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ABSTRACT 

 

CODAR’S SURFACE FLOW AT THE MOUTH OF CHESAPEAKE BAY:  

RELATION TO BAY’S AND ATLANTIC’S FORCING 

 

Shelby Kathryn Henderson 

Old Dominion University, 2021 

Director: Dr. Tal Ezer 

 

 Surface currents in the lower Chesapeake Bay (CB) observed with land-based high-frequency 

radar antennas, or Coastal Ocean Dynamics Application Radar (CODAR), produce hourly 2D maps of 

current velocities used for search and rescue, pollution tracking, and fishing operations. This study 

analyzes the correlations between a 9-year record of surface currents measured by CODAR to coastal sea 

level, local wind forcing, river discharge into CB, and water transport through the Florida Straits, 

representing the Gulf Stream’s control on sea level along the U.S. mid-Atlantic coast. The goal of this 

study is to find ways to use CODAR data to detect and monitor long-term sea level changes in CB, which 

may aide numerical modeling of the lower Bay for long-term forecasting and trend analysis.  

 Linear regression, spectral and wavelet analyses, and Empirical Mode Decomposition (EMD) are 

applied to the datasets. Linear regression and spectral analysis show high frequencies of CODAR surface 

currents driven primarily by winds and link to variations in water levels, while low frequencies explained 

by river discharge and Gulf Stream. Both spectral and wavelet capture the annual cycle, wavelet 

suggesting anti-correlation between CODAR outflow and water level at this period. Because these 

methods only capture signals up to about two years, EMD, which separates lower frequency oscillating 

modes, is also used. EMD trendlines are qualitatively consistent with known dynamics or may be part of 

larger decadal oscillations longer than this 9-year dataset. Spectral and EMD agree at high frequencies, 

but also suggests river and Gulf Stream flow may be linked with CODAR currents on longer time scales. 

EMD achieves realistic long-term trends and correlations for CODAR, but a longer time series is 

necessary to produce significant results that could use this data to truly monitor long-term sea level 

changes for the CB in this manner. The study demonstrated the complex nature and interconnections 

between the different factors and different time scales affecting the currents at the mouth of the CB. This 

analysis may be the first of its kind in the attempt at combining all these different observations in a single 

study.
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NOMENCLATURE 

AMOC  Atlantic Meridional Overturning Circulation 

AOML  Atlantic Oceanographic and Meteorological Laboratory 

ATON  Aids to Navigation 

CB  Chesapeake Bay 

CBBT  Chesapeake Bay Bridge Tunnel 

CODAR Coastal Ocean Dynamics Application Radar 

CPHN  Cape Henry CODAR Station 

EMD/HHT Empirical Mode Decomposition/Hilbert-Huang Transformation 

GIA  Glacial Isostatic Adjustment 

GS  Gulf Stream 

HF  High Frequency 

IMF  Intrinsic Mode Function 

MAB  Mid-Atlantic Bight 

MARACOOS Mid-Atlantic Regional Association Coastal Ocean Observing System 

NOAA  National Oceanic and Atmospheric Administration 

PSD  Power Spectral Density 

R  Correlation Coefficient  

SLR  Sea Level Rise 

SSH  Sea Surface Height 

SUNS  Sunset Beach Resort CODAR Station 

USGS  U.S. Geological Survey 

U-V  Horizontal and vertical component of velocity 

VIEW  Ocean View Community Beach CODAR Station 

 

 

  



vii 

 

TABLE OF CONTENTS 

            Page 

 

LIST OF TABLES ..................................................................................................................................... viii 

 

LIST OF FIGURES ..................................................................................................................................... ix 

 

INTRODUCTION ........................................................................................................................................ 1 

 

DATA & METHODS ................................................................................................................................... 7 

DATA COLLECTION .................................................................................................................... 7 

DATA ANALYSIS .......................................................................................................................... 8 

 

RESULTS ................................................................................................................................................... 11 

MONTHLY (SEASONAL), DAILY, AND HOURLY VARIABILITY ...................................... 11 

LINEAR CORRELATION ............................................................................................................ 17 

SPECTRAL ANALYSIS ............................................................................................................... 17 

EMPIRICAL MODE DECOMPOSITION (EMD) ....................................................................... 22 

WAVELET ANALYSIS ............................................................................................................... 32 

 

DISCUSSION ............................................................................................................................................. 37 

WATER LEVELS ......................................................................................................................... 37 

WINDS .......................................................................................................................................... 38 

RIVER DISCHARGE .................................................................................................................... 38 

GULF STREAM ............................................................................................................................ 39 

 

CONCLUSION ........................................................................................................................................... 41 

 

REFERENCES ........................................................................................................................................... 43 

 

VITA ........................................................................................................................................................... 45 

 



viii 

 

 LIST OF TABLES 

Table                 Page 

1. Summary of data collected for this study, providing source and access links, as well as the 

download interval used. ................................................................................................................................ 8 

2. Correlation coefficients (R), p-value (P) and their lower and upper confidence interval for 95% 

significance (RL and RU), comparing daily CODAR current velocities outflow to different  

measurements (see text for details). ............................................................................................................ 18 

3. Consolidation of three analyses' comparing the CODAR surface currents out of the Chesapeake 

Bay to water level inside the Bay................................................................................................................ 36 

 

  



ix 

 

LIST OF FIGURES 

Figure                             Page 

1. Map of the  Chesapeake Bay including topography (obtained from NOAA data), location of tidal 

stations, HF radars, and river inputs used in the study.................................................................................. 2 

2. Water level (blue line) obtained from Sewell’s Point and CBBBT tidal stations, and CODAR 

surface current flow out of the bay (red line) are plotted over the course of a typical spring tidal cycle. .... 3 

3. Surface current flow in the lower Chesapeake Bay in illustrative 2-D velocity map. .............................. 6 

4. Histograms of hourly CODAR surface current speeds and water levels in Chesapeake Bay................. 14 

5. Histograms of the daily CODAR surface current speeds, water level, wind speed, river discharge, 

and transport of water through the Florida Straits. ..................................................................................... 15 

6. Monthly averages of surface current flow as collected by CODAR, water level at Sewell's Point, 

wind speed, zonal wind speed, river discharge (from Susquehanna, James, & Potomac), and the 

transport of the GS (from cable across FL strait). ....................................................................................... 16 

7. The power spectral density is plotted on the y-axis and frequency on the x-axis. .................................. 20 

8. The left-hand column displays the squared coherence between the power spectra of the different 

time series, a measure of how well they are correlated at different frequencies. ........................................ 21 

9. EMD analysis results for surface flow as measured by CODAR (blue) and for water level measured 

at the CBBT (red). ....................................................................................................................................... 24 

10. Significance test results for each IMF of the EMD analyses for the daily records of the different 

time series. .................................................................................................................................................. 25 

11. The last IMF of the EMD calculation is plotted for each time series and represents the predictive 

trend or a part of an unknown decadal oscillation. ..................................................................................... 26 

12. EMD correlations between different time series and CODAR flow out of the bay from 9 year 

record of daily data. .................................................................................................................................... 30 

13. EMD correlations between different time series and CODAR flow out of the bay from 9 year 

record of monthly data. ............................................................................................................................... 31 

14. Schematic diagram of EMD correlations to CODAR surface flow out of the Chesapeake Bay on 

different time scales as calculated by EMD. ............................................................................................... 32 

15. Wavelet analysis of the daily time series of averaged CODAR currents out of the CB (a). ................. 35 

  

https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059463
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059463
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059464
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059464
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059465
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059466
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059467
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059467
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059468
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059468
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059468
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059469
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059470
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059470
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059471
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059471
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059472
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059472
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059473
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059473
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059474
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059474
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059475
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059475
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059476
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059476
https://d.docs.live.net/4cf7c12edab0818a/Documents/Research/Thesis/Thesis_Henderson_FINAL_8_5_2021.docx#_Toc79059477


1 

 

INTRODUCTION 

 

 The lower section of the Chesapeake Bay (CB) is of large interest to many studies as 

communities along the shores have seen an increased frequency of flooding events in recent years (Ezer 

& Atkinson, 2014). Flooding during high tides and during storm surges (hurricanes, nor’easters, and 

tropical storms) are increasing due to the combination of global sea level rise, local land subsidence, ice 

mass loss, steric expansion, and the potential slowdown of the Gulf Stream, to include ocean circulation 

changes (more on this later); with large environmental, economic, or human health consequences for 

communities along the Bay (Boon et. al, 2010; Ezer & Corlett, 2012; Eggleston, 2013). The Chesapeake 

Bay and its tributaries (see map in Fig. 1) form the largest estuary in the United States; a partially mixed 

estuary, its mean water depth is about 8 m, is about 280 km in length, and mean width is approximately 

23 km (Wang, 1979).  

 Sea level variability and tides are well documented in the southern Chesapeake Bay, with reliable 

data dating back to the 1930’s. Tides in the lower Chesapeake Bay are mostly semidiurnal, with 

interactions between the three semidiurnal tidal constituents M2, N2, and S2 (Valle-Levinson et. al, 

2001). Generally, the tidal and current range is higher on the eastern shore due to the rotation of the earth 

and shallow bathymetry (Wells et. al, 1929). The tide enters the Bay with characteristic properties of a 

progressive wave, that is the maximum flood current occurs near high tide, and the maximum ebb current 

near low tide (Ahnert, 1960). As the tide proceeds up the Bay, the wave becomes gradually modified.  

