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Towards Making Videos Accessible for Low Vision Screen 
Magnifier Users

Ali Selman Aydin*,
Stony Brook University

Shirin Feiz*,
Stony Brook University

Vikas Ashok,
Old Dominion University

IV Ramakrishnan
Stony Brook University

Abstract

People with low vision who use screen magnifiers to interact with computing devices find it very 

challenging to interact with dynamically changing digital content such as videos, since they do not 

have the luxury of time to manually move, i.e., pan the magnifier lens to different regions of 

interest (ROIs) or zoom into these ROIs before the content changes across frames.

In this paper, we present SViM, a first of its kind screen-magnifier interface for such users that 

leverages advances in computer vision, particularly video saliency models, to identify salient ROIs 

in videos. SViM’s interface allows users to zoom in/out of any point of interest, switch between 

ROIs via mouse clicks and provides assistive panning with the added flexibility that lets the user 

explore other regions of the video besides the ROIs identified by SViM.

Subjective and objective evaluation of a user study with 13 low vision screen magnifier users 

revealed that overall the participants had a better user experience with SViM over extant screen 

magnifiers, indicative of the former’s promise and potential for making videos accessible to low 

vision screen magnifier users.
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1 INTRODUCTION

Low vision is characterized as a visual impairment that cannot be fully corrected even with 

glasses, medication or surgery and is severe enough to interfere with daily functioning but 

allows for some residual usable vision. It often manifests as loss of sharpness or acuity 

(ranging from 20/70 to 20/400 [54]), but may be present as decreased field of vision, loss of 

peripheral or central vision, blurred vision, extreme light sensitivity, tunnel vision, and near-

total blindness.

Because low vision encompasses different manifestations of visual impairments as 

mentioned above, there is no “one size fits all” assistive technology solution for people with 

low vision. Nevertheless, magnification is shown to be helpful across different low vision 

conditions, particularly people who have low visual acuity as well as people with blurred 

vision[15]. Note that magnification may also be accompanied by other visual enhancement 

techniques such as contrast, edge or color enhancement.

People with low vision who require magnification use screen magnifiers, a special assistive 

technology, to interact with computing devices (e.g., ZoomText, MaGic on desktops, Zoom, 

Magnifier on smartphones, and many others [2]). Screen magnifiers primarily enlarge 

original screen content, and enable users to manually adjust the zoom or pan (i.e., move 

focus) over the magnified content using predefined keyboard and mouse actions.

Low-vision screen-magnifier users (LSUs) find it very challenging to watch dynamically 

changing digital content such as videos of movies, YouTube clips, etc. While there is no 

time constraint to pan static content such as text and images, in so far as videos are 

concerned, LSUs need to quickly pan and zoom to keep up with the constantly changing 

video content. In particular, they have to persistently keep track of the different regions of 

interest (ROIs) and manually pan the magnifier viewport between these regions quickly - an 

arduous game-like process that the users have to go through over the entire duration of the 

videos. This is simply not practical for LSUs.

Accessibility of videos for LSUs remains an understudied research topic. Although well-

timed audio descriptions [1] can make videos accessible for people with vision impairments, 

they primarily cater to people who are blind. Furthermore, creating such descriptions is labor 

intensive, requiring significant manual effort. Extant research on screen magnifiers [10, 25, 

44] are again geared towards only static content.

Therefore, this paper investigates if it is possible to develop intelligent screen magnifiers that 

can support easy interaction with dynamic content such as videos, and if so, what are the 

desired interface characteristics of such assistive technologies.

One approach to alleviate the video-watching challenges faced by LSUs is to provide 

panning assistance. The idea would be to identify the different ROIs automatically, and 

move the focus of the magnifier to these ROIs on user requests, e.g., in response to the 

user’s mouse clicks. This is the basis of SViM, which embodies our approach to make 

videos accessible to LSUs. Towards that, SViM leverages advances in Computer Vision, 

namely, video saliency models [30] to identify the ROIs in a video, techniques to track them 

Aydin et al. Page 2

IUI. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



continuously throughout the video, and continuous adjustments to the trajectory of the 

magnifier lens so that the ROIs can be viewed smoothly, i.e., without any jitters, while 

transitioning across frames in the video.

We did a pilot study with 11 LSUs to gather user requirements for SViM interface. To this 

end, using the aforementioned saliency model, we designed a basic SViM prototype that 

simply identified ROIs automatically and moved the magnifier focus to these ROIs. Users 

could quickly switch the focus of the magnifier lens between these ROIs in full-screen 

magnification display mode, with simple mouse clicks. The prototype did not let users 

manually pan over the video content. Two important takeaways emerged from the pilot 

study: (1) users wanted a lens magnification display mode where the magnified ROIs 

overlay the screen, so that they can discern a “rough” overview of the surrounding context 

even if they are unable to view it clearly; and (2) they desired an interface that enabled both 

manual and assistive panning (that is automatic positioning of the magnifier focus on the 

ROIs) thereby providing them with the flexibility to explore other regions close to ROIs.

Informed by the pilot study findings, we refactored SViM to accommodate these user 

requirements and redesigned the user interface to give users more flexibility to use the 

mouse to explore other regions of the video besides the ROIs identified by SViM, as well as 

zoom in/out of any point of interest in the video. We then re-evaluated the refactored SViM 

in a follow-up user study with 13 LSUs. Our results showed that salient regions displayed by 

SViM have a high degree of correlation with the regions that users are interested in looking 

at. In addition, we compared SViM to extant baseline magnifiers, namely the Windows 

screen magnifier and VLC player magnifier. Our results revealed that compared to these 

baselines, SViM significantly reduced the amount of panning done by the user while 

watching the videos (as much as 59%). Furthermore, LSUs found it very easy to 

dynamically adjust zoom levels with the interface provided by SViM for changing zoom 

levels. In sum, SViM has taken a step forward towards making videos accessible for people 

with low vision who rely on magnification for watching videos.

We summarize our contributions as follows:

• SViM - Screen magnifier interfaces that leverage advances in computer vision to 

enable LSUs to view videos more easily than the status quo with state-of-art 

extant screen magnifiers.

• Findings of a user study with 13 LSUs, including subjective and objective 

metrics, demonstrating the promise and potential of SViM in making videos 

accessible.

2 RELATED WORK

Magnification-based assistive technologies play a vital role in the daily lives of people with 

low vision as this impairment often manifests itself as low acuity. Magnifiers for low vision 

can be broadly categorized into two groups: (1) Magnification Aids that capture text or 

physical objects using cameras and magnify them and (2) Screen Magnifiers for interacting 

with computing devices.

