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Summary. The inhomogeneous wave equation for a 
special class of magnetoatmospheric waves is formally 
solved, and the principle of stationary phase used to 
provide information on the group velocity properties 
of such waves. General results are presented concerning 
the associated mechanical energy flux . The basic problem 
considered is relevant to waves initiated by sudden 
events in the solar atmosphere. 

Key words: magnetoatmospheric waves - Group velo
city - energy flux 

I. Introduction 

For simplicity in most of the present analysis we con
sider an isothermal atmosphere permeated by a hori
zontal magnetic field which decreases with altitude in 
such a way as to render the Alfven velocity constant. 
This type of atmospheric structure has been useful in 
previous investigations [e.g. see Nye and Thomas (1976) 
for further references] in that the governing differential 
equations of the problem have constant coefficients. 
The general case of non-constant coefficients has been 
formulated by Adam (1977b) (hereafter referred to as 
II), but we consider in more detail this simpler model , 
believing that the underlying physics of the problem is 
not significantly changed by so doing. 

We deal with a subset of the waveforms resulting 
from an initial disturbance, namely those waves with 
wavevectors k = (0, l,m) perpendicular to the horizontal 
magnetic field B0 =(B0 ,0,0)e -zf2n. H is the constant 
density scale-height given originally by Yu (1965) 

f 
_2 Y 2 

H= to+2ao 
yg 

where c0 is the velocity of sound, a0 = B0 / ( 4np0 )
112 is the 
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Alfven velocity, y is the ratio of specific heats and 
g = (0, 0, -g) is the gravitational acceleration . 

In order to render the excitation function as simple 
as possible, we consider a line source of " force" 
b(y)b(z)b(t) in two spatial dimensions, representing an 
instantaneous forcing term in the plane z = 0, which 
may be taken as the upper photospheric region for the 
present purposes. This is not mandatory however, and 
since we are not examining the nature of trapped waves 
we do not explicitly define a lower boundary condition. 
We therefore seek information on the subsequent be
haviour of disturbances initiated in the upper solar 
atmosphere by an instantaneous event. Clearly a more 
sophisticated temporal behaviour of the source can be 
easily incorporated in the present analysis, and is per
haps ultimately desirable ; since it is not only those 
waves with periods much larger than the characteristic 
time-scale of the source that are of interest. However, 
many of the characteristics of magnetoatmospheric 
waves depend only on the properties of the medium 
and not on its excitation, and it is the object of this 
analysis to investigate such properties. In order to 
predict the spectrum of waves at given points in the 
medium however one would require some further 
knowledge of the source. 

II. Basic Solutions 

A comprehensive account of the complete magneto
hydrodynamic wave equation for the problem has been 
given by the author (Paper 11) and for the values of k 
considered here the coupled inhomogeneous equations 
are 

=0, (2) 
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where A is a constant with dimensions (IJ) - 2. The 
variable PT= (B0 • b/4n) + p is the total pressure pertur
bation field due to both magnetohydrodynamic and 
kinetic pressure, and the variable ~ z is the vertical 
particle displacement. p0 (z) is the equilibrium density 
distribution. The quantity n5 = -(g/c2)-(g/ p0 ) (dp0 /dz) , 
when positive is the square of the Brunt-Viiisiilii fre
quency for a static atmosphere [see Newcomb (1961), 
also Paper II]. This is modified when motions with 
wavevectors k perpendicular to the magnetic field are 
considered, since then there is no twisting of the field 
lines and the magnetohydrodynamic effects are account
ed for by replacing c0 , in the absence of magnetic field , 
with (a5 + c5)112. 

Elimination of PT from the above equations yields 
the following equation for the field quantity </J = P612~z : 

o4</J a2 ( a2 a2) a2¢ 
ot4 -(a5 + C6) ot2 oy2 + oz2 <P + (J)~ ot2 

02</J z 

-(a5 + C5)n5 oy2 = p112(0)e 28c5(y)c5(z)c5(t), (3) 

where w; = (a5 + 2o)/4H2 is the magnetoacoustic cut-off 
frequency in a stratified atmosphere and 

~2 c5n5 a5g 
no =-2--2 + 2 _2 

a0 + c0 H(a0 + q,) 

g g2 
H a5+C5 

(4) 

is the modified Brunt-Viiisiilii frequency mentioned 
above. Note that a plane-wave solution of Equation (3) 
of the form </J ~ exp i (ly + mz -wt) yields the dispersion 
derived by Yu (1965) for kx=O. 