 In the southern Chesapeake Bay, relative sea-level rise (SLR) is especially high due to land 

subsidence associated with Glacial Isostatic Adjustment (GIA) and local groundwater withdrawal, thus 

sea level rise has been increasing 3.5 to 4.4 mm/year in the southern Chesapeake Bay (Eggleston et. al, 

2013; Boon, 2010). This “hot spot” of accelerated sea level rise is corroborated by another recent study 

that shows how local sea level rise rates have changed over time from 1-3 mm/year in the 1930’s to 

current rates of 4-10 mm/year spanning the last decade (Ezer & Corlett, 2012).  For comparison, global 

sea levels are estimated to be rising at 1.8 mm/year (Eggleston et. al, 2013). Part of the accelerated SLR is 

potentially attributed to slowdown of the Gulf Stream (Ezer et al., 2013), as discussed later.  

 Wind forcing in the lower Chesapeake is seasonal and with the most energetic wind events 

occurring from north-westerly winds during the late fall and winter and drive surface current flow out of 

the bay (Valle-Levinson et. al, 2001; Boicourt, 1981). In the summer, there is a shift to predominantly 

southwest winds that can drive surface current flow northward (into the bay) and can even reverse 

outward flow if the winds are sufficiently strong and persistent (Boicourt, 1981). It is proposed that tidal 

and wind forcing have nearly equal importance on current velocities in Chesapeake Bay (Xiong & Berger, 

2010; Wang 1979), but their variability and periodicity are very different, as well as their influence on 
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how currents are changed vertically. In the study conducted here, only surface velocities are considered, 

and the impact on currents from wind and tides, as well as other factors like river outflows are studied.   

 

 

 

  

Figure 1: Map of the  Chesapeake Bay including topography (obtained from NOAA data), location of tidal 

stations, HF radars, and river inputs used in the study.  
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Figure 2: Water level (blue line) obtained from Sewell’s Point and CBBBT tidal stations, and CODAR surface current flow 

out of the bay (red line) are plotted over the course of a typical spring tidal cycle. The second panel shows greater detail 

about the nonlinear relationship between the two time series. The third panel is a snapshot that is also complements Figure 

3, where each marked dot correlates to a 2D velocity map. 
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 More than 80% of the Chesapeake Bay’s river input is accounted for by the Susquehanna, 

Potomac, and James Rivers. The flow of these rivers is consistent with other mid-latitude rivers, with high 

discharge in the spring, produced by snow melt and spring rains, and low discharge in later summer and 

early fall (Xiong & Berger, 2010). This in turn creates considerable seasonal variations in salinity 

throughout the entire of the bay. As for long term trends of river discharge, models and data suggest a 

climate-related increase in precipitation over the CB watershed, therefore increasing the amount of water 

transported through the bay (Boomer et. al, 2019). Therefore, the analysis done here of currents at the 

mouth of the CB may be able to reflect changes in the total river outflows into the CB. 

 The strength of the Gulf Stream (GS) has been measured since 1982 by the cable across the 

Florida Strait (Baringer and Larsen, 2001; Meinen et al., 2010). The GS flow is proportional to the 

elevation gradient across the Gulf Stream at the mid-Atlantic bight (due to the geostrophic balance). 

When GS flow is weaker, the gradient weakens and thus induces an increase in coastal sea level in the 

lower Chesapeake Bay (Ezer et. al, 2013). Additionally, the Gulf Stream flow is part of the Atlantic 

Meridional Overturning circulation (AMOC), which has shown a downward trend of transport since 2004 

(Smeed et al., 2014), so a climate related slowdown of AMOC may also affect long-term coastal sea level 

rise. 

 This study analyzes various factors such as sea level, wind, river discharge, and speed of the GS 

to try to understand their links to surface currents in the Chesapeake Bay as measured by the Coastal 

Ocean Dynamics Applications Radar (CODAR). Also known as SeaSonde, the high frequency (HF) land-

based radars are ideal for fine scale monitoring in ports and small bays, with accurate observations up to 

70 km (CODAR Ocean Sensors, 2020). The antennas transmit radio signals across the water and receive 

return signals reflected off waves of a particular wavelength. The measured Doppler shift between the 

transmitted and received signals allows for calculation of an observed speed. Each antenna site supplies 

“radials” of current velocity information that is combined with radial information from two or more sites, 

creating a grid that produces a 2D map of total current velocities (Atkinson et. al 2009). The data are 

collected for dissemination in near real-time as part of the Mid-Atlantic Regional Association Coastal 

Ocean Observing System (MARACOOS), and is used to create products available to mariners such as 

short-term forecasts for shipping channels, pollutant tracking, and as a tool for search and rescue 

(Atkinson et. al 2009). 

 Three radars are used in this study that are located in the lower Chesapeake Bay (Fig. 1): one at 

Norfolk’s Ocean View Community Beach (VIEW), the second at the Sunset Beach Resort (SUNS) set on 

the southwestern tip of the Eastern Shore, and the third at Cape Henry (CPHN). These CODAR stations 

provide surface currents across the entire mouth of the CB, thus are useful for studying the transports and 

exchange of water masses between the CB and the Mid-Atlantic Bight (MAB) region of the Atlantic 
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Ocean. The surface current record spans more than fourteen years from April 2007 to present day, 

however this study uses data spanning from 01 June 2009 through 31 May 2018. The quality of this data 

has been verified and proven reliable through comparisons to Doppler current profilers on Aids-to-

Navigation (ATON) buoys and observations from a Nortek Acoustic Wave and Current device within the 

Chesapeake Bay (Atkinson et. al 2009). Between the three radars, current velocities are captured as far 

north as Cape Charles, VA to the mouth of the Bay, an area roughly 200 square kilometers inside the Bay 

mouth (Updyke & Atkinson, 2015). An example of a typical CODAR product can be seen in Fig. 3, 

where the spring tidal cycle is captured and can be seen in the ebb, flow, and rotation of the surface 

currents.  

 Analyzing the surface current velocities from CODAR and finding its relationship to sea level, 

wind, river discharge, and the Gulf Stream transport will help to find ways to use the data to detect and 

monitor changes in currents and potentially long-term sea level changes in the Chesapeake Bay, as well as 

other climatic and environmental changes that may affect the health of the CB. Additionally, there is the 

potential to use the data to aide in numerical modeling of the lower Chesapeake Bay for long-term 

forecasting and trend analysis. Other implications of changes to surface current include impacts on 

physical transport and distribution of freshwater throughout the bay, sediments, pollutants, as well as 

biological exchanges throughout the water column and the estuary-ocean front. 
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Figure 3: Surface current flow in the lower Chesapeake Bay in illustrative 2-D velocity map. Every two hours is marked 
on the bottom panel of Fig. 2, and each point corresponds to one of the velocity plots in Fig. 3 through the tidal cycle. 
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DATA & METHODS 

 

DATA COLLECTION 

 All data used in this study is publicly available and downloaded through various agency sites or 

received by request. A summary of the data collected, its source, webpage, and download interval is 

available in Table 1.  

SURFACE CURRENTS 

 The data collected by the HF-radar is available through Old Dominion University’s Center for 

Coastal Physical Oceanography Surface Current Mapping webpage.  The data file format includes 

latitude, longitude, time, and the U-V components of surface current velocity; data was downloaded in 

hourly increments from 2009-2018. To analyze the data as a time series, the average is taken over the area 

(197 points; see Fig. 3) to create a single value for each point in time.  It is then transformed so the 

traditional axis is rotated 45 degrees so that surface currents are analyzed in the Northwest-Southeast 

directions. By doing so, the horizontal component of surface flow follows the natural geography of the 

Chesapeake Bay, where negative speeds represent the surface current into the bay, and positive represent 

current out of the bay.  These values are averaged to calculate daily and monthly means that can be 

compared with daily and monthly data of other observations, without the influence of  tidal variability.   

WATER LEVELS 

 Meteorological data and historical water level information were collected from NOAA Tides and 

Currents webpage. Three water level stations were chosen due to their proximity to the mouth of the 

Chesapeake Bay and the availability and completeness of the data to include the Chesapeake Bay Bridge 

Tunnel (CBBT), Sewell’s Point, and Kiptopeke stations (Fig. 1). Data were downloaded in 6-minute 

increments and averaged to calculate daily and monthly water levels. It is important to note, but negligible 

in terms of data differences, that the CBBT meteorological station was moved in 2017 and the station now 

stands five miles north of its original location established in 1975. Because the tide station at CBBT is 

also located on a man-made island used for bridge infrastructure, it has been shown that its sea level 

trends vary slightly from the Sewell’s Point and Kiptopeke coastal stations (Ezer & Corlett, 2012). 

WIND SPEED AND DIRECTION 

 Wind speed and direction data were collected at the CBBT meteorological station and 

downloaded from NOAA’s webpage in 6-minute increments. Data was averaged to calculate daily and 

monthly wind speeds and directions. The horizontal (U) and meridional (V) components of wind were 

calculated from the wind speed and direction. The values axis were rotated 45° to the right to match that 

of the CODAR data, where negative U-values indicate wind into the bay, and positive values indicate 

wind out of the bay, the same method used to rotate the CODAR data.  
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RIVER DISCHARGE 

 Daily river discharge information was collected from three U.S. Geological Survey (USGS) 

stations to include the Susquehanna River, Potomac River, and James River. These three rivers were 

chosen because the USGS has established them as the primary freshwater sources to the Chesapeake Bay. 