Aydin et al. Page 3

IUI. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.1 Magnification Aids

Examples of such aids include dedicated desktop magnifiers [28, 58], optical devices for low 

vision [18], and head-mounted magnifiers with camera attachments [17, 29]. Here we 

provide a breakdown of representative aids, similar to the one provided by [48]:

Dedicated desktop magnifiers:[19]—Examples of these aids, also known as CCTV 

include Zoomax [58] and i-See [28]. These aids take as input an image via a camera and 

display it on a large screen[19, 48]. Besides providing large screens for viewing comfort, 

these systems are sometimes integrated with OCR for interacting with text content. We note 

that although these magnifiers are sometimes referred to as “Video Magnifiers”, they only 

handle videos taken from static objects and do not deal with videos such as movie clips. 

These dedicated desktop magnifiers are also not portable.

Optical devices for low vision:[20]—These set of devices have both mobile and 

mounted versions. An example of such device is the smartphone itself, where its camera is 

used to capture a scene and the magnified view is shown on a smartphone or tablet 

screen[33]. Another example is explore-5 [18], which acts as a magnifying glass. Note that 

the user has to manually move these devices for panning across the scene.

Head mounted magnifiers: These tools use a camera to capture the physical world and 

magnify it on wearable glasses such as virtual and augmented reality glasses. In these head 

mounted magnifiers, the movement of the camera and the changes in the scene are 

intrinsically limited in scope as opposed to videos that as a rule are characterized by rapidly 

changing content from frame to frame. Moreover, in the current prototypes, panning is either 

manual [16, 17] or is limited to magnifying a few objects selected apriori [47, 48, 56, 57].

2.2 Screen magnifiers

These are special-purpose assistive technology applications that enable people with low 

vision to interact with computing devices. They primarily enlarge the original screen content 

of these computing devices; users can manually adjust the zoom level or pan (i.e., move the 

focus) over the magnified screen content using predefined keyboard and mouse actions. 

Notable examples include Magnifier in Windows [38] and Zoom in MacOS [4] for desktops, 

Magnifier in Android [21, 22] and Zoom in Apple devices [3, 5]. In addition, users also have 

access to several third-party screen magnifiers for desktops (e.g., ZoomText[59], and MAGic 

[43]) and many others [2].

Screen magnifiers have been used in assorted applications for low vision. The effect of 

screen magnification interfaces in terms of user experience is explored in [24]. 

Magnification of web applications has been a topic of research in [52]. Recent work on web 

screen magnification appears in [9, 10]. Another application of screen magnification is [42], 

which magnifies the screen of a smartphone on a head mounted display where panning is 

controlled by users head movements. Other orthogonal works include Navisio that show how 

to efficiently magnify PDF documents [8], SeeingVR [55] aids people with low vision to 

interact with digitally-rendered virtual reality environments and CamBlend [39] is a video 

collaboration tool that lets users magnify manually selected regions. In addition, video 
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players such as VLC media player’s [37] zoom as well as video editing tools such as Video 

Studio [49] allow user to magnify videos while playing. However, these magnifiers are not 

designed for LSUs; users have to specifically locate the pan/zoom controls and use these 

controls manually to do these operations.

The focus of all the aforementioned screen magnifier applications is either on static content 

or they require the user to adjust the magnifier manually. In contrast, our SViM system 

automatically identifies regions of interest in videos and pushes these regions to the user 

who can switch from one region to another via mouse clicks. SViM works across a wide 

range of scenarios and works with videos with various profiles (e.g., angle, context, 

lighting).

2.3 Video saliency

An important idea that SViM uses to identify ROIs is video saliency, a topic that has been 

extensively studied in computer vision over the past few years [11]. Visual saliency is 

defined based on users’ attention that is determined from human gaze data on the scene. Of 

late, deep learning models are being trained to predict saliency in images and videos. For 

instance, [27] and [40] predict saliency of images using deep CNNs that are trained on 

human fixation maps. Other examples are video saliency models that leverage temporal 

information to predict saliency [6, 13]. This sequential modeling of video frames led to the 

use of long short-term memory(LSTM) [26] models. In [7], the authors proposed a 

combination of 3D convolutional network with LSTM to create a gaussian mixture model 

for predicting the saliency map. In [23], the authors use a gaze-following model and 

attention bounce model combined with LSTM cells to predict the saliency. In [30], the 

authors propose DeepVS, an object-to-motion CNN that contains two subnets, one for 

modeling objectness and another for modeling motion respectively; the combined outputs of 

the two subnets is then provided as input to an LSTM model. Our SViM system uses 

DeepVS to identify salient regions in videos, although this component could be replaced 

with other contemporary models [32, 34, 53] without affecting the overall functionality of 

the system.

2.3.1 Video saliency applications.—Many application require identification of salient 

regions in videos and images. Thus, a number of applications based on video saliency 

models have emerged. An early work on video saliency is MixT [14], which uses heuristic-

based methods to select and magnify salient UI elements in a tutorial video specifically 

recorded from the application’s screen. More recent applications of video saliency which are 

inspired by Pano2Vid [51] include [35, 50], where important regions in 360 degree videos 

are projected onto 2D screens using video saliency networks.

Video saliency has also been used in virtual reality (VR) applications. The authors of [45] 

study human gaze for VR environments and adapt a saliency prediction model for automatic 

alignment of VR video cuts, panorama thumbnails, panorama video synopsis, and saliency-

based compression.

SViM uses the DeepVS video saliency model [30] for a novel application, namely making 

videos accessible using screen magnifiers, a problem that had hitherto remained unexplored.
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3 SVIM DESIGN AND IMPLEMENTATION

We designed SViM iteratively through a user-centered process. An overview of SViM 

architecture is shown in Figure 1. It is composed of 3 major components: the Video Saliency 
Model that highlights salient aspects of the video, the Assistive Panning Model and the 

Magnifier Interface. The Assistive Panning Model has two sub-components, namely, 

Region-of-Interest Detector that transforms the salient aspects of the video into regions-of-

interest (ROIs) and Region-of-Interest Tracker that tracks and smooths the trajectory of the 

ROIs across successive frames.