We may express </J as a Fourier Integral 

</J(y,z,t)=C f di f dm f dw exp i~7+mz -wt)</J~,m~~) , 
- oo - oo - oo 12 ( no -1)-m2 +-w_-_w_a 

w2 a5+C5 

where C(z)= {(a5 +c5)w2J- 1 exp (z/2H). 
Let w = afi.0 , wa = /3fi0 , then 

</J=Cf dlf dm f da iioexpi(ly+mz~afiot1 ~2· (6) 
-oo -oo -oo 12(a - 2-l)-m2+(a ~/3 )no 

ao+C6 

The integration with respect to l may be carried out by 
considering the integral 

J eipy{p2(a2 - 1) +B2J-1dp, B2 =a:2 [m2 + ii6(~2 -a:2)] 
• ~+C6 
round the large semicircle <f in the upper half-plane, 
a being real. Simples poles lie at the points p = 

±B(1-a2)- 112; ifa: < 1, B real, or a:>1, B imaginary, 
these lie on the real axis and the contour must be 
appropriately indented to incorporate a radiation con
dition, i.e. to ensure that the waves are outgoing (see 
Fig. 1). 

If on the other hand a > 1, B real or a < 1, B imaginary, 
the poles are purely imaginary with only one inside the 
contour. For the moment we shall concern ourselves 
with the real poles, representing propagating magneto
atmospheric waves. For a fuller discussion of the 
continuous and discrete spectra, refer to Paper II. It 
will suffice here to note that the continuous spectrum 
consists of three disjoint intervals on the real w-axis, 
cuts between the branch points of w with domai,ns in 
w-space (- oo , -wa), (-fi.0 ,ii0 ) and (wa, oo). This will 
become evident below. The first and last of these fre
quency domains represent propagating buoyancy-modi
fied magnetoacoustic waves, whereas the middle domain 
represents propagating compressibility-modified mag
netogravity waves. 

Were we to be dealing with the modified pressure 
field , Po 112pT , we would find an extra contribution from 
the w-integration resulting from the presence of poles 
where /2 -(w2 /2o) = 0. The sum of the residues represents 
the pressure contribution from trapped waves. 

Returning to the /-integration we consider first 
propagating magnetogravity waves (a< 1, B real). The 
condition that B should be real is automatically satisfied 
for a < 1 provided k; > 0 ( of interest here) and indeed 
for a small range of negative values of k;. The wave
number integrals are of the form 

oo oo ei(ly+mz) 
I= r d/f dm ------

1 / xi _Joo 12(0:2 - 1)+a:2(D2 +m2)' 
(7) 

where 

(5) 

and where a negative parameter - a:2C has been sup
pressed. Then 

{
. [ya(m2 + D2)112 ] } 

00 
exp 1 2 112 +mz 

I = -ni f dm (l -a) 
1 _ 

00 
(l -a2)112(m2 + D2)1 12a 

where y>O. (8) 

Following the treatment of similar integrals by Mow
bray and Rarity (1967) consider 
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G (r 0 )= J dt exp {i[r(t
2

+1)112cosh0+rtsinh0]} (9) 
I ' _

00 
(t2+1)1 /2 

and let t = sinh 17, so that 
00 

G1(r ,0) = J d17exp {ircosh(0+17)} (10) 
- 00 

which with the infinite limits is independent of 0, so 
that G1(r ,0)=G1(r ,0)=inHal)(r) represents a Hankel 
function of the first kind of order zero (Courant and 
Hilbert, 1953). 

Therefore ct. < 1 and B real 

oo ii e - ia'ii01 { ( y2 2 )1/2} 
l,=n2_foo dct.(1~ct.2)1 12ct.DHa1> D 1-ct.ct.2-z2 ' (11) 

where we have identified the following quantities : 

m Dyct. 
t=- , r cosh 0= 2 112, r sinh 0=Dz. 

