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ABSTRACT

CLOSED-LOOP IDENTIFICATION OF UNSTABLE SYSTEMS 

IN TIME AND FREQUENCY DOMAINS

Hyun Chang Lee 
Old Dominion University, 1995 

Director: Dr. Jen-Kuang Huang

This dissertation presents closed-loop identification algorithms of an unstable 

system in the time and frequency domains. In the time domain, the projection filter, which is 

a linear transformation which projects (transforms) a finite number of input-output data of a 

system into its current space, is used to relate the state-space model with a finite difference 

model. The method developed can take into account the effects of process noise as well as 

measurement noise and identify open-loop systems with unknown feedback dynamics in 

the closed-loop operation. Then the recursive relations between Markov parameters and the 

ARX model are derived to identify recursively the system, controller and Kalman filter 

Markov parameters, which are finally used to identify the system, controller and Kalman 

filter gains. The closed-loop test data demonstrate that the open-loop state-space model 

identified by using projection filters is fairly accurate in predicting the step responses while 

the analytical model has several deficiencies. In the frequency domain, the relation between
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the closed-loop system matrices and the frequency response function is derived to identify 

system parameters. Also a simulation model of uncertainty to design a robust controller is 

proposed by using the maximum singular value of unstructured uncertainties caused by 

underestimated modes and noise. The uncertainty model developed here can be tested and 

used for the design of a high-performance robust controller in the future. The NASA Large- 

Angle Magnetic Suspension Test Facility (LAMSTF) is used to validate the algorithms 

developed.
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Chapter 1

INTRODUCTION

1.1 Background and Problem Statement

System identification is the process of developing or improving a mathematical model 

of a physical system based on its input-output data. Achieving high control performance on 

these systems usually requires an accurate model. Such a model can be derived from system 

identification techniques using experimental data. The more engineers understand about 

system properties through system identification, the better system control design and 

performance can be achieved. The mission of the system identification community is to 

provide effective and accurate analytical tools which include the understanding 

methodologies, computational procedures and their implementation. The development of 

good analytical tools demand a mathematical understanding of the problem to be solved and 

an appreciation for the numerical precision required when handling a large amount o f data. 

System identification is very important in active control of aerospace structures as well as 

many other fields such as robotics, civil engineering structures, electrical circuits, etc.

1
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Basically, the procedure involves four key steps of system modeling, system 

identification testing, controller design and verification tests. In the structural field, the finite 

element technique is used almost exclusively for constructing analytical models in the form 

of second-order differential equations. This approach is well-established and normally 

provides a model sufficient for structural design analysis. However, it is known from 

experience that the finite element model without refinement through dynamic tests is not 

accurate enough for use in designing a vibration control system for structures. Once the 

structure is built, static and dynamic tests are performed to construct a mathematical model 

that characterizes the dynamics of the system at the selected control and measurement 

positions. The mathematical model is then used for controller designs that complete the 

feedback loop for active control of the flexible system. The final step is to verify the closed- 

loop performance by conducting closed-loop dynamic tests.

The major benefit of system identification is the improvement of the analytical model of 

a structure. Quite often, the initial numerical (e.g., finite element) model of a structure is 

found to be incorrect by as much as 10% in the lowest frequencies. These inaccuracies are 

due to a combination of factors, including, but not restricted to: approximations in the finite 

element derivations; mismodeling of structural elements; differences in actual material 

properties and dimensions from those assumed in the model; and lack of convergence of the 

numerical model. Since the mid-sixties, the field of system identification has been an 

important discipline within the automatic control area. One reason is the requirement that 

mathematical models having a specified accuracy must be used to apply modem control 

methods. Another reason is technological developments in several areas, i.e., high quality 

integrated sensors and actuators, powerful control processors that can implement complex 

control algorithms, and powerful computer hardware and software that can be used to 

design and analyze control systems.

2
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Frequency- and time-domain methods give complementary views of many important 

problems in linear system theory and control theory. Sometimes, the two methods have been 

viewed as rivals, particularly on issues of implementation and application to real systems. 

Historically, frequency-domain methods dominated theory and practice of system 

identification in control engineering prior to the 1960s whereas the time-domain approach 

has dominated the control engineering literature on system identification over the past 

twenty years. However, not all investigators agreed on the advantages of time-domain 

approach over frequency-domain approach, and a significant minority led by H. H. 

Rosenbrock and A. J. G. MacFarlane remain unconvinced to the present day. The complaint 

of the frequency-domain advocates is that the reason for the use of the feedback is the 

uncertainties in the dynamic process, and that when these uncertainties are present, the 

qualitative methods of frequency-domain analysis are more appropriate. Qualitative system 

properties such as bandwidth, stability margin, etc., were regarded as difficult to study by 

state-space methods.

Recently, a method has been developed to compute the Markov parameters of a linear 

system, which are the same as its pulse response history1*8. The method, referred to as the 

Observer/Kalman Filter Identification algorithm (OKID) is formulated entirely in the time 

domain, and is capable of handling general response data. By introducing an observer to 

identification equations, this method makes it possible to identify not only the open-loop 

system, but also an associated observer which can be later used in controller design. 

Depending on the noise characteristics, the method identifies a deadbeat observer which is 

the fastest possible observer in the absence of noise, or a Kalman filter which is an optimal 

observer in the presence of noise, or any other observer with user specified poles. The 

approach based on an observer can use a much smaller order of AutoRegressive with 

eXogeneous (ARX) input model than one derived through a Kalman filter, but the derivation 

is based on a deterministic approach. For a stochastic system and an ARX model of a small

3
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order, to what the least-squares identification of the ARX model will converge in a stochastic 

sense is not clear. In order to solve this problem, projection filters, which were originally 

derived for deterministic systems9, are developed for identification o f linear stochastic 

systems6*10.

An important extension of the above OKID method is the identification of closed-loop 

systems. For identifying marginally stable or unstable systems, feedback control is required 

to ensure overall system stability. These methods still can be applied by using the bounded 

open-loop input-output data obtained during closed-loop operation. However, it is generally 

harder to identify the open-loop system from open-loop input-output data because it is 

difficult to ensure that the input signal to the plant has sufficient frequency richness to 

excite all of the system’s dynamics. For an unstable system, the input-output data are not 

even available while it is under an open-loop operation. To use those methods directly, we 

have to design a controller and input signal to the closed-loop system so that the input 

signal to the open-loop system is almost white. Unfortunately, this is very difficult, if not 

impossible.

To overcome the problems described, Closed-Loop IDentification algorithms (CLID)11' 

14 have been proposed for identifying a system under closed-loop operation. However, the 

proposed CLID have several shortcomings. First, the Kalman filter can’t be simultaneously 

identified because the proposed methods are applied only for a deterministic systems. In 

Reference 13, no recursive form was derived for computing the open-loop system Markov 

parameters. In Reference 14, the approach is based on the system pulse response. Generally 

speaking, random excitation provides better result of identification than pulse input because 

the noise from random excitation response can be removed through a least squares method. 

For the case where the existing controller dynamics are assumed to be unknown, a method

4
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was developed in Reference 11, referred as the Observer/Controller Identification algorithm 

(OCED), to identify an open-loop model, and an effective observer/controller combination.

It has been found that the OKID and CLID methods can effectively identify the state- 

space models using time domain input-output data. However, there are cases in which 

frequency response data, rather than time histories, are available. This is the often case with 

the advent of sophisticated spectrum analyzers and associated automatic test equipment. 

Many researchers also found that LQG control, which was the dominant player in the birth 

of modem control, optimality and design of optimal control system, failed to work in real 

environments. In a series of papers, researchers showed that LQG-based designs could 

become unstable in practice as more realism was added to the plant model.15 It became 

apparent that too much emphasis on optimality, and not enough attention to the model 

uncertainty issue, was the main culprit. Therefore, the technique of obtaining state-space 

models from frequency response data is of practical interest to active control applications.

Recently, a method called the State-Space Frequency Domain (SSFD) identification 

algorithm has been developed for open-loop system.16 In Reference 16, the method uses a 

rational matrix function to curve-fit frequency data and obtains the Markov parameters from 

this equation. In obtaining the state-space models from the Markov parameters, the 

Eigensystem Realization Algorithm (ERA),17 or its variant ERA/DC,18 is used. The 

disadvantage of this method is that curve-fitting problem must either be solved by non-linear 

optimization techniques or by linear approximate algorithms requiring several iterations.16 

In Reference 19, the method uses a matrix-ffaction for the curve-fitting for a open-loop 

system and the curve-fitting is reformulated as a linear problem which can be solved by the 

ordinary least-squares method in one step. The other hand, most of recent work in this area 

have been concentrated on the robust control issue. Even though a variety of approaches to 

this problem were investigated by many researchers, many questions are still remained to be

5
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answered. The researches in the area have been well documented in the special issue on 

system identification for robust control design of the IEEE Transactions on Automatic 

Control.20

1.2 Objective

The objective of this dissertation is to develop an effective closed-loop system 

identification algorithm in the time and frequency domains to overcome some of the 

problems associated with existing identification methods.

In time domain, the projection filter, which is a linear transformation which projects 

(transforms) a finite number of input-output data of a system into its current space, is used 

to relate a space-space model with a finite difference model. The method developed in this 

dissertation can take into account the effects of process noise as well as measurement noise 

in closed-loop operation. Then recursive relation between Markov parameters and the ARX 

model are derived to identify recursively the system, controller and Kalman filter Markov 

parameters which are finally used to identify system matrices and controller Kalman filter 

gains.

In frequency domain, the relation between the closed-loop system matrices and 

Frequency Response Function (FRF) is derived to identify system parameter and Kalman 

filter gains. From this relationship, the method to obtain state-space models from frequency 

response data is derived. Also, when there is no enough information or confidence about 

suitable number of state modes, which has been one of the main reason for the unstructured 

uncertainty, it will be shown how the underestimated state number affect results to cause

6
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uncertainty in identification. A simulation model of uncertainty is proposed to use the 

underestimated state modes and the process and measurement noises.

1.3 Dissertation Outline

Chapter 2 provides background material about existing closed-loop identification 

methods. Th recursive relations for closed-loop system and Kalman filter Markov 

parameters are derived through z-transform, and the relation between closed-loop and open- 

loop Markov parameters are summarized. A constant-gain full-state feedback controller case 

is also reviewed.

Chapter 3 provides the description of the NASA’s Large-Angle Magnetic Suspension 

Test Facility (LAMSTF). The system matrices are also provided and used for numerical 

simulations in the following chapters. The analytical model shows that the system is highly 

unstable. Because it is difficult to accurately model the magnetic field and its gradients, the 

analytical model contains some modeling error.

Chapter 4 presents a derivation of the closed-loop identification for a stochastic system 

to include processing and measurement noise through a projection filter. After a short 

review of closed-loop identification is given, the relation between the Kalman filter and 

projection filter is explained. The recursive relation is investigated to obtain Markov 

parameters for the system, Kalman filter and controller from the coefficients of ARX model 

with projection filter. Simulation and test results from LAMSTF are followed to validate the 

proposed algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 presents derivation of the relation between system matrices and Frequency 

Response Function (FRF) for the stochastic system operating in the closed-loop system. 

After the relation between state-space and FRF is reviewed for open-loop system, the same 

is derived for closed-loop case. A discussion of uncertainty is followed by numerical 

examples.

