
visual analytics which provides multiple coordinated views for analyzing various spatio-temporal 
aspects of gaze data on dynamic stimuli focused on identifying trends in the general viewing behavior, 
including objects with strong attentional focus. Similarly, (Tien et al. 2012) has measured the gaze 
path overlaps of task videos between the expert surgeon and third-party observers comparing gaze 
data files by calculating the Euclidean distance between the gaze points in pixels and by comparing 
with the target separation. For the analysis of cognitive workload and allocation of visual attention 
resources, studies (Shanmuga Vadivel et al. 2015; Khosravan et al. 2016) have utilized saliency 
models of viewers in conjunction with visual information from video frames. These algorithms extract 
salient objects which attract visual attention from videos and perform video segmentation utilizing 
eye tracking to obtain favorable object extraction.

The existing tools with AOIs to extract eye movement data for the analysis of gaze measurements, 
require users to draw boundaries of AOIs on eye tracking stimuli manually or use markers to define 
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AOIs in the space to generate AOI-mapped gaze locations. For instance, Tobii Pro Studio eye tracking 
software allows researchers to export both the raw eye tracking data and the AOI-mapped gaze 
locations for further processing and visualization. But it requires to draw boundaries of AOIs on static 
stimuli or use infrared (IR) markers to define AOIs in space to generate AOI-mapped gaze locations. 
Similarly (Lessing and Linge 2002; Stellmach et al. 2010) has introduced tools for defining AOIs 
and for extraction of AOI-mapped gaze locations including annotations for gaze data in dynamic eye 
tracking stimuli. These tools allow users to visualize the dynamic changes of AOIs and to explore the 
eye tracking data of multiple participants over time. In addition, (Weibel et al. 2012) introduced an 
approach that applies computer vision techniques to map their gaze coordinates to objects of interest 
using a template of the desired object derived from a selected single frame of the eye tracking stimuli 
video. If an AOI is detected in a frame, the tool can check whether the raw eye gaze coordinates for 
that video frame fall within the bounds of the AOI. This approach only works for pre-recorded eye 
tracking stimuli using the manual specification of the AOI template generated beforehand.

Though IR markers and tools provide the capability to manually define AOIs to extract AOI-
mapped gaze locations, there are challenges when using them. For instance, when placing the IR 
markers in the field of view of the subject, there might be irregular surfaces or motion of the surface. 
Furthermore, manually annotating the AOIs frame-by-frame takes time and effort for large video 
sequences, which demands costly labor. To overcome these challenges, we propose a dynamic 
AOI-mapped gaze extraction workflow that uses deep neural networks for object detection. Since 
improvements in the field of computer vision have enabled the successful identification of objects 
and regions of possible interest, we incorporate computer vision techniques to detect dynamic AOIs 
in eye-tracking stimuli.

3. METHODOLOGY

We utilize the extraction of dynamic AOI-mapped eye movement data using our eye movement 
processing framework RAEMAP (Jayawardena 2020), designed to analyze traditional positional 
gaze measurements as well as advanced eye gaze measurements in real time. The advanced gaze 
measurements include gaze transition entropy (Krejtz et al. 2015), and complex pupillometry 
measurements such as the index of pupillary activity (IPA) (Duchowski et al. 2018; Duchowski et 
al. 2020). The architecture of this pipeline is shown in Figure 1.

We select four convolutional neural networks based on real-time object detectors that were 
pre-trained on MS COCO (Lin et al. 2014) images dataset as the baseline models for dynamic AOI-
mapped gaze extraction. The selected object detectors represent two categories of object detection, 
(1) one-stage object detection using dense prediction, and (2) two-stage object detection using sparse 
prediction. One-stage object detectors densely cover the space of possible image boxes using a fixed 
sampling grid, whereas two-stage object detectors classify image boxes at any position, scale, and 
aspect ratio. We use the YOLOv3 (Redmon and Farhadi 2018) method to represent a one-stage object 
detector and faster region-based convolutional neural networks (faster R-CNN) (Ren et al. 2015) to 
represent two-stage object detectors. Table 1 provides a summary of each object detector used.

Table 1. Object detectors

Method Backbone Head

Faster R-CNN ResNet-50-FPN Two-stage

Faster R-CNN ResNet-101-FPN Two-stage

Faster R-CNN ResNet-50-DC5 Two-stage

YOLOv3 Darknet-53-FPN One-stage
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We select three models for object instance segmentation to achieve a higher level of granularity 
in AOI using a variant of the faster R-CNN (Ren et al. 2015) called Mask R-CNN (He et al. 2017). 
Mask R-CNN extends Faster R-CNN by adding a branch for object mask prediction in parallel with 
the existing bounding box recognition process. Table 2 provides a summary of each object instance 
segmentation model used.