D (1-ct. ) 

We now turn to propagating magnetoacoustic waves 
for which ct. > 1, B imaginary. For B2 to be negative 
when ct.> 1 it is required that ct.2 should be greater than 
{32 by at least the quantity (al + c?o )m2n0

2, otherwise w 
is not sufficiently large to enter the upper branch of the 
model diagram. 

Following the same procedure as above for the 
/-integration we obtain an integral of the form 

oo oo ei(ly + mz) 

12 = J di J dm --::--~- -----=,--,,.-----,-
- oo -oo !2(ct.2-1)+ct.2(m2+D2) 

{ 
yct.(m2 + D2)112 _ } 

oo exp - (ct.2 - 1)112 + imz 
=n J dm - ~-'-----'----- (12) 

_ 
00 

(ct.2 -1)112ct.(m2 + D2)112 

By considering the integral 

G = J dtexp{-r(t
2

+1)112 cos0+irtsin0 } (l 3) 
2 - 00 (t2 + 1 )1 /2 

we may show as before by putting t = sinh <jJ that 

Gi(r,0) = G2(r,0)= inHa1>(ir) 

and hence 

oo e - ia'iiot { ( y2ct.2 )1/').} 
l2=n2_soono ct.D(1-ct.2)1 f2 Hal) D 1-ct.2- z2 dct. , 

(14) 

where in Equations (11) and (14) the positive root of the 
argument of Ha1

> is to be taken . In this paper we are 
not in the main concerned with the exact solution of 
this integral, but rather we are interested in the points 
of stationary phase in the integral over ct. which re
presents <jJ . The integrand is of the form 

iioe - ia'iiot { Hal ) [D ( y2ct.2 - z2) 1/2]} 
ct.D (1- ct.2)1 12 l - ct.2 

and we note that the argument of Ha1> is real when 

Im z 

a <1 

- ~--~~--t----"'----'-- Rez 
8 O B 

- (l- a 2J112 (l- a 2)1/2 

Im z 

a >1 

B 
(a 2 _ 1)112 

- ~-- ---+------'--Re z 
0 

Fig. I. The complex contours used to evaluate the integral (6) 

y2ct.2 
(i) D2 > 0 and --2- z2> 0 

1-ct. 
i.e. fJ > ct. and w > n0 cos ijJ , where the polar angle 
i/J = tan - 1 y/z . 
These two conditions give a frequency range of w for 
propagating magnetogravity waves modified by com
pressibility 

no > w > no cos i/1. 

(ii) D2 < 0 and ct.2 > 1 
i.e. propagating magnetoacoustic waves modified by 
buoyancy for w > w

0
• 

There exists a third (physically inconsistent) case, 
namely D 2 < 0 and (y2ct.2)/(1 - ct.2) < z2 which we reject. 
Regime (ii) does not appear in the analysis of Mowbray 
and Rarity (1967) since they considered an incompres
sible fluid with no magnetic field . 

The asymptotic form of the first kind of Hankel 
function is given in terms of the asymptotic behaviour 
of the Whittaker function W0 ,/ - 2iz) (Spain, 1970) 
where 

e- 1/2 oo ( 1J ) v- 1/2 
W, (z)=- -- J 1J v- l f2e - q 1 +- dr, 

O,v I'(v+1 /2) o 2 

for Re(z) > O 

to yield 

Hal)(z)~(~
2
f 2 

exp{i (z- ½ vn-¼ n)} 

{1+0(z- 1) + .. . } . 

Thus <jJ is proportional to 

oo ( y z) { ( [ ct.2 ( y) 2 ( 2 )2]112 )f \ct.'t't exp i D 1- ct.2 t - t 

(15) 

(16) 

-ct.n0)t}dct., (17) 
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w 

.!1 
i\ cos "' 

Fig. 2. A schematic representation of the upper and lower frequency 
behaviour of Q(w, b), for given b, 1/J in the (ro- Q) plane 

where t is to be a large parameter and the function f is 
non-oscillatory. The principle of stationary phase states 
that the most significant contribution to the integral 
(17) above comes from the neighbourhood of those 
points where 

(18) 

when t is large. 
In a slightly different form we may write the ex

ponent as i(QR-wt) where R2=y2+z2, 

Q = D(r:x.2- cos21/1)1f2(al + ?o) - 112 
(1 - r:x.2)1 /2 

={(w~-w2
) (w2-iil cos21/J)}112 

(iil - w2) (al+?o) 

(19) 

which is a generalisation of a result by Cole and Grei
finger (1969) to include magnetic effects, achieved by a 
different method from theirs. The parameter Q is real 
for the propagating w-bands 

W0 < lwl < oo, ii0 > lwl > ii0 cos 1/1. 