Chapter 6 provides conclusions and prospects for the extension of this research.

8
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Chapter 2

EXISTING CLOSED-LOOP IDENTIFICATION

2.1 Introduction

In this chapter, the derivation of closed-loop identification is summarized. The 

underlying concept within control theory that has made it into a field of science is feedback. 

The study of feedback and its properties is responsible for the rapid growth of this field. 

There are two important properties that a feedback system possesses that an open-loop 

system cannot have. These are reduced sensitivity and disturbance rejection. By reduced 

sensitivity it is meant that feedback reduces the sensitivity of the closed-loop system to 

uncertainties or variations in elements located in the forward path o f the system. 

Disturbance rejection refers to the fact that feedback can eliminate or reduce the effects of 

unwanted disturbances occurring within the feedback loop. An open-loop system can also 

eliminate certain disturbances (an input is generated that subtracts off the measurable 

disturbances), but it requires full knowledge of disturbance, which is not always available.

9
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Most existing system identification methods21'23 apply for stable systems without 

requiring feedback control for identification purpose. For identifying marginally stable or 

unstable systems, feedback control is required to ensure overall system stability. These 

methods still can be applied by using the bounded open-loop input-output data obtained 

during closed-loop operation, however, it is generally harder to identify the open-loop 

system from open-loop input-output data because it is difficult to ensure that the input 

signal to the plant has sufficient frequency richness to excite all of the system’s dynamics. 

The method summarized in the following section was presented to identify a linear open- 

loop stochastic system from closed-loop input-output data in time domain without recording 

feedback signals.24 The method can be applied to some other cases when a system, 

although stable, is operated in closed-loop and it is impossible to remove the existing 

feedback controller for open-loop identification. Additionally, whether the system is stable 

or not, the feedback controller can be used as a design parameter for system identification. 

One may choose a controller to enhance the damping and thus reduce the closed-loop input- 

output data required for identification.

Closed-loop identification can simultaneously identify the open-loop state-space model 

of a system and the corresponding Kalman filter when the system is under closed-loop 

operation. The first step in the process is deriving the relation between the closed-loop state- 

space model and AutoRegressive with eXogeneous (ARX) input models for stochastic 

systems. From the derivation, it can be seen that a state-space model can be represented by 

an ARX model if the order of the ARX model is chosen large enough. Since the relation 

between the input-output data and the system parameters of an ARX model is linear, a linear 

programming approach like least-square methods can be used for the ARX model parameter 

estimation. Second, the algorithm to compute the open-loop system and Kalman filter 

Markov parameters from the estimated ARX model parameters is derived. In this step, the 

closed-loop system and Kalman filter Markov parameters from the estimated ARX model

10
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parameters is computed, and then the open-loop system and Kalman filter Markov 

parameters from the closed-loop ones are computed. Third, the state-space model for the 

open-loop system is realized from the open-loop Markov parameters through the singular 

value decomposition method.17’25 Finally, the Kalman filter for the open-loop system can 

be estimated from the realized state-space model and the open-loop Kalman filter Markov 

parameters through the least-squares approach.

2.2 Closed-Loop State-Space Model and ARX Model

A finite-dimensional, linear, discrete-time, time-invariant system can be modeled as:

x M  = Axk +Buk +wk (2.1)

yk = Cxk +vk. (2.2)

where x  e  /?"*', u e  R3*\ y  e  R nxl are state, input and output vectors, respectively; wk is the 

process noise, vk the measurement noise; [A, B , C] are the state-space parameters. 

Sequences wk and vk are assumed Gaussian, white, zero-mean, and stationary with 

covariance matrices Q and R respectively. One can derive a steady-state filter innovation 

model26:

xk+l = Axk + Buk + AKek (2.3)

yk = Cxk + ek . (2.4)

where xk is the a priori estimated state, K  is the steady-state Kalman filter gain and s k is 

the residual after filtering: £k = y t -  Cxk. The existence of K  is guaranteed if the system is 

detectable and (A,QU2) is stabilizable27.

11
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On the other hand, any kind of dynamic output feedback controller can be modeled as:

Pt+1 -  4 tPk+ Bdyk 

uk = Cdpk + Ddyk + rk,

(2.5)

(2.6)

where Ad, Bd, Cd, and Dd are the system matrices of the dynamic output feedback 

controller, pk the controller state and rk the reference input to the closed-loop system. 

Combining (2.3) to (2.6), the augmented closed-loop system dynamics becomes

VM  = Ae'nk + Bcrk + AcKc£k 

yk = Ccrik +£k,

(2.7)

(2.8)

where
1K

. 4  =
.Pk.

A + BDJC BCa

BaC

A X . -

AK  + BDd 
Ba

, and Cc = [C 0]. (2.9)

It is noted that Ke can be considered as the Kalman filter gain for the closed-loop system 

and the existence of the steady-state Ke is guaranteed when the closed-loop system matrix 

Ac is nonsingular.

(2.10)
1=1 <=1

where A =  Ac~ AeKeCe and is guaranteed to be asymptotically stable because the steady- 

state Kalman filter gain Ke exists. Since A is asymptotically stable, A' = 0 if i> q for a 

sufficiently large number q (discussed in Ref. 10). Thus (2.10) becomes

?

£=i i=l

where

ai = CcA ‘ 1AcKc, = CcA i lBc.

(2.11)

(2.12)

12
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The model described by (2.11) is the ARX model which directly represents the 

relationship between the input and output of the closed-loop system. The coefficient 

matrices at and b, can be estimated through least-squares methods from a random 

excitation input rk and the corresponding output yk. From (2.11) it can be seen that 

parameters of the ARX model are linearly related to the closed-loop input-output data. 

Therefore, solving for an ARX model involves solving a linear programming problem 

involving an over-determined set of equations.

2.3 Markov Parameters

In the previous section, an ARX model, which represents a closed-loop system, is 

identified from the closed-loop input/output data through the least-squares method. With 

known controller dynamics, the estimated ARX model can be transformed to an open-loop 

state-space model by the following steps. First, the closed-loop system and Kalman filter 

Markov parameters are calculated from the estimated coefficient matrices of the ARX 

model. Second, the open-loop system and Kalman filter Markov parameters are derived 

from the closed-loop system Markov parameters, the closed-loop Kalman filter Markov 

parameters, and the known controller Markov parameters. Third, the open-loop state-space 

model is realized by using singular-value decomposition for a Hankel matrix formed by the 

open-loop system Markov parameters. Finally, an open-loop Kalman filter gain is 

calculated from the realized state-space model and the open-loop Kalman filter Markov 

parameters through least-squares.

The z-transform of the open-loop state-space model (2.3) yields

Jc(z) = (z -  A)~l(Bu(z) + AKe(z)). (2.13)

13
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Substituting (2.13) to the z-transfonn of (2.4), one has

y(z) =  C(z -  A)'1 (Bu(z) + AKe(z)) + e(z)

= % Y (k)z-ku(z) + j£iV(*)z-‘e(z), (2.14)
*=i *=o

where T(fc) = CAk~xB is the open-loop system Markov parameter, N(k) =  CAk~xAK  open- 

loop Kalman filter Markov parameter, and N(0) = /  which is an identity matrix. Similarly, 

for the dynamic output feedback controller (2.5) and (2.6) and the closed-loop state-space 

model (2.7) and (2.8), one can derive

“00 =  t i Yd(k)z~ky(z) + r(z) (2.15)
t=o

y(z) = j Y c{k)z-kr{z) + | > c(*)z-*£(z), (2.16)
k = l k=0

where Yd(k) = CdAd ~xBd is the controller Markov parameter, Yc{k) = CeAck~lBc the closed- 

loop system Markov parameter, and Ne(k) = CcA k~xAcKe the closed-loop Kalman filter 

Markov parameters. It is also noted that Yd(0) -  Dd and Ne(0) = / .

The z-transform of the ARX model (2.11) yields

I  -  X aiz"' y W  =  j u ^ z M z )  + e(z). (2.17)

Applying long division to (2.17), one has

y(z) =  [hjZ-1 + (b2 + aA  )z"2 +(b3+al (b2 +albl) + fl2h1)z"3+...]r(z)

+ [/ + axz~x + (Ajflj +  cQ z'2 + +  flj) + (hfh. + Oi)z~3+...]e(z).

14
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After comparing with (2.16), the closed-loop system and Kalman filter Maikov parameters 

can be recursively calculated from the estimated coefficient matrices of the ARX model,

= ^  + (2-18)
1=1

Nc(k) = 't<*iNc( k - i ) .  (2.19)
i=l

It is noted that yc(0) = 0, iVc(0) = / ,  and at = bt = 0, when i > q. One may obtain (2.18)

and (2.19) from (2.12) and the definition of the Markov parameters3*4. However, the

derivation is much more complex.

Next, the open-loop system and Kalman filter Markov parameters can be derived from 

the closed-loop system Markov parameters, the closed-loop Kalman filter Markov 

parameters, and the known controller Markov parameters. Substituting (2.15) into (2.14) 

yields

y(z) = | J j ( k ) z ~k |[ X r d(*)z-*y(z)l + Z W ‘r(z) + J dN(k)z~ke(z)
.4=1 A 4=0 4=1 4=0

-  S  a kz~ky(z) + ^Y (k )z~ kr(z) + ^N (k )z~ k£(z) , (2.20)
4=1 4=1 4=0

4
where a k = ^ Y ( i ) Y d(k - 1 ). Rearranging (2.20), one has

;=i

t  -  x
}(z) =  X f ( i ) z 'V ( z ) + ^ « z ‘l£(z). (2.21)

v. 4=1 y  4=1 4=0

Similarly, one can apply long division to (2.21), and then compare it with (2.16), to describe 

the closed-loop system Markov parameters recursively in terms of the open-loop system 

and the controller Markov parameters,

Yc(j)  = Y (j) + f j a kYc( j - k )  = Y(j) + f j f j Y(i)Yd(k - i) Y cU - k ) .  (2.22)
4=1 4=1 i=l

15
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And the closed-loop Kalman filter Maikov parameters can be recursively expressed in terms 

of the open-loop system Markov parameters, the open-loop Kalman filter Markov 

parameters, and the controller Markov parameters,

Ne(j)  = N (j) + X  a kNcU - k )  = N (j) + -  i)Ne( j  -  k ) . (2.23)
*=1 *=1 i=1

Reananging (2.22) and (2.23), one has

YU) = Ye{j) -  X X r (  i)Yd(k -  i)YeU -  k) (2.24)
t= l  i=1

N (j)  = NCU) -  X X l W d(* -  i)NcU -  k). (2.25)
*=1 i= l

Equations (2.24) and (2.25) show that one can recursively calculate the open-loop system 

and Kalman filter Markov parameters from the closed-loop system Markov parameters 

(from (2.18)), the closed-loop Kalman filter Markov parameters (from (2.19)), and the 

known controller Markov parameters Yd{k) = CdAdk~lBd. It is noted that yc(0) = 0 and 

Nc(0) = / .  One can easily verify (2.24) and (2.25) from (2.9), and also from the definition 

of the Markov parameters.