The daily data is calculated from current meter measurements in each river. Data from each source is 

summed and averaged to calculate total monthly mean river streamflow.  

FLORIDA CURRENT 

 Daily water transport from cable measurements at 27°N across the Florida Straits was obtained 

from NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) webpage. The cable 

measurements are corrected for geomagnetic variations and the tidal signal is removed by NOAA as a 

standard correction. The data was downloaded in daily increments for the time matching that of the 

CODAR data from June 2009-May 2018. The dataset was transformed to monthly means to analyze 

seasonal trends and further data analysis.  

 

 

Table 1: Summary of data collected for this study, providing source and access links, as well as the download interval used. 

Data Type Source Access Temporal 

Resolution 

Surface 

Currents 

Coastal Ocean 

Dynamics Applications 

Radar (CODAR) 

http://www.ccpo.odu.edu/currentmapping/h

ome.html 

Hourly 

Water Level Tidal Stations https://tidesandcurrents.noaa.gov/  6-minute 

Wind Speed & 

Direction 

NOAA’s Physical 

Oceanographic Real-

Time System (PORTS) 

https://tidesandcurrents.noaa.gov/met.html?i

d=8638901  

6-minute 

River 

Discharge 

USGS https://waterdata.usgs.gov/nwis/uv/?referred

_module=sw  

Daily 

FL Current NOAA’s Atlantic 

Oceanographic & 

Meteorological Lab. 

(AOML) 

https://www.aoml.noaa.gov/phod/floridacur

rent/data_access.php  

Daily 

 

 

DATA ANALYSIS 

 The time series of daily and monthly CODAR data is compared to these competing factors in four 

ways: linear correlation, spectral analysis, Empirical Mode Decomposition (EMD)/Hilbert-Huang 

Transformation (HHT), and wavelet analysis. Conducting similar analysis using different methods will 

http://www.ccpo.odu.edu/currentmapping/home.html
http://www.ccpo.odu.edu/currentmapping/home.html
https://tidesandcurrents.noaa.gov/
https://tidesandcurrents.noaa.gov/met.html?id=8638901
https://tidesandcurrents.noaa.gov/met.html?id=8638901
https://waterdata.usgs.gov/nwis/uv/?referred_module=sw
https://waterdata.usgs.gov/nwis/uv/?referred_module=sw
https://www.aoml.noaa.gov/phod/floridacurrent/data_access.php
https://www.aoml.noaa.gov/phod/floridacurrent/data_access.php
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provide  information on the advantages and limitations of each method, a useful result by itself, besides 

the physical dynamics of the CB. It should be noted that correlation does not necessarily means cause and 

effect since several physical processes may be linked to each other in non-linear ways. 

LINEAR CORRELATION 

 The correlation coefficients are computed to measure the direct linear relationship between the 

CODAR currents and water level, wind, river discharge, and strength of the Gulf Stream spanning the 

length of the time series of nine years. This analysis neglects lead/lag-relationships between time series 

and represents the immediate influence one dataset may have on the other. These are compared alongside 

other methods of analysis’ described below.  

SPECTRAL ANALYSIS 

 Standard spectral analysis and coherency is applied to each of the time series. Spectral analysis is 

a Fourier transform used to partition the variance of a time series as a function of frequency, and 

contributions from different frequency components are measured in terms of the power spectral density 

(PSD) (Thomson & Justice, 1998). The PSD estimate is found using Welch’s overlapped segment 

averaging estimator and the frequency with a Hamming window just under 5 days. The upper and lower 

95% confidence bounds are calculated using Welch’s overlapped segment averaging PSD estimate.  

 Squared coherence is a measure of the degree of the relationship between two series and is 

indicated on a scale between 0 and 1, where 0 represents the two time series have no correlation and 1 is 

an ideal system where the two series are in concert. The cross spectrum is calculated between the 

CODAR time series and other data, determining the shared power between the two coincident time series 

(Thomson & Justice, 1998). Phase spectrum indicates the degree to which shared spectral peaks are in 

phase and is measured in radians or degrees (McDuff and Heath, 2001). Two time series are considered 

out of phase when the phase difference is ±180º.  

EMPIRICAL MODE DECOMPOSITION (EMD) 

 Spectral analysis only detects oscillations with periods ranging from weeks to a few years within 

the 9-year record, thus Empirical Mode Decomposition is applied to potentially find oscillations at lower 

frequency bands (longer periods), including contribution from variability with time scales the length of 

the record itself. The empirical mode decomposition (EMD)/Hilbert-Huang Transformation (HHT) 

method is a time series analysis that decomposes the time series data into a finite number of intrinsic 

mode functions (IMF’s) with time-variable amplitudes and frequencies, where the number of modes is 

determined by the length and variability of the time series (Wu & Huang, 2009). The EMD method was 

first used to analyze sea level trend in the CB by Ezer and Corlett (2012); they used bootstrap simulations 

to achieve SLR rates accuracy within +/- 0.5 mm/y with 95% confidence level. This study proved that the 

EMD method is effective in calculating long term trends of datasets even when there is a shorter data 
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record, whereas standard curve-fitting methods require at least a 60-year record to obtain similar 

confidence levels of sea level rise (Ezer et. al, 2013).  

 With this data having a record length of only 9 years, the EMD method is a good approach to 

detect long term trends within a relatively short dataset. EMD/HHT is calculated for CODAR, water 

level, wind, river discharge, and Gulf Stream transport data sets from 2009-2018. A significance test is 

run to find which IMF’s are significant within each EMD analysis by comparing the energy spectrum of 

the decomposed signal (Coughlin, 2005). The EMD of the CODAR is then compared to the EMD of the 

second time series by calculating a correlation coefficient between the respective IMF’s. This indicates 

which  modes (or frequencies) share similar variability.  

WAVELET 

 The wavelet transform is a time series analysis method for dealing with nonstationary oscillations 

with time-varying amplitudes and phases (Thomson & Justice, 1998).  This method decomposes the 

power of a time series into periodic functions, similar to a Fourier analysis, but using a moving window 

approach and resulting with wave-like oscillations (Torrence & Compo, 1998). Unlike standard spectral 

analysis, which generates averaged values of amplitude and phase for each frequency component, the 

wavelet transform yields a localized, “instantaneous” estimate for the amplitude and phase of each 

spectral component in the dataset. This gives wavelet analysis an advantage in the analysis of 

nonstationary data series in which the amplitudes and phases of the harmonic constituents may be 

changing rapidly in time or space (Thomson & Justice, 1998).  

 A MATLAB package for multivariate wavelet analysis, developed by Grinsted et al (2004) uses 

the Morlet wavelet as the mother function, the most used in climate sciences (Grinsted et. al, 2004).  

Using Monte Carlo simulations, the 95% significance of the power spectrum is determined within each 

analysis. Cross wavelet transform is calculated to detect phase differences (lag time), non-stationarity, and 

coherence between CODAR and the other datasets. The coherency calculation shows if the time series 

share similar power and provides information about correlations at different frequencies.  
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RESULTS 

 

MONTHLY (SEASONAL), DAILY, AND HOURLY VARIABILITY  

 It is necessary to analyze the behavior of the different time series on different time scales before 

calculating correlations or running an analysis, so that seasonal and annual trends can be seen, noted, and 

further discussed.  

DAILY CYCLE 

 The daily cycle is seen in hourly CODAR currents that show the semidiurnal tidal influence on 

surface flow within Chesapeake Bay, with a signature double peak indicative of the flood and ebb (Fig. 

4). Since the tides are not purely M2, each day includes 2 high tides with one higher than the other, as 

seen in Fig. 2. Each peak in Fig. 4 represents the most probable maximum and minimum current speeds 

(Fig. 4a) and tidal height (representing low and high tide, Fig. 4b) within the bay. For example, winter has 

the highest mean surface flow (8.5 cm/s), ranging from -25.4 cm/s (into the bay) and 42.4 cm/s (out of the 

bay); this inflow/outflow is consistent with transport balance of estuaries fed by rivers, so that outflow is 

larger than the inflow. When these hourly values are averaged to daily values, this tidal variability is 

decreased (ranges in winter are -1.7 to 18.8 cm/s) and the histograms change their shape closer to that of a 

normal distribution (Fig. 5).  The average daily CODAR velocity through one tidal cycle (half a day) can 

be seen back in Fig. 2, and the U and V components of velocity are plotted on a 2-D vector map in Fig. 3. 

Every two hours is marked on the bottom panel of Fig. 2, and each point corresponds to one of the 

velocity plots in Fig. 3 through the tidal cycle. The relationship between water level and the currents is 

not strictly linear, and a general pattern appears where there is approximately two peaks in surface current 

speed for each peak in water height (Fig. 2), because tidal currents peak at both, flood and ebb stages.  

