
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Faculty Publications Computer Science

2020

Repurposing Visual Input Modalities for Blind Users: A Case Study Repurposing Visual Input Modalities for Blind Users: A Case Study

of Word Processors of Word Processors

Hae-Na Lee

Vikas Ashok
Old Dominion University

I.V. Ramakrishnan

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs

 Part of the Disability Studies Commons, and the Graphics and Human Computer Interfaces Commons

Original Publication Citation Original Publication Citation
Lee, H.-N., Ashok, V., & Ramakrishnan, I. V. (2020). Repurposing visual input modalities for blind users: A
case study of word processors. 2020 IEEE International Conference on Systems, Man, and Cybernetics,
11-14 Oct. 2020, Toronto, ON, Canada. https://dx.doi.org/10.1109/SMC42975.2020.9283015

This Conference Paper is brought to you for free and open access by the Computer Science at ODU Digital
Commons. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized
administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_fac_pubs
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1417?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.1109/SMC42975.2020.9283015
mailto:digitalcommons@odu.edu

Repurposing Visual Input Modalities for Blind Users: A Case
Study of Word Processors

Hae-Na Lee1, Vikas Ashok2, I.V. Ramakrishnan1

1Department of Computer Science, Stony Brook University, Stony Brook, NY, USA

2Department of Computer Science, Old Dominion University, Norfolk, VA, USA

Abstract

Visual ‘point-and-click’ interaction artifacts such as mouse and touchpad are tangible input

modalities, which are essential for sighted users to conveniently interact with computer

applications. In contrast, blind users are unable to leverage these visual input modalities and are

thus limited while interacting with computers using a sequentially narrating screen-reader assistive

technology that is coupled to keyboards. As a consequence, blind users generally require

significantly more time and effort to do even simple application tasks (e.g., applying a style to text

in a word processor) using only keyboard, compared to their sighted peers who can effortlessly

accomplish the same tasks using a point-and-click mouse.

This paper explores the idea of repurposing visual input modalities for non-visual interaction so

that blind users too can draw the benefits of simple and efficient access from these modalities.

Specifically, with word processing applications as the representative case study, we designed and

developed NVMouse as a concrete manifestation of this repurposing idea, in which the spatially

distributed word-processor controls are mapped to a virtual hierarchical ‘Feature Menu’ that is

easily traversable non-visually using simple scroll and click input actions. Furthermore, NVMouse

enhances the efficiency of accessing frequently-used application commands by leveraging a data-

driven prediction model that can determine what commands the user will most likely access next,

given the current ‘local’ screen-reader context in the document. A user study with 14 blind

participants comparing keyboard-based screen readers with NVMouse, showed that the latter

significantly reduced both the task-completion times and user effort (i.e., number of user actions)

for different word-processing activities.

Keywords

Accessibility; assistive technology; screen reader; visual impairment; word processing

I. Introduction

Blind users rely on special-purpose assistive technology, namely a screen reader (e.g., JAWS

[1], VoiceOver [2], NVDA [3]), to interact with computer applications. A screen reader

narrates the screen content serially, and with the aid of this narration, a blind user navigates

haenalee@cs.stonybrook.edu.

HHS Public Access
Author manuscript
Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021
February 09.

Published in final edited form as:
Conf Proc IEEE Int Conf Syst Man Cybern. 2020 October ; 2020: 2714–2721. doi:10.1109/
smc42975.2020.9283015.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and accesses different parts or components of the application using keyboard shortcuts.

However, most applications manifest an intricate and dense arrangement of different

components and features in their GUIs that are by design, more suitable for a visual ‘point-

and-click’ interaction with a basic pointing device such as a mouse, as opposed to a serial

shortcut-based keyboard interaction. Therefore, blind screen-reader users find it arduous and

tedious to do even simple activities (e.g., access ribbon commands) in applications by

relying only on the keyboard.

To address the usability-related shortcomings associated with keyboard-only screen-reader

interaction, in this paper, we explore the idea of transforming or “repurposing” the existing

visual input modalities intended for sighted users into convenient-to-use non-visual input

modalities for blind users. In this regard, we selected word processing applications as the

vehicle for our investigation, as they exemplify the typical GUIs of computer applications

that consist of a main work area with several auxiliary commands and features spatially

distributed around this work area. Furthermore, the word processing applications are

commonly used in everyday lives of blind users, and proficiency with the applications has

been recognized as an important skill for the employment of blind individuals [4], [5].

To understand the scope and magnitude of the usability problems faced by blind screen-

reader users with word processing applications using just the keyboard, we conducted a user

study with 10 blind users. The study revealed that the fundamental bottleneck impeding

users’ productivity was the tedious and frustrating process of accessing the application

features corresponding to different user activities. Furthermore, using only the keyboard for

all activities such as accessing formatting commands, typing, navigating document content,

reviewing content changes, adding and resolving comments, etc., caused a lot of

disorientation, shortcut mix-ups, and other unintended errors due to repeated context

switching.

Informed by the findings of the preliminary study, we designed and developed NVMouse, a

‘scroll-and-click’ input interface designed by repurposing (reprogramming) a computer

mouse, which serves as an auxiliary non-visual input modality for accessing important

application features, in addition to the keyboard. For example, as shown in Figure 1, using

the simple scroll-and-click actions available in the mouse, blind users can quickly and easily

access the various ribbon commands (e.g., Font, Styles, etc.) via a custom Feature Menu,

without losing any context. Similarly, the blind user can also access the list of comments in

the Collaboration feature group in the menu, and scroll over them one-by-one. Thus, with

NVMouse, blind users can reap the benefits of the computer mouse in word-processing

activities, akin to their sighted peers.