3.1 Faster R-CNN
We used three faster R-CNN (Ren et al. 2015) object detectors with a backbone of depth 50 and 101 
ResNets (He et al. 2016). Among the three faster R-CNN object detectors used, two had a Feature 
Pyramid Network (FPN) (Lin et al. 2017) constructed on top, whereas one used a ResNet conv5 
backbone with dilation in conv5 i.e. Dilated-C5 (DC5) (Dai et al. 2017). All the faster R-CNN models 
were trained on the COCO images dataset using an image scale of 600 pixels with the 3x schedule 
(37 COCO epochs).

Faster R-CNN object detectors have the capability of classifying image boxes at any position, 
scale, and aspect ratio. The Faster R-CNN is implemented with an (n × n) conv layer followed by 
two (1×1) conv layers. ReLUs are applied to the output of the (n × n) conv layer. It uses regression to 
achieve the bounding-box. We apply faster R-CNN in two stages, (1) Region Proposal Network (RPN) 
to generate candidate object bounding boxes, and (2) feature extraction using RoIPool (Ren et al. 
2015) from each candidate box to performs classification and regression. We minimize loss function:

Figure 1. The Architecture of the RAEMAP (Jayawardena 2020). The API distributes tasks among the nodes using Message Passing 
Interface (MPI). Each node hosts an instance of the RAEMAP providing the functionality to extract raw gaze data, along with parallel 
processing of process and graph steps. The Process step calculate fixations, fixations in AOIs, saccade amplitudes, saccade 
duration, and IPA, whereas graph step generate visualizations. MPI gather function facilitates the aggregation of calculated eye 
gaze metrics in collate step, which provides data for statistical analysis in stats step.

Table 2. Object instance segmentation models

Method Backbone Head

Mask R-CNN ResNet-50-FPN Two-stage

Mask R-CNN ResNet-101-FPN Two-stage

Mask R-CNN ResNet-50-DC5 Two-stage
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3.2 YOLOv3
We used the YOLOv3 object detector (Redmon and Farhadi 2018) with DarkNet-53 backbone. 
Darknet-53 uses successive (3×3) and (1×1) convolutional layers with shortcut connections and 53 
convolutional layers. YOLOv3 was trained on the COCO image dataset. It passes an (n × n) image 
once in a fully convolutional neural network (FCNN) for object detection. YOLOv3 selects the entire 
frame to apply a neural network to predict bounding boxes of detected objects and their probabilities. 
YOLOv3 splits the image into (m × m) grids and generates boundaries around each detected object 
and their class probabilities. It uses a logistic regression with a threshold to calculate the class label 
of an object and a binary cross-entropy loss for each label for the classification loss.

3.3 Mask R-CNN
We utilize Mask R-CNN object instance segmentation models with a backbone of depth 50 and 101 
ResNets with an FPN constructed on top, or ResNet conv5 backbone (i.e. DC5). For Mask R-CNN, 
we apply the same two-stage procedures of faster R-CNN in parallel to predict the class and box 
offset. Mask R-CNN also generates a binary mask for each AOI. During the training of Mask R-CNN, 
a multi-task loss on each sampled RoI is defined using:

L L L L
cls box mask

= + + 	 (2)

where Lcls is the classification loss and Lbox is the bounding-box loss. Lmask is the average binary 
cross-entropy loss, and it allows the network to generate masks for every class without having a 
competition among classes.

3.4 Video Frame Object Detection
We first load the pre-trained object detectors and COCO object names (class labels) using OpenCV 
and Detectron (Lin et al. 2017). Next, we configure our RAEMAP eye movement processing pipeline 
to use these object detectors to dynamically detect AOIs in each frame. For each frame, the models 
output the COCO class label and location of detected objects in that frame in the form of bounding 
box coordinates. The goal here is to provide the capability of defining an object of interest in the eye 
tracking stimuli such that the RAEMAP can process the eye tracking stimuli to dynamically detect 
the corresponding AOIs.