2.4 State-Space Realization

The open-loop state-space model can be realized from the open-loop system Markov 

parameters through the Singular Value Decomposition (SVD) method17*25. The first step 

is to form a Hankel matrix from the open-loop system Markov parameters,

H (j)-

Y (j) Y ( j  +1)

Y (j + 1) Y ( j + 2)
Y ( j + P )

Y U + P + D

Y U + Y )  Y U + Y + 1) -  y u  +  y +P)

(2 .26)

16
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where Y(J) is the y'-th Markov parameter. From the measurement Hankel matrix, the 

realization uses the SVD of H (l), H( 1) =  ULVT, to identify a n-th order discrete state- 

space model as

where matrix is the upper left hand n x n  partition of S  containing the n largest 

singular values along the diagonal. Matrices UK and VH are obtained from U and V  by

retaining only the n columns of singular vectors associated with the n singular values. 

Matrix Em is a matrix of appropriate dimension having m columns, all zero except that the 

top m  x m partition is an identity matrix. E, is defined similarly.

2.5 Identification with Full-State Feedback

In this section, the above closed-loop identification problem is considered for a 

particular case. If a constant-gain full-state feedback controller is used, the open-loop 

system can be identified by following a simpler procedure.24 An open-loop system with a 

full-state sensor and a constant gain full-state feedback controller can be modeled as:

where F  is the known constant feedback gain and rk is the reference input to the closed-

loop system. After applying filter innovation model26 to the open-loop system and 

eliminating control input uk, the closed-loop system becomes

(2.27)

xM  = Axk + Buk +wk 

yk = *k+vk

uk = -F y k +rk,

(2.28)

(2.29)

(2.30)

x M = ( A -  BF)xk + Brk + (A K -  BF)ek (2.31)

17
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y*=•**+£*• <2-32)

Comparing (2.31) and (2.32) with (2.7) and (2.8), one can have ijk = xk, Ac = A - B F ,  

Bc — B , ACKC =  A K —BF, and Cc =  / .  Then one can identify the closed-loop system 

matrices and Kalman filter gain by the same way as the proceeding section. If  the identified 

closed-loop system matrices and Kalman filter gain are described by a quadruplet, 

[Ae,Bc ,Cc,Ack c ], one needs to transform it to the same coordinate used in (2.31) and

(2.32), so that the controller dynamics can be removed from the closed-loop system. Since 

full-state feedback is used, the identified output matrix Ce is a square matrix, and is 

generally invertable. Then one may use C~l as the transformation matrix to transform the 

identified quadruplet to be [CcAcC ~ \ CeBc, I,CcAcKc] where I  is an identity matrix. 

Comparing the transformed quadruplet with (2.31) and (2.32), on can easily obtain

A - B F  = CcAeCe~ \ B  = CcBc, A K -B F  = CeAeKe. (2.33)

The identified open-loop system matrices and Kalman filter gain become

A  = CeAcCe~l + CeBcF , B = CcBe, C = I ,K  = A~\CcAcKc + BF). (2.34)

If sensors are available to provide all the state information, one can choose a constant- 

gain controller (e.g. a pole-placement controller or a Linear Quadratic Regulator (LQR)) so 

that the closed-loop system has the same dimension as the open-loop system. This 

controller can be designed (e.g. by adjusting the weighting matrices in the LQR controller) 

so that the closed-loop system is very easy to identify. For example, a closed-loop system 

with poles located within a desired frequency range with similar damping ratios between 0.4 

to 0.7 may be easily identified.

18
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2.4 Coordinate Transformation

For any dynamic system, although its system Maikov parameter is unique, the realized 

state-space model is not unique. If one needs to compare the identified state-space model 

with the analytical model, both models have to be in the same coordinates. In this section, a 

unique transformation matrix is derived to transform any realized state-space model to a 

form usually used for a structural dynamic system so that any identified system parameter 

can be compared with the corresponding- analytical one.28 This unique transformation 

matrix exists only when one half of the states can be measured directly. If this condition is 

not satisfied, other transformation matrices may exist but they are usually not unique.

Consider a structural dynamic system

M p+Dp + Kp = Gu (2.35)

where p  is displacement, u control force, G control influence matrix and M , D and K  are 

mass, damping and stiffness matrices, respectively. Then the state-space equation and output 

equation are,

x  = Amx  + Bmu and y = Cmx , (2.36)

and Cm is the output matrix. If
■ 0 I  ' ' 0 ‘
-M ~lK -M ~lD M~XG

where x  =  ̂ >, Am =
IPJ

half of the states can be measured directly, then Cn =  [/ 0]. Now, one may first convert 

the realized discrete-time system [A,2?,C] to a continuous-time system [Ac,Bc,C]. If A is 

diagonalized by matrix Q, then

Q AQ = A 

Ac = q M £ L q ->

(2.37)

(2.38)

19
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Bc = (A —I)~lAcB 

where T  is sampling time. It is assumed that the matrix 

transformation matrix

i-i

(2.39)

is full rank. Let the

then

P~lP =
C

CA„

P~lAcP =
C

CA. 4 f t  r*]=

CPl CP2 
CAcP, CAeP2

CP = [CP, CP2] = [I 0].

(2.40)

(2.41)

(2.43)

Note that CP = C„. As a result, the identified continuous-time model [Ac,Bc,C\ can be 

transformed to be \P~xAcP,P~xBe,CP\ which is in the form of Eq. (2.36). Then both the 

identified and analytical models are in the same coordinate and can be compared.

20
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Chapter 3

NASA LAMSTF CONFIGURATION

3.1 Introduction

In this chapter, the Large Angle Magnetic Suspension Test Facility (LAMSTF) is 

introduced and used as the example for the closed-loop identification. This facility has been 

assembled at NASA Langley Research Center for a ground-based experiment that can be 

used to investigate the technology issues associated with magnetic suspension at large gaps, 

accurate suspended-element control at large gaps, and accurate position sensing at large 

gaps. This technology is applicable to future efforts that range from magnetic suspension of 

wind tunnel models to advanced spacecraft experiment isolation and pointing systems.28

This facility basically consists of five electromagnets (see Figure 3.1) which actively 

suspend a small cylindrical permanent magnet. The cylinder is a rigid body and has six 

independent degrees of freedom, namely, three displacements (x, y and z) and three 

rotations (pitch, yaw and roll). The roll of the cylinder is uncontrollable and is assumed to 

be motionless. Five pairs of LEDs and photo-detectors are used to indirectly sense the pitch

21
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and yaw angles, and three displacements of the cylinder’s centroid. The inputs consist of 

five currents into five electromagnets and the outputs are five voltage (position) signals from 

five photo-detectors. Very briefly, the currents into the electromagnets generate a magnetic 

field which produces a net force and torque on the suspended cylinder.

Figure 3.1 Large-Angle Magnetic Suspension Test Facility (LAMSTF) configuration.

The details of the suspended cylinder, the coils, power amplifiers, and the position 

sensors are described in the following sections.29 The mathematical model of this system 

has been derived in detail in references 30 and 31. Only the final system matrices will be 

provided in the later section.

3.2 Suspended Cylinder

The suspended cylinder is an aluminum tube filled with 16 wafers of Neodymium-Iron- 

Boron permanent magnet material. The aluminum tube is about 5.32 cm long and 0.525 cm 

outside diameter. The wafers are arranged in N-S-N-S sequence and are epoxied. Each 

magnetic wafer is 0.7963 cm in diameter and 0.3135 cm long. The suspended cylinder is 

levitated at a height of about 10 cm above the coils.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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3.3 Coils and Power Amplifiers

There are five coils mounted on the perimeter of a circles of about 13.77 cm radius, at a 

spacing of 72° apart, an a 1/2” thick, square aluminum plate. The coils are made of 509 

turns of AWG 10 enameled copper wire wound on bakelite spools, with soft iron cores. The 

windings on the coils are covered with epoxy resin to reduce deformity due to high current 

forces. The currents through the coils are controlled by five switching power amplifiers, 

capable of delivering a maximum of 30A continuous and 60A peak. The amplifiers have a 

switching frequency of 22kHz, and require a DC. supply of 150V. The amplifiers function 

in a voltage-to-current converter mode and are set in a gain of 3 A/V to have a flat response. 

The coils can’t adequately dissipate the thermal energy generated in them due to their 

internal resistance. To protect against thermal runaway, each coil has been equipped with a 

temperature sensing device, which is monitored by a set of five digital temperature 

controllers. The temperature controllers are set to disable the power amplifiers at 160° F.

3.4 Position Sensors

The detection of the suspended cylinder’s position is performed by five sets of infrared 

LEDs and photo-detectors. These LED-photo-detector pairs are installed in two 

perpendicular planes (vertical and horizontal), which allow detection of five degrees-of- 

freedom of the cylinder (see Figure 3.2). The beams from the infrared LEDs, which are 

incident on the photo-detectors, would be partially blocked by the cylinder. The relative 

position of the cylinder can then be determined from the amount of light received by the 

photo detectors. This method is common in wind tunnel magnetic suspension applications 

and has been quite successful. From Figure 3.2, pairs 1 and 3 are used to detect the pitch 

angular and z linear displacements. Pitch 2 is used to detect the x displacement Pairs 4 and

23
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5 are used to detect the yaw angular and y linear displacements. The range of the sensors is 

founded to be about ± 1° for pitch and yaw and ±0.5 mm for x, y, and z axes.

Pairs 1 and 3 for pitch and z 
Pair 2 for x
Pairs 4 and 5 for yaw and y

Figure 3.2 Position sensors of the cylinder

3.5 System Modeling

The analytical model of this system has been derived in detail in References 30 and 31. 

This model can be obtained by combining two equations. One is the equation of motion for 

the cylinder dynamics. The other is the equation which relates the magnetic force and torque 

on the cylinder generated by the currents of the coils. Both equations are non-linear. After 

linearizing both equations and excluding the bias inputs for overcoming the gravity of the 

cylinder, one can have the state-space model

24
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x  = Anx  + Bnu 

y = c nx

(3.1)

(3.2)

where x  =  < ,A» = ®5x5 hxs , B  = ®5xS
 ̂ lit

1 
" 

i_ and Cm = [Cj 05x5]. The state variable

xp includes pitch and yaw angles and three linear displacements of the cylinder's centroid. 

The matrices A^, A^, B2 and Cx are

Aji =

b 2 =

Q =

' 3341.5 0 -39392 0.0000 0.0000‘
0 3341.5 -0.0000 0.0000 -0.0000

-9.8070 -0.0000 49.937 0.0000 -0.0251
-0.0000 0 0.0000 95.577 -0.0000
-0.0000 -0.0000 -0.0251 -0.0000 -0.9132

^22 ~ 5̂x5*

' 38.370 38.370 38.370 38.370 38.370'
0 89.802 55.514 -55.514 -89.802

0.2214 -0.1527 0.0784 0.0784 -0.1527
0 0.1215 -0.1967 0.1967 -0.1215

-0.2767 -0.0854 0.2238 0.2238 -0.0854

' 89.024 0 0 0 6097.6'

0 0 7874.0 0 0
-116.25 0 0 0 6250.0

0 95.425 0 -6535.9 0
0 -107.25 0 -5181.3 0

The eigenvalues of the system matrix Â , are listed in Table 3.1. The corresponding 

mode shapes are shown in Figure 3.3. As shown, three modes are unstable, and the other 

two are marginally stable. The matrix Q  which relates the sensor output voltage to the

displacement can be obtained from calibration and is assumed to be deterministic. To 

recover the displacement from the sensor output voltage, one can use xp = Cf1y .
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3.6 Concluding Remarks

The NASA LAMSTF configuration has been described. The analytical model has been 

derived in detail in References 30 and 31. From open-loop eigenvalues, it has been found 

that there are three unstable modes and two stable oscillatory modes. Because it is difficult 

to accurately model the magnetic field and its gradients, the analytical model contains some 

modeling errors. Since the system is unstable, the bounded input-output data can be 

obtained only from closed-loop operation. Closed-loop identification is thus required to 

validate this model and is presented in the proceeding chapter. The process noise may 

include temperature effects on the coils, inevitable electrical noise, and error of the bias 

inputs used to overcome the weight of the cylinder. The measurement noise is caused by the
i

non-linearity and saturation of the sensors and inevitable electrical noise.