 The time series from the CBBT, Kiptopeke, and Sewell’s Point tidal stations exhibit the expected 

behavior for a semidiurnal tide and agree with the pattern displayed by CODAR currents, with 

approximately one high and one low within a 12-hour period (Fig. 2, Fig. 4b). The daily cycle can also be 

seen in the averaged velocity of the surface currents and the water level time series in the third panel of 

Fig. 2, where data from both CBBT and Sewell’s Point are plotted, indicating a lag of about an hour 

between the two stations. The relationship between water level and surface currents seen in Fig. 2 is not 

strictly linear. There are some instances in this time frame that fit the characteristics of the progressive 

tide that can be best seen in the weekly panel of Fig. 2, where the maximum current and maximum water 

level occur at the same time. A general pattern can be seen where the average current velocity has two 

peaks of positive current out of the bay for each peak in water level, but is not without deviations, 

indicating there are additional non-linear effects effecting the flow.  
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MONTHLY (SEASONAL) CYCLE 

 The average annual CODAR flow in the bay is positive due to the net river inflow into the bay, 

but there are also significant seasonal variations, ranging from 6.1-8.5 cm/s (positive means that flow is 

moving eastward out of the bay). Seasonally, it is seen that the largest flow occurs in Winter, an average 

of 8.5 cm/s, versus Summer at 6.1 cm/s (Fig. 4a, Fig. 6a). Also noted is the fact that during summer the 

distribution of the daily flow is much narrower than during other seasons, indicating smaller variability in 

the forcing of the flow, as will be seen later when analyzing other data.  

 The monthly averages of the CODAR time series can be seen in Fig. 6a, along with the monthly 

averages of the other time series. The largest velocities and variability of CODAR occur in the winter and 

spring, likely from increased precipitation and snow melt, and the smallest velocities and variability in the 

summer, as also seen in  the histograms of daily data (Fig. 4a-d). This largely agrees with seasonal 

patterns of wind and river discharge events being greater in the winter and spring, which ultimately 

influence the strength of the surface flow moving out of the Bay (Xiong & Berger, 2010).   

 Also plotted in Fig. 6b, is the annual climatology of water level as recorded at Sewell’s Point. The 

monthly average eliminates the daily variability from the constant rise and fall of the tide and presents 

strong seasonality with water level being highest in the fall and summer, and lowest in the winter and 

spring. In comparison to CODAR, it looks seemingly inversed; for example, in the summer Chesapeake 

Bay observes its highest water levels yet the slowest current. The seasonal pattern of sea level was 

recently analyzed by Ezer (2020) who showed the influence of the annual and semi-annual tidal cycles as 

well as tropical storms and the weakening of the GS (Fig. 6f)- all these factors can contribute to the peak 

of monthly sea level in September-October (when the so-called “King Tide” is observed).  

 Both wind speed and the zonal velocity (U-component) are studied in comparison to CODAR. 

The U-winds are separated from wind speed and direction because the axis is rotated 45⁰ to the right, thus 

aligning wind to the surface flow of the CB, having a larger influence than its meridional (V-component) 

velocity which when rotated, nearly crosses the bay perpendicularly. The histograms (Fig. 5c) have strong 

seasonal patterns, with greater wind speeds in the winter (mean velocity of 6.4 m/s), and less so in the 

summer (mean velocity 4.9 m/s). This is largely in part due to energetic storm events with higher wind 

speeds that are seen more frequently in the winter (Valle-Levinson et. al, 2001). The summer season 

shows far less speed and variability than the other seasons, as well. The monthly averages of wind speed 

and zonal velocity were calculated and plotted alongside the other monthly means in Fig. 6c. The same 

seasonal pattern is observed in the monthly values, with the highest wind speeds and highest variability 

occurring in the winter. 

 Streamflow was calculated and averaged from the James, Potomac, and Susquehanna Rivers, 

which provide more than 80% of freshwater input to the Chesapeake Bay (Xiong & Berger, 2010). The 
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daily and monthly patterns for river discharge should resemble the patterns seen with the CODAR 

currents considering the seasonal effect of precipitation and snowmelt increasing flow in the spring. Daily 

variations of streamflow are highly variable and are seen near as high as 600,000 ft3/s. Like the other 

time series, when the monthly average is taken (Fig. 6d), this variability is eliminated. In winter and 

spring, the average river discharge (e.g. maximum of 9.27x104 ft3/s in April) has more than four times 

the average flow in comparison to the summer and fall (e.g. 1.86x104 ft3/s in August).  

 Daily values of water transport for the Gulf Stream, as measured by cable across the Florida 

Strait, indicate strong seasonal flow, with greater water transport and variability in the spring/summer, 

average of 33 Sv, and the lowest flow occurring in the Fall/Winter, with an average transport of 29.6 Sv. 

The monthly averages are seen in Fig. 6e, showing this annual cycle. When GS flow is weakened, the 

SSH gradient across the GS weakens and thus induces an increase in coastal sea level at the MAB region 

(Ezer et. al, 2013). According Ezer et al. 2013, rise in sea level is related more to the change in slope of 

the GS rather than to the flow strength itself. Thus, between the maximum GS transport in August and the 

lowest transport in November (Fig. 6f) there is a persistent weakening of the GS, which could explain the 

maximum water level in September-October (Fig. 6b).  

 The river discharge and wind (and more so the u-component) follow the seasonal pattern of 

CODAR current velocities, i.e., positively correlated and consistent with physical driving mechanisms 

discussed before (Fig. 6). On the other hand, water level and remote effect of the Gulf Stream could 

possibly be anticorrelated with CODAR or have a delayed-positive correlation with the surface current 

velocities.  
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Figure 4: Histograms of hourly CODAR surface current speeds and water levels in Chesapeake Bay. The double peak seen is indicative of the daily high and low tides. Red lines 
indicate the mean and standard deviations of the datasets. 
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Figure 5: Histograms of the daily CODAR surface current speeds, water level, wind speed, river discharge, and transport of water through the Florida Straits. Tidal variability is 
eliminated through the average of the current and water level time series. Red lines represent the mean and standard deviations of the datasets. 
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Figure 6: Monthly averages of surface current flow as collected by CODAR, water level at Sewell's Point, wind 
speed, zonal wind speed, river discharge (from Susquehanna, James, & Potomac), and the transport of the GS 
(from cable across FL strait). Blue lines represent the monthly average, orange lines represent the standard 
deviations. 
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LINEAR CORRELATION 

 Correlation coefficients were calculated comparing daily CODAR values to each of the factors 

measured in the Chesapeake Bay and displayed in Table 1, along with the p-value, and upper and lower 

bounds of the correlation for 95% significance level. This study did not calculate a lag-linear correlation 

between the time series, which may impact the relationship seen between the variables. The goal here is 

to assess the factors which influence the surface currents in the Bay directly; assessing links on different 

time-scales will be done later using other statistical methods.  

 Based on the time series alone, the highest linear correlation of CODAR is to the daily U-Wind 

(speed and direction), followed by wind speed, which due to the rotated axis, blows northwest to 

southeast, the direction of flow in and out of the Chesapeake Bay. In the late fall and winter, when winds 

are most energetic and primarily from the northwest, the wind pushes water out of the bay and the two are 

most correlated, versus the summer when winds from the south may work against flow moving out of the 

Bay (Boicourt, 1981).   

 There is positive correlation between river discharge and surface flow, which is statistically 

significant at the 95% level, but R is relatively small, so rivers only contribute small percentage to daily 

variations in CODAR currents (compared with much larger contribution to the seasonal cycle seen in Fig. 

6). Nevertheless, overall addition of freshwater to the estuary does contribute to more flow out of the Bay 

as expected. An anti-correlation (though with small R) exists between CODAR and the transport of the 

Florida Current, which is linked more strongly to water level than to currents (Ezer et. al, 2013). The 

smallest linear correlations are to the water level measured inside the Bay from the three tide gauge 

stations. While a typical understanding of the relationship between water level inside the Bay and the 

surface currents is usually anti-correlated (lower water level allows increased flow out of CB), as 

discussed previously, the tides and maximum current frequently occur at the same time due to the 

progressive nature of tides in the lower CB and the two can be positively correlated, and the relationship 

is not certain (Fig. 2). It seems that water level is much better anticorrelated with CODAR currents on 

hourly-tidal basis (Fig. 2) and on monthly-seasonal basis (Fig. 6a-b) than it does on daily mean basis 

(Table 1).  

SPECTRAL ANALYSIS 

 Standard spectral analysis is applied to each time series and plotted in Fig. 7 and the squared 

coherence and cross spectrum phase are plotted in Fig. 8. Note that lags in a phase spectrum are expressed 

in degrees rather than in days, as the lag is a function of frequency. Positive phase means that the second 

variable lags the CODAR currents. The phase (lag time) (days) = period of the spectral peak (2π/f) * Lag 

(degrees)/360 (McDuff and Heath, 2001). 
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Table 2: Correlation coefficients (R), p-value (P) and their lower and upper confidence interval for 95% significance (RL and RU), 
comparing daily CODAR current velocities outflow to different  measurements (see text for details). 

 

 

POWER SPECTRAL DENSITY (PSD) 

 Simply looking at the power spectral density plots (Fig. 7), each time series indicates strong 

power on the annual scale, with relatively decreasing power as the frequency increases. Each spectral 

analysis has a similar pattern in the high frequency bands that share similar slopes and could be estimated 

via linear regression. 

 The spectrum for CODAR (Fig. 7a) indicates maximum power at two frequency bands: at the 

one-year mark in the low frequency spectrum, and a secondary maximum at the one-week mark in the 

high frequency spectrum. There is also a small peak in power in the CODAR data around the six-month 

period, and reduced power around the three-month and one-month frequencies. The low energy in the 

middle of the CODAR spectrum (period of few weeks to few months) is peculiar in that is lower in 

comparison to the other time series. 