Next, we define the object of interest in the eye tracking stimuli prior to the processing of eye 
movement data. Based on the defined object of interest (no restriction on the object of interest by 
default), the RAEMAP processes the eye tracking stimuli offline to detect corresponding dynamic 
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AOIs using the object detectors (see Figure 2). Note that when extracting dynamic AOIs from the 
selected models the default coordinate representation of the bounding boxes returned by the faster 
R-CNN and YOLOv3 models are different. The YOLOv3 object detector returns the bounding 
boxes in the form of (x_center, y_center, width, height), where x_center and y_center represent 
coordinates of the center of the bounding box, while width and height represent its width and height. 
In contrast, faster R-CNN object detectors returns the bounding boxes in the form of (x_top_left, 
y_top_left, x_bottom_right, y_bottom_right), where x_top_left and y_top_left represent the top-left 
coordinate of the bounding box, while x_bottom_right and y_bottom_right represent its bottom-right 
coordinate. Therefore, we reconfigured the RAEMAP to transform all bounding box coordinates into 
(x_top_left, y_top_left, x_bottom_right, y_bottom_right) form. For each video sequence, RAEMAP 
first identifies the bounding box coordinates of AOIs detected in each frame and writes them into a 
file. Next, RAEMAP extracts the raw eye gaze data which falls within the detected dynamic AOIs 
by checking if the gaze coordinate falls within the bounding boxes. The advantage of this approach 
is that it does not require prior annotation of the AOI or physical equipment to mark the boundaries 
of the AOI in dynamic eye tracking stimuli, thus eliminating the need for manual annotation of AOIs.

Similar to object detection, for each video sequence, RAEMAP identifies pixel-wise masks of AOI 
detected in each frame using object instance segmentation model. Next, we filter and extract the raw 
eye gaze data within the detected dynamic AOI by the gaze coordinate within the pixel-wise masks.

4. EVALUATION

4.1 Dataset
We evaluate our method using a publicly available eye tracking dataset (Hadizadeh et al. 2011) from 
15 participants while watching 12 video sequences. Participants (2 F and 13 M) were aged between 
18 and 30 (Hadizadeh et al. 2011) and had normal or corrected-to-normal vision. The eye movement 
data were collected using Locarna “Pt-Mini” head-mounted eye tracker with two 30 fps cameras, 
(1) the eye camera, and (2) the scene camera. Participants were presented with the twelve video 
segments sequentially in uncompressed at (352×288) resolution and 30fps. Each row in the original 
data files corresponds to a particular frame in the video sequence, and the columns provide the (x, y) 

Figure 2. The Workflow of Object Detection and Segmentation for Dynamic AOI Filtering an Eye Movement Processing. Raw video 
sequence is given to the object detector and object instance segmentation model. Upon defining object(s) of interest, object 
detector outputs bounding box coordinates of each object detected, whereas, object instance segmentation model outputs 
identified pixel-wise masks of AOI detected in each frame. These dynamic bounding boxes and pixel-wise masks are considered 
as dynamic AOIs. Raw eye tracking data is filtered if they fall inside the boundaries of dynamic AOIs. For the evaluation, raw video 
sequences are manually annotated using BeaverDam (Shen 2016) software to create the ground truth of dynamic AOIs. Raw eye 
tracking data is then filtered if they fall inside the boundaries of manually annotated dynamic AOIs. Finally, detected dynamic 
AOIs (bounding boxes) are evaluated using intersection over union (IoU) and mean average precision (MAP), and filtered eye 
movements are evaluated using precision, recall, accuracy.

Raw Data 

Object 
Segmentation 
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gaze coordinates of all participants at that frame. All coordinates were measured from the bottom left 
corner of current the video sequence. The dataset also provided a binary flag matrix indicating the 
accuracy of gaze locations. Gaze locations are considered as incorrect if, (1) the gaze location is out 
of frame boundaries, (2) the gaze location is at the frame boundaries or within 5 pixels of the frame 
boundaries, or (3) the gaze location remains constant for 30 consecutive frames. We pre-processed 
gaze data of each participant separately for each video and filtered out the incorrect gaze locations 
from the gaze data based on the binary flag matrix. The goal here was to separate the gaze locations 
of each participant to pass into the RAEMAP, since the calculations of eye gaze metrics of each 
participant require a separate processing of the raw data.

4.2 Dynamic AOI Detection
We selected four video sequences (Foreman, Bus, Mother and Daughter, and Hall Monitor) out 
of the twelve sequences available to evaluate our method. These videos were selected as they had 
dominant objects to draw boundaries for AOIs, which was already a class label in the COCO names 
list. We identified one dominant object from each video sequence and defined it as the AOI label 
for that video sequence.