To further enhance efficiency, for a select category of frequently-used ribbon commands

such as formatting, NVMouse leverages a custom-trained data-driven prediction model to

dynamically reorder these commands under the Formatting feature group in the Feature

Menu, based on their likelihood of being used next, given the user’s current screen-reader

context in the document. The reordering places the commands most likely to be used next at

the front (i.e., first child) in the group, making them “within easy reach” for blind users –

akin to “point-and-click”.

Lee et al. Page 2

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

II. Related Work

Our work closely relates to extant research on alternative non-visual input modalities and

usability of word processors.

A. Alternative Input Interfaces for Blind Users

To compensate for the lack of non-visual alternatives to convenient-to-use visual input

modalities, alternative input modalities for blind users have been previously explored [6],

[7]. For example, the multimodal audio-haptic interface proposed by Doush et al. [6] enables

screen-reader users to access the content of Excel charts. However, their interface only helps

blind users consume existing content easily, but does not support creating or editing it, as

well as accessing other application features. In the IBM Home Page Reader (HPR) [7], the

numeric keypad was used as an auxiliary input interface for navigating web pages. Besides

the need to remember numerous shortcuts, HPR only supported information consumption in

webpages, which has vastly different user-interaction needs compared to that of general

productivity applications, such as Word supported by NVMouse.

Analogous to HPR’s numeric pad, Apple’s MacBook Touch Bar [8] provides contextual

menus and navigation shortcuts for a variety of productivity applications. But these

suggestions are manually engineered, and the design of Touch Bar is primarily for visual

consumption, thereby requiring screen-reader users to spend significant time exploring and

orienting themselves each time they want to access the suggestions on it. Similar to the

Touch Bar, Apple’s built-in screen reader, VoiceOver, also provides access to commands via

its rotor feature. However, these commands mainly assist in navigating content. Speed-Dial

[9], like VoiceOver’s rotor, also supports easy hierarchical navigation of content via its

external Microsoft Surface Dial input interface. Khurana et al. [10], on the other hand,

propose spatially interaction techniques that leverage the keyboard surface to easily facilitate

non-visual interaction with 2D structures. However, both these works exclusively focus on

non-visual web browsing and are limited to content navigation, which in essence is

tantamount to reading the web page elements. In contrast, interaction with applications such

as word processors not only involves navigating content, but also frequently accessing the

auxiliary spatially-distributed application content, such as command ribbons, menus,

sidebars, comments and version history, etc.

B. Non-visual Usability of Word Processors

Despite the importance of word processing applications, there is a dearth of studies on

improving the usability of these applications for blind users [11]-[15]. Moreover, almost all

of these works primarily focus on improving the interaction experience for only a specific

aspect of word processors. For example, Mori et al. [11] only focused on accessibility, where

they made Google Docs more accessible by providing virtual overlays, without considering

usability or user-interaction strategies. Morales et al. [14], on the other hand, focused only

on formatting; they propose guidelines for a support tool in Microsoft Word that can assist

blind users format their documents independently. Recent works have focused on

accessibility and usability of collaborative features in word processors [15], [16]. For

example, an accessible prototype for collaborative writing was suggested [15]. The

Lee et al. Page 3

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

prototype enables blind users to exploit the right-click context menu to access all the

comments and document revisions, and also accept/reject these revisions. Waqar et al. [16]

also focused on the accessibility of collaborative features of word processors, by providing

audio notifications to blind users informing about changes made by other collaborators.

In contrast to the aforementioned research, we propose a single cohesive interface

framework that enables blind users to easily perform assorted word-processing related

activities such as document navigation, formatting, reviewing, proofreading, collaborating,

etc. Besides we augment the framework with a novel prediction model that provides nearly

“instant access” to an important category of application commands. Moreover, unlike the

existing works, our approach is informed by the blind users’ interaction behavior and

interaction strategies with word-processing applications, which we gathered via a

preliminary user study with blind participants.

III. Uncovering Usability Issues

To understand the usability issues that blind users face while interacting with productivity

applications using only keyboard, and also obtain insights regarding how to “repurpose” a

mouse for convenient non-visual interaction, we conducted a user study with 10 fully blind

word-processor users.

A. Participants

The 10 participants were recruited through local mailing lists and word-of-mouth. The

average age of participants was 43.8 (Median = 41, SD = 10.8, Range = 30-61), and the

gender representation was equal (5 male, 5 female). Initial screening was done via phone

interviews to enforce the initial criteria requiring participants to be frequent users (or

experts) of JAWS and Microsoft Word. All participants also stated that JAWS was their

preferred screen reader. Many participants (especially elderly) did not own laptops, but had

desktops. Even participants owning laptops stated that they used desktops at school/work.

B. Apparatus

The study was conducted using an Acer laptop running Windows 10, with JAWS 16 and

Word 2016 installed. A traditional external keyboard was plugged into the laptop.

C. Design and Procedure

The participants were asked to create a document (in Microsoft Word) with a title, a

heading, and a bulleted list with two items. They were then asked to track and accept

changes, add three comments, and navigate document content and comments while checking

for grammar and spelling mistakes. All information such as the textual content and

formatting style (e.g., font, font size, and font color) for each task was given, and a

concurrent think-aloud protocol was adopted.