26
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Table 3.1 Open-loop modes of the suspended cylinder

M ode# Eigenvalues Stability Degree of Freedom

1 ±58.78 unstable x,6y (axial, pitch)

2 ±j7.97 stable oscillatory x,9y (axial, pitch)

3 ±57.81 unstable 6Z (yaw)

4 ±j0.96 stable oscillatory z (vertical)

5 ±9.78 unstable y  (lateral)

mode 1

mode 3

mode 2

mode 4 mode 5

Figure 3.3 Mode shapes of LAMSTF configuration from analytical model
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Chapter 4

CLOSED-LOOP IDENTIFICATION 

WITH UNKNOWN FEEDBACK DYNAMICS

4.1 Introduction

Recently, methods have been developed to compute the Maikov parameters of a linear 

system from the open-loop input-output data.1*4’10 By including an observer or Kalman 

filter in the state-space equation, both the open-loop plant and an associated observer or 

Kalman filter can be identified and used for further controller design. Further progress was 

made for identifying an open-loop system, observer, and controller from closed-loop test 

data.11 There are several instances when such a need arises. For example, the system may 

be operating in closed-loop with an existing feedback controller and only closed-loop data 

are available for identification. This is particularly true for identifying unstable systems. 

However, the method derived in Ref. 11 is based on a deterministic approach. The effect of 

the process and measurement noise was not considered. To handle the noise effect, Kalman 

filters have been widely used.

28
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The great body of literature reveals the importance of the Kalman filter, however, at the 

same time it reveals the existence of some unsatisfactory features as well. A well-known 

limitation in applying the conventional Kalman filter is its requirement of a priori knowledge 

about the system state-space model and the covariances of process and measurement noises. 

This information, in practice, is either only partially known or totally unknown. Another 

limitation of the conventional Kalman filter is that it can neither adjust itself to trace a 

changing environment, nor can it correct the error caused by incorrect a priori information. 

In a sense, the conventional Kalman filter works as an open-loop system, because the filter 

evolves according to present formulas during operations and the estimation error never 

affects the filter itself. Moreover, after reaching its steady state, the filter “sleeps”. That is, 

no matter how big the estimation error could be due to whatever reasons, the filter just
I

remains unchanged. A phenomenon called filter divergence could happen.32'35 On the other 

hand, projection filters are developed to identify stochastic systems from open-loop input- 

output data.6 The approach is primarily based on the relationship between the state-space 

model and the AutoRegressive with eXogeneous input (ARX) model, via the projection 

filter. This paper extends the above development to the identification of an open-loop 

stochastic system operating in closed-loop with or without feedback dynamics.

Figure 4.1 shows a schematic diagram of an actual closed-loop stochastic system with 

existing feedback controller. The open-loop system dynamics, Kalman filter gain and 

controller are assumed to be unknown. The closed-loop system is excited by a known 

excitation signal, and the closed-loop system response and the feedback signal are 

measured. It is noted that for modeling a stochastic system, the Kalman filter gain K  has to 

be included in the system dynamics A,B,C  and D matrices. The Kalman filter gain 

represents the input matrix for the noises in the innovation model.26 A schematic diagram
A A A A

of the identified closed-loop system is shown in Fig. 4.2, where A,B,C,D  represent the
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identified open-loop system matrices, K  and F  represent the identified Kalman filter and 

controller gains, respectively.

1. Excitation

2. Feedback 
Signal

STOCHASTIC
SYSTEM

(A,B,C,D,K)

CONTROLLER 
with or without 

dynamics

Fig. 4.1 Actual stochastic system with existing controller.

3. Closed-loop 
Response1. Excitation

2. Feedback 
Signal Controller 

gain p
Kalman filter 

gain k

STOCHASTIC
SYSTEM

CA,B,C,D,K)

Fig. 4.2 Identified stochastic system with effective controller.

In this chapter, the relation between Kalman and Projection filters is discussed in the 

second section. Then identification algorithm with projection filter is presented in the third 

section followed by numerical examples and experimental results. To identify the model 

with projection filter, the projection filter is first derived from the relationship between the 

state-space model and the ARX model including the system, Kalman filter and controller. 

The ARX model is chosen and the ordinary least-squares method is used to estimate the 

coefficient matrices from the closed-loop control input, system response and feedback
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signal. Markov parameters of the open-loop system, Kalman filter and controller gains are 

then calculated from the coefficients of the identified ARX models. Finally, the state-space 

model of the open-loop stochastic system and the gain matrices for both Kalman filter and 

controller are realized through the Eigensystem Realization Algorithm (ERA).17 The 

method is validated in the last section by numerical example and experimental results from 

the unstable Large-Angle Magnetic Suspension Test Facility described in chapter 3.

4.2 Relationship between Kalman and Projection Filter

As discussed at chapter 2.2, (2.3) and (2.4) are the best description of a stochastic
i

system, whose state-space model is shown in (2.1) and (2.2) in a Kalman filter sense. The 

model using the presentation of (2.3) and (2.4) is called a filter innovation model. This 

model will be used in the derivation of the closed-loop identification.

The projection filter is a linear transformation which projects (transforms) a finite 

number of input-output data of a system into its current state-space. The filter is designed 

such that the mean square estimation error is minimized; therefore, the image of the 

projection is an optimal estimate of the current state. In other words, by defining a 

measurement vector Yqk as

y*

y*-,+i_

the projection filter is the matrix Fq such that

xk = FqYq<k, (4.2)
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which provides an optimal estimate xk of the current state xk. In the above equations q

denotes the number of successive previous measurements, including the current one, 

contained in the measurement vector. The transformation matrix Fq is called the projection

filter  o f order q . Here the generic term “filter” is used to represent the data processing 

procedure which receives measurement as input and produces the information interested as 

output. The projection filter and the Kalman filter are closely related. In fact, a projection 

filter o f order q (q>  2) can be transformed to have a Kalman filter structure, and the 

recursive projection filter of order one is identical to the Kalman filter. The identity of the 

two filters can be proved by re-deriving the Kalman filter through the recursive projection 

filter of order one. Mathematical derivation of the relationship has already been well

documented in the references.36 Here only a brief conceptual explanation will be given.
}

The a priori values of the estimates q and their corresponding error covariances of the 

projection filter are either obtained by propagating from their initial values or by setting 

them to be the steady state values. However, the counterparts in the Kalman filter are 

conditional means and covariances, conditioned on all previous data. Using conditional 

means as the a priori estimates allows the Kalman filter to utilize all the data (from the 

beginning till the current moment) recursively in estimating the current state. On the 

contrary, a projection filter of order q uses only q most recent data to do the same task. As 

a result, the Kalman filter in general is more accurate than a projection filter of small order. 

Besides, the Kalman filter treats only one measurement at each step, while the projection 

filter of order q needs to treat a batch of q data. Therefore, computationally the Kalman 

filter is more efficient

One might ask if the projection filter can somehow be modified to have the capability of 

utilizing all the data available so that it may produce the same result as the Kalman filter. 

The answer is yes. Because both filters are optimal linear filters, based on the same given
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conditions, they should be equivalent. For a projection filter with order of q, a number of 

q  ‘s most recent measurements should be kept in record at each step. The estimate made at 

each step does not take advantage of previous estimates. In other words, the estimation is 

totally based on the finite data in the current record. In order to use all measurements, one 

may increase the order as the time step increases, However, by doing that, the computational 

load will soon become too heavy to bear in practice. Hence, from a computational point of 

view, a recursive type of projection filter is preferable.

For recursive projection filters of orders greater than one in which the recursive feature 

is obtained by using conditional a priori mean and state covariance, the formulations are the 

same as the Kalman filter. In this case, some measurements are used more than once in 

estimating one single state, that is, some measurements are used both in calculating the a 

priori estimate and in calculating the filter part, or the modifying part. However, this does 

not help in improving the results. Since the projection filter seeks the conditional mean of 

the state, it makes no difference whether a measurement is conditioned once, twice, or more. 

Consequently, a recursive projection filter of an order greater than one is computationally 

inefficient. Though there is no benefit in computation, the concept of the projection filter is 

still valuable. The property of equivalence between the recursive projection filter and the 

Kalman filter helps in the development of an effective system identification method.
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4.3 Identification with Projection Filter

4.3.1 Relationship between Projection Filter and ARX Model

To explain the relationship between the projection filter and the ARX model of a linear 

stochastic system, consider a finite-dimensional, linear, discrete, time-invariant stochastic 

dynamic system represented by a state-space model as

**+i = Axk +Buk +wk (4.3)

yk = Cxk + Duk + vk (4.4)

where xk e  /?"xl is the state vector, uk e  Rnxl the input vector, yk e  RpXl the measurement or
I

output vector, w* e  R nxl the process noise, and vt e  Rpxl the measurement noise. The 

noises wk and vt are assumed to be white, Gaussian with zero mean and uncorrelated. 

Matrices A,B,C, and D are the state matrix, input matrix, output matrix and direct 

transmission matrix respectively. The integer k  is the sample indicator.

In Fig. 4.1, the control input uk to the plant is the summation of the random excitation 

signal rk and the feedback signal uf  k. The existing controller can be a full state feedback

controller or any dynamic controller. Assuming for the moment, the existing controller is a 

full state feedback controller with a gain F ,

w* = rk +ufik (4.5)

uf ,k = -F x k. (4.6)

From Eqs. (4.3) and (4.4), it is easy to show that
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or in short

Yq.k = Hqxk —GqUk -  MqWqk + VnJtt (4.8)

or in a normal form

Hqxq = Y q<k+ ^ k, (4.9)

where T  q k = Yq k + GqUk and Zq k = MqWqk -  Vq k. Note that the unknown xk is a random 

variable in this case. Now the overall noise vector %q k is still Gaussian and zero-mean 

because W k and Vq k are Gaussian and zero-mean, but it is correlated with xk because 

Wq k is correlated with xk. Now denote the covariance between x k and %qk by P ^  and the 

auto-covariance of %qk by R^. For (4.13), given the mean of the current state xk and its 

variance Px, by the theory of random parameters estimation37 the optimal estimate of xk 

can be obtained by

i , = 5 j  (4.10)

where the o v e rb a rd en o te s  the expected value,

T ,„  = H,xk (4.11)

and
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Fq =(.PxHTq +P4 )(HqPxH Tq +HqP ^ +P7̂H Tq (4.12)

The matrix Fq is the projection filter. The optimality is defined by minimum variance of

state estimator error. To derive an ARX model, one can form an one-step-ahead output 

prediction using the estimated state of the last step, that is,

yk = CAxk_i + CBuk_x + Duk (4.13)

yt = y t + £t (4.14)

ufJt = —Fxk = -F (A xk_x + Buk_x) (4.15)

Ufk = Ujk + Tfk (4.16)

where the prediction errors ek and T]k are the differences between the estimated value and 

measurement for the output and feedback signal, respectively. Then one has

yk = CAxk_x + CBuk_x + Duk 

= CA[xk_x + Fq (T  f ̂  -Y ' q<k_x)] + CBuk_x + Duk 

= CAFqYqtk_x + CBuk_x +  CAFqGqUk_x + CA(IK -  FqHq)xk_x + Duk 

= X  CAFqJyk_i + Duk + (ICB -  CAFq_xD)uk_x + £  C A F f i ^  + CALxk_x (4.17)
i=l i=2

where L  = In-  FqHq, /„ an n x n  identity matrix and Fqi and Gqi are the i-th partitions of 

Fq and Gq, respectively, defined as Fq =[FqX:Fq2:---:Fqq]„ Gq =[Gqy.Gq%2:---:Gqq]. 