The points of stationary phase are now given by 
R (dQ/dw )- t = 0. Before proceeding to investigate the 
group velocity properties of these waves from this in
formation we shall express Q (w, ijJ) as a function of the 
non-magnetic value of Q(w,1/1) and the parameter 
b=(a6f?o). This will in principle enable us to see the 
behaviour of the group velocity of waves in a more 
realistic atmosphere, in which say a0 increases with 
altitude, by considering piecewise-constant regions of 
this model. Representing as we have done the cor
responding " magnetic" frequencies by w

0
, ii0 , we have 

that 

-2 - (1 + D) 2 - l 2 
W 0 

- ( [J)2 W 0 - W 0 

1+L 
2 

Fig. 3. A schematic representation of the behaviour of Q(w, b) as a 
function of b =al/cl , for given 1/1 (upper branch) 

and 

( y-1 + yb ) 
~2 2 2 2 
no= [J no=µno , 

(y-1)(1+D) (1+ Y
2

) 

where of course A and µ are constants. 
Thus 

(20) 

Note that 0 <l::;; 1, 0 < µ::;;1. 
We plot the high and low frequency branches of Q 

for various values of b, in Figures 2-4 for a typical 
value of the polar angle 1/J . 

The group velocity of waves is defined in real space 
by c9 =R/t=dw/dQ from the condition for stationary 
phase. Heney by studying the upper and lower branches 
for Q (w , 1/1 , b), corresponding to buoyancy-modified 
magnetoacoustic waves and compressibility-modified 
magnetogravity waves respectively, we can determine 
the behaviour of c

9
(w, ijJ , b). For the upper branch for 

given 1/1 , b we note that the group velocity as defined 
above rises monotonically from 0 to (al+ 2o)112, the 
latter value being approached asymptotically from 
below as w-+ oo . The group velocity is clearly single
value for all values of w in this range, as reference 
to Figure 5 will indicate. In Figure 6 is shown the 
behaviour of the upper branch as the Alfven velocity 
is increased, or equivalently as the wave-group pro
pagates higher into the atmosphere. Since we are only 
interested here in the qualitative behaviour of Q (w, 1/1 , b) 
and hence cg(w,1/J,b), Diagrams 2- 7 are of a schematic 
nature, but is is evident that by fixing a0 and increasing 
c0 in a piecewise constant manner similar behaviour 
(for both branches) will be achieved. Note also the fact 
that as a0 ( or c0) increases, w0 correspondingly decreases. 
The means that given an atmospheric structure of the 
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-----------6'1 Cg 

----------6'2> 6'1 

--------- 6'3> 6'2 

e = i\ cos 'I' 

n 
Fig. 4. A schematic representation of the behaviour of Q(cv, .5) as a 
function of c5, for given 1/1 (lower branch). Note the steepening gradient 
at the inflection point as c5 increases 

w 

Fig. 6. A schematic representation of c
9 

as a function of[> for given ijJ 
(upper branch) 

kind investigated here (a0 increasing in a piecewise
constant fashion) waves corresponding to the upper 
branch, propagating vertically upwards will not be 
reflected, since from Figure 6 there always exists a real 
group velocity for any given w. 