Before the tasks, the participants were given practice time (~10 minutes) to familiarize with

the keyboard, and customize JAWS and other computer settings to suit their preferences. All

Lee et al. Page 4

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

user actions were captured using a screen recording software, and a keystroke logger was

used to record individual keystrokes. All conversations during the study were in English.

D. Notable Findings

Repeated switching of screen-reader context.—All participants repeatedly switched

the screen-reader focus back-and-forth between the main edit-area and the other application

features concerned with formatting, review, proofreading, and collaboration. This was due to

the fact that there was only one cursor (i.e., keyboard) that the participants could leverage

while interacting with the application.

Problem in navigating grids.—Five participants struggled to locate the desired

formatting command options for commands such as Font Color and Text Styles that

appeared in a 2D grid, despite JAWS reading out instructions on how to navigate the grid.

These participants at first used only the UP and DOWN arrow keys to loop through the first

column of the grid before realizing that additional options could be accessed with the LEFT
and RIGHT arrow keys.

Excessive key presses for accessing formatting commands.—To find and apply

most formatting commands (e.g., font, styles, color, etc.), almost all (eight) participants

repeatedly pressed the TAB hotkey to serially navigate through numerous formatting

commands in the application ribbon, before finding the desired command. These users stated

that they cannot remember hundreds of shortcuts associated with different application

features, and therefore rely only on a few basic navigational ones that let them surf through

the features one-by-one. only two participants who knew the complex Word shortcut (CTRL
+SHIFT+P) for opening a separate format dialog box could do most of the formatting

commands in one iteration by setting the different parameters. Nonetheless, they too

accessed the ribbon to apply the commands not available in the format dialog box.

Re-orientation after every non-edit activity.—Eight participants, in at least two

instances, pressed arrow keys after performing a non-edit activity (e.g., adding a comment,

applying a font, etc.), to reorient themselves within the main edit-area. They stated that they

did this because they had forgotten what they had typed and where the cursor was, prior to

shifting screen-reader focus away from the main edit-area to access other application

features. However, four participants, in at least one instance, did not realize that the focus

had shifted back to the edit-area after completing an activity, and therefore unintentionally

modified the existing content by pressing the shortcut keys in the edit-area.

E. Summary

The study observations indicate that almost all of the usability problems stem from the fact

that blind users predominantly rely only on the keyboard to do both typing and other

activities, whereas sighted users can efficiently split the interaction effort between the

keyboard and mouse, i.e., using the keyboard for editing and the mouse for quickly

accessing other application features via point-and-click. one way to address these usability

problems is through a “separation of concerns” by using the keyboard only for editing, and a

Lee et al. Page 5

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

non-visual “repurposed mouse” for accessing other application features. In this regard, we

propose the NVMouse assistive technology described next.

IV. NVMouse Design

The fundamental design goal of NVMouse is to provide a streamlined access to various

application controls associated with different word-processing activities for blind users; the

present spatially-distributed 2D layout of application controls is not favorable for non-visual

interaction [10].

Figure 2 presents an architectural schematic of NVMouse. With NVMouse, the computer

mouse is adapted or ‘repurposed’ such that the blind user can interact with a word processor

using both the keyboard and the mouse modalities; presumably the user can utilize the

keyboard for typing and editing content, and the mouse for performing authoring activities,

such as formatting, reviewing changes, adding/resolving comments, navigating content, etc.

NVMouse operates in two modes (Figure 2): navigation mode and action mode. By default,

NVMouse is in navigation mode, i.e, mouse actions are associated with navigating the

document content structure hierarchically (e.g., title, sections, subsections). Action mode, on

the other hand, is triggered by a middle click. In this mode, the mouse input gestures are

reprogrammed to facilitate user interaction with a hierarchically-organized custom Feature
Menu that provides alternative access to the assorted application features. Also, the controls

or commands in the frequently-accessed Formatting feature group of the Feature Menu are

dynamically reordered based on their likelihood of being used next, given the current screen-

reader context in the document.

A. Custom Feature Menu

The Feature Menu consists of feature groups (see Table I), where each feature group is

associated with one of the word-processing activities, e.g., formatting, proofreading, etc.

Each feature group contains all associated application controls arranged in the form of a tree,

with an abstract node containing the name of the feature (e.g., “Collaboration”) as the root.

Table I details the list of feature groups that we have manually-defined in NVMouse, along

with their constituent application controls. We selected these features and associated controls

after interviewing 20 proficient blind users who indicated what activities they frequently

performed in word processors, and what application controls they wished to be easily

accessible. As also mentioned in section II, these features have also been individually

explored by other works [6], [13]-[15].

Note that some controls (e.g., Insert Row) are activated only when applicable. The first

group (child) of the Feature Menu is Formatting, as it is the most-frequent user activity in

word processing. Also, unlike other groups where the order of application controls is

manually fixed, the order of controls (i.e., children) in the Formatting group is dynamically

determined by the custom prediction model (Section IV-C).

Lee et al. Page 6

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

B. Redefining Mouse Actions

1) Accessing Feature Menu: Table II lists the mouse actions and their corresponding

functions as redefined by NVMouse for interacting with the Feature Menu. The middle click
toggles the NVMouse mode between navigation and action. By default, scrolling moves the

focus between the feature groups when the menu is first activated. A left click selects a

feature group, and the subsequent scroll actions will then move the focus between the top-

level controls in the menu tree. Once the desired control is found, another left click will

either activate it if it doesn’t have sub-controls (e.g., Bold) or move the focus down the menu

tree to the first sub-control (e.g., font color options) of that control (e.g., Font Color). To

close the currently focused sub-control and move focus up the tree to the parent control, the

user needs to execute a right click. Regardless of the focus, a middle click deactivates the

Feature Menu and toggles the mode back to navigation.