Operationally, the magnification of videos in SViM is the result of a four-stage process. In 

the 1st stage the saliency maps are computed from individual frames of the input video using 

the video saliency model (the grey “blobs” in the Saliency Heatmap box in Figure 2). In the 

2nd stage these saliency maps are post-processed to detect ROIs in these maps (the regions 

enclosed by the red and yellow squares in the ROIs box in Figure 2). To ensure smoother 

transition of the trajectories of the ROIs across the frames, a tracking procedure is utilized in 

the 3rd stage (the dashed green and blue trajectories of the ROIs enclosed by green and blue 

boxes respectively in the Smoothed ROIs box in Figure 2). Once the detection and the 

tracking steps are completed, the result is passed to the magnification interface in the 4th 

stage. We describe each of these components next. We point out that our implementation 

uses well-established methods for each component.

3.1 The Video Saliency Model

Saliency prediction involves detecting where the visual attention is targeted in a given image 

or a video. Predicting accurate saliency maps, i.e., a map that quantifies saliency of each and 

every region for each frame is central to the functionality of SViM. To this end, we make use 

of a state-of-the-art video saliency network, DeepVS [30], that has been trained on human 

gaze data. DeepVS uses an object-to-motion CNN as well as a convolutional LSTM to 

produce accurate and coherent predictions across time [30]. The input to DeepVS is a 

sequence of frames (see Figure 2). Each frame is resized to 448 × 448, which is the input 

size expected by the network.

Given a sequence of input images, the network produces a saliency map of size 112 × 112 

for each frame. The saliency map is a grayscale image with values between 0 and 255, with 

higher values corresponding to more salient regions. With GPU acceleration, it is possible to 

obtain real-time performance, which means the saliency maps can be generated at the same 

rate the video is being played, i.e., 30 frames per second on a high-end GPU [30]. DeepVS 

was trained on LEDOV dataset [30], which contains 538 videos. These videos were labeled 

using eye-tracking data compiled from 32 sighted participants under ad hoc conditions. The 

relatively large number of subjects and the diverse nature of LEDOV dataset allows for the 

pre-trained network to generalize to unseen videos. We use this publicly available DeepVS 

network pre-trained with the above LEDOV dataset as the saliency model in SViM (see 

Figure 1).

3.1.1 ROI Detection.—DeepVS only predicts the saliency of individual pixels in a 

frame, but not the desired list of regions of interest(ROIs). To transform salient pixels to 
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ROIs, we first post process the saliency maps using standard image processing binarization 

and noise removal algorithms. For binarization, we threshold the grayscale values in the 

saliency map to generate a binary saliency mask (with each pixel value being either 0 or 1). 

A grayscale value of 30 was set as the experimentally determined threshold value for 

binarization. For removing noise, we perform an erosion operation on the binarized saliency 

mask, in which a kernel of size 5 × 5 is passed through the saliency map.

To extract ROIs from the post-processed binary saliency mask, we cluster the salient pixels 

using the k-means algorithm [36]. Since, we are unaware of the number of clusters n 
beforehand, our algorithm starts with n = 1 (i.e., one cluster or ROI) and tests if for a given 

zoom factor z, at least %60 of the salient pixels in the overall saliency mask is covered by 

the enclosing rectangle of the ROI. If not, we re-run the k-means clustering with n = 2, and 

check if the total number of salient pixels in the enclosing rectangles of the two ROIs 

combined is at least %60 of the saliency mask. We repeat this process in a hierarchical 

manner, until no more splitting occurs. Examples of ROIs are shown as the regions enclosed 

by the red and yellow squares in Figure 2.

3.1.2 Smooth Temporal Tracking.—The process of acquiring the center of ROIs is 

prone to small jitters across frames. Therefore, it becomes necessary to track the ROIs across 

the frames so that: (a) their trajectories can be smoothed and (b) the predictions are robust 

even in case of sudden movements. To this end, we use a Kalman filter [31] to account for 

jitter due to the movement across frames. Furthermore, to keep track of the same ROI, each 

new centroid is matched to its closest centroid in the previous frame. We acknowledge that 

the Kalman filter primarily serves as a smoothing filter rather than robust multi-object 

tracker. In practice, the tracking needs to run in real time which made Kalman filter a good 

choice. In addition, we observed that Kalman filter is sufficient for tracking videos as long 

as the observations of ROIs are detected accurately by the detection algorithm over time.

Controlled Movement of Magnifier Viewport.: Although Kalman filtering can ensume 

smoother auto-panning of magnifier viewport, continuous viewport adjustments are not 

desirable, especially in case of minor displacements of ROIs between frames, possibly due 

to minor visual changes such as shadows, color, etc. Therefore, SViM employs an 

experimentally determined threshold to govern the auto-movement of magnifier viewport. 

Specifically, the viewport is not adjusted unless the displacement of an ROI between frames 

exceeds this threshold. If it does, SViM then gradually moves (with a predefined constant 

speed) the viewport to the new location of that ROI, while ignoring the continuously-

generated saliency information during this movement.

3.2 Basic SViM Prototype

The saliency and the assistive panning models together constitute the core of the SViM 

system. We can implement different magnification interfaces on top of this core. Different 

interface implementations give rise to different configurations of SViM. The basic SViM 

configuration, (abbreviated SViMB) is an assistive panning video magnifier that provides 

users with a magnifier interface that displays ROIs, one at a time, in full magnification 

mode, while allowing for fixating at other ROIs without much effort. The interface also 
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provides functionality to change zoom levels without much effort. We use the mouse for 

implementing both functionality - users switch between different ROIs using mouse clicks, 

and use the mouse wheel to change zoom levels. It allows users to comfortably follow the 

videos where multiple ROIs are present.

The workflow in the SViMB magnifier interface scenario is as follows: The user starts 

watching a video with this magnifier. The magnifier by default focuses on one of the ROIs. 

In the case of multiple ROIs, the user can use mouse clicks to check existence of other ROIs 

and switch to those, with each click resulting in focusing on the next ROI, traversing all the 

ROIs in a round-robin manner. In this scenario, the only way the user can trigger the 

movement of the viewport is to click to switch between different ROIs.

Display Customization: The SViM interface provided visual enhancements that are 

known to be beneficial for LSU’s viewing experience, namely sharpening, contrast 

adjustment, brightness adjustment and inversion, similar to the ones offered by ZoomText 

[59]. Sharpening and inversion features are binary (i.e., on vs off), while brightness and 

contrast adjustment features can be adjusted with increments. In our user studies, we give 

users the ability to customize the magnifier as desired.