Similar to (4.17), one can derive an ARX model to use one-step-ahead output prediction for

uftk = -F x k = —F(Axk_x + Buk_x)

= -FA{xk_x + Fq ( r - f  )} -  FBuk_x 

= -F A xk_x - FAFq(Yqk_x + GqUk_x) + FAFqHqxk_x-F B u k_x 

= -FA{Ia -  FqHq)xk_x -  FAFqYq k_x -  FAFqGqUk_x -  FBuk_x 

=  - l FAF,jy ,-, -  F(AF,G„  + -  X  FAF,G,jU -  FAIS„.,. (4.18)
i=1 »=2
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Equations (4.17) and (4.18) represent the optimal predictions of yk and uf  k one can 

make using q previous input-output data. If the prediction is made once and for all, namely, 

no prediction of the previous state is made, the optimal value assigned to xk is zero. 

However, if previous state estimation has been made, the optimal choice for xk is the a priori 

Kalman filter estimate. Note that for a Kalman filter

where A =  A(In -  KC) and K  is the optimal steady state Kalman filter gain. Based on the 

argument above, one can replace xk-l in (4.17) and (4.18) by (4.19) and obtain

yk = y k+ e k

X k - l  ~  A X k - 2  " b  A K ( y k _ 2  C * k - 2  D U k _ 2  )  +  & U k - 2  * *" ‘ ’

= £ A‘-lAKyk_ ^  + £  A1'"1 (B -  AKD)hw _, +  A “xk_q (4.19)
i=l i=1

i=2
f

+ y£ C A (F qGqti+ LAi-2(B-AK D ))uk_i +ek + CA‘lx k_q

= + Y biuk-i + £k + CAqxk_q (4.20)
i=l i=0

and uf 'k =u/tk + 7ik

- F A L ^ A ^ A K y ^  + ̂ A ^ i B - A K D )^ .w + A qxk_q  ̂
l «=i /=i J

X ™ F,. -  X F A F fi, ,ut_, -  F(B  + AF,G,j +1).
i=l i=2

-FAF„yk. x - t ,F A ( F qJ + l A ‘-2A K )y„  -  F{B + AFqGq, ) Ul

-  X  FA(FqGqi + LA1-2 (B -  AK D ))^^ -  FALA qxk_q + T)k

= + X dzM*-z + r?zt- FALAqxk_q (4.21)
i=l
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Note that, although the steady-state Kalman filter gain might not be known at the very 

beginning, it has already existed. This implies that (4.20) and (4.21) are valid relations even 

for the very beginning of the data. In other words, once the value of every input-output term 

in (4.20) and (4.21) are known, these equations hold. Note that A in (4.19) is the system 

matrix of the Kalman filter dynamic equation. Equations (4.20) and (4.21) represent the 

ARX model of a linear system with process and measurement noises. These equations 

provide the optimal predictions of the output measurement and feedback signal at time k  in 

the sense of minimum state error at time k —1 using q previous input and output data. For a 

stable filter, the matrix A is asymptotically stable. Therefore, the last term of (4.20) and

(4.21) are negligibly small and can be neglected for a sufficiently large number q. It seems 

that these ARX models tend to be more accurate as q approaches to infinity. However, if q 

is too large, one will have overfitting problems38 due to the prediction errors s k and rjk 

which are related to the process and measurement noises which may not be white or zero- 

mean.

4.3.2 Estimation of the ARX Model Coefficients

Estimation of the coefficient matrices of the ARX model given in (4.20) and (4.21) can 

be accomplished by using a least-square method. Equations (4.20) and (4.21) can be written 

in a compact matrix form:

and k  — 1 the time index, emphasizing the newest output vector, y (k —1). Stacking up (4.22) 

for different k , one can form a matrix equation:

<j>q{ k - l ) d  = zTk (4.22)

where 0 , ( * - l )  = [i£ y l ,  -  yTk. q 0 =  Q° ^  ^  ... c* and

zl = [yl uf,k\' The row vector <j>q(k — 1) is called the regressor where q is the oider-index
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or in short,

<D ,(*-l)0  = Z(fc), (4.24)

where <E>, (k -1 )  e  Rkxa (s = (m + p)q+ m ) denotes the data matrix while Z(k) represents

the output data and feedback input data matrix. One can use batch or recursive least-squares 

method to identify 6.

I

4.3.3 Markov Parameters from the ARX Model

In this section, the relationships between the system, Kalman filter and controller 

Markov parameters and the coefficient matrices of the ARX models will be derived. From

(4.20) and (4.21), if the coefficient matrices of yk_j and ut_j are denoted by and 

bj, dj, respectively, one can derive

CAjB = bj+l + Z a f i A ^ B  + aj+1D, j  > 1 (4.25)
«=i

-F A JB = dj+l + ^ cJCAh B + cj+iD, j  > 1. (4.26)
«=i

These equations allow one to calculate the system Markov parameter CAJB , and the 

controller Markov parameter -F A ’B recursively from the coefficient matrices of an ARX 

model of order q (note that D = bQ, CB = bx+ c^D and -F B  = ^  + cxD). Here a proof of

(4.26) is given and interested reader can find a proof of (4.25) in Ref. 6.
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First, by definition, Gql = [~DT, 0r , — ,0r ]T , and for j  2:2, one can have

Gu  =

0 ' C ' 'CAJ~2' 0 '

0
C A -'B -D

= CA~J+2
CA~i+l

1t C
0

B -
0
D

CA~q+J~xB _CA~q+x _ 0 0

= HqAJ~2B -  Eu~2)B -  DU) (4.27)

where Eu~2) = [(CA;-2)7, -  ,C7 ,0r  ,0Tf ,

DW)= [0r  , -  ,0r  ,DT ,0r ],

( D{}) has D in the y-th block and zero elsewhere). 

Therefore, with j>  1

CAFqGqJ+l =  CAFqHqAhXB -  CAFqEu~l)B -  CAFqJ+lD

= CAFqHqAj~xB -  X  CAFqiCAJ~‘B -  CAFqJ+lD (4.28)
i=1

Then using (4.21), (4.28), and the relations A  + AKC = A  and FqHq +  L  =  /„, one has

—FAjB = -F AAJ~'B = -F A(FqHq + L)AJ~XB  = -FAFqHqAj~lB -  FALAj~xB

= -FAFqHqAJ B -  FAL(A + AKC)AJ ZB 

=  -FAFqHqAJ~lB -  FALAAh2B -  FALAKCAh2B

= —FAFqHqAJ~lB -  FALAj-2AB -  ̂  FALAi_1 AKCAH ~X B
i=l

= -FAFqHqAJ~lB -  FALA j~2(A + AKC)B -  FALAi~xAKCAi~i~1B
i=i

_ ;"2 _  _
= -FAFqHqAJ~xB -  FALA hXB -  £  FALA l~x AKCAH ~XB -  FALA h2AKCB

1=1

= -F AF qHqAj~xB + Y iFAFq£ A hiB + FAFq J+1D -  FALA-'-1 (B -  AFD)
i= l

j  j ~  1 _  _
-  £  FAFq iCAh iB -  ]£  FALA l~xAKCA‘~'~xB -  FA(F, ;+1 +  LA;_1 AFT)Z>

i=l i=l
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= -F AF qGqj+l -  FALAj~l(B -  AKD) -  ̂ F A F ^ C A ^ B
•= 1

/-i _  _
-  £  FALA '^ A K C A '^ B  -  FA(F?/+1 + LAhxAK)D

i=l

= -FA (F9G,i/+1 + LAj~l (B -  AKD)) -  FAFqlCAJ~xB -  FA{Fq2 +  LAK)CAh2B

 - ....... -FA(FqJ + LAj~2AK)CB -  FA(Fqj+1 +  LAJ~XAK)D

= -F A(FqGqJ+l + LAj~ \B  -  AKD)) -  FAFq<lCAj~xB

-  £  FA(Fq i + LA‘-2AK)CAh B -  FA(Fq j+l + LAj~xAK)D
i= 2

= dJ+l + J j ciCAi-iB + c ^ D .  (4.29)
i=1

Similar to (4.25) and (4.26), there are another two equations to obtain the Kalman filter 

Markov parameter CAJ+1K  and the Kalman filter/controller Markov parameter -  FAi+xK
I

recursively from the coefficient matrices of the ARX models as follows:

CAJ+XK  = aJ+l + 1£ a j_MCAiK , j  > 1 (4.30)
i=1

—FAJ+XK  = cJH + 'j?JCj_MCAiK , j>  1. (4.31)
;=i

Note that CAK =  and —FAK -  cr  Here a proof of (4.30) is given and one can derive 

(4.31) in a similar way. Using (4.20) and the relations A + AKC = A, and FqHq + L = In,

one has

CAj+xK  =  CA(FqHq + L)AjK  = CAFqHqAJK  + CALAK

= CA(Fqj+l + FqjCA~j*xAJK + F qj_lCA~j+2AjK+"'+FqlCAJK)

+ CA(LAAj~xK + LAKCAhXK)

= CA(Fq j+l+ Fq jCAK + Fq ■_lCA2K+'-'+Fq lCAJK)

+ CA(IAj~xAK + LAj-2AKCAK+• • •+CALAAKCAJ~2K  + CALAKCAhxK)
i _  1 _

= CAFqJ+l + Y dCAFqJ_MCAiK + CALAJ~XAK  + Y,CALAH ~X AKCA1 K
1=1 ’ »=i
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= CA(Fqj +l +  L A ^ A K ) + Y dCA{Fq ._M + LAj~i~lAK)CAiK
i=1

= *i+ i+ '£aM,tCAlK . (4.32)
i=1

4.3.4 Realization of System, Kalman Filter and Controller Gains

To decompose the identified Maikov parameters into the open-loop state-space model, 

Kalman and controller gains, one can use a realization algorithm like the Eigensystem 

Realization Algorithm (ERA).17 There are two possible approaches. In the first approach, 

one may use the combined Markov parameters shown in (4.25), (4.26), (4.30) and (4.31) to 

form a Hankel matrix to compute a realization of the open-loop state-space model, Kalman 

and controller gains at the same time.11 The second approach is to realize the open-loop 

state-space model, Kalman and controller gains separately. The system Markov parameters 

shown in (4.25) can be used to form a Hankel matrix to realize the open-loop state-space 

model. Then the Kalman gain is identified from the Kalman filter Markov parameter shown 

in (4.30) and the identified open-loop state-space model through least-squares. This 

approach has been used in Ref. 6. Similarly, the controller gain can be identified from the 

controller Markov parameter shown in (4.26) and the identified open-loop state-space 

model through least-squares. Here the second approach is shortly shown to get the open- 

loop state-space model and Kalman filter gain.