2) Document Navigation: Table II also lists the mouse actions and their corresponding

functions as redefined by NVMouse for navigating document content. NVMouse treats the

entire document content as a sequence of paragraphs (Open XML format1), each having a

specific outline level (an integer between 0 and 9); lower outline levels represent nodes

higher up in the outline tree (e.g., outline level 1 for title, section headings), whereas larger

outline levels indicate nodes lower in the tree (e.g., outline level 3 for subsubsection

headings). By leveraging this “paragraph outline” information in the document metadata,

NVMouse constructs a document outline tree. This outline tree is then coupled with the

mouse interface as defined in Table II. Note that navigating to a node in the outline tree

corresponds to moving the screen-reader focus to the associated portion of the document

content.

To keep track of updates to the document structure, NVMouse monitors all user edits. If a

user’s edit results in alteration of the overall document outline, NVMouse rebuilds the

outline tree. We found the overhead of recomputing the tree to be negligible (less than 500

ms for 200+ page documents).

C. Prediction Model for Formatting

The ordering of commands in the Formatting group is dictated by a custom prediction

model. We implemented the prediction model in the form of a multi-class classifier, with

each of the commands representing a class. The class scores from this classifier were then

used to determine the command order in the Formatting group, with the command with the

highest score placed first. We trained the classifier using example documents scraped from

the web, as explained next.

1) Command Dataset: We first scraped 6,000 Word document templates and examples

from the web. This collection comprised diverse document types, such as CV, statement,

report, letter, thesis, etc. Since these documents were complete with all the formatting

already applied throughout their content, we used them to generate ground truth dataset.

specifically, for each command that we identified using the Office Word Primary Interop

1http://officeopenxml.com/

Lee et al. Page 7

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://officeopenxml.com/

Assembly service in a document, we extracted several features representing the local context
in which that command was applied, and then created an example (x, c) with the command c
and the context feature vector x. The dataset comprised a total of 2,728,962 command

examples. To learn a model, this dataset was randomly split into three parts (60% for

training, 20% for validation, and 20% for test sets).

In our dataset, we observed that the most commonly-used commands were: Styles,
Alignment, Line Spacing, Format (e.g., Bold, Italic), Font, Font Size, Font Color, Bullet
List, and Insert (e.g., Insert Picture). Since the occurrence of other commands were

negligible, we built our prediction model for only these nine types of formatting commands.

Interestingly, the existing context menu in Microsoft Word application too contains mostly

these nine types of commands, although most of them are not accessible with a screen

reader.

2) Attribute Representation: We hand-crafted command attributes to fit the word

processing application domain. We defined the local context of an applied command to be its

containing paragraph, based on our observation in the collected documents that most of the

application commands are applied at the granularity of either paragraph (e.g., Alignment

command) or selection within a paragraph (e.g., Bold command). Therefore, the attributes

can be categorized into two groups: (i) paragraph-level – e.g., total word count, style,

alignment, Line Spacing command usage; and (ii) selection-level – e.g., selection word

count, selection position (within the paragraph), Font command usage, Font Size command

usage, Font Color command usage, usage count of other commands on a selection, etc. For

each command c, the embeddings of these two groups of attributes were concatenated to

generate the corresponding feature vector x. The categorical attributes (e.g., alignment
feature) were represented using one-hot encoding.

3) Model Architecture: We trained a neural network model on our dataset with three

hidden layers having 120, 84, and 25 units, respectively. A linear transformation was applied

in each layer, and rectified linear unit (ReLu) was used as an activation function. To predict

the likelihood of commands being used next, we tapped into the scores of all the commands

given by the last hidden layer.

4) Model Evaluation: We assessed the performance of prediction model using mean

reciprocal rank (MRR) metric, as we are interested in the rank of only one command, i.e,

class, in the model output, and not all the commands. MRR is defined as the average of the

inverse of the ranks for a set of command examples C:

MRR = 1
∣ C ∣ ∑

i = 1

∣ C ∣ 1
ri

Here ri is the rank of the command ci in the predicted command list. Overall, our prediction

model yielded a high MRR value of 0.8264.

Lee et al. Page 8

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3 shows both the distribution of ranks predicted by our model for the command

examples in the test set, as well as the cumulative percentage of commands over the rank

dimension. As seen in Figure 3, 68.85% of commands were correctly ranked first, thereby

enabling the users to instantly access the command in the Feature Menu. Also, 99.85% of

commands were ranked within the top 4, which indicates that with the prediction model,

almost all desired commands can be accessed with at most three mouse scrolls.

5) Comparison with the Default Context Menu: As mentioned earlier, Microsoft

Word supports a default context menu listing several commonly-used commands. The menu

can be brought up by right-clicking a mouse, and it is also accessible by a menu key in

keyboard. However, unlike our menu with prediction model, the order of commands within

the context menu is fixed. For the same aforementioned nine frequently-used commands, the

fixed command order in the context menu was as follows: Font, Font Size, Styles, Format,
Font Color, List, Alignment, Line Spacing, Insert. With this fixed order, the overall MRR on

the test set was only 0.3556.