 A similar pattern is seen in the wind and water level spectrums (Fig. 7b-c-d), with two maximums 

at the annual scale, and a second maximum at about a month. There is also similar reduction of energy in 

these spectrums at the three-month frequency, though not as dramatic, indicative of the seasonality of 

wind speed and coastal sea level.  

COHERENCE AND CROSS SPECTRUM PHASE 

 The surface currents show significant coherence to coastal sea level at higher frequencies in the 

hourly to weekly frequency bands (Fig. 8a). The cross-spectrum phase only indicates phase with 

significant coherence based on the degrees of freedom in the hamming window, with C² >0.55. Phase is 

negative between CODAR and sea level, meaning that the water level is driving the surface currents at 

these high frequencies. The range of the phase is variable, from near in phase (0º) to near out of phase (-

137º at its greatest) at near weekly time scales. If truly out of phase (180º), the relationship between water 

level and the currents would be reversed, that is higher water levels would indicate slower surface 

 
Sewell’s 

Point 

(m) 

CBBT 

(m) 

Kiptopeke 

(m) 

U Wind 

(m/s) 

V Wind 

(m/s) 

Wind 

Speed 

(m/s) 

River 

Discharge 

(ft^3/s) 

Florida 

Current 

(Sv) 

R 0.0957 0.1046 0.0633 0.5404 -0.0712 0.2575 0.1144 -0.1124 

P 0 0 0.0003 0 0.0001 0 0 0 

RL 0.0612 0.0701 0.0287 0.5144 -0.1070 0.2248 0.0800 -0.1468 

RU 0.1299 0.1388 0.0978 0.5655 -0.0352 0.2896 0.1486 -0.0776 
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velocities, and vice versa for the series exactly in phase. When in phase, it is likely a direct representation 

of the positive and negative tidal influence on the surface currents. 

 CODAR currents are significantly coherent with the wind spectrums on the annual scale (see Fig. 

8b-c), as well as high frequency scales less than one month. The cross spectrum phase is largely negative 

(meaning the winds drive the currents at these frequencies), and the lag at its greatest is less than two 

weeks, which may require further study. 

 The river discharge is largely coherent with the surface currents on the annual and three-month 

time sales, with little correlation at high frequencies. The river streamflow leads the CODAR currents 

(negative cross spectrum phase) with lag of approximately 17 days at just over the monthly frequency 

(Fig. 8d). On the annual scale, there is a positive phase, which may be indicative of a shared seasonal 

pattern. 

 Similarly, there is a large coherence (but positive cross spectrum phase) between CODAR and the 

Gulf Stream at the annual frequency. Normally a positive phase would indicate the surface currents are 

leading the GS, however being so close to out of phase (140º, meaning lag of approximately 132 days) it 

can easily be the other way around with changes in the GS affecting the surface currents in the lower CB. 

The two series are also close to out of phase at time scales less than a month. 

 Overall, the spectral analysis shows that high frequency (short time scale) oscillations of CODAR 

are driven by local tide and wind forcing, while the low frequency oscillations, greater than 3 months, are 

more likely explained by the indirect forcing of river discharge and the Gulf Stream. Since our data set is 

only nine years in length, the spectral analysis only captures signals up to two years, so further analysis is 

applied to attempt to detect power on longer time scales. 
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Figure 7: The power spectral density is plotted on the y-axis and frequency on the x-axis. Power 
spectra indicated by red lines. Blue lines indicate the 95% confidence interval. Periodic oscillations 
and patterns can be seen within each time series. 
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Figure 8: The left-hand column displays the squared coherence between the power spectra of the different time 
series, a measure of how well they are correlated at different frequencies. Dash line indicates estimated 95% 
confidence. On the right is the phase difference between the two time-series, indicating which time series leads 
the other and if there is any lag. 
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EMPIRICAL MODE DECOMPOSITION (EMD) 

 Empirical Mode Decomposition (EMD) is an analysis method that separates the long-term trend 

from oscillating modes long term cycles with periods longer than the record itself where only part of the 

cycle is captured by the data can contribute to the trend. In Ezer & Corlett (2012), EMD was used to 

detect non-linear acceleration in sea level trend for the first time within the Chesapeake Bay. This 

analysis method is applied to the surface currents time series collected by CODAR to detect any long 

term or interannual trends within the time series, as well as to the previously discussed water levels, 

winds, river discharge, and Gulf Stream transport. Cross correlations are calculated between the CODAR 

and other datasets at each mode to detect any correlations on longer time scales between the different time 

series. 

INSTRINSIC MODE FUNCTIONS  

 The daily time series produced EMD analyses with 11 Intrinsic Mode Functions (IMF’s or simply 

referred to as EMD modes), and the monthly time series produced EMD analyses with 6 IMF’s, with the 

final IMF in each representing the overall trend. An example of two of the daily EMD analyses can be 

seen in Fig. 9, where the blue line represents the IMF of the CODAR currents, and the red line represents 

the IMF of the water level at Sewells Point. Mode 0 is the original monthly data set, and the last mode is 

the trend. The intrinsic mode functions represent oscillatory cycles with decreasing frequency, but within 

each mode, the frequency can be time dependent and not restricted to any particular frequency as in 

spectral methods (Ezer et al., 2013). Oscillations calculated with EMD provide trends on scales 2-4x 

larger than seen in the spectral analysis.  

 Because the period of analysis is only nine years in length, it is too short to infer statistically 

significant long-term trends even with the EMD analysis. A statistical test was run on each IMF for each 

EMD analysis to show which modes are statistically significant based on their power relative to each 

other, seen in Fig. 10. This statistical evaluation of confidence level for EMD modes is based on white 

noise simulations method developed by Wu and Huang (2004). The CODAR time series IMF’s only have 

two frequencies with over 95% significance, which occur at the annual time scale and the daily time scale 

(Fig. 10a). On the other hand, the other time series have more significant modes, meaning the behavior of 

the EMD analysis are more representative of their seasonal and interannual oscillations. Still, each dataset 

remains significant on the annual scale, meaning correlations at this frequency specifically may produce 

more realistic trends or significant correlations when compared to CODAR. It is possible that because of 

the different forcing sources on the CODAR currents, some of the EMD modes that are not statistically 

significant are influenced by opposing forcing. 

 Even if not statistically significant, qualitatively, some of the trend oscillations are consistent with 

the dynamics involved; none of the trends are linear, pointing to impacts from decadal and longer 
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oscillations.  For example, the final IMF (representing the long-term trend) for each analysis are plotted in 

Fig. 11. (Trends produced using the monthly IMF’s are not plotted, as their shape is the same as produced 

by the daily IMF’s.) The trendlines for water level and river discharge predict an increase, which is 

expected as previously discussed. Dynamically, it is understood that water level and surface currents are 

anticorrelated as explained before, so when water level decreases in the estuary, more water flows out of 

the bay (increasing surface currents), and the final mode (mode 11) shows this within the EMD analysis 

(Fig. 11) with an average correlation R= -0.43. The trend of the wind data show unclear fluctuations and 

appear largely constant, with U-wind and total wind speed being interestingly anticorrelated (R= -0.77) to 

CODAR currents on decadal time scales. Unexpected, and perhaps a result of the shorter time series, is 

the predicted increase of Gulf Stream transport during this period, with an unusually high correlation 

(R=0.99, the significance is unclear due to the low degreed of freedom of the smooth trends). The GS is 

part of the Atlantic Meridional Overturning Circulation (AMOC), which has shown a downward trend of 

transport since 2004 (Ezer et al., 2013; Smeed et al., 2014). However, the relatively short record analyzed 

here is likely a reflection of longer unresolved variability like the 8-year cycles of the GS found in 

previous studies (Ezer et al., 2013). Nevertheless, the trend of increasing CODAR flow out of the bay 

during this period is consistent with the link to sea level- increase in Gulf Stream transport would cause a 

local drop in coastal sea level and pull more water out of the Bay, thus suggesting positively CODAR-GS 

correlated on decadal time scales. The increase in CODAR flow could also be supported by the increase 

in river discharge, which would also push water out of the Bay. The increase in water level may represent 

global sea level rise and not necessarily just GS or local forcing. In any case, it is possible that the trends 

over this short period are just the result of decadal variations of unknown origin and require longer 

datasets to fully understand and calculate statistically significant trends.  
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Figure 9: EMD analysis results for surface flow as measured by CODAR (blue) and for water level measured at the CBBT (red). 
Oscillations are removed and correlation calculated between the two time series at each mode. Mode 0 is the original daily 
data, and mode 11 is the remaining trend after the 10 oscillating modes have been removed from the original data. Modes with 
periods less than a year are considered more significant.  
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Figure 10: Significance test results for each IMF of the EMD analyses for the daily records of the 
different time series. CODAR flow out of the bay indicates significance only on the annual and daily 
scales. 
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Figure 11: The last IMF of the EMD calculation is plotted for each time series and represents the predictive 
trend or a part of an unknown decadal oscillation.  
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CROSS CORRELATIONS 

 Cross correlations are calculated between each IMF from the CODAR dataset to the 

corresponding IMF of the second time series (water level, wind, rivers and GS) to see how the links 

between variables may depend on time-scales. The correlations (R) between CODAR and the other time 

series for each IMF are plotted together in Fig. 12 (daily) and Fig. 13 (monthly). Note that linear 

correlation coefficients (Table 2), were not calculated for the monthly data and for the trends due to the 

lower degrees of freedom in these cases. The daily analysis provides more information about correlations 

at higher frequencies (or shorter time scales), with a maximum correlation at 1,670 days (4.5 years), 

whereas the monthly averages show more information on correlations at lower frequencies (even larger 

time scales of 108 months, ~9 years), though data is lost through averaging and may not be statistically 

significant, it is of interest qualitatively. Significance of these correlations were calculated using 

autocorrelation and effective degrees of freedom (df reduced at lower frequencies), following the method 

suggested by Thiebaux and Zwiers (1984). 