For each video sequence, we applied an object detector, and dynamically detect the AOI at each 
frame. We repeated this step for each object detector and obtained a prediction for the bounding box 
coordinates at each frame of the video sequences. Similarly, we applied object instance segmentation 
models, and obtain a prediction for the pixel-wise mask for the dynamic AOI at each frame. Next, 
we utilized the RAEMAP to filter and extract eye gaze data within the bounding boxes or pixel-wise 
masks of dynamic AOI.

When evaluating the dynamic AOIs detected, we created a ground truth dataset by manually 
annotating each video sequence with the expected AOI in the form of bounding boxes using BeaverDam 
(Shen 2016) video annotation tool. BeaverDam is designed for drawing bounding boxes on video 
frames and annotating them with class labels. It also allows arbitrary annotation of frames in the video 
sequence as it provides a parameter indicating whether linear interpolation should be continued for 
each AOI annotated arbitrarily. Video annotations made in BeaverDam can be exported in JSON file 
format. Exported annotations consist of bounding box coordinates at each marked frame along with 
the linear interpolation parameter. We generate four JSON objects corresponding to each video file, 
and linearly interpolate the bounding boxes between the start and end frames to obtain a continuous 
annotation. We use this interpolated result as the ground truth for evaluating each object detector and 
subsequently extracted the gaze data using them.

Next, we use intersection over union (IoU) and mean average precision (MAP) as the evaluation 
metrics of dynamic AOIs generated by object detectors. IoU is a measurement of the overlap between 
two boundaries (see equation (3)), whereas the MAP is a metric used to evaluate object detectors:

IoU
Area of Overlap

Area of Union
=

  

  
	 (3)

We use IoU to calculate how much of the boundaries predicted using each object detector 
overlaps with the ground truth bounding boxes. We empirically define IoU threshold to be 0.5 to 
classify the predicted bounding boxes. The predicted bounding box is classified as true positive (TP) 
if IoU ≥ 0.5 and false positive (FP) otherwise. The precision and recall are calculated based on the 
classification of the predicted bounding boxes. Finally, we calculate MAP in both COCO style and 
Pascal VOC2008 (Everingham et al.) style using Average Precision (AP). In Pascal VOC2008, an 
average for the 11-point interpolated AP is calculated, whereas, in COCO, an average for the 101-point 
interpolated AP is calculated.
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4.3 Eye-Movement Extraction
After detecting dynamic AOIs on video sequences, we pass the raw eye tracking data to the RAEMAP 
and extracts eye gaze data that fall within the bounding boxes of dynamic AOIs as generated by each 
object detector and eye gaze data that falls within the pixel-wise masks of dynamic AOIs as generated 

Figure 3. AOI in Video Sequences. (a,b,c) Manually annotated AOIs using BeaverDam annotation tool. (d,e,f) Bounding boxes 
representing a lower level of granularity, and pixel-wise masks (shaded area) representing a higher level of granularity of dynamic 
AOI. (g,h,i) Salience of objects revealed by OpenCV’s static saliency spectral residual detector.

Figure 4. Dynamic AOI Detection. Visualization of manually annotated AOIs (blue), AOIs detected by faster R-CNN object detector 
(red), the gaze positions of a participant (green) in five consecutive video frames in Bus and Foreman video sequences.
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by each object instance segmentation model. We also compute traditional positional gaze metrics 
such as fixation count and fixation duration using the extracted gaze data.

Next, we pass the ground truth bounding boxes of AOIs to the RAEMAP and extract eye gaze 
data within in the form of (xi,yi,ti) where xi and yi represent the coordinates of the gaze position at time 
ti. To evaluate the dynamic AOI-mapped eye movements, we classify the eye movements according 
to the confusion matrix in Table 3. We use standard information retrieval domain evaluation metrics 
such as precision, recall, and accuracy for the evaluation of filtered eye movements.

For the comparison of the dynamic AOI-mapped eye movements filtered from bounding boxes 
and pixel-wise masks, we calculate the captured percentage of eye movements when using each 
filtering technique. We expect an overall percentage reduction of eye movement data filtered from the 
baseline bounding boxes, object detectors, and object instance segmentation models as the level of 
granularity changes. We are interested in investigating which AOI method would give us the highest 
percentage of eye movements filtered from these models.

5. RESULTS

5.1 Dynamic AOI Detection
Figures 3(a), 3(b), and 3(c) show manually annotated objects in a single frame of Bus, Foreman, and 
Hall Monitor video sequences. In comparison, Figures 3(d), 3(e), and 3(f) show detected objects in 
a single frame of Bus, Foreman, and Hall Monitor video sequences using an object detector and an 
object instance segmentation model.