The open-loop state-space model can be realized from the open-loop system Markov 

parameters through the Singular Value Decomposition (SVD) method.17*25 The first step is 

to form a Hankel matrix from the open-loop system Maikov parameters,
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H(j )  =

Y(j )  YU+1)  
Y U + D  Y ( j + 2)

Y ( j + P )
r o + jS + i )

Y U + Y )  Y ( j + 7+1)  -  Y U + r + P ) .

(4.33)

where 7(y) is the y'-th Markov parameter. From the measurement Hankel matrix, the 

realization uses the SVD of H( 1), H(l) = ITLV7, to identify a n-th order discrete state- 

space model as

A = Z:U2U lH ( 2 ) V X '\ .B  = C =  ETnUK? l 2, (4.34)

where matrix is the upper left hand n x n  partition of S containing the n largest 

singular values along the diagonal. Matrices UK and VH are obtained from U and V  by

retaining only.the n columns of singular vectors associated with the n singular values. 

Matrix En is a matrix of appropriate dimension having m columns, all zero except that the 

top m x m  partition is an identity matrix. Es is defined similarly. Once the open-loop 

A and C are obtained, one can easily calculate the open-loop Kalman filter gain from the 

open-loop Kalman filter Markov parameters N(k) in a least-squares sense as follows

(4.35)
' m y

1---3i

K = (OtO)-xOt • , where 0 - \
C A \

The identified Kalman filter gain can be used directly for state estimation.

4.4 Numerical Examples and Experimental Results

In order to demonstrate the feasibility of the method developed in this chapter, numerical 

simulations and test data from the Large-Angle Magnetic Suspension Test Facility (see Fig. 

3.1) are used. In the numerical simulations, the optimal ARX order problem and the
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advantage of combining any Maikov parameters shown in (4.26), (4.30) and (4.31) with the 

system Markov parameter shown in (4.25) to realize the open-loop state-space model are 

studied. First, it is noted that the ARX models shown in (4.20) and (4.21) seem to be more 

accurate as q approaches infinity. However, if q is too large, there will be overfitting 

problems. Numerical simulations are performed to verify this by using the analytical model 

shown in Chapter 3. A full state feedback controller based on the linear quadratic regulator 

design is used to stabilize the open-loop system. Two different noise levels (0.5% and 

2.5%) for both process and measurement noise are studied.

The identified A21, A&, and B2 matrices from Case 4 with 0.5% noise in the 

numerical simulations are

3338.3 -0.3874 -39289 -57.355 -57.355
5.2490 3340.4 -287.86 200.09 -357.40

-9.7983 0.0113 50.452 -1.9976 0.2824
-0.2054 0.0009 0.4265 95.975 -0.6959
_ 0.001 0.0086 0.5742 -0.6424 0.1043.

' 0.0074 -0.0072 -4.0923 2.1736 3.1025 '
-0.1057 -0.0229 5.7476 19.492 -4.2297
-0.0000 -0.0000 -0.0176 0.0911 0.0513
0.0000 -0.0000 0.0561 0.0152 -0.0204

-0.0000 -0.0000 0.0375 -0.0046 -0.0389

‘ 38.363 38.353 38.329 38.375 38.352 ‘
-0.0253 89.859 55.426 -55.541 -89.715
0.2227 -0.1526 0.0789 0.0770 -0.1522

-0.0012 0.1213 -0.1967 0.1962 -0.1215
-0.2773 -0.0854 0.2241 0.2236 -0.0856

There are 6000 data points with 10 ms sampling time and the number of Markov 

parameters used for ERA is 25. Tables 1 and 2 show the error percentage of the first 30
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system Markov parameters for the two different noise levels, respectively. The error 

percentage is defined as

\CAjB -  CA'Etl
e = ~— n— t — —xl00% . (4.36)

1 « ' 4

For Case 1 in both tables, the combined four Markov parameters shown in (4.25), (4.26), 

(4.30) and (4.31) are used to realize the system model through ERA. For Case 2, only the 

system and controller Markov parameters are used. For Case 3, only the system and 

Kalman filter Markov parameters are used. For Case 4, only the system Markov parameter 

is used. The identified model (after the coordinate transformation) from Case 4 with 0.5% 

noise is shown in appendix. The result is very close to the analytical model.

J

From the simulations, it is observed that the optimal order of the ARX model is 7 for the

0.5% noise case and 8 for the 2.5% case. If higher order is used, the identified system 

Markov parameter will be less accurate. Further investigation is needed to clarify the relation 

between the optimal ARX order and the noise level. As the results for the four cases are 

compared, it is shown that there is no clear advantage to combine any Markov parameters 

shown in (4.26), (4.30) and (4.31) with the system Markov parameter to realize the open- 

loop system. Figure 4.3 shows the comparison of the (1,1) element of the true and 

reconstructed Markov parameter matrices of CA‘~XB, CAl~xAK,FA'~xB and FA‘~XA K . The 

result is obtained for Case 1 with 2.5% noise and the ARX model order is 8. The error 

becomes larger for each Markov parameter as the power index i increases.

For the experiment, a full state feedback controller based on the linear quadratic 

regulator design is also used to stabilize the open-loop system. However, since only five 

position sensors are available, the rate information are calculated from the back difference of 

the position signals. There are 6000 data points with 4 ms sampling time and the number of
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Markov parameters used for ERA is 60. Different ARX model orders are used. Since the 

simulations show that there is no clear advantage of combining any other Markov 

parameters with the system Maikov parameter, only the system Markov parameter is used 

for realization. After obtaining the identified model from the test data, die identified model is 

evaluated by using another feedback controller which gives low damping for the closed-loop 

system. The simulated closed-loop step responses from the identified model and the 

analytical model are compared with the test data. Figure 4.4 shows the error percentage of 

the first 0.1 second step response verse the ARX model order. The error percentage is 

defined in (4.36) and the system Markov parameter is replaced by the step response signal. 

The result shows that the optimal order is about 12. Figure 4.5 shows the step responses of 

the testing data, analytical model and identified model for a yaw step command. Both the 

test data and identified model show that the yaw motion is coupled with the pitch and 

demonstrates a low damping as one expects. However, the analytical model fails to predict 

both characteristics.

4.5 Concluding Remarks

In this chapter, projection filters are developed to identify an open-loop stochastic 

system operating under closed-loop condition. The main contribution in the algorithm 

developed here is that open-loop system, Kalman filter and controller Maikov parameters 

are recursively derived without feedback dynamics from the ARX model coefficients of the 

closed-loop input-output data. Numerical simulations for an unstable Large-Angle Magnetic 

Suspension Test Facility show that there exists an optimal ARX order for the realization of 

the state-space model which is related to the level of the noise. There is no clear advantage to 

combine any other Markov parameters with the system Markov parameter to realize the 

open-loop system. Closed-loop test data demonstrate that the open-loop state-space model
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identified by using the projection filters is fairly accurate in predicting the step responses 

while the analytical model has several deficiencies.
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Table 4.1 Error percentage of system Markov parameter for 0.5% noise

Order of ARX Case 1 Case 2 Case 3 Case 4

2 1.6542 1.6542 1.6542 1.6542

3 0.8294 0.8248 0.8573 0.8248

4 0.7267 0.7243 0.7314 0.7243

5 0.7144 0.7098 0.7067 0.7098

6 0.6978 0.7016 0.7135 0.7016

7 0.6840 0.6892 0.7136 0.6892

8 0.6849 0.7027 0.7424 0.7027

9 ; 0.7264 0.7301 0.7638 0.7300

10 0.7205 0.7198 0.7148 0.7198

Table 4.2 Error percentage of system Markov parameter for 2.5% noise

Order of ARX Case 1 Case 2 Case 3 Case 4

4 5.6100 5.6100 5.6057 5.6100

6 4.0671 4.0666 4.0730 4.0667

7 3.9216 3.9224 3.9269 3.9224

8 3.7410 3.7470 3.7519 3.7469

9 3.8866 3.8936 3.9081 3.8940

10 4.0368 4.0419 4.0615 4.0425
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Fig. 4.5 The step response from testing, analytical, and identified model for the yaw step.
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Chapter 5

FREQUENCY DOMAIN CLOSED-LOOP IDENTIFICATION

5.1 Introduction

The frequency domain approach has dominated the structural engineering literature on 

modal testing for many years. In the vast majority of modal testing, frequency response 

functions are measured prior to using a modal identification algorithm. Therefore, many 

system identification methods available today are based on the use of frequency response 

functions. Classical identification of linear systems for model verification and control 

design is commonly performed using concepts from spectral analysis. Often in practice, 

sophisticated spectrum analyzers are used to acquire measurements of structural dynamics. 

Since stability and performance of a control system can be efficiently captured in the 

frequency domain, the construction of an accurate model directly from frequency domain 

data is of particular interest to active control applications. The objective of frequency domain 

state-space system identification is to identify state-space models from the given frequency 

data - the frequency response function (FRF).
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Classically, the Inverse Discrete Fourier Transform method (EDFT) is used to transform 

frequency response data to time domain data, that is, to transform the frequency response 

function (FRF) of the system to its pulse response. The pulse response o f discrete-time 

systems is also known as the Markov parameters. The disadvantage of this approach is that 

the Markov parameter sequence thus obtained is distorted by time-aliasing effects39. 

Recently, a method called the State-Space Frequency Domain (SSFD) identification 

algorithm has been developed.16*19 In Ref. 16, Markov parameters can be calculated from 

FRF without windowing distortion and an arbitrary frequency weighting can be introduced 

to shape the estimate error. The method uses a rational matrix function to curve-fit 

frequency data and obtains the Markov parameters from this equation. The disadvantage of 

this method is that curve-fitting problem must either be solved by non-linear optimization 

techniques or t/y. linear approximate algorithms requiring several iterations. In Ref. 19, the 

method uses a matrix-fraction for the curve fitting and the curve-fitting is reformulated as a 

linear problem which can be solved by the ordinary least-squares method in one step; that is, 

no iteration is required. This approach is similar to SSFD and thus retains all the advantages 

associated with SSFD while avoiding the iterative, approximate curve-fitting procedures. 

The method is derived for open-loop systems which do not involve feedback dynamics.

As discussed earlier in chapter 2, it is generally harder to identify the open-loop system 

from the open-loop input-output data because it is difficult to ensure that the input signal to 

the plant has sufficient frequency richness to excite all of the system's dynamics. Recently, a 

method has been proposed to identify open-loop system from closed-loop input-output data 

with known feedback dynamics in time domain.24 The method developed in this chapter is 

a natural extension of the closed-loop identification method to frequency domain and can be 

used to identify a linear open-loop stochastic system from closed-loop input-output data 

and known feedback dynamics m frequency domain.
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On the other hand, the ultimate goal of a control system designer is to build a system 

that will work in the real environment. Because the real environment may change with time 

(components may age or their parameters may vary with temperature or other environmental 

condition), or operating conditions may vary (load changes, disturbances), the control 

system must be able to withstand these variations, which is called structured uncertainty. 