4 PILOT STUDY

We conducted an IRB-approved pilot study to evaluate SViMB. In this pilot study we 

gathered data on LSUs experience with SViMB for watching videos. The feedback from the 

study shaped the design requirements for accessible video magnifiers.

Participants: We recruited low vision participants through a mailing list. During our 

phone screening, we asked participants if they watched videos visually and we excluded 

those whose low vision condition prevented them from visual video viewing (e.g., people 

with low vision who resorted to audio descriptions for watching videos). Our phone 

screening resulted in the recruitment of 11 participants (6 males, 5 females) for the study. 

All participants were low vision users, with visual acuity ranging between 20 100 and 

20/2000. The average age was 51.6 (median = 47, range = 29–72). Each participant was 

compensated with an hourly rate of $25. Table 1 presents the participant information.

Apparatus: We used a 15.6” laptop running Windows 10 operating system with a screen 

resolution of 1920 × 1080, and a wireless mouse with a wheel.

Design: We compare SViMB with the available magnifier choices LSUs have for video 

magnification. To this end, we selected (a) WSMBL which is a standard screen magnifier in 

windows operating systems and (b) VLCBLwhich is a magnifier interface in the VLC video 

player (see Figure 3). Note that WSMBL is designed for magnification of static content and 

as described in the related work, VLCBLis not an assistive magnifier for LSUs.

Under this setting, we asked participants to watch a total of 12 videos that varied in the 

number of ROIs and the degree of movement. Both the order of study conditions (i.e., 
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baseline and SViMB magnifiers) and the tasks (i.e., videos) were counterbalanced in order to 

minimize the learning effect.

Procedure: We began each session with an informal interview in which the participants 

were asked about demographic information and their video watching habits (e.g., what 

technology they used, how often they watched videos, etc.). Following this preamble, we 

studied three magnification interfaces in randomized order. For each magnifier, the 

participants were given as much time as they needed to learn how to use each magnifier over 

a practice video that could be repeatedly run. This was followed by watching four study 

videos with a think aloud protocol. At the end of each session each participant was asked to 

answer a questionnaire. This was followed by an open-ended discussion. Each session lasted 

two hours.

4.1 Pilot Study Evaluation

Our semi-structured interview revealed that the study participants resorted to a number of 

approaches to watch videos. 8 out of 11 participants mentioned that they hold their phones 

very close to their eyes or sit close to the TV to watch videos. Three mentioned that they 

pause the video every few seconds and pan the magnifier to view important content of the 

video. Below, we summarize some of our other findings based on participants’ feedback.

4.1.1 Assistive Panning: Assistive panning (i.e., automatic viewport adjustment to 

focus on ROIs) was well received by the participants both for its accuracy and for its low-

effort usage. All the participants mentioned that they found assistive panning useful in 

following the videos, compared to the baseline magnifiers. For instance P1 mentioned: “it 

(assistive panning) minimizes your movements and you focused on the video”. Participants 

specially liked assistive panning on one of the videos showcasing a fast moving subject; for 

instance, on the exit interview P6 mentioned: “tracking the object across the screen like this 

is perfect specially because in these cases it is hard to keep up with the object by adjusting 

the video.”

4.1.2 Use of mouse wheel: All the participants mentioned that they liked the use of the 

mouse wheel for adjusting the zoom factor, specially compared to the baseline magnifiers 

where they have to operate a separate visual interface for doing zoom-in/zoom-out. 

Participants also provided suggestions for improving the interface, e.g., 3 participants 

mentioned that they would like to point to different locations as the desired center of 

zooming.

4.1.3 Video Context: Although SViMB magnifier provides an easy-to-follow 

magnification of the salient objects, users expressed a desire for a flexible interface that 

would enable them to explore other regions of the video. Participants expressed that 

exploring other regions, especially the regions around the ROIs gives them contextual 

information. Our observations revealed that participants would zoom out to see the context 

although that reduced the visibility of the elements. Thus, a main takeaway from the pilot 

study was the importance of users being able to explore the surrounding context so that they 

can get a “rough” overview of the surroundings even if they are unable to view it clearly.
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4.1.4 Mouse Cursor: Users expressed a need for larger/more visible cursors, since they 

were experiencing difficulties in following the position of the cursor in some cases. 

Although keeping track of the mouse position is not vital for SViMB, it may introduce 

difficulties in case users want to use mouse cursor.

4.2 Refactoring SViM Design

Informed by the pilot study findings, we refactored SViM as follows. We developed two 

interface implementations, SViML, a lens-mode magnifier and SViMM, a mixed-mode 

magnifier. SViML selectively magnifies the ROIs while keeping the background 

unmagnified. SViMM is similar to SViMB, but additionally allows users to pan over the 

video using the mouse. Both manual and assistive panning coexist in SViMM, thereby giving 

users the flexibility to explore other regions in the proximity of the ROIs.

Figure 4 illustrates the design space for SViM magnifier interface. The three magnifier 

interfaces of SViM can be readily constructed from this design space. SViMB is realized by 

combining Assistive pan, Switch ROI and Full screen; SViML is realized by combining 

Assistive pan, Switch ROI and Lensed; and SViMM is a combination of Assistive pan, 

Switch ROI, and Full screen. We also incorporated two additional ways of visualizing the 

mouse cursor: (i) a high contrast large circular cursor, and (ii) a crosshairs cursor. This is 

similar to the functionality provided by [59].

5 EVALUATION

Participants.—We conducted an IRB-approved user study with 13 low-vision screen-

magnifier users (average age = 49.38, median = 47, Range=29–71). Gender representation 

was almost equal (6 males, 7 females), and none of the participants had any motor 

impairments that affected their interactions with SViM. Table 1 presents the participant 

demographics. Note that 11 out of 13 participants were also part of the pilot study discussed 

earlier.

Apparatus.—As in pilot study, we used a 15.6” laptop with a screen resolution of 1920 × 

1080, and a wireless mouse with a wheel.

Design.—We conducted a within-subject experiment, in which every participant was asked 

to watch videos over five conditions (magnifiers) namely WSMBL and VLCBL as baseline, 

and three SViM interfaces: SViMB, SViML and SViMM.

Study Videos: Several considerations went into the selection of videos for the user study. 