 The three tide gauge stations show similar daily correlations to CODAR (Fig. 12a) with relatively 

low correlation up to the three month oscillations, and a negative correlation (max R= -0.39) at the six-

month frequency, meaning as water level increases, the surface currents decrease on semiannual periods. 

This could be reflective of the seasonal cycles for the two time series for example, Fig. 6 (the monthly 

averages) demonstrates the maximum water level occurs at the same time as the minimum average 

surface current.  Interestingly, the tide gauge stations deviate from their similarity after this frequency, 

where at the interannual scale (about 2.5 years), the Sewell’s Point tide gauge indicates a positive 

correlation (R= 0.4), whereas the Kiptopeke tide gauge station has a negative correlation (R= -0.24). 

Though this correlation is considered insignificant, perhaps this has to do with the dynamics of how the 

surface currents move through the bay, Coriolis, or unidentified interannual variations in the local wind 

pattern. On the annual scale, both the Sewell’s Point and Kiptopeke tide gauge stations have positive 

correlation (R= 0.16 and 0.12, respectively), while the CBBT tide gauge has near zero (R= -0.02) 

correlation at this frequency. Looking at the monthly correlations (Fig. 13a), high frequencies are not 

captured in much detail, though show both positive correlations at the highest frequency, and negative 

correlation around 8 months, similar to the semiannual pattern seen with the daily correlations. The 

correlations on the annual scale (significant CODAR IMF) also agree with the correlations calculated 

from the daily data, that is near or above zero. At the interannual period (about 3.5 years), the correlation 

is negative and becomes even more so in the near decadal period (about 8 years) for all three tide gauge 

stations (maximum R= -0.78), suggesting that on decadal time scales the two are anticorrelated. 

 Both the wind speed and the U-component IMF’s are compared to the CODAR IMF’s; the daily 

correlations (Fig. 12b) for both are positive at high frequencies modes less than three weeks. 
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Qualitatively, as wind speed increases out of the Bay (positive U-direction), then the surface currents 

would also increase out of the Bay as well, so these correlations make sense as their axes are aligned in 

the same manner. In fact, the U-wind correlations are positive at all modes in the daily analysis until the 

4.5-year period, where it becomes unexpectedly anti-correlated (R= -0.31), but at this long time scale this 

correlation is not statistically significant. The daily overall wind speed (includes both U and V-

components) is either positive or, when negative, close to zero over all time scales in these correlations. 

The monthly IMF correlations (Fig. 13b) for U-wind is positive on time scales less than a year, and near 

zero starting at a year all the way to the near decadal scale (about 8 years). The monthly wind speed 

correlations are unusually different in comparison to the monthly U-wind, which may be due to the 

oscillations of the V-wind component, averaging, or the length of the time series. The wind speed is anti-

correlated then to CODAR currents at both the interannual (3.5 years) and near decadal (8 years) time 

scales, with the maximum negative correlation being R= -0.54 and the 3.5-year period, similar to the 

anticorrelated trend. At the annual time scale for the monthly correlations, where U-wind is near zero, the 

overall wind speed correlation to CODAR is largely positive with R= 0.72. The daily correlations are also 

positive at the annual frequency, however by not such a large amount (R= 0.17), and a thought is the 

monthly correlations lose data and variability, and therefore accuracy, through averaging.  

 Comparing the daily river discharge to the CODAR surface currents (Fig. 12c), there is near-zero, 

though positive correlation between the two until there is a higher correlation (R=0.14) at periods about 

45 days, suggesting a lag between river discharge and maximum currents at this time scale. For 

frequencies increasing after 45 days, the correlation between the two becomes negative, and at the six-

months to one-year frequencies (R= -0.19 at both frequencies). A look at the monthly correlations for the 

two datasets (Fig. 13c), the cross correlation does not capture the high frequency positive correlation at 

~1.5 month period, but does depict the semi-annual and annual negative correlations (R= -0.26 at 1.2 

years) similar to the daily correlations. Expectedly, on the longer time scales not calculated with the daily 

IMF’s, a positive correlation is seen between the river discharge and surface currents at the lower 

frequencies corresponding to 3.5 and 8 years, this agree with the concept that currents out of the lower CB 

do not immediately respond to change in river flow in the upper CB.  

 The last dataset compared the surface CODAR currents to the strength of the Gulf Stream, a 

measure of transport through the Florida Straits (Fig. 12c). The daily IMF’s show near zero correlation 

between the two datasets, until the period of ~45 days (R= 0.11), suggesting that at this frequency as GS 

transport decreases (and the water level would in theory increase, Ezer et. al, 2013), the surface currents 

in the Bay would also decrease (more flow into the bay). What is interesting though, is that at the ~45-day 

period, some of the water level stations are positively correlated to the currents as well, which does not 

necessarily fit the predicted behavior between the three forces. At the semi-annual period, the water level 
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in the CB is anti-correlated with the CODAR currents (R= -0.36, Fig. 21.c.), which is expected since 

increase outflow from the CB (positive CODAR) reduces WL in the CB. However, the GS is also 

negatively correlated (R= -0.39) at this frequency and the negative correlation of CODAR with the Gulf 

Stream at this time scale is not easily explained. When the GS slows down, the SSH gradient across the 

GS decreases and coastal sea level increases (Ezer et. al, 2013), but increased WL is associated with 

negative CODAR outflow (more inflow), thus one expects a positive GS-CODAR correlation. It is 

possible that at this semiannual time scale other processes are in effect like the seasonal variations of 

coastal currents or delay response of the CB to changes in the GS upstream. At the annual frequency, the 

GS shows near zero correlation and negative correlation on the interannual frequency (~2.5 years). The 

monthly IMF’s (Fig. 13c) do not show as much information as the daily at high frequencies but does 

indicate negative correlation less than 8 months (R= -0.29), agreeing with the daily anti-correlation at the 

six-month frequency. The low frequencies correlations between CODAR and the GS are near-zero until 

the near-decadal period (8 years) where it becomes negative (R= -0.86), suggesting that the two are anti-

correlated on longer time scales, opposite to what the final trend analysis (Fig. 11) suggests. This may be 

in part due to the fact that the final IMF is not truly a long-term trend, but rather a shorter period of 

unresolved longer decadal oscillations.  

 Overall, the EMD analyses give a lot of complex and not always easily explained information 

regarding both the individual time series trends over different time scales, as well as their correlations to 

each other at these different frequencies. A significance test found that the CODAR dataset produced 

IMF’s with more than 95% significance at the high frequency (daily) and annual scales, whereas most of 

the other datasets had many more significant IMF’s at both high and low frequencies (Fig. 10). While not 

statistically significant, qualitatively, some of the changes seen in the final IMF, representing the trend, 

are consistent with the dynamics involved to include increasing sea level and river discharge (Fig. 11). 

Each of these final trends, especially for GS transport (an unexpected increase) and CODAR surface 

current velocity, may be a part of larger decadal oscillations of unknown origin not captured within this 

nine-year dataset more so than an overall trend.  

 The relationship between the high frequency oscillations of CODAR and the other datasets are 

best seen in the cross correlations of the daily IMF’s in Fig. 12, and the low frequency oscillations in the 

cross correlations of the monthly IMF’s in Fig. 13. The high frequency spectrum has predominantly 

positive correlations to U-wind/wind speed and water level, suggesting that these factors are largely 

driving the surface currents on time scales of days to weeks. On approximately monthly time scales, river 

outflow, GS speed, and some of the tide gauge stations have positive correlations, suggesting a positive 

lag or shared seasonality. At the semi-annual period, the speed of the Gulf Stream and water level are 

both anti-correlated to the CODAR currents, suggesting that the relationship between the GS and water 
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level is affected by other processes such as seasonal variations or, as expected, a delayed response 

between water level and the GS upstream. This does not suggest that at periods of six months, both a 

decrease in water level and the GS could increase the average surface current velocity out of the bay at 

the same time, but the processes are occurring at different times with a similar pattern. The annual period 

has influence primarily from river discharge, wind speed, and some water level. A look at the monthly 

correlations (Fig. 13) suggest that the low frequency (decadal) oscillations are controlled by local water 

level, river discharge, and the Gulf Stream. A summation of the information regarding the correlations 

and their different time scales can be seen in the schematic diagram in Fig. 14; this diagram demonstrates 

the complex nature of the interconnecting forcing, where at each different time scale different 

combination of forcing may be in action. 