D. Implementation Details

In this paper, we implemented NVMouse as a Microsoft Visual Studio Tools for Office

(VSTO) Add-in2. To redefine mouse functions, we used the publicly available

MouseKeyHook library3 to capture mouse events and implemented custom event handlers to

respond to these events. To access the document and application metadata, extract contextual

features, and also to apply the selected application controls, we leveraged the services of the

Interop Assembly. The Interop Assembly gave us access to application features and

associated controls, as well as document content and its structure. Microsoft TTS was used

to narrate the Feature Menu contents in response to user actions.

V. Evaluation

A. Participants

We recruited 14 participants (7 female, 7 male) who were completely blind, through local

mailing lists and word-of-mouth (Table III). The participants varied in age between 31 and

63 (M = 45.79, SD = 10.7). All participants stated that they were either blind by birth or lost

eyesight at a very young age (less than 10 years old). None of the participants had any motor

impairments that affected their physical interaction with keyboard and mouse. Our inclusion

criteria required that the participants be proficient with the JAWS screen reader and the

Microsoft Word application on Windows platform.

B. Apparatus

The study was conducted using ASUS ROG GU501 laptop with Windows 10, Microsoft

Word, JAWS screen reader, and NVMouse installed. An external standard keyboard and a

wireless mouse were connected to the laptop. While NVMouse could have been interfaced

with a touchpad instead of a mouse, we chose a mouse because in the pre-study interviews,

2https://docs.microsoft.com/en-us/visualstudio/vsto/office-solutions-development-overview-vsto?view=vs-2017
3https://github.com/gmamaladze/globalmousekeyhook

Lee et al. Page 9

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://docs.microsoft.com/en-us/visualstudio/vsto/office-solutions-development-overview-vsto?view=vs-2017
https://github.com/gmamaladze/globalmousekeyhook

touchpad was not preferred by all participants as they could not rest their hands comfortably

on it before doing gestures, unlike keyboard and mouse.

C. Design and Procedure

The main goal of the study was to evaluate how easily and quickly the participants could do

different word-processing activities with NVMouse. Specifically, the participants did the

following tasks: (i) Task 1: Find a pre-specified formatting command; (ii) Task 2: Read and

delete all the comments in a document (all pre-specified); (iii) Task 3: Find and correct the

typos in a pre-specified document; and (iv) Task 4: Navigate a predefined document and

answer a question relevant to the document. Under a within-subjects design, the participants

were asked to do the tasks under the following two conditions: (i) Screen reader: the

participants used only the standard JAWS keyboard shortcuts; and (ii) NVMouse: the

participants used only the mouse interface. In order to minimize learning effect, the ordering

of tasks and conditions were counterbalanced using the Latin Square method [17].

For Task 1, the following two commands were chosen: (a) Set Text Highlight Color to ‘Dark

Blue’; (b) Select ‘Heading 2’ as Style. For Task 2, we created two 2-page documents each

with 5 comments. For Task 3, we created two 2-page documents each with 5 typos at similar

locations. For Task 4, we created two well-structured same-length documents from

Wikipedia articles. Specifically, we chose two articles (each being 10 pages): (a) New York

City; (b) Los Angeles.

Before starting the study, the participants were given enough practice time (~10 minutes) to

familiarize themselves with the keyboard, and customize JAWS and Word settings to suit

their preferences. Each study lasted for 2.5 hours, and all conversations during the study

were in English.

Measurements.—During the study, we logged all screen-reader keystrokes and mouse

actions. Audio and computer-screen activities were also recorded using the Open
Broadcaster Software for further analysis. We measured the task completion time and the

number of shortcuts or mouse actions. At the end of the study, we administered the System

Usability Scale (SUS) [18], NASA Task Load Index (NASA-TLX) [19], and an exit

interview to collect subjective feedback.

D. Results

1) Evaluation of the NVMouse Interface: Table IV presents the statistics for both the

task completion time and the number of shortcuts/mouse actions for two study conditions, as

well as the outcomes of statistical tests determining if the difference between the measures

of two study conditions were statistically significant.

With NVMouse, all participants consistently performed better in all tasks, and the overall

difference in both time taken and number of shortcuts/mouse actions between the two study

conditions were statistically significant for all tasks. For Task 1, i.e., formatting, the

participants struggled to properly navigate the complex ribbon structure with the screen

reader, and find the target command. Ten participants, on at least one occasion,

unintentionally pressed incorrect shortcuts that moved the focus away from ribbons, and

Lee et al. Page 10

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

therefore they had to repeat the command-search task by navigating the ribbons again from

the beginning. No such accidental context switches were observed while using NVMouse.

Also, since the task involved just finding a command, instead of applying it on some

highlighted text, the prediction model did not contribute to the performance improvement;

the default manually specified command order (mimicking the Home ribbon) was provided

in the Formatting feature group. Therefore, all improvements are attributed only to the

mouse interface.

For Task 2, with the screen reader, almost all (12) participants did not exactly know where to

find the comments at the beginning, and therefore spent considerable time exploring the

application. During the post-study interviews, they stated that although they occasionally

collaborate with others, they find it difficult to remember the shortcut path to comments as

well as changes. For Task 3, with the screen reader, all participants started off by manually

checking each word, before searching for the application control that automatically moves

the focus between typos. This contributed significantly to the completion time. Even with

NVMouse, five participants started manually inspecting word-by-word, before switching to

the mouse interface. For Task 4, with the screen reader, the participants mostly navigated

line by line, while sometimes making fast hotkey-presses to quickly navigate through

irrelevant document sections. As shown in Table IV, this turned out to be much slower than

hierarchical content navigation enabled by NVMouse.