Firstly, to minimize the learning effect, all the videos in the user study were unique. We also 

defined categories of videos, and asked each participant to watch videos of different 

categories with each magnifier. Specifically, we considered number of ROIs and how these 

ROIs move on the screen to categorize videos. Each ROI that appears in a video is either 

static (that is, it does not move on the screen) or the ROI is dynamic (that is, the ROI moves 

on the screen during the video). Specifically, we focused on the two contrasting cases of 

static ROIs versus dynamic ROIs that continuously move during the length of the video. We 

also considered the number of ROIs present in the videos and focused on the two contrasting 
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cases of one ROI versus multiple ROIs. For the case of multiple ROIs, we ensured that the 

number of ROIs remained the same across experiments. While selecting videos we noticed 

that videos with 2+ objects vary a lot in complexity. To limit the confounding in the 

experiment, we chose videos with 2 ROIs. Specifically, we considered videos with one ROI 

as our baseline versus videos with two ROIs. For this study, we limited the maximum 

number of ROIs detected to n = 2 in our ROI detection algorithm to avoid undesired 

inaccuracies. Finally, we considered videos with (a) one static ROI, (b) two static ROIs, (c) 

one dynamic ROI, and (d) two dynamic ROIs. We collected a dataset comprising of 20 

videos (five videos in each category). In case of dynamic ROIs we selected videos where the 

ROIs’ movement had similar speed. These videos covered a variety of context from 

interviews to discussion panels, group dancing and basketball tutorials. None of these videos 

were part of the LEDOV[30] dataset.

In the user study we asked each participant to watch four videos (one from each category) 

with each magnifier. To minimize the learning effect, we counterbalanced the ordering of 

study conditions (i.e, magnifiers) and the tasks(i.e, videos) [12]. We also counterbalanced 

the order of videos shown to users.

Procedure.—The experimenter began the study with a semi-structured interview where the 

participants were requested to provide demographic information as well as discuss their user 

experience while watching videos.

Configuration and Training: Prior to doing the tasks, the participants were allowed to 

adjust the sharpness, contrast, brightness and inversion of color as desired with the help of a 

practice video (different from 20 task videos). Moreover, the participants could also try out 

and select different types of cursor (e.g., high contrast large cursor or cross-hairs cursor). All 

user customizations during practice were retained while they did the actual tasks.

After customization, the participants started watching task videos with different magnifiers. 

Note that there was a practice session prior to using each magnifier, so as to let the 

participants get comfortable using that magnifier.

Post study interview: At the end of the study, the experimenter engaged in an open-

ended discussion to elicit subjective feedback. Each session lasted for two hours.

Data logging: In all sessions, we logged the following data: (a) viewport coordinates(i.e., 

what part of the screen is being viewed), (b) zoom factor, (c) mouse cursor position for each 

video frame, (d) button press, (e) mouse clicks, and (f) magnifier customizations.

Saliency Model Accuracy For Study Videos.: During the user study, SViM used DeepVS 

[30] to identify the ROIs. Since the network accuracy is vital in magnifying what’s 

interesting to the user, we decided to evaluate the performance of the saliency model on the 

chosen study videos. To do so, we collected ground-truth gaze data from 7 sighted users. 

Specifically, we asked 7 sighted volunteers to watch the same study videos on a computer 

screen while wearing commercial gaze tracking glasses [46]. This procedure resulted in 

(x,y) coordinates for each instant with a sampling rate of 24Hz. The frames in which the 
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user gaze goes out of the video boundaries were padded with gaze information of the 

previous frame.

After gathering ground-truth data with the aforementioned procedure, we compared this data 

with the saliency model’s predicted output, using the Pearson correlation metric. In order to 

convert gaze data into saliency maps for comparison, we followed the procedure proposed 

by Jiang et al [30], which includes placing a Gaussian mask with a fixed standard deviation, 

centered at the gaze coordinates. We computed this saliency correlation for each frame of 

each video used in the study. We found out that the average correlation between the network-

predicted saliency maps and ground-truth saliency maps was 0.428. This degree of 

correlation indicates a high conformance between the network predictions and the ground-

truth, given the fact that the fixed size of the Gaussian used to create ground-truth saliency 

maps can introduce inaccuracies with varying size of salient regions. We also computed 

Normalized Scan-path Saliency [41] between the ground-truth and predicted saliency maps 

as 1.584, which is comparable to some of the benchmark dataset results reported in [30].

5.1 Results

In our study panning can either be initiated by the user (manual) or by SViM (assistive). The 

baseline magnifiers (WSMBL and VLCBL) only support manual panning while the SViM 

had SViMB and SViML magnifier interfaces which only support assistive panning, and 

finally SViMM which is a combination of both panning options. In either case, to measure 

the amount of panning, we computed magnifier-viewport displacement per frame which is 

the Euclidean distance between the centers of the viewports of two consecutive frames.

5.1.1 Panning Effort.—To focus on the manual panning, we excluded the SViMB and 

SViML magnifiers since they do not include manual panning. Panning statistics for the 

videos that participants watched using the remaining 3 magnifiers are shown in Figure 5. A 

Kruskal-Wallis test between these 3 magnifiers showed that there was a significant 

difference in the amount of panning between the 3 magnifiers (p = .0002, H = 25.24). 

Pairwise two-tailed Mann-Whitney U test showed that the average user-panning amount 

with SViMM magnifier is significantly lesser than that with the WSMBL (p = 0.0001456,U = 

1104.5,U = 351.5) and VLCBL (p < 0.001,U = 1867,U = 577) magnifiers. However, we did 

not observe a significant difference between the baseline WSMBL and VLCBL magnifiers. (p 
= 0.53,U = 715.5,U = 600.5). These results suggest that the proposed SViMM magnifier can 

significantly reduce the amount of manual panning effort for the user while watching videos.

5.1.2 Assistive Panning.—Figure 5 shows the average panning assistance for the 3 

SViM magnifiers. Note that assistive panning is not available in baseline magnifiers, and 

hence we do not consider them in our analysis of assistive panning.

Although a Kruskal-Wallis test did not reveal any statistical significance in the auto-panning 

amount between the 3 magnifiers (p = .056, H = 5.76), we observed that the median value of 

SViMMis slightly lower compared to the other two. This can be attributed to the fact that the 

participants occasionally take over the control by manually panning the video. Assistive 

panning amount is also dependent on user-induced triggers, especially when watching multi-

ROI videos. Therefore, we examined the number of times the participants switched focus 
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between the ROIs in the study videos. We observed that there was no statistical significance 

in the average number of switches while using any of the 3 SViM magnifiers (Kruskal-

Wallis test, p = .95, H = 0.083).