Turning now to the lower branch, the behaviour of 
which is illustrated schematically in Figure 2, 4 and 7, 
we see that there is a maximum in the group velocity 
curve, i.e. there is a fastest group of waves, for which 
c9max < (a6 + 2o)112

• Below c9ma x there are two groups of 
waves, one asymptotically approaching fi0 cos l/1, the 
other, fi0 . The peak arises because of the inflection point 
in the w - Q curve. The locus in physical space of 
coincident double points of stationary phase defines a 
front or "caustic" representing the onset of the distur
bance (Mowbray and Rarity, 1967; Cole and Greifinger, 
1969). In our notation the location of the caustic can 
therefore be found from the condition 

_q__(dw)=o. aw dQ 
(21) 

i\ cos '+' w 

Fig. 5. A schematic representation of the group velocity c
9
(I' , .5) for 

given 1/1 , c5 in both lower and upper frequency domains 

e = r\ cos '+' 

w 

Fig. 7. A schematic representation of c
9 

as a function of c5 for given 1/1 
(lower branch) 

As a0 increases the maximum value of c9 increases 
and the whole lower branch is shifted to smaller values 
of w. Hence it is clear that wave-reflection can occur 
when for a given w, the ordinate ceases to intersect a 
lower branch curve for a given altitude, at which point 
wave-reflection occurs. 

III. The Associated Mechanical Energy Flux 

In this section we relax the assumption of constant 
coefficients as used above and consider the wave energy 
flux associated with the motion. We retain the condition 
k = 0 which makes the work of this section comple
mentary to some of that in Paper II in which the cross
field wavenumber l was considered zero. The analysis 
is based on techniques used in Paper I (Adam, 1976a). 

We make use of the dependent variable transfor
mations 

Pr(l,w;z)=p0 112 (z) exp O a.1(z)dz)Pr(l,w;z) l 
Q(l,w;z) = </J(l,w;z) exp O a.1 (z)dz) 

(22) 
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as defined in Paper II . Here cx1 =g/(c6(1 +[J))-(1 /2H). 
Neglecting the source term this yields the homogeneous 
operator equation 

L · R=0, (23) 

where L is the operator 

[ 

d 

dz 

fJ(z) 

and R is the vector 

(24) 

(25) 

Equation (23) reduce to the following equation in PT: 

.!!:_ [-1- dPT]-fJ(z)PT=O. 
dz cx(z) dz 

(26) 

Consider the complex energy-flux function (Souffrin 
(1966)) F(y ,z,t) =pT(y, z,t)ez(y,z, t) where, for a par
ticular Fourier component (pr ' ez) ~(PT ' Q)ei(ly-rot) and 
hence ffe(l,w;z)= -iwPT(l,w;z)Q(l,w;z)e2"''r where 
ff (I, w; z) is the normal-mode flux function , where the 
bar denotes complex conjugation and the dot denotes 

time differentiation __£_. From Equations (26) and (27) 
above we derive at 

(28) 

The real part of ff (I, w; z) will concern us most since 
it represents the physical quantity of interest, but for 
completeness and a further result we i;etain the reactive 
part of the flux , Im(ffe) . Clearly, after a little manipula
tion, for general w, 

(29) 

and 

(30) 

We can consider either free or rigid or mixed 
boundary conditions at z = 0, z = d (where d may be 
infinite) ; the results established below are valid for all 
cases, since ffe (l ,w;z) vanishes when either PT(0) , PT(d) 
or Q(0), Q(d) are zero. 

Clearly, Equations (29) and (30) possess singularities 
when the atmospheric resonance frequency is reached, 
i.e. when w = ii0 . If we consider first Equation (29), two 
results can be derived. If w is purely real ( oscillatory 
motions) then except when w=ii0 , F'(z)=Re(ffe '(z)) is 
zero. It can be shown (Paper I) that if the singularity 
occurs at z=z0 then the discontinuity in flux , [F] 
oc IP;l: /(nl);w. See also Rosencrans (1965). We shall 
show below that w must be either real or pure imagipary. 
Hence our second result is that if w is imaginary, with 
W; > 0, then F is a differentiable monotonically de
creasing function of z in the stable layers. This follows 
from the fact that if w is imaginary then ex is always real 
continuous and positive in the stable regions. 

We now show that the eigenvalues w are either real 
or imaginary i.e. have real squares . Suppose that either 
w is complex, in which case no singularity occurs, or 
that w is imaginary and w2 not in the range of - nl i.e. 
w2 > sup ( - nl). Then integrating Equations (29) and 
(30) over (0, d) and applying boundary conditions we 
find that 

and 

If w,w; =l-0 we can divide equations by W; and w, respec
tively and add the results to obtain 

which implies IPTI =PT=0 so there are no such eigen
values. We can state these results, which are magneto
hydrodynamic generalisations of work by Rosencrans 
for different boundary conditions and formulation , in 
the form of a theorem. In Papers I and II these results 
were generalised to include shear flow, and shear flow 
along a magnetic field for k=(k,0,m) respectively. 