2) Subjective Evaluation: System Usability Scale (SUS). For the standard SUS

questionnaire [18], the participants rated positive and negative statements about each study

condition on a Likert scale from 1 for strongly disagree to 5 for strongly agree, with 3 being

neutral. Overall, we found a significant difference in the SUS scores between screen reader

(μ = 58.57, σ = 16.73) and NVMouse (μ = 85.35, σ = 4.41) conditions (Wilcoxon signed-

rank test, W = 1 < 21, p < 0.001, n = 14). NASA-TLX. NASA-TLX [19] is widely used for

assessing perceived task workload (expressed as a value between 0 and 100, with lower

values indicating better results). Overall, we found a significant difference in the NASA-

TLX scores between screen reader (μ = 61.49, σ = 13.77) and NVMouse (μ = 18.80, σ =

2.55) conditions (Wilcoxon signed-rank test, W = 0 < 21, p < 0.001, n = 14).

3) Qualitative Feedback: All participants stated that NVMouse’s input actions were

much simpler, intuitive, and easier to remember and perform, compared to the screen-reader

keyboard shortcuts. Seven participants (P2, P3, P5, P6, P9, P11, and P12) stated that they

frequently get confused between the screen reader’s web shortcuts and the word-processing

shortcuts, and therefore make mistakes. However, they indicated that they would never run

into such an issue with NVMouse. Six participants (P2, P6, P7, P9, P10, and P12) expressed

that NVMouse allowed them to do actions with just one hand, whereas the keyboard

interface often required them to use two hands to press complex key combinations (e.g.,

INSERT+F7) as shortcuts, which occasionally caused them to make unintentional mistakes

when the keys were far apart from each other on the keyboard; such problems will not occur

with the mouse interface of NVMouse.

Twelve participants (except P1 and P4) noted that in contrast to the screen reader, the

NVMouse interface has clear “entry” and “exit” points when accessing controls. They stated

Lee et al. Page 11

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

that with keyboard there are multiple ways/shortcuts which one can use to enter, navigate, or

exit the ribbons, thereby increasing the likelihood of unintentionally skipping certain

controls that can only be accessed through specific shortcuts. They mentioned that such an

issue will not arise with NVMouse, as there was only one way to access, navigate, and exit

the feature menu.

VI. Discussion

Limitations.

In this paper, the potential of the “repurposed” mouse was validated only for word-

processing applications. However, the underlying concepts and methodologies easily

generalize to other applications as well, since most applications follow a typical GUI design

pattern like word processors, i.e., having a main work-area surrounded by many application

features and commands, which is more suitable for visual “point-and-click” interaction for

sighted users.

Also, the current NVMouse prototype relies on Microsoft’s Interop Assembly to access the

application metadata, and therefore it is not directly adaptable for non-Microsoft

applications. However, the modular structure of NVMouse easily lets it replace Interop with

other alternatives such as UI Automation accessibility framework [20], thereby enabling

NVMouse to work with other applications. Lastly, the prediction model for dynamically

reordering commands needs to be separately defined for each application. However, this is

expected since different applications have different purposes, and therefore the notion of

‘local user context’ varies across applications.

Future work – beyond word processing.

As mentioned earlier, NVMouse can be easily adapted for other applications besides word

processors including productivity tools such as Excel, PowerPoint, Google Docs, Google

Sheets, etc., by simply mapping the corresponding application features and commands to the

NVMouse’s Feature Menu. As for a prediction model, the idea of exploiting ‘local context’

to make command prediction, generalizes to other applications as well. For instance, in

Excel, a group of cells surrounding the focused cell, can be considered as context, and

attributes such as content type, formatting style, background color, presence of formulas,

etc., can be leveraged to train a prediction model. For example, if the content of the

surrounding cells is a mixture of formulas and bold or italicized words (such as total,

average, etc.), and the cell to the immediate left or top of the focused cell has bold or

italicized words, then it is very likely that the user may want to insert a formula. Similarly, in

PowerPoint, in each slide, objects such as shapes, pictures, text boxes, etc., surrounding the

current object in focus, can be defined as context, from which features (e.g., object

properties and type details) can be extracted and used to train a prediction model.

VII. Conclusion

This paper introduces a non-visual scroll-and-click version of a visual point-and-click mouse

input device, to break blind users’ sole reliance on a keyboard for accessing various

application features using screen readers. The paper also provides experimental evidence of

Lee et al. Page 12

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the promise of NVMouse in enabling blind computer users become much more productive

with word processors. It is anticipated that further research on this new interaction paradigm

centered on a repurposed mouse will hopefully usher similar productivity gains for blind

users in general with any computing application.

Acknowledgments

This work was supported by NSF Awards: 1805076, 1936027, NIH Awards: R01EY026621, R01EY030085,
R01HD097188, NIDILRR Award: 90IF0117-01-00.

References

[1]. Freedom Scientific, “Jaws ® – freedom scientific,” http://www.freedomscientific.com/products/
software/jaws/, 2020.

[2]. Apple Inc., “Vision accessibility - mac - apple,” https://www.apple.com/accessibility/mac/vision/,
2020.

[3]. NV Access, “Nv access,” https://www.nvaccess.org/, 2020.