As part of our analysis regarding the zooming behavior, we computed the number of times 

the participants adjusted the zoom factor while watching the task videos. Average number of 

zoom-factor adjustments per minute are shown in Figure 6. We found that there was a 

significant difference in the number of zoom adjustments made with the different magnifiers 

(Kruskal-Wallis test, p − value ≈ 0, H = 94.31,).

Pairwise Mann-Whitney U test (see Table 2) showed that while the zoom adjustments using 

the baseline magnifiers (average zoom adjustment in WSMBL magnifier was 3.68 per minute 

and for VLCBL was 6.98 per minute) are not significantly different from each other, they 

were still significantly lesser than that using all 3 SViM magnifiers. Post-study interviews 

suggest that this was due to the participants facing difficulties interacting with the interfaces 

of baseline magnifiers, given their low usability (See Figure 6). On the contrary, the wheel-

based zooming available in SViM magnifiers was easy to use, hence the greater number of 

zoom adjustments.

Among the SViM magnifiers, only the SViML zooming count was significantly different 

from the other two. Since the difference between SViML with other SViM magnifiers is in 

the display mode, the zoom count difference suggests that zooming behavior was affected by 

the display mode rather than panning interface.

We started our analysis by looking into why the variance of zoom count is higher in SViML 

magnifier. We noticed that in the user study the SViML magnifier received mixed feedback 

from participants. Participants who had better vision liked it especially because it let them 

see the context while people with limited vision, struggled to see content in the SViML 

display mode. We note that the display mode in SViML is only an overlay and is smaller 

than the full screen.

5.1.3 Subjective Feedback. Ease of Use.—Participants were asked a single ease 

question (SEQ) following each task completion (i.e., watching each video). The question 

was “Overall, this task was…” and the participants selected a number between (1–7), with 1 

being very difficult and 7 being very easy. The difference between the answers that the 

participants provided for different magnifiers was found to be statistically significant 

(Kruskal-Wallis test, H = 22.81,p = 0.00014). Pairwise comparisons using two-tailed Mann-

Whitney U Test (see Table 3) showed that: (1) the two baseline magnifiers (WSMBL and 

VLCBL magnifier) are not significantly different in terms of ease of use (p = 0.20,U = 

1546,U = 1158); and (2) there was a significant difference in the difficulty ratings between 

SViMB and SViMM magnifier (p = 0.047). The test also showed a significant difference 

between baseline magnifiers and the SViM magnifiers (p < 0.05), thereby indicating that the 

SViM magnifiers were significantly easier to use. The statistics SEQ scores given to the 

magnifiers by the participants are shown in the Figure 7. This result indicates that the 

participants found the SViMM and SViML magnifiers easy to use.
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Further analysis showed that watching videos with a different number of ROI with the same 

magnifier did not significantly affect the ease of use for that magnifier (two-tailed Mann-

Whitney U test for single-ROI versus two-ROI videos of WSMBL: p = 0.92,U1 = 332.5, U2 

= 343.5, VLCBL:p = 0.91, U1 = 345, U2 = 331, SViMB: p = 0.47, U − 1 = 301, U2 = 375,, 

SViML:p = 0.37, U − 1 = 291, U2 = 385 and SViMM: p = 0.62, U1 = 312.5, U2 = 363.5).

Comparison of Magnifiers.: At the end of each session, we asked each participant to rank 

the 5 magnifiers from best to worst(1(best) to 5(worst)). The Friedman rank sum test on 

these data suggests that there was significant variation in the magnifier preferences (p ≈ 0). 

The post-hoc pairwise comparison using Conover p-values, further adjusted by the 

Benjaminyi-Hochberg FDR method, suggests that the SViMM magnifier, compared to the 

rest of the magnifiers, was rated significantly better(p ≈ 0). On the other hand, the WSMBL 

magnifier was rated significantly worse than all the other magnifiers(p ≈ 0). However, the 

pair-wise ranking of SViML, VLCBL and SViMB magnifiers were not affected by the 

magnifier type significantly(p > 0.05).

5.1.4 User Feedback.—In the interviews, participants mentioned that assistive panning 

in SViM relieved them of having to do any panning and hence they could simply focus on 

watching the video. P2 described the experience: “you don’t need to think about magnifiers 
anymore, you are immersed in the video watching experience.” Participants also expressed 

that assistive panning helped them in easily finding important regions, e.g., P1 stated: “it 
zooms in the important areas so you don’t miss what’s going on”.

Also, the participants very much appreciated the control given to the user in the SViMM 

magnifier, with 4 participants expressing that they would like to readily use the SViMM 

magnifier in their daily activities. Participants specifically appreciated the flexibility and 

sense of control given to them, for instance P5 mentioned: “you can control things and move 
around, it’s more broader!”.

We also noticed that given the chance to dynamically adjust the magnifier, users tend to 

move the magnifier so as to test the look and feel of the hybrid feature rather than feeling the 

necessity to move the magnifier per every adjustment. For instance P9 explained: “I was 

looking at her face but then I wanted to see if with this [magnifier] I can go and look at her 

hand”.

Visual Distraction.: In the study, the participants mentioned that with the baseline 

magnifiers, they have to look at a specific part of the screen in order to control the panning 

and zooming (in WSMBL zooming-in/zooming-out and in VLCBL for both zooming and 

panning menus are visually located on the screen). They stated that this distracts them from 

watching the video, and therefore results in missing important content while they are trying 

to steer the magnifier. Moreover, they stated that because the size of those menus are not 

adjustable per user they find it difficult to see. P10 mentioned: “can’t see it, it is too visual 
for me”, P12 compared controlling the magnifiers via the menus as playing a game and 

called it “tedious and distracting”. In contrast, the SViM interface supports a ‘distraction-

free’ magnifier interaction while watching videos.
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Multi-ROI switching.: While state-of-the-art magnifiers can help the user capture the 

general semantics of the content in videos (e.g., “there are two people playing in this 

video”), we observed that with SViM, they could capture the fine-grained time-sensitive 

semantics of the video, thanks largely to the focus-switching feature that lets them switch 

between ROIs quickly (such as when the first person asked a question, the other person 

laughed). This feature was well received by the participants. For instance P6 explained why 

she liked the SViM magnifiers:”…to find the other one you just click, it is so easy!”.

6 DISCUSSION

Making videos accessible for people with low vision has remained largely unexplored. This 

paper has taken a first step in this direction with the SViM system. User studies of SViM 

with the target population, i.e., low-vision people, show its promise in fulfilling a long-

standing accessibility need in the context of video magnification. The design and 

implementation of SViM opens up a number of interesting questions. Addressing them will 

pave the way for ushering in many-fold improvements in accessible video technology. We 

touch upon a few of them here.