Theorem. (a) If W; = 0 then F(z) is piecewise constant 
with possible discontinuities where w = ii0 . 

(b) F(z) is a differentiable, monotonically decreasing 
function of z in the stable layers, if w; > 0. 

(c) The square of w is real, i.e. modes are purely 
oscillatory or exponential in time. 

Implicit in the analysis of this section has been the 
motive of including locally convectively unstable atmo
spheres (iil < 0) bounded above and below by stable 
reg10ns. 
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We note, as did Thomas and Nye (1975), that a 
magnetic field increasing with altitude may actually 
stabilitise an otherwise convectively unstable region . 

IV. Discussion 

Since the model considered here is explicitly concerned 
with waves propagating radially from a magnetic field , 
we consider first the relevance of this two-dimensionality 
to solar atmospheric wave phenomena, and then pro
ceed to discuss the applications of the analysis in 
sections two and three with this as background. 

By considering only those waves which propagate 
perpendicular to the magnetic field lines we are clearly 
neglecting some of the magnetohydrodynamic effects 
associated with more general situations. Much more 
complex analytic work is required in such a case (Adam, 
1977b) and the purpose of this paper is to reduce such 
complexity while hopefully retaining much of the im
portant physics-viz. the existence of a magnetic field 
ab initio. There are situations when such a twodimen
sional model is extremely useful ; especially when the 
problem under consideration contains a certain degree 
of cylindrical symmetry, viz. magnetic flux tubes in 
active ·regions at many levels in the solar atmosphere. 

Solar active regions contain a great deal of filamen
tary and loop structure, and in order to understand some 
of the phenomena which are important in the local 
energy balance of such active regions , models of 
chromospheric and coronal filaments are obviously 
desirable. In particular, a complete dynamical study of 
such structures would need to incorporate some aspects 
of mechanical wave energy deposition in these features. 
One such model has been suggested by Billings (1966) 
for a coronal filament , and Pneuman (1972) has in
vestigated more quantitatively the gross energy balance 
in such a structure. We quote those aspects of Billing's 
model for which the present paper may be relevant, 
and suggest that the mechanisms involved may have 
some consequences at chromospheric levels also. The 
suggested model is one in which the magnetic field is 
proportional to the excess density in the tube, each 
having a gaussian distribution across it. A distribution 
of this type would result if a flux tube from beneath the 
solar surface erupted into the corona (Babcock, 1961) 
and then expanded radially until the outer density of 
the tube matched that of the surrounding medium. 

Billing's suggestion is that a plane hydromagnetic 
wave entering the tube from below, with wave front 
normal to the axis, would after a short time have 
elongated strongly along the tube axis because the wave 
velocity would in general be largest there (this would of 
course depend on the specific values of density and field 
strength along the axis) . Thereafter, further progression 
of the wave may be considered as an advance along the 
axis and a spreading out from the axis. It is this latter 
part of the wave behaviour that is qualitatively described 

by the analysis in Section II above, and for a given 
initial wave we have seen that (within the range of 
validity of the linear regime) as time becomes large 
relative to some given period, there exist two groups of 
magnetogravity waves approaching specified limiting 
frequencies. This is to be constrasted with the single 
group of magnetoacoustic waves that are also present. 
These results are qualitatively true for more realistic 
behaviour of a0 (z) also, since they are not a consequence 
only of the particular profiles considered (the latter 
being chosen for analytic convenience). Some care should 
be taken in applying this to coronal flux tubes only, 
since bupyancy forces are then relatively unimportant 
for wave-motions and presumably the single limiting 
magnetoacoustic frequency is the relevant one here. 
However, for the corresponding situation in the chro
mosphere it would be entirely appropriate to expect the 
limiting magnetogravity frequencies to be present. The 
comments above for coronal flux tubes presumably hold 
also for flare-induced coronal waves, since it appears 
that gravity is not a significant factor in their subsequent 
behaviour after being generated (see references in Nye 
and Thomas, 1975). 