[4]. Bell EC and Mino NM, “Employment outcomes for blind and visually impaired adults,” Journal of
Blindness Innovation and Research, vol. 5, 1 2015.

[5]. Wang K, Barron LG, and Hebl MR, “Making those who cannot see look best: Effects of visual
resume formatting on ratings of job applicants with blindness.” Rehabilitation psychology, vol.
55, no. 1, p. 68, 2010. [PubMed: 20175636]

[6]. Abu Doush I, Pontelli E, Simon D, Son TC, and Ma O, “Making microsoft excel™: Multimodal
presentation of charts,” in Proceedings of the 11th International ACM SIGACCESS Conference
on Computers and Accessibility, ser. Assets ‘09. New York, NY, USA: ACM, 2009, pp. 147–154.
[Online]. Available: http://doi.acm.org/10.1145/1639642.1639669

[7]. Asakawa C and Itoh T, “User interface of a home page reader,” in Proceedings of the Third
International ACM Conference on Assistive Technologies, ser. Assets ‘98 New York, NY, USA:
ACM, 1998, pp. 149–156. [Online]. Available: http://doi.acm.org/10.1145/274497.274526

[8]. Więcek-Janka E, Papierz M, Kornecka M, and Nitka M, “Apple products: A discussion of the
product life cycle,” in 4th International Conference on Management Science and Management
Innovation, vol. 31, 2017, pp. 159–164.

[9]. Billah SM, Ashok V, Porter DE, and Ramakrishnan I, “Speed-dial: A surrogate mouse for non-
visual web browsing,” in Proceedings of the 19th International ACM SIGACCESS Conference
on Computers and Accessibility, ser. ASSETS ‘17 New York, NY, USA: Association for
Computing Machinery, 2017, p. 110–119. [Online]. Available: https://doi.org/
10.1145/3132525.3132531

[10]. Khurana R, McIsaac D, Lockerman E, and Mankoff J, “Nonvisual interaction techniques at the
keyboard surface,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, ser. CHI ‘18 New York, NY, USA: Association for Computing Machinery, 2018
[Online]. Available: 10.1145/3173574.3173585

[11]. Mori G, Buzzi MC, Buzzi M, Leporini B, and Penichet VMR, “Making “google docs” user
interface more accessible for blind people,” in Advances in New Technologies, Interactive
Interfaces, and Communicability. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 20–
29.

[12]. Connolly M, Lutteroth C, and Plimmer B, “Document resizing for visually impaired students,” in
Proceedings of the 22nd Conference of the Computer-Human Interaction Special Interest Group
of Australia on Computer-Human Interaction, 2010, pp. 128–135.

[13]. Buzzi MC, Buzzi M, Leporini B, and Mori G, “Designing e-learning collaborative tools for blind
people,” E-Learning-Long-Distance and Lifelong Perspectives (2012), pp. 125–144, 2012.

[14]. Morales L, Arteaga SM, and Kurniawan S, “Design guidelines of a tool to help blind authors
independently format their word documents,” in CHI ‘13 Extended Abstracts on Human Factors

Lee et al. Page 13

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.freedomscientific.com/products/software/jaws/
http://www.freedomscientific.com/products/software/jaws/
https://www.apple.com/accessibility/mac/vision/
https://www.nvaccess.org/
http://doi.acm.org/10.1145/1639642.1639669
http://doi.acm.org/10.1145/274497.274526

in Computing Systems, ser. CHI EA ‘13 New York, NY, USA: ACM, 2013, pp. 31–36. [Online].
Available: http://doi.acm.org/10.1145/2468356.2468363

[15]. Schoeberlein J and Wang Y, “Usability evaluation of an accessible collaborative writing prototype
for blind users,” Journal of Usability Studies, vol. 10, no. 1, pp. 26–45, 2014.

[16]. Waqar MM, Aslam M, and Farhan M, “An intelligent and interactive interface to support
symmetrical collaborative educational writing among visually impaired and sighted users,”
Symmetry, vol. 11, no. 2, p. 238, 2019.

[17]. Bradley JV, “Complete counterbalancing of immediate sequential effects in a latin square
design,” Journal of the American Statistical Association, vol. 53, no. 282, pp. 525–528, 1958.

[18]. Brooke J et al., “Sus-a quick and dirty usability scale,” Usability evaluation in industry, vol. 189,
no. 194, pp. 4–7, 1996.

[19]. Hart SG and Staveland LE, “Development of nasa-tlx (task load index): Results of empirical and
theoretical research,” in Human Mental Workload, ser. Advances in Psychology, Hancock PA and
Meshkati N, Eds. North-Holland, 1988, vol. 52, pp. 139 – 183. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0166411508623869

[20]. Haverty R, “New accessibility model for microsoft windows and cross platform development,”
SIGACCESS Access. Comput, no. 82, p. 11–17, 6 2005 [Online]. Available:
10.1145/1077238.1077240

Lee et al. Page 14

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://doi.acm.org/10.1145/2468356.2468363
http://www.sciencedirect.com/science/article/pii/S0166411508623869
http://www.sciencedirect.com/science/article/pii/S0166411508623869

Fig. 1.
A blind user accessing application features using NVMouse’s repurposed mouse instead of

keyboard. The user (i) does a middle click to access the custom Feature Menu, (ii) scrolls to

find the desired feature in the menu, (iii) does a left click to access controls associated with

the feature, (iv) scrolls to find the desired control, and (v) left-clicks on the desired control.