Generalization in the Saliency model: As mentioned earlier, the DeepVS model was 

trained on a particular dataset. Just like any other human-labeled dataset, the bias due to 

samples in the dataset and the subjects who participated in collecting labels are limiting 

factors for the trained model’s generalization power. SViMM magnifier interface reduces the 

impact of inaccurate predictions by allowing assistive and user panning to co-exist. 

Nevertheless, larger and more diverse video saliency datasets will be needed to improve the 

generalization power of the saliency model.

Robust Tracking: Since our goal was to explore the feasibility of accessible video 

magnifier that users can interact with in real time, the ROI detection and tracking 

mechanisms in SViM were kept rather simple and thus have some limitations. Firstly, small-

sized ROIs can give rise to false negatives since the noise removal step removes small salient 

regions in the saliency maps. Secondly, the movement of ROIs across consecutive frames is 

assumed to be minor thus can be easily tracked with our algorithms. Third, ROI detection 

and tracking are less accurate in videos that have a large or changing number of ROIs across 

the frames.

Relaxing these assumptions will expand SViM’s reach to many more arbitrary videos, but 

will require more complex detection and tracking methods and compute power.

Incorporating Audio: SViM system does not differ in existing magnifiers in the way it 

utilizes or handles audio. In our user studies the effect of audio was not analyzed, and all 

videos were played on mute. However, one common feedback from low-vision users was the 

importance of audio in following the videos. We will investigate the possibility of 

incorporating audio as a second modality for deciding which part of the video to magnify. 

For example, if current audio of the video is classified as speech, this would create further 

motivation to magnify the face(s).
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Portability: We noted that it is possible to run DeepVS in real time on high-end GPUs. 

Computing saliency maps on stock CPUs will go a long way towards porting SViM on to 

other platforms, in particular mobile devices. Towards that, one idea is to reduce the saliency 

map inference rate and use deep networks with lower inference time but at the expense of a 

drop in accuracy in predicting and tracking salient regions. A principled understanding of 

this trade off will inform the implementation of SViM on other platforms such as mobiles 

and wearables.

7 CONCLUSION

People with low-vision who need magnification have a difficult time watching videos with 

screen magnifiers. It essentially stems from having to zoom and pan a video continually, 

which can become a tiring experience for people with low-vision. SViM offers a solution to 

alleviate these difficulties and enhance the user experience. In the age of the ubiquitous 

online video platforms such as YouTube, a system like SViM can dramatically and 

beneficially impact the lives of people with low vision. Successfully addressing the research 

questions raised in the Discussion section will go a long way towards establishing SViM as 

the “go to” accessible video magnifier for low-vision people.
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CCS CONCEPTS

• Human-centered computing → Human computer interaction (HCI); 
Accessibility systems and tools; User studies.

Aydin et al. Page 20

IUI. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
SViM architectural overview.
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Figure 3: 
The baseline magnifiers. Top: Windows screen magnifier. Mouse cursor (B) is used for user 

panning. + and − buttons (A) are used for adjusting the zoom factor. Bottom: VLC 

magnifier. A thumbnail of the frame on the upper left corner is used for user panning (A). A 

vertical bar (B) is used for adjusting the zoom factor.
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Figure 4: 
Interface design space for SViM magnifier. (A) shows two frames of a video with two 
salient ROIs enclosed by red and yellow squares; the top and bottom frames have time 
stamps t0 t0 + Δt respectively. (B) shows assistive panning following the ROIs through 
time by automatically panning the viewport to the ROIs. Specifically, observe that 
assistive panning has tracked the ROI enclosed in red square through time ranging 
from t0 through t0 + Δt and panned the viewport to this ROI at t0 + Δt. (C) shows 
switching between ROIs with mouse clicks - the ROI in the red square is switched to 
the ROI in the yellow square. (D) shows the display modes, the full screen mode (on 
top) populates the entire screen to show magnified content whereas in the lensed mode 
(bottom) the ROI is magnified (such as the one in the red square) overlaying the rest of 
the content unmagnified. (E) shows that the user moves the mouse to pan to any 
location.
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Figure 5: 
Left: Average user panning per frame for each magnifier. Right: Average auto panning per 

frame for each magnifier.
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Figure 6: 
Average number of zoom adjustments per minute.
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Figure 7: 
Average score given in the single ease question (SEQ), with 1 being very difficult and 7 

being very easy.
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Table 2:

Pair-wise comparisons between the different magnifiers for number of zoom adjustments.

WSMBL VLCBL SViMB SViML

VLCBL

p = 0.075
U1 = 1614.5
U2 = 1089.5

SViMB

p <0.001
U1 = 2524
U2 = 180

p <0.001
U1 = 2326.5
U2 = 377.5

SViML

p <0.001
U1 = 2306.5
U2 = 397.5

p <0.001
U1 = 2147
U2 = 557

p = 0.631
U1 = 1277.5
U2 = 1426.5

SViMM

p <0.001
U1 = 2293
U2 = 411

p <0.001
U1 = 2057.5
U2 = 646.5

p = 0.005
U1 = 915
U2 = 1789

p = 0.069
U1 = 1072.5
U2 = 1631.5
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Table 3:

Pairwise comparisons between magnifiers for SEQ questionnaire ratings.