Table 4 shows the MAP values in both COCO style and Pascal VOC2008 style for each object 
detector. AP corresponds to the average AP for IoU from 0.5 to 0.95 with a step size of 0.05, AP@.50 
corresponds to the average AP for IoU = 0.5, and AP@.75 corresponds to the average AP for IoU 
= 0.75. Faster R-CNN object detector with ResNet-101-FPN backbone has the highest AP in both 
COCO style and PASCAL style (see Table 4) with the AP ≥ 0.19.

Table 3. Confusion matrix for eye movements evaluation

Ground Truth AOI

Falls Within Falls Outside

Predicted AOI Falls Within TP FP

Falls Outside FN TN

Table 4. Comparison of bounding box AP of Object Detectors

Method Backbone COCO Style Pascal Style

AP AP@.50 AP@.75 AP AP@.50 AP@.75

Faster R-CNN ResNet-50-FPN 0.1812 0.3707 0.1768 0.1918 0.3926 0.1989

Faster R-CNN ResNet-101-FPN 0.1998 0.3877 0.1985 0.2180 0.4000 0.2136

Faster R-CNN ResNet-50-DC5 0.1406 0.3290 0.1111 0.1566 0.3238 0.1238

YOLOv3 Darknet-53-FPN 0.1269 0.3083 0.1123 0.1430 0.3123 0.1388
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5.2 Eye Movement Extraction
Figure 4 illustrates the dynamic AOIs detected from a faster R-CNN object detector with ResNet-101-
FPN backbone in comparison with the manually annotated ground truth AOIs. Red color bounding 
boxes indicate the predicted bounding boxes, whereas blue color bounding boxes indicate the ground 
truth. The green color circle indicates the gaze position of that frame.

Table 5 shows the precision, recall, and accuracy of eye movements extracted using dynamic 
AOIs generated by each object detector. The Faster R-CNN object detector with ResNet-101-FPN 
backbone filters eye movement data with the highest accuracy of 64.5%.

Table 6 shows the comparison of the dynamic AOI-mapped eye movements filtered from 
bounding boxes and pixel-wise masks, in terms of the percentage of eye movements captured when 
using each filtering technique.

6. DISCUSSION

Our evaluation of dynamic AOIs generated by object detectors indicate that a faster R-CNN object 
detector with ResNet-101FPN backbone achieves the highest AP in both COCO style and PASCAL 
style (see Table 4). Though faster R-CNN object detector with ResNet-101-FPN backbone achieves 
the highest AP rate, we observe it to be slower compared to one-stage detector YOLOv3, supporting 
the literature that two-stage object detectors are typically slower (Soviany and Ionescu 2018). Two-
stage object detectors are slow because they generate regions of interest in the first stage and classify 
objects and find bounding-boxes by regression in the second stage. On the other hand, one-stage object 
detectors treat object detection as a simple regression problem by learning the class probabilities and 
bounding box coordinates, thus reaching lower AP rates, but performing much faster than two-stage 

Table 5. Comparison of Filtered Eye Movements of Object Detectors

Method Backbone Precision Recall Accuracy

Faster R-CNN ResNet-50-FPN 0.648 0.717 0.644

Faster R-CNN ResNet-101-FPN 0.646 0.713 0.645

Faster R-CNN ResNet-50-DC5 0.647 0.697 0.639

YOLOv3 Darknet-53-FPN 0.637 0.717 0.641

Table 6. Percentage of eye movements filtered when using bounding boxes and pixel-wise masks as dynamic AOIs

Method Backbone Eye Movements%

Object Detection

ResNet-50-FPN ﻿
ResNet-101-FPN﻿
ResNet-50-DC5

60.643﻿
60.224﻿
58.989

Segmentation

ResNet-50-FPN ﻿
ResNet-101-FPN﻿
ResNet-50-DC5

30.574﻿
30.088﻿
30.531

Baseline Boxes - 56.183
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object detectors. Our results indicate that two-stage object detectors, despite being slow, perform the 
best in classifying objects and finding bounding-boxes as dynamic AOIs. However, further evaluation 
is required with a larger representation of one-stage object detectors since we only used a single one-
stage object detector, YOLOv3 for the evaluation.