The theoretical boundary or " caustic" (representing 
the onset of these disturbances orthogonal to the flux 
tubes) can be found from linear theory, but in reality 
non-linear effects ignored here many swamp such pre
dictions ; this makes the observational problem a 
complex one. Indeed, on the basis of Billing's model , 
conditions are eventually made favourable for the 
development of shock fronts progressing radially out
ward from the axis of the tube. This type of mechanism 
may well provide a good model of the observed thermal 
structure of coronal filaments. 

In addition to such " first-order" effects (in the sense 
that the initial wave ultimately becomes the radially
moving disturbance), secondary generation of waves 
may occur in the form of standing hydromagnetic 
waves across the diameter of such chromospheric or 
coronal tubes. This " pulsing" or " sounding-board" 
type model would give rise to secondary waves pro
pagating outward from the tube, which for the mhd 
modes considered here would, unfortunately, be very 
difficult to detect. The corresponding model for the 
radio regime has been suggested by Rosenberg (1970, 
1971) in an effort to explain weak, often recurring 
quasi-periodic fluctuations superimposed on a Type 
IV-like continuum (Mclean et al. , 1971). Again, the 
model presupposes the existence of a well-defined 
magnetic flux-tube with its feet rooted in the photosphere 
and its top high in the corona, but-additionally-it 
is situated over a flare region. 

In a subsequent paper concerning waves in coronal 
and chromospheric flux tubes the author hopes to 
discuss more quantitatively the above phenomena, i.e. 
radially-moving waves and radially-generated waves in 
flux tubes , with particular reference to local energy 
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balance. As far as this present analysis is concerned, 
these are two possible mechanisms for which the above 
theory may be directly applicable. 

Another possible application of the theory in section 
II is that of regarding the famous "five-minute" oscil
lations as a " ringing" of the stable photosphere, con
stantly struck from below by decelerating convective 
elements. A number of papers on this phenomenon have 
appeared in the literature [see Stein and Leibacher 
(1974) for further references] and briefly the mechanism 
is as follow. The impulse excitation introduces an up
ward propagating pulse, and because the group velocity 
of acoustic-type waves tends to zero as w-+w

0 
(see 

Fig. 6) the high frequency components run ahead, and 
leave behind an oscillating standing-wave wake at the 
acoustic cut-off frequency (Period ~ 200 s in the photo
sphere and low chromosphere for zero magnetic field) . 
Since we have generalized the theory to include magnetic 
effects in a stratified atmosphere the following sug
gestions may be made 

(i) the disagreement between the 200s and 300s 
periods above may be resolved by noting that for 
buoyancy--dominated waves, c

9
-+0 as 

(a) w-+n0 , 

(b) w-+n0 cos 1/1. 

ljJ being the polar angle. We have not yet invoked the 
magnetic field since this can occur in its absence. The 
period corresponding to n0 in the photosphere and low 
chromosphere is close to 300s. 

(ii) In the presence of any horizontal magnetic field 
(not necessarily the special case considered here) since 
w0 < wa and ii0 < n0 this means that the corresponding 
periods of waves at the cut-off frequencies become larger 
as a0 increases . Hence in active regions of this type it 
may be that the magnetoacoustic cut-off frequency is 
the appropriate one. The observations are not yet 
conclusive since periods ranging from 190s---450s in 
umbrae have been observed (Stein and Leibacher, 1974). 
It is worth remarking that a decelerating convective 
element is more likely to generate gravity waves when 
it penetrates overlying convectively stable regions since 
the basic phenomenon is unchanged when compres
sibility is ignored. Thus perhaps a study of this mecha
nism, with regard to the generation of gravity waves 
rather than acoustic waves may be appropriate for the 
five-minute oscillations, although Athay's comments 
(1976) should be borne in mind . 

In connection with the lowering of the cut-off fre
quencies in the presence of a purely horizontal magnetic 
field , we note, as did Kuperus (1969) that for modes 
perpendicular to the field this favours the transmission 
of a greater part of the acoustic spectrum in magnetic 
regions. In addition, for wave-motions strictly per
pendicular to the magnetic field the corresponding 
transmission of gravity modes is reduced . 