WSMBL VLCBL SViMB SViML

VLCBL

p = 0.207
U1 =1546
U2 =1158

SViMB

p <0.001
U1 = 1892.5
U2 = 811.5

p = 0.011
U1 = 1726.5
U2 = 977.5

SViML

p = 0.010
U1 = 1746.5
U2 = 957.5

p = 0.267
U1 = 1518.5
U2 = 1185.5

p = 0.093
U1 = 1103.5
U2 = 1600.5

SViMM

p <0.001
U1 =1956
U2 = 748

p = 0.004
U1 = 1775.5
U2 = 928.5

p = 0.792
U1 = 1390
U2 = 1314

p = 0.047
U1 = 1644.5
U2 = 1059.5
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	Participants.—We conducted an IRB-approved user study with 13 low-vision screen-magnifier users (average age = 49.38, median = 47, Range=29–71). Gender representation was almost equal (6 males, 7 females), and none of the participants had any motor impairments that affected their interactions with SViM. Table 1 presents the participant demographics. Note that 11 out of 13 participants were also part of the pilot study discussed earlier.Apparatus.—As in pilot study, we used a 15.6” laptop with a screen resolution of 1920 × 1080, and a wireless mouse with a wheel.Design.—We conducted a within-subject experiment, in which every participant was asked to watch videos over five conditions (magnifiers) namely WSMBL and VLCBL as baseline, and three SViM interfaces: SViMB, SViML and SViMM.Study Videos: Several considerations went into the selection of videos for the user study. Firstly, to minimize the learning effect, all the videos in the user study were unique. We also defined categories of videos, and asked each participant to watch videos of different categories with each magnifier. Specifically, we considered number of ROIs and how these ROIs move on the screen to categorize videos. Each ROI that appears in a video is either static (that is, it does not move on the screen) or the ROI is dynamic (that is, the ROI moves on the screen during the video). Specifically, we focused on the two contrasting cases of static ROIs versus dynamic ROIs that continuously move during the length of the video. We also considered the number of ROIs present in the videos and focused on the two contrasting cases of one ROI versus multiple ROIs. For the case of multiple ROIs, we ensured that the number of ROIs remained the same across experiments. While selecting videos we noticed that videos with 2+ objects vary a lot in complexity. To limit the confounding in the experiment, we chose videos with 2 ROIs. Specifically, we considered videos with one ROI as our baseline versus videos with two ROIs. For this study, we limited the maximum number of ROIs detected to n = 2 in our ROI detection algorithm to avoid undesired inaccuracies. Finally, we considered videos with (a) one static ROI, (b) two static ROIs, (c) one dynamic ROI, and (d) two dynamic ROIs. We collected a dataset comprising of 20 videos (five videos in each category). In case of dynamic ROIs we selected videos where the ROIs’ movement had similar speed. These videos covered a variety of context from interviews to discussion panels, group dancing and basketball tutorials. None of these videos were part of the LEDOV[30] dataset.In the user study we asked each participant to watch four videos (one from each category) with each magnifier. To minimize the learning effect, we counterbalanced the ordering of study conditions (i.e, magnifiers) and the tasks(i.e, videos) [12]. We also counterbalanced the order of videos shown to users.Procedure.—The experimenter began the study with a semi-structured interview where the participants were requested to provide demographic information as well as discuss their user experience while watching videos.Configuration and Training: Prior to doing the tasks, the participants were allowed to adjust the sharpness, contrast, brightness and inversion of color as desired with the help of a practice video (different from 20 task videos). Moreover, the participants could also try out and select different types of cursor (e.g., high contrast large cursor or cross-hairs cursor). All user customizations during practice were retained while they did the actual tasks.After customization, the participants started watching task videos with different magnifiers. Note that there was a practice session prior to using each magnifier, so as to let the participants get comfortable using that magnifier.Post study interview: At the end of the study, the experimenter engaged in an open-ended discussion to elicit subjective feedback. Each session lasted for two hours.Data logging: In all sessions, we logged the following data: (a) viewport coordinates(i.e., what part of the screen is being viewed), (b) zoom factor, (c) mouse cursor position for each video frame, (d) button press, (e) mouse clicks, and (f) magnifier customizations.Saliency Model Accuracy For Study Videos.: During the user study, SViM used DeepVS [30] to identify the ROIs. Since the network accuracy is vital in magnifying what’s interesting to the user, we decided to evaluate the performance of the saliency model on the chosen study videos. To do so, we collected ground-truth gaze data from 7 sighted users. Specifically, we asked 7 sighted volunteers to watch the same study videos on a computer screen while wearing commercial gaze tracking glasses [46]. This procedure resulted in (x,y) coordinates for each instant with a sampling rate of 24Hz. The frames in which the user gaze goes out of the video boundaries were padded with gaze information of the previous frame.After gathering ground-truth data with the aforementioned procedure, we compared this data with the saliency model’s predicted output, using the Pearson correlation metric. In order to convert gaze data into saliency maps for comparison, we followed the procedure proposed by Jiang et al [30], which includes placing a Gaussian mask with a fixed standard deviation, centered at the gaze coordinates. We computed this saliency correlation for each frame of each video used in the study. We found out that the average correlation between the network-predicted saliency maps and ground-truth saliency maps was 0.428. This degree of correlation indicates a high conformance between the network predictions and the ground-truth, given the fact that the fixed size of the Gaussian used to create ground-truth saliency maps can introduce inaccuracies with varying size of salient regions. We also computed Normalized Scan-path Saliency [41] between the ground-truth and predicted saliency maps as 1.584, which is comparable to some of the benchmark dataset results reported in [30].
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	DISCUSSION
	Generalization in the Saliency model: As mentioned earlier, the DeepVS model was trained on a particular dataset. Just like any other human-labeled dataset, the bias due to samples in the dataset and the subjects who participated in collecting labels are limiting factors for the trained model’s generalization power. SViMM magnifier interface reduces the impact of inaccurate predictions by allowing assistive and user panning to co-exist. Nevertheless, larger and more diverse video saliency datasets will be needed to improve the generalization power of the saliency model.Robust Tracking: Since our goal was to explore the feasibility of accessible video magnifier that users can interact with in real time, the ROI detection and tracking mechanisms in SViM were kept rather simple and thus have some limitations. Firstly, small-sized ROIs can give rise to false negatives since the noise removal step removes small salient regions in the saliency maps. Secondly, the movement of ROIs across consecutive frames is assumed to be minor thus can be easily tracked with our algorithms. Third, ROI detection and tracking are less accurate in videos that have a large or changing number of ROIs across the frames.Relaxing these assumptions will expand SViM’s reach to many more arbitrary videos, but will require more complex detection and tracking methods and compute power.Incorporating Audio: SViM system does not differ in existing magnifiers in the way it utilizes or handles audio. In our user studies the effect of audio was not analyzed, and all videos were played on mute. However, one common feedback from low-vision users was the importance of audio in following the videos. We will investigate the possibility of incorporating audio as a second modality for deciding which part of the video to magnify. For example, if current audio of the video is classified as speech, this would create further motivation to magnify the face(s).Portability: We noted that it is possible to run DeepVS in real time on high-end GPUs. Computing saliency maps on stock CPUs will go a long way towards porting SViM on to other platforms, in particular mobile devices. Towards that, one idea is to reduce the saliency map inference rate and use deep networks with lower inference time but at the expense of a drop in accuracy in predicting and tracking salient regions. A principled understanding of this trade off will inform the implementation of SViM on other platforms such as mobiles and wearables.
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