Lee et al. Page 15

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
An architectural schematic of NVMouse.

Lee et al. Page 16

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thlspepero.plores1heidit1
ofmm!1Mvbwl
qllll~lilleslornon
~llnlerKtlon,ol~l
blndusers1ooundr1w1M
benlllt1ofllm!M1nd

........
■■-■■ m

Repurposed
Mouse

L J
User

f Action Mode)
Feature Menu

[Navigation Mode]
Document Outline

Fig. 3.
A rank histogram computed on the test set and cumulative percentage as the rank increases.

Lee et al. Page 17

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

100

- 80
:::R 0 ._,
(1) 60 Cl
(ti -C
(1) 40 u
(1)

Q..
20

0

·-·-•-•-•-•-•
.~ -•- Cumulative percentage

68✓

21.30

8.19

1 2 3

1.51 0.14

4 5
Rank

6 7 8 9

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 18

TABLE I

Feature groups and their feature controls.

Feature Group Top-level Application Controls

Formatting Font, Font Size, Font Color, Alignment, Bold, Underline, Italic, Line Spacing, Bullet List, Fill Color, Styles, Borders

Objects Insert [Table, Picture, Shape, Symbol, Equation, Row, Column], Delete Row, Delete Column, Merge Cells

Collaboration Insert Comment, View Comments, Next Comment, Previous Comment, Delete Comment, Track Changes, View Changes,
Accept All Changes, Next Change, Previous Change, Accept Change, Reject Change

Proofreading Next Typo, Previous Typo, All Typos, Next Error, Previous Error, All Errors, Dictionary, Translation

Miscellaneous Word Count, Character Count, Line Count, Current Page Number, Margins, Insert Page Break

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 19

TABLE II

Mouse actions and their re-defined functions in two modes.

Action Mode

Mouse Action Function

Middle click Close the Feature Menu

Scroll Scroll through feature groups, or controls at the same tree level

Right click Go up one level in the menu tree

Left click Activate a control or go one level down in the menu tree

Navigation Mode

Mouse Action Function

Middle click Open the Feature Menu

Scroll Scroll through the siblings or elements at the present depth in the document tree

Right click Go up one level in the document tree

Left click Go down one level in the document tree

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 20

TABLE III

Participant demographics for the user study.

ID Gender Age Screen Reader Word Usage
Frequency

P1 F 31 JAWS, NVDA Daily

P2 F 46 JAWS, NVDA 5 days a week

P3 M 60 JAWS 3 days a week

P4 M 39 JAWS, VoiceOver Daily

P5 M 54 JAWS 2 days a week

P6 M 44 JAWS, VoiceOver 5 days a week

P7 F 56 JAWS 2 days a week

P8 F 45 JAWS, NVDA, System Access 5 days a week

P9 M 35 JAWS 2 days a week

P10 F 32 JAWS, System Access Daily

P11 M 63 JAWS 2 days a week

P12 M 56 JAWS 1 day a week

P13 F 46 JAWS 3 days a week

P14 F 34 JAWS, VoiceOver Daily

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 21

TABLE IV

Statistics for task completion time and number of user actions. The best results are in bold. The Wilcoxon

signed-rank test results are also shown.

Task Completion Time (in seconds)

Task
Screen Reader NVMouse Significance

Test Resultμ MD Max Min μ MD Max Min

T1 214.5 220 472 45 59.9 60 95 39 Y(W=0<21)

T2 334.4 323.5 541 181 122.7 114 181 89 Y(W=0<21)

T3 478.7 452 865 110 150.2 133.5 310 74 Y(W=0<21)

T4 376 350 880 110 99.5 96.5 186 56 Y(W=0<21)

Number of Shortcuts/Mouse Actions

Task
Screen Reader NVMouse Significance

Test Resultμ MD Max Min μ MD Max Min

T1 47.1 47.5 66 28 20.6 21 25 16 Y(W=0<21)

T2 157.2 159 229 84 35.2 34 51 25 Y(W=0<21)

T3 146.5 146 186 100 29.8 30 36 23 Y(W=0<21)

T4 275.1 234.5 391 193 55.7 54 68 44 Y(W=0<21)

Conf Proc IEEE Int Conf Syst Man Cybern. Author manuscript; available in PMC 2021 February 09.

	Repurposing Visual Input Modalities for Blind Users: A Case Study of Word Processors
	Original Publication Citation

	Abstract
	Introduction
	Related Work
	Alternative Input Interfaces for Blind Users
	Non-visual Usability of Word Processors

	Uncovering Usability Issues
	Participants
	Apparatus
	Design and Procedure
	Notable Findings
	Repeated switching of screen-reader context.
	Problem in navigating grids.
	Excessive key presses for accessing formatting commands.
	Re-orientation after every non-edit activity.

	Summary

	NVMouse Design
	Custom Feature Menu
	Redefining Mouse Actions
	Accessing Feature Menu:
	Document Navigation:

	Prediction Model for Formatting
	Command Dataset:
	Attribute Representation:
	Model Architecture:
	Model Evaluation:
	Comparison with the Default Context Menu:

	Implementation Details

	Evaluation
	Participants
	Apparatus
	Design and Procedure
	Measurements.

	Results
	Evaluation of the NVMouse Interface:
	Subjective Evaluation:
	Qualitative Feedback:

	Discussion
	Limitations.
	Future work – beyond word processing.

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	TABLE I
	TABLE II
	TABLE III
	TABLE IV