Figure 4 illustrates dynamic AOIs detected from faster R-CNN (ResNet-101-FPN) object detector 
in comparison with the manually annotated ground truth AOIs. We observe that some eye movements 
that fall within the ground truth bounding box may not fall within the predicted bounding box, and 
they are classified as FN. This happens when either there is no dynamic AOI detected in that frame, 
or the detected object is surrounded by a tighter bounding box compared to the ground truth. Also, 
eye movements that do not fall within the ground truth bounding box may fall within the predicted 
bounding box, since the predicted bounding box is relaxed compared to the ground truth bounding 
box (see the last image in the second row of Figure 4). Those eye movements are classified as FP. 
Eye movements extracted by all four object detectors, do not differ much in terms of evaluation 
precision, recall, or accuracy. As shown in Table 5, a faster R-CNN object detector with ResNet-101-
FPN backbone filters eye movements data with the highest accuracy of 64.5%. Since eye movement 
classification is highly dependent on both manually defined bounding boxes and bounding boxes 
found by the object detector, we believe it is essential to retrain the object detectors to find better 
bounding boxes instead of using pre-trained object detectors.

The comparison of the percentage of eye movements when using each filtering technique (Table 
6) shows that dynamic AOI generated by object detectors had the least reduction of eye movements 
compared to the baseline. We expected an overall percentage reduction of eye movement data as the 
level of granularity increased. Though the difference of the percentage reduction of eye movements 
filtered by dynamic AOI generated by object detectors and the baseline is around 3%. The difference 
is caused by tighter bounds of the manually annotated bounding boxes. Among all three methods, 
dynamically generated AOI using pixel-wise masks yield the highest percentage of eye movements 
reduction, since it represents the polygonal shape of the object with a tighter bound compared to the 
bounding boxes. Figures 3(d), 3(e), and 3(f) show the pixel-wise masks (shaded area) representing 
a higher level of granularity of dynamic AOIs generated by object instance segmentation models. 
Figure 3(g), 3(h), and 3(i) illustrate salience revealed by OpenCV’s static saliency spectral residual 
detector. Though salience revealed by the eye movements of viewers could be utilized to define an 
AOI, they can introduce extra bias, and additional steps before generating the AOI. In contrast, we 
incorporate pre-trained object detectors, and object instance segmentation models, generalizing the 
overall process of detecting dynamic AOI.

Interestingly, we observe in both evaluation criteria, the Faster R-CNN object detector with 
ResNet-101-FPN backbone scored the highest with one of the lowest percentage reduction of eye 
movements around 3% compared to the baseline. Based on the performance in both evaluation 
criteria, we choose the Faster R-CNN object detector with ResNet-101-FPN backbone as the object 
detector in the RAEMAP. Apart from the RAEMAP integration, the proposed pipeline with faster 
R-CNN (ResNet-101-FPN) as the object detector could be used for offline extraction of eye gaze 
metrics from dynamic AOIs.

7. CONCLUSION

In this study, we present pre-trained object detectors and object instance segmentation models for the 
detection of dynamic AOI using bounding boxes and precise masks in video streams representing 
two levels of granularity in AOI. We evaluate the object detectors, and object instance segmentation 
models integrated into the RAEMAP eye movement analysis pipeline to filter eye movement data 
within the polygonal boundaries of detected dynamic AOI. Our results in terms of dynamic AOI 
detection and eye movement extraction indicate that faster R-CNN with ResNet-101-FPN backbone 
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object detector performs the best in classifying objects and finding bounding-boxes as dynamic AOIs, 
and it suits the best for the RAEMAP integration.

We compare the two levels of granularity in dynamic AOI in terms of the percentage captured 
in filtered eye movements compared to a baseline model. Our results indicate that the dynamic 
AOI-mapped eye movements generated by object detectors could capture a maximum of 60% of eye 
movements, whereas object instance segmentation models captured only about 30% of eye movements. 
Since we observe multiple levels of reduction in filtered eye movements as the granularity of the 
dynamic AOIs increases, we anticipate this would contribute towards a layered analysis of both 
positional and advanced eye gaze metrics in the future.

Our proposed methodology for detecting dynamic AOIs is the initial step towards extracting eye 
movement data from dynamically detected AOIs in real time. The proposed work will help develop 
dynamic AOI-mapped eye movement filtering and transition workflow. To identify the AOIs, we 
will apply our proposed dynamic deep learning and computer vision based, real-time AOI detection 
architecture. Since computer vision techniques can be adapted to accurately detect a wide range of 
objects, we will apply them to extract dynamic AOI-mapped gaze data. Specifically, in the future 
we will use deep transfer learning to remodel existing image classifiers for dynamic AOI detection 
in real time.
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