Even if the environment does not change, there is another source of uncertainty in modeling. 

Any mathematical representation of a system often involves simplifying assumptions. 

Nonlinearities are either unknown and hence unmodeled, or modeled and later ignored to 

simplify analysis. Different components of systems (actuators, sensors, amplifiers, motors, 

gears, belts, etc.) are sometimes modeled by constant gains, even though they may have 

dynamics or rtonlinearities. Dynamic structures (e.g., aircraft, satellites, missiles) have 

complicated high frequency dynamics that are often ignored at the design stage. Because 

control systems are typically designed using much-simplified models of systems, there are 

always discrepancies between true and modeled models. The difference is called 

unstructured uncertainty and the model may not work on the real plant in real environments.

The particular property that a control system must possess for it to operate properly in 

realistic situations is called robustness. The problem of designing controllers that satisfy 

robust stability and performance requirements is called robust control. A variety of 

approaches to this problem was investigated intensely during the 1980s and is still under 

investigation by many researchers.2® The LAMSTF model was also used to design robust 

controllers to improve the robustness40*41 but no attempt was made to characterize the 

uncertainty in the analytical model or the identified model from test data. A simulation 

model is proposed by comparing the maximum singular value of the uncertainty models. 

Also by comparing FRFs for the different number of modes, a method to find a appropriate 

number of states mode will be discussed.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In this chapter, the relation between the FRF and the closed-loop system and Kalman 

filter Markov parameters is derived for stochastic systems. Once the closed-loop system 

and Kalman filter Markov parameters are obtained from FRF, a recursive formula for 

computing the open-loop system and Kalman filter Markov parameters from the closed- 

loop system, Kalman filter and controller Maikov parameters can be used. Finally, the open- 

loop system can be realized from the calculated open-loop system Maikov parameters. The 

method can also estimate the Kalman filter gain directly without estimating noise 

covariances.

5.2 Open-loop State-space and FRF Relationship
j

The Frequency Response Function (FRF) is defined as the Fourier transform of 

impulse or pulse response function sequence (Markov Parameters). The dynamic 

characteristics of a linear time invariant stable system can be sufficiently described by a 

frequency response function. The frequency response function is simply a special case of 

the transfer function but, in practice, it may replace the transfer function with no loss of 

useful information. In the majority of testing, frequency response functions are computed 

prior to using an identification algorithm. There are many reasons why FRFs are still 

generated so often, although there are many identification algorithms available which can 

analyze free or forced response time histories directly. Experienced modal testing personnel 

can deduce considerable information simply by observing frequency response functions. If 

time histories are processed directly by the modal identification algorithm, many traditional 

evaluation criteria are unavailable.

The state-space representation of a finite-dimensional, linear, discrete-time, time- 

invariant system can be modeled as:

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Xk+i = Axk + Buk (5.1)

yk = Cxk , (5.2)

where x  <= RHXl, u e  R1X\  y  s  Rmxl are state, input and output vectors, respectively; [A, B , 

C] are the system matrix, input matrix and output matrix, respectively. [A, B , C] are

referred to as state-space parameters or the state-space model. The relation between the

state-space model and the FRF G(<yt ) is

G{(Oi) = c ( e W  x /„ -A )_1B (5.3)

where T  is the sampling time of the discrete time system in seconds and ©,• are the 

frequencies in rad/sec. By expanding (5.3), one has

G(cOi) = CBe~i0):r + CABe-j0):r + CA2Be~io):r+■ ■ • = (5.4)
k=0

(Yk = CAk~lB)

The parameters {Yk = CA*_1b) (k = l,2 ,” -,oo) are the Markov parameters. However, the

problem associated with this approach is that theoretically the Markov parameters have an 

infinite number of terms. Though overall the Markov sequence is a decreasing sequence, 

assuming the system is stable, it may take a large truncation number kk to make 

CAk~lB = 0 for all k > k\, especially when the system is lightly damped. A large number of 

Markov parameters will make computation too intensive and impractical for many 

applications. To avoid this problem of excessive number of parameters in the calculation, an 

intermediate step should be taken. That is, curve-fit the FRF data using a finite-ordered 

matrix-fraction first and then construct the Markov parameters from this results.
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5.3 The Relation between Closed-Loop State-Space and FRF

This time, a finite-dimensional, linear, discrete-time, time-invariant system with 

processing and measurement noises is modeled as:

= Axk + Buk +wk (5.5)

yk = Cxk + vk , (5.6)

where wk is the process noise, vk the measurement noise. Sequences wk and vt are 

assumed Gaussian, white, zero-mean, and stationary with covariance matrices Q and R 

respectively. One can derive a steady-state filter innovation model:26

Jct+1 = Axk + Buk + AKek (5.7)
J

yk =Cxk + ek , (5.8)

where xk is the a priori estimated state, K  is the steady-state Kalman filter gain and ek is 

the residual after filtering: £k = yk-  Cxk. The existence of K  is guaranteed if the system is 

detectable and (A,QU1) is stabilizable.27

On the other hand, a dynamic output feedback controller can be modeled as:

P M = A dPk+Bdyk (5.9)

^  = Cdpk + Ddyk + rk, (5.10)

where Ad, Bd, Cd, and Dd are the system matrices of the dynamic output feedback 

controller, p  e  /^x l , r  e  /?*xl are controller state and reference input to the closed-loop 

system. Combining (5.7) to (5.10), the augmented closed-loop system dynamics becomes

VM  = AcT]k + Berk + AcKcek (5.11)

yk = CcT\k + ek, (5.12)
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where
,  J A + B D J C  BC A J B '
4  [  * £  4 , )  '  | o }

[AK + B D J  
AeKc=[ B* \ ’™dC'= [C ° 1-

It is noted that Kc can be considered as the Kalman filter gain for the closed-loop system 

and the existence of the steady-state Ke is guaranteed when the closed-loop system matrix 

Ac is nonsingular. Substituting (5.12) into (5.11) yields

= Ar\k + Bcrk + AcKcyk , (5.13)

where A = Ac — AcKcCc and is guaranteed to be asymptotically stable because the steady-

state Kalman filter gain Kc exists. The z-transform of (5.12) and (5.13) yield

y(z) = CcT](z) + e(z) (5.14)

Tj(z) = (z/, -  A T ^ A J C ^ z )  + Bjr{z)), (5.15)

where It is an identity matrix with dimension t = n + l. Substituting (5.15) into (5.14), one

has

y(z) = Cc(zlt -  A T 'iA JC jiz)  + Bcr(z)) + e(z) . (5.16)

By rearranging, one has

y(z) = (/m -  Cc(zl, -  A T 'A f 'T 'C M  -  A r xB j{z)

+(/m -  Ce(zl, -  A r ^ K . r ^ f z ) . (5.17)

The z-transform of the dynamic output feedback controller (5.9) and (5.10) and the 

closed-loop state-space model (5.11) and (5.12) yield

u ( z ) ^ Y d(k)z-ky(z) + r(z) , (5.18)
*=o
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y(z) =  t , Y eVc)z~kr(z) + 1 > C(*)z-*£(z) , (5.19)
*=1 *=0

where Yd(k) = CdAd ~lBd is the controller Markov parameter, Ye(k) = CcA k~lBc the closed- 

loop system Markov parameter, and Nc(k) = CcAck~lAcKe the closed-loop Kalman filter 

Markov parameters. It is also noted that 1^(0) = Dd and Ne(0) =  / .

The transfer function matrix of the system described by Eq.(5.17) is

G(z-1) = {Im - Cc(zl, -  A T lAJCer lCc{zIt -  A)~lBc = l Y c{k)z~k . (5.20)
k=l

The FRF is simply the transfer function matrix G(z-1) calculated along the unit circle in the 

z plane. It is also chosen that the transfer function matrix can be expressed by a left-fraction 

description as19

G(z-1) = c r 1(z~,)j3(z-1) , (5.21)

where both a(z-1) and /3(z-1) are matrix polynomials,

a(z-1) = Jm + a lz~1+- • •+ctpZ~p , (5.22)

f}(z~l) = Piz~l+ - ’+Ppz~p . (5.23)

The factorization is also not unique. For convenience one can choose the orders of both

polynomials to be equal (=  p). Pre-multiplying (5.21) by a(z-1) one has

a (z -,)G(z"1) = /3(z-1) ,  (5.24)

which can be rearranged to become

G(z-1) = - a 1G(z~1)z~I-------a pG(z~1)z~p + A z_1+* ’'+Ppz~p . (5.25)

a  and (3 can be found by least-squares method. Eq. (5.24) can be written as
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( i o ^ Y  S ^ c o z - ^  £ a z“ ' .
v«=o A «=0 J i=l

(5.26)

From this relation, the closed-loop system Markov parameters can be recursively calculated 

from the estimated a  and /3 matrix polynomials by using the parameter convolution of 

polynomial products as follows:

Yc(k) = pk - i a ? c( . k - i ) . (5.27)
i=1

Similarly, the closed-loop Kalman filter Markov parameters can be recursively calculated 

from the estimated a  matrix polynomials as follows:

lVc(*) = - t o ilVc(fc-1 ). (5.28)
/=!

Then, one can recursively calculate the open-loop system and Kalman filter Markov 

parameters from the closed-loop system, Kalman filter Markov parameters, and the known 

controller Markov parameters by the following relations as was discussed in Chapter 2.

YU) = YCU) - '£ ' t Y ( i ) Y d(k -  i)YcU -  k) (5.29)
k=1 i=l

N (j)  = Ne(j) ~  X X * rW d{k -  i)NeU -  k). (5.30)
i=l i=l

where Y(k) = CAk~lB is the open-loop system Markov parameter,

N(k) = CAk~xAK  open-loop Kalman filter Markov parameter, 

iV (0) = /  which is an identity matrix,

Yd(k) = CdAd ~xBd the controller Maikov parameter,

Ye(k) =  CcA k~xBe the closed-loop system Markov parameter, and 

Ne{k) = CcA k~xA:Kc the closed-loop Kalman filter Markov parameters.

It is also noted that Yd(0) =  Dd , Nc(0) = I  and Yc(0) =  0 .
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To decompose the identified Maikov parameters into the open-loop state-space model, 

Kalman and controller gains, one can use a realization algorithm like the Eigen Realization 

Algorithm (ERA) which was explained in Chapter 4. Finally, the procedures for identifying 

an open-loop state-space model from closed-loop input-output data with a known dynamic 

output feedback controller can be summarized as follows.

1. Obtain FRF from closed-loop input-output data by using (5.17).

2. Use least-square method to compute left-fraction matrix polynomials from the FRF by 

using (5.25).

3. Compute closed-loop system and Kalman filter Markov parameters recursively using 

the left-fraction matrix polynomials by using (5.27),(5.28).
i

4. Compute the open-loop system and Kalman filter Markov parameters from the closed- 

loop system and Kalman filter Markov parameters, and the controller Markov 

parameters calculated from the known controller dynamics by using (5.29),(5.30)

5. Realize open-loop system matrices from the open-loop system Markov parameters by 

using (4.37), (4,38).