  

 

Figure 12: EMD correlations between different time series and CODAR flow out of the bay from 9 year 
record of daily data. Each mode/period represents a single IMF from the EMD calculation. 
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Figure 13: EMD correlations between different time series and CODAR flow out of the bay from 9 year 
record of monthly data. Each mode/period represents a single IMF from the EMD calculation. 
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WAVELET ANALYSIS 

 The wavelet transform is a time series analysis method for dealing with nonstationary oscillations 

with time-varying amplitudes and phases, providing more information about the spectral power over the 

entire dataset (Thomson & Justice, 1998). This method was only applied to two of the time series, 

CODAR and water level at CBBT (Fig. 15) to corroborate the findings and correlations calculated using 

standard spectral analysis and the Empirical Mode Decomposition (EMD) analysis. In the wavelet from 

the daily CODAR dataset (Fig. 15a), strong power is indicated in yellow, and power with 95% 

significance is outlined in thick contour, referenced in the wavelet key (Fig. 15d). This indicates that there 

is a strong annual cycle within the CODAR dataset, and there is significant variability detected at high 

frequencies, like the significant IMF’s detected within the EMD analysis (Fig. 10a). It also appears that 

there could be some non-stationary patterns occurring on the semi-annual scale within the CODAR time 

Figure 14: Schematic diagram of EMD correlations to CODAR surface flow out of the Chesapeake Bay on different 
time scales as calculated by EMD. Solid lined areas represent statistically significant correlations to CODAR found 
using spectral or EMD analysis. Dotted lined areas represent insignificant or unresolved correlations to CODAR. 
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series as well, as indicated by power around the period of 180 days. The wavelet analysis of the water 

level time series (Fig. 15b) shows similar power to the CODAR on the annual and high frequencies, but 

perhaps a more defined semiannual pattern at the 180-day frequency. This is somewhat similar to the 

spectral analysis (Fig. 7a-d), where CODAR and the water level both have power spectral density (PSD) 

peaks at the annual period and a smaller peak at the six-month period, as well as a secondary maximum at 

the one-week period, which is indicated by the thick contours of the high frequency data in Fig. 15. 

 Cross wavelet transform calculated between the two time series shows that the two time series do 

share strong power on the annual cycle, and a non-stationary semi-annual cycle as well, both yellow and 

outlined in thick contour (Fig. 15c). Inside the contour, arrows are pointing directly to the left, meaning 

the two series are negatively correlated on annual frequencies. In comparison to the daily EMD 

correlations, this is not necessarily in agreeance with two of the tide gauges which show positive (though 

small and insignificant) correlation on the annual scale. The spectral analysis did not capture any 

significant coherence between CODAR and water level on the annual scale, though the correlations have 

negative phase at higher frequencies. This wavelet suggests coherence not only on the annual scale 

though, but also variably on the weekly, monthly, and semi-annual frequencies. At periods of 8-60 days, 

there are non-stationary cycles of coherency (yellow outlined) where the arrows are pointing 

north/northwest, meaning the tides are influencing the currents, and at a maximum have a lag of 90º, or 

that is ¼ of the period. For example, at 16 days, the approximate lag between the water level and currents 

would be four days for this correlation and phase. The wavelet coherency suggests variable influences on 

the semi-annual scale (180 days), where the arrows alternate up and down through time. Interestingly, the 

coherency calculation captures a potential non-stationary interannual cycle (about two years), where the 

two datasets are positively correlated. This is similar to the daily correlations of the EMD analysis 

compared to Sewell’s Point, but opposite to what is seen at Kiptopeke, as well as the monthly correlations 

which all show a negative correlation at the three-year frequency. The two time series are variable at high 

frequencies, so it is difficult to distinguish at short time scales how the series are related, whereas spectral 

analysis and coherence may provide better information at these frequencies. 

 Overall, the wavelet analysis provides very similar information as to what was seen in the spectral 

analysis with a peak in power on the annual cycle, a smaller semi-annual cycle, and variable high 

frequencies. In comparison to the EMD correlations, the wavelet coherency does not necessarily agree at 

all frequencies. For example, EMD suggests that on the annual cycle the water level and CODAR currents 

are positively correlated (though not significantly), where wavelet suggests significant anti-correlation. At 

the six-month period, EMD suggests a negative correlation between the two series, however the wavelet 

coherence suggests a non-stationary relationship. The daily correlations from EMD also suggest 

conflicting information about the water level correlation on 2-3 year time scales, whereas the wavelet 
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coherence shows a significant, non-stationary positive correlation. A thought is that the EMD is unable to 

resolve the time-varying frequencies as well as the wavelet. Table 3 is constructed to help consolidate and 

compare this analysis to the spectral and EMD results between the CODAR surface currents and water 

level. 
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Figure 15: Wavelet analysis of the daily time series of averaged CODAR currents out of the CB (a). Wavelet analysis of the daily time series of water level, as measured at the 
CBBT (b). Strong power is indicated by yellow and decreases along the colorbar. Cross wavelet transform and coherence (c) indicates shared power and direct correlation between 
the two time series. Arrows indicate positive, negative, or lagged relationships and thick contours indicate 95% significance, as depicted by the key (d). 
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Table 3: Consolidation of three analyses' comparing the CODAR surface currents out of the Chesapeake Bay to water level inside 
the Bay. The EMD correlation coefficient R is a range of values taken from the correlations of the 3 tide gauge stations. Spectral 
and wavelet analyses’ capture cycles less than 2.5 years, while EMD captures oscillations on scales the length of the time series. 

  

 Spectral Coherence EMD Cross Correlation Wavelet 

Period Coherence² Phase R Significance  Coherence 

Daily/Weekly 
T≈ 0-14 days 

0.58 – 0.81 0⁰– -137⁰ 0 – 0.08 > 90% Nonstationary & 
variable 

Monthly 
T≈ 30-90 days 

0.66 -25⁰ -0.06 – 0.08 > 85% Nonstationary & 
variable 

Semi-Annual 
T≈  180 days 

0.16 N.S. -0.31 – -0.39 > 95% Nonstationary & 
variable 

Annual 
T≈ 360 days 

0.47 N.S. -0.02 – 0.16 > 70% Negative 

Interannual  
T≈ 2.5 years 

0.03 N.S. -0.24 – 0.40 < 70% Positive 

Interannual 
T≈ 3.5 years 

N/A N/A -0.33 – -0.09 < 70% N/A 

Interannual 
T≈ 4.5 years 

N/A N/A -0.07 – 0.26 < 70% N/A 

Decadal 
T≈ 8 years 

N/A N/A -0.78 – -0.73 < 70% N/A 
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DISCUSSION 

 

WATER LEVELS 

 Unlike hourly data during a tidal cycle where water level and surface currents are strongly linked 

and anticorrelated (Fig. 2), daily averaged water levels showed the lowest linear correlation (Table 2) 

compared to the CODAR surface currents, indicating the height of the water in the lower Bay has little 

immediate impact on the velocity of the currents moving out of the CB. The relationship, however, is 

positive, which in part may be due to the progressive nature of the tide at the mouth of the Bay, where 

maximum tidal height and maximum current occur at the same time. On daily mean basis other forcing 

may be responsible for most of the CODAR variability. 

 The spectral analysis of the water level time series (Fig. 7d) and its coherence to the CODAR 

time series (Fig. 8a) provides additional insight about the relationship and lag that occurs that simple 

linear correlation does not capture. The sea level time series has peaks in power at frequencies of about 

one year and one month. Significant power (C² >0.55) is shared with the CODAR currents at frequencies 

of a month and at frequencies between days-weeks. The phase of this coherence is negative, meaning the 

water levels (tides) are a driving force of currents moving out of the Bay. On weekly scales, the phase is 

closer to 180º, indicating the relationship is very near anti-correlated and better fits the understanding that 

lower water levels allow more water to flow out to sea (and vice versa). 

 The EMD analysis provides an estimated trend and coherence to CODAR at different time scales 

out to 8 years. While not statistically significant, the final IMF from the water level analysis (Fig. 11b) 

shows sea level rising, which is qualitatively accurate, particularly in the lower Chesapeake Bay where 

SLR is estimated to be increasing 3.5-4.4 mm/year (Eggleston et. al, 2013; Boon, 2010; Ezer & Corlett, 

2012), and is anti-correlated to the trendline for CODAR. The water level IMF’s are most (anti)-

correlated to CODAR IMF’s on scales of six months (Fig. 12a), which may be indicative of a shared 

seasonal cycle. This can also be seen in Fig. 6a-b., where the tide gauges and CODAR have opposite 

monthly averages, for example, maximum water level and slowest currents occurring in September. 

Correlations between 6-months and 4.5 years (Fig. 12a) between the two datasets are inconsistent, 

however using monthly averages (Fig. 13a), correlations with periods between 3.5 to 8 years are negative, 

indicating the two are anti-correlated on longer, decadal time scales. 

 The wavelet analysis was calculated between only the CODAR and water level datasets as a 

mean to corroborate findings between the different analysis methods. The wavelet provided results 

consistent with the spectral analysis, showing shared power between the two on the annual frequency, 

semi-annual frequency, and variable high frequencies, up to frequencies of about two years (Fig. 17). In 

comparison to EMD, the wavelet provided more significant results on these scales where the EMD is only 
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significant up to 6 months. There is some contradiction between the two, for instance, wavelet annual 

frequency suggests a significant anti-correlation, whereas EMD annual frequency shows insignificant, 

near-zero, but positive correlation between WL and CODAR. It is likely the EMD cannot capture these 

scales as well as wavelet. At the 6-month frequency, EMD suggests a negative correlation, but the 

wavelet shows a non-stationary, inconsistent pattern between the two. More data is needed to produce 

significant results using EMD or to calculate more consistent results between the three analyses. 