We have also seen how the stationary-phase function 
Q contains information on the propagation properties 
of magnetoatmospheric waves. In particular, examina
tion of the Q -w diagrams for a sequence of constant 
Alfven velocity regions can give reflection heights to 
any desired degree of accuracy by suitably matching 
boundaries. This can also be achieved for non-isothermal 
models, provided that in each case the vertical dimen
sions of each "slab" are at most rather less than a typical 
density scale-height. 

We now proceed to analyse the consequences of 
Section III in some detail, and discuss possible appli
cations in the light of observations. The theorem has 
been derived for arbitrary a0 - and c0-profiles and hence 
it is a general result for radial modes in a horizontal 
magnetic field region. Although in some senses the 
results are known from physical considerations, Rosen
crans (1965) proved them rigorously, and the extension 
of this has been given here. The incorporation of shear 
in the analysis also has important stability consequences 
(Adam, 1977a, b). 

We have assumed initially that w,wi is non-zero and 
then proceeded to derive certain results from this . The 
presence of an W; # 0 (w; > 0 is only of interest here for 
obvious reasons, but linear inviscid theory applies also 
to wi < 0 with equal validity) clearly implies the existence 
of a destabilising force which in the absence of shear 
can only be due to unstable stratification. This will 
occur in regions of granular convection, bounded above 
as they are by convectively stable regions (strictly they 
are bounded below by regions unstable on a super
granular time-scale, but this is not relevant here) . 
Statement (a) states that if in such a system the waves 
are purely propagating in time (w; = 0) then on the 
basis of adiabatic theory the associated energy flux 
(Re ff) is constant at all altitudes, unless the wave 
frequency w( =w,) becomes equal at some level to the 
local magnetic Brunt-Vaisala frequency . The disconti
nuity which occurs in this case can be easily evaluated 
(see Adam, 1977a,c), and results from the fact that the 
whole atmospheric region moves in phase at this 
frequency . By the very nature of the boundary con
ditions which can be chosen it is apparent that we are 
dealing with a form of resonant cavity. Specific models 
based on this type of physical phenomenon do not 
concern us here since they have been adequately review
ed by Stein and Leibacher. Nevertheless the generality 
of this analysis shows that the theory here is fundamental 
to all types of cavity model. 

Statement (b) concerns in particular temporally 
over-stable modes (w; > 0) since we are still assuming 
w,w; # 0 [but in the light of Statement (c) clearly refers 
to non-oscillatory growing, convective modes]. Physi
cally, if modes exist such that wi > 0 they can only occur 
when an energy source is available (unstable stratifi
cation; and in stable layers the mechanical energy flux 
associated with such modes decays monotonically with 
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altitude. Thus convective overshoot is ultimately "con
tained " when penetration occurs into stable regions. 

Statement (c) is perhaps the most interesting since 
it states that within this model overstable modes do not 
ex ist (nor indeed do exponentially decaying oscillatory 
modes) . Some other means of destabilisation (for 
example shear or dissipation) must be present for over
stability to occur. 

In principle a considerable amount of information 
is contained in Equation (29) , particularly with regard 
to the rate of decay of wave anergy flux with altitude. 
Given a particular choice of the parameters a

0
(z) , c

0
(z), 

w, l etc. we can obtain a solution of the governing wave 
Equation (26) either analytically (for simple profiles) 
or numerically, and then use the results in conjunction 
with (29). For example generality the inhomogeneous 
analogue of Equation (26) should be solved, incor
porating a source term representing, say, convective 
overshoot. This has in fact been investigated for an 
optically thin atmosphere by Chen (1974) in the absence 
of magnetic fields . But in addition, by comparing the 

. f dff ,. . h . f magmtudes o Re - 1or vanous c 01ces o w, a
0

, c
0 dz 

etc. the relative importance of magnetic field effects, 
on, say, penetrative convection may be ascertained . 

Hence the results of Section III are not all directly 
of relevant to solar observations, but rather, information 
derived from them when compared with observations, 
may provide evidence for the importance or otherwise 

of convectively generated magnetohydrodynamic wave 
energy flux in stable magnetoatmospheric regions . 
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