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Summary. The inhomogeneous wave equation for a
special class of magnetoatmospheric waves is formally
solved, and the principle of stationary phase used to
provide information on the group velocity properties
of such waves. General results are presented concerning
the associated mechanical energy flux. The basic problem
considered is relevant to waves initiated by sudden
events in the solar atmosphere.
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I. Introduction

For simplicity in most of the present analysis we con-
sider an isothermal atmosphere permeated by a hori-
zontal magnetic field which decreases with altitude in
such a way as to render the Alfvén velocity constant.
This type of atmospheric structure has been useful in
previous investigations {e.g. see Nye and Thomas (1976)
for further references] in that the governing differential
equations of the problem have constant coefficients.
The general case of non-constant coefficients has been
formulated by Adam (1977b) (hereafter referred to as
IT), but we consider in more detail this simpler model,
believing that the underlying physics of the problem is
not significantly changed by so doing.

We deal with a subset of the waveforms resulting
from an initial disturbance, namely those waves with
wavevectors k =(0,/,m) perpendicular to the horizontal
magnetic field B,=(B,,0,0)e”*2#_ H is the constant
density scale-height given originally by Yu (1965)
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where ¢, is the velocity of sound, a, = B,/(4mp,)"/? is the
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Alfvén velocity, y is the ratio of specific heats and
g=1(0,0,-g) 1s the gravitational acceleration.

In order to render the excitation function as simple
as possible, we consider a line source of ‘“‘force”
0(1)0(2)d(¢t) in two spatial dimensions, representing an
instantaneous forcing term in the plane z=0, which
may be taken as the upper photospheric region for the
present purposes. This is not mandatory however, and
since we are not examining the nature of trapped waves
we do not explicitly define a lower boundary condition.
We therefore seek information on the subsequent be-
haviour of disturbances initiated in the upper solar
atmosphere by an instantaneous event. Clearly a more
sophisticated temporal behaviour of the source can be
easily incorporated in the present analysis, and is per-
haps ultimately desirable; since it is not only those
waves with periods much larger than the characteristic
time-scale of the source that are of interest. However,
many of the characteristics of magnetoatmospheric
waves depend only on the properties of the medium
and not on its excitation, and it is the object of this
analysis to investigate such properties. In order to
predict the spectrum of waves at given points in the
medium however one would require some further
knowledge of the source.

I1. Basic Solutions

A comprehensive account of the complete magneto-
hydrodynamic wave equation for the problem has been
given by the author (Paper II) and for the values of k
considered here the coupled inhomogeneous equations
are

d g] ga?)(@)‘z &*pr [z 0* | ga; 5]
SR F 420 g,
[(9z+cé Pr ct \ot oy* Tho| Mt o ¢ oz ¢

=Aped(y)8(2)o(1), 6y

1 9% o2 a; O*p; 0* [( aé) 0 g:|
B [P )] 2 {1450y 5
[cé or? 6y2]pT cz 9y? TPo or? +c§ 0z ¢ =

=0, 2

[=) ¥}

S






J. A. Adam: Solar Magnetoatmospheric Waves—a Simplified Mathematical Treatment 173

% exp{ilr(®+1)"?cosh 0+ rtsinh 0]}
Gir0)= { di T ©)
and let 1=sinh#, so that
G,(r.0)= | dn exp {ir cosh (0+n)} (10)

which with the infinite limits is independent of 0, so
that G,(r,0)=G,(r,0)=inH"(r) represents a Hankel
function of the first kind of order zero (Courant and
Hilbert, 1953).

Therefore « <1 and B real
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where we have identified the following quantities:

Dyo

W, r sinh 0= Dz.
—

t=ﬁ, rcosh 0=

D

We now turn to propagating magnetoacoustic waves
for which «>1, B imaginary. For B* to be negative
when a> 1 it is required that o should be greater than
B? by at least the quantity (a3 4 c2)m?ng 2, otherwise @
is not sufficiently large to enter the upper branch of the
model diagram.

Following the same procedure as above for the
l-integration we obtain an integral of the form
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By considering the integral
G.= (d exp { —r(r*+1)"? cos O+ irt sin 0} 13
2= -jm ! (12+1)1/2 (13)
we may show as before by putting ¢ =sinh ¢ that
G,(r,0)=G,(r,0)=inH  (ir)
and hence
- o oot o y2 o2 12
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where in Equations (11) and (14) the positive root of the
argument of H{ is to be taken. In this paper we are
not in the main concerned with the exact solution of
this integral, but rather we are interested in the points
of stationary phase in the integral over o which re-
presents ¢. The integrand is of the form
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and we note that the argument of H{" is real when
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Fig. 1. The complex contours used to evaluate the integral (6)
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ie. f>a and >7, cos ¥, where the polar angle
Y=tan"!y/z.

These two conditions give a frequency range of o for
propagating magnetogravity waves modified by com-
pressibility
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(i) D?<0 and o*>1
i.e. propagating magnetoacoustic waves modified by
buoyancy for o> @,.

There exists a third (physically inconsistent) case,
namely D? <0 and (3?a?)/(1 —a?) < z* which we reject.
Régime (i1) does not appear in the analysis of Mowbray
and Rarity (1967) since they considered an incompres-
sible fluid with no magnetic field.

The asymptotic form of the first kind of Hankel
function is given in terms of the asymptotic behaviour
of the Whittaker function W, ,(—2iz) (Spain, 1970)
where
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for Re(z)>0
to yield

172
Hg“(z)~<£) exp{ <z—%v7r—%n)}
nz

{1+0:z"N+...}. (16)

Thus ¢ is proportional to
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