WINDS 

 The greatest linear correlation was found between CODAR and the U-component, or zonal 

velocity of wind, showing that changes in wind can influence the speed and direction of the surface 

currents directly (Table 2). In the late fall and winter, when winds are most energetic and primarily from 

the northwest, the wind pushes water out of the bay and the two are most correlated (Boicourt, 1981).  

 Spectral analysis of the wind speed and U-wind are very similar to each other and to CODAR, 

with maximum PSD’s at one year and one month (Fig. 7b-c). Unlike the power spectrum of sea level, 

wind is significantly coherent to CODAR on the annual scale, in addition to the coherency at weekly 

frequencies (Fig. 8b-c). Cross spectrum phase is negative between the currents and wind, meaning the 

wind is driving the currents, and with phase being near zero, the relationship is positively correlated.  

 The EMD analysis produced final (insignificant) trendlines for the wind data that appear largely 

constant, though are anti-correlated to the trendline for CODAR (Fig. 11c). Both wind speed and U-wind 

are positively correlated to the currents at high frequencies (hours-weeks) with EMD, which is in 

agreeance with the spectral analysis (Fig. 12b). Though insignificant on scales later than 6-months, the U-

wind component remains positively correlated to currents until scales of 2.5 years, whereas the overall 

wind speed becomes negatively correlated on scales between weeks-months, likely a result of the V-wind 

component and seasonal wind shifts (Fig. 12b). Both are positively correlated on semiannual scales, 

which is indicative of a similar seasonal pattern; this in agreeance given the monthly averages (Fig. 6c-d) 

which have roughly the same pattern, with the lowest currents and wind occurring in the late summer. On 

scales out to 8 years, the wind speed and U-wind are interestingly anti-correlated to the CODAR currents 

(Fig. 13b).   

RIVER DISCHARGE 

 River discharge and the CODAR currents have a positive linear relationship (Table 2), 

reinforcing the point that increased freshwater from the rivers increases the surface velocity of outflow at 

the mouth of the Bay. The spectral analysis of river discharge shows peak power at frequencies of one 

year and one month (Fig. 7e). The power spectrum is significantly coherent to CODAR on the annual and 

monthly scales, with some coherency at weekly time periods (Fig. 8d). Cross spectrum phase is positive 

on the annual scale, which would typically indicate the currents precede the river discharge, but this does 
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not make sense mechanically; perhaps this is a result of seasonal wind or sea level changes occurring 

before peak river discharge. On the monthly scale, cross spectrum phase is negative and near out of phase, 

indicating the rivers are driving the currents, but could be anti-correlated at this frequency or more.  

  The EMD analysis produced a trendline predicting an increase of river discharge to the 

Chesapeake Bay, which is qualitatively like the previously mentioned climate-related increase in 

precipitation over the CB watershed (Boomer et. al, 2019), and is positively correlated to the trendline 

calculated for the CODAR currents (Fig. 11d). However, longer records are needed to evaluate climatic 

changes. The correlations calculated from the IMF’s show little correlation between river discharge and 

the currents until frequencies between 1-3 months (Fig. 12c) where they are positively correlated. This 

correlation is likely due the residence time of the water moving from the discharge point in the Bay 

(mostly upper CB) to the point where flow is measured (lower CB) moving out of the Bay. On time scales 

between 6 months-4.5 years, the correlation is negative, though correlations after 6-months are considered 

insignificant. On the other hand, the correlations using the monthly IMF’s show a positive correlation on 

scales after 3.5 years (Fig. 13c), suggesting the two may be negatively correlated on interannual scales, 

but positively correlated for monthly and decadal time scales.   

GULF STREAM 

 A negative linear relationship exists between the Gulf Stream and the CODAR surface currents 

(Table 2), but does not necessarily mean a change in the speed of the GS would induce an immediate 

change in the outflow of surface currents in the CB, as the currents are likely affected by other factors 

(such as wind and water level). 

 Spectral analysis of the GS transport shows a peak in PSD on annual and monthly time scales 

(Fig. 7f), but the GS is coherent with the CODAR PSD on annual and longer time scales as well as on 

weekly frequencies (Fig. 8e). The cross spectrum phase on the annual scale is positive, though close to 

out of phase, meaning the two are near anti-correlated at this frequency. There are few peaks that are 

significant on the weekly scales, though each are close to out of phase (and thus anti-correlated), 

suggesting that perhaps even on shorter time scales the GS can influence the currents at the mouth of the 

Bay. 

 The EMD analysis of the GS produced an unexpected trendline that suggests an increase in GS 

transport (Fig. 11d), whereas  previous studies of the GS have shown a downward trend of transport since 

2004 (Ezer et al., 2013; Smeed et al., 2014). What this final IMF is likely showing, more so than a trend, 

is part of a longer oscillation period of unknown decadal origin. Nevertheless, the trend of increasing 

CODAR flow out of the bay is consistent with this increase in Gulf Stream transport seen in this EMD 

analysis, which would cause a local drop in coastal sea level and pull more water out of the Bay (if the 

time scales aligned) and the two could positively correlated. The correlations calculated between the other 
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IMF’s show little correlation until the 1-3 month range, where the GS and CODAR currents are positively 

correlated (Fig. 12c). At the 6-month frequency the two series are unexpectedly anti-correlated given the 

negative correlation to water level; it is possible that at the semiannual time scale other processes are in 

effect like the seasonal variations of coastal currents or delay response of the CB to changes in the GS 

upstream. For frequencies after 6-months, the correlation is near zero for interannual periods (1-4.5 years) 

and using monthly averages (Fig. 13c), shows negative correlation on decadal time scales (8 years), 

opposite to trend prediction (which again, may not truly be a trend but rather part of a decadal oscillation). 

The difficulty of assessing the relation between the GS and CODAR currents is that the link is indirect 

(mostly through changes in water level), and remote in location (the Florida Current observations are 

farther upstream from the Mid-Atlantic Bight). There is also the possibility (not tested here) that the 

strength and position of the GS influences coastal currents (Ezer, 2015) which impact currents near the 

mouth of the CB.   
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CONCLUSION 

 

 The goal of the study was to get a better understanding of the different forcing of the surface 

currents at the mouth of the Chesapeake Bay as measured by CODAR and study the different time scales 

involved. This goal was achieved by using several statistical analysis techniques, providing additional 

information on the usefulness of different analysis methods. The spectral analysis shows that in general 

high frequency (short time scales) oscillations of CODAR are driven by local tide and wind forcing, while 

the low frequency oscillations, greater than 3 months, are more likely explained by the indirect forcing of 

river discharge and the Gulf Stream. Since our data set is only nine years in length, the spectral analysis 

can only capture signals of about two years, while EMD analysis was applied to attempt to detect 

oscillations and trends on longer time scales.  

 The EMD analysis did not provide significant new information regarding the relationship 

between CODAR and the other time series that was not captured within the linear regression, spectral, 

and wavelet analyses, as correlations for time scales longer than 6-months were not very statistically 

significant. Nevertheless, qualitatively, some of the changes seen in the final IMF’s of the datasets, 

representing the trend, are consistent with the dynamics involved to include increasing sea level and river 

discharge. The final IMF’s for Gulf Stream transport and CODAR surface current velocity are likely part 

of larger decadal oscillations of unknown origin not captured within this nine-year dataset more so than 

an overall trend. The high frequency oscillations from the EMD analysis agree with spectral analysis 

showing predominantly positive correlations to U-wind/wind speed and water level, suggesting that these 

factors are largely driving the surface currents on time scales of days to weeks. On approximately 

monthly time scales, both river outflow and GS speed have positive correlations, suggesting a delayed 

response relationship or shared seasonality. At the semi-annual period, the speed of the Gulf Stream and 

water level are both anti-correlated to the CODAR currents, suggesting that the relationship between the 

GS and water level is affected by other processes such as seasonal variations or a delayed response 

between water level and the GS upstream. A look at the monthly correlations suggest that the low 

frequency (decadal) oscillations are controlled by local water level, river discharge, and the Gulf Stream. 

 Though insignificant, the long term EMD results from this study show that the CODAR data has 

the potential to detect and monitor long-term changes in the currents and possibly use correlations to 

monitor sea level changes in the Chesapeake Bay given significant correlations can be calculated at long 

time scales to sea level, wind, river discharge, and the Gulf Stream transport. Given a longer dataset, 

EMD may be able to calculate these significant oscillations and correlations, particularly on scales that 

spectral and wavelet analysis cannot capture, that could be useful to monitor the Chesapeake Bay or be 

used in numerical modeling of the Bay for long-term forecasting and trend analysis. Though not studied 

in this thesis, there is also the potential to study spatial changes in surface flow within the 2-D velocity 
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maps and how it relates these various forcings as well. Seasonal correlations are not calculated in this 

study but would also be worth researching at in the future. 

 In summary, the study demonstrated the complex nature and interconnections between the 

different factors affecting the currents at the mouth of the Chesapeake Bay, such as water level, winds, 

rivers, and the Gulf Stream. This analysis may be the first of its kind in the attempt at combining all these 

different observations in a single study. While some results are expected, such as the general influence of 

winds and tides on surface currents, the interpretation of the results was not always clear due to variability 

over different time scales and some disagreement between different analysis methods.  
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