6. Estimate open-loop Kalman filter gain from the open-loop Kalman filter Markov 

parameters and the realized system matrices by using (4.39).

5.4 Model Uncertainty

A stable system is not our final objective, however, robust is; stability must be 

maintained despite model uncertainty. This is a subject of much current research interest. It 

has been widely recognized that not every controller suited for the nominal model will 

perform equally well with the plant. The general principle is that robustness must be traded 

off versus nominal performance. This involves two complementary prerequisites:
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- The controller must be robust for the imperfections of the nominal model, and

- these imperfections must allow the design of a high performance controller.

The first prerequisite shows the need of a quantified (bound on the) model uncertainty, 

whereas the second one refers to the construction of a sufficiently accurate or suitable 

nominal model, as a basis for the control design. Accordingly, the field of control-relevant 

system identification branches into two directions as depicted in Figure 5.1.

Model uncertainty is generally divided into two categories: structured uncertainty and 

unstructured uncertainty. Structured uncertainty assumes that the uncertainty is modeled, 

and we have ranges and bounds for uncertain parameters in the system. Unstructured 

uncertainties assume less knowledge of the system. We only assume that the frequency 

response of the system lies between two bounds. Both kinds of uncertainties are usually 

present in most applications. For the NASA LAMSTF, it is found that for the baseline 

system the analytic model nearly captures the dynamics, although the identified model 

improves the simulation accuracy. For the system perturbed by additional eddy currents 

which is shown in Figure 5.2, the analytic model is no longer adequate and a higher-order 

model, determined through system identification, is required to accurately predict the 

system’s response.42

Control Design

robust high
stability performance

quantification
of

the model error

identification of 
a suited 

nominal model

Figure 5.1 The two branches of control-relevant system identification
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5.5 Numerical and Test Example

An example is provided which consists of numerical simulations and actual hardware 

tests to validate the feasibility of the proposed closed-loop identification method. As an 

example, LAMSTF of Chapter 3 would be used again. Because it is difficult to accurately 

model the magnetic field and its gradients, the analytical model needs to be improved 

through identification from experimental data. The discrete-time state-space parameters of 

(5.5) and (5.6) using a sampling rate of 250 Hz are listed in Appendix A. The measured 

voltage outputs by y  are related to physical states y ' by

Y= [s2p]y, y = [p2s\y’ (5.31)

Both the sensor (physical states to output voltage) and actuator systems (current to forces 

and torques) have high bandwidth and are modeled as constants denoted by matrices s2p, 

p2s and a 2 f  as followings:

'-0.0349 0.0349 0 0 0 0 '

0 0 -0.0167 -0.0167 0.0167 0.0167

s2p  = 0 0 0.0004 -0.0004 -0.0004 0.0004

0 0 -0.0004 0.0004 -0.0004 0.0004

0.0006 0.0006 0 0 0 0

'-14.3200 0 0 0 800.0000'
14.3200 0 0 0 800.0000

0 -14.9884 565.6000 -565.6000 0
p2s =

0 -14.9884 -565.6000 565.6000 0
0 14.9884 -565.6000 -565.6000 0
0 14.9884 565.6000 565.6000 0
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"0.0002 0.0002 0.0002 0.0002 0.0002"
0 0.0005 0.0003 -0.0003 -0.0005

0.0049 -0.0034 0.0017 0.0017 -0.0034
0 0.0027 -0.0044 0.0044 -0.0027

-0.0061 -0.0019 0.0050 0.0050 -0.0019

In simulation, by comparing the true system eigenvalues with reconstructed ( with or 

without noises), the proposed closed-loop algorithm will be tested. The analytical model 

which was discussed in chapter 3 is used as true model here. First, from the system and 

controller state-space parameters given, 5000 points of output data are generated in time 

domain by applying random input data with or without processing and measurements 

noises. An example of input and output data is shown in Figure 5.3. The next step is to
i

convert time data into frequency data via FFT (Fast Fourier Transformation). Then FRFs 

are calculated from input and output data in the frequency domain. In the simulation, one 

may have 30 FRFs because there are five inputs and 6 outputs. The FRF of the first input 

and output is shown for a 2% noise case in Figure 5.4. Table 5.1 compares the 

reconstructed system eigenvalues (2%  noise and 10% noise) with true ones. The identified 

result shows a perfect match when there is no noise, which is not shown, and quite good 

agreement even when there is 2% or 10% of processing and measurement noise. After the 

closed-loop identification is performed, the open-loop Markov parameters of the identified 

model are reconstructed. Figure 5.5 shows the comparison of the (1,1) element of the true 

and reconstructed system Markov parameters. Also, whether or not one can get the same 

output with the true case from the identified model will be checked by comparing the 

outputs from both of the true and identified models when we applied the same inputs, 

shown in Figure 5.6.

Two experiments are also performed for closed-loop identification with a known 

dynamic output feedback controller which is shown in the Appendix. A total of 8192 data
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points at a sampling rate of 250 Hz from each sensor are used for identification. In this 

experiment, five tests were run and each had white noise on a single actuator, and zero input 

to the other actuators. In other words, only one row of each of (5 x 8192) input data has a 

non-zero value. Finally, five sets of (5 x  8192) input data and five sets of (6 x  8192) output 

data are collected for frequency response function. It is worthy noting that only the first half 

of input have excitation value and the second half will be zeros for EFT. The reason is FFT 

is mathematically derived for infinite number of time data whereas the only finite number of 

time data are available in the real world. To use the finite number of time data, the input- 

output data should be periodic so that one cycle o f data can be used for FFT instead of 

infinite number. To make the system behave periodic, the zero input is necessary to drive the 

system to the zero point. FRFs are calculated after time domain data are converted to 

frequency domain via FFT same as in the simulation. Thirty FRFs from five inputs and six 

outputs are simultaneously used to identify a state-space system model. The order of the 

matrix polynomial is set to 13, which is proved to be large enough in chapter 4, and the 

system order for ERA is set to 70. The reason to choose 70 as the system order for ERA is 

there is sharp decrease in singular value plot as you can see in Figure 5.7. The identified 

eigenvalues from testing are shown in Table 5.2.

Numerical simulation is also performed for uncertainty model identification. Two 

models are identified for 10- and 12- states from the same test data to generate new output 

data by applying random input without noise. The maximum singular value of differences in 

FRFs between the two models for each frequency are regarded as a parameter of the 

uncertainty model without noise. Then ten sets of input-output, five for 10-state model and 

five for 12-state model, are generated by applying random input with 1% processing and 

measurement noise. The corresponding ten FRF data are obtained and the averaged FRF is 

used for closed-loop identification and the identified state-space model is treated as the 

nominal model. For each frequency, the normalized differencies between averaged FRF and
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ten FRFs are calculated and their corresponding maximum singular values are computed. 

After collecting the largest singular value for each frequency out of 10 cases, the worst case 

out of ten uncertainty models is constructed. In figure 5.8, two identified models from test 

data, one for 10-state and the other for 12-state, are compared. Here it should be pointed out 

that 10-state model can be regarded as a source of the unstructured uncertainty because the 

12-state model shows a better agreement with the real test data. The maximum singular 

value plots for the 10-state model, 12-state model and the identified nominal model of ten 

noise cases are shown in Figure 5.9. As clearly shown in Figure 5.9, the most differences 

between 10-state and 12-state models occur at about 400 time steps which is equivalent to 

around 20 Hz. In Figure 5.10, the maximum singular values of uncertainty models in case 

of noise free and 1% noise (which is the collection of the worst out of ten noise cases) are 

shown. The worst singular value of 10 noise cases is about 7 times higher than the worst 

one of the noise free case.

5.5 Concluding Remarks

A method of identifying an open-loop state-space model from closed-loop input-output 

frequency response data is developed. The main contribution is that relationship between the 

open-loop system Markov parameters and the closed-loop FRF is derived for a linear 

stochastic system with known feedback dynamics. It can also estimate the Kalman filter 

gain directly without estimating noise covariances. It is also shown that the closed-loop 

Kalman filter Markov parameters can be calculated through the transfer function matrix 

between reference input and output data. By identifying the open-loop system successfully 

from closed-loop input output data in frequency domain, it can be concluded that the 

recursive closed-loop identification method in time domain which is recently developed, can 

also be applied to data in the frequency domain. It is shown that the underestimated states
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model can cause a serious amount of unstructured uncertainty in identification and can be 

used to generate the unstructured uncertainty in the numerical simulation. The other hand, 

process and measurement noise could cause a serious problem when the maximum singular 

values are used to compare an uncertainty effects to the system. It is also observed that the 

process and measurement noise doesn’t make a big impact to identification itself. By using 

of the underestimated mode, a simulation model of the uncertainty applying to a future test 

to design a robust controller is proposed. The proposed model should be tested through 

experiment to examine the effects of the unstructured uncertainty and the noise in the future.

Table 5.1. Comparison of eigenvalues of analytical and identified model

Analytical Model Identified 
from simulation 

(2 % noise)

Identified 
from simulation 

(10 % noise)

1.2651,1.2601 1.2654,1.2601 1.2729,1.2522

1.0399,0.9616 1.0311,0.9889 1.0247±  j.0427

1.0000± j.0038 1.0088± j.0319 1.0090± j.0659

0.9995 ± j.0319 1.0048 ± j.0498 1.0044± j.0453

0.7936, 0.7905 0.7931, 0.7900 0.7987±  i.0028

Table 5.2. Comparison of eigenvalues of analytical and identified model

Analytical Model Identified 
from Testing (I)

Identified 
from Testing (II)

1.2651,1.2601 1.2905,1.2779 1.2892,1.2796

1.0399,0.9616 1.0123 ±j.0397 1.0280,0.8233

1.0000± j.0038 0.9885 ±j.0519 1.0138±.0232i

0.9995 ±  j.0319 0.9894 ±j.0163 0.9914±.0302i

0.7936, 0.7905 0.7981, 0.7828 0.8828, 0.7772
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Aluminum Ring Suspended Element

Figure 5.2 Perturbed LAMSTF system with aluminum ring to provide eddy currents

input data-u1
4 i------------- 1------------- 1------------- 1------------- 1------------- 1------------- 1------------- 1-------------1--------------r

’ 0 2 4 6 8 10 12 14 16 18 20
time (sec)

output data-y1
l i \ \ i \ l l i

» l t_ I < 1 t______ I I---------- 1
0 2 4 6 8 10 12 14 16 18 20

time (sec)

Figure 5.3 Example of input and output data for simulation
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FRF for 1st input and 1nd output
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Figure 5.4 Open-loop FRF for the first input and output ( 2% noise)

Open-loop Markov parameters, (1,1) element (10% noise)
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Figure 5.5 Comparison of (1,1) element of true and reconstructed Markov parameters

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1st ouput

 true0.2 reconstructed

- 0.2

0 50 100 150 200 250 300 350 400 450 500

2nd output
0.1

0.05

-0.05

- 0.1
100 150 200 250 300 350 400 450 500

Figure 5.6 Comparison of the output between true and reconstructed model

singular values

.-to

10

-20

180100 120 140 160

Figure 5.7 Singular Value Plot 

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



From identified model for 12-state

0.5 -

-0.5

100 150 200 250 300 350 400 450 5000 50

From identified model for 10-state

true
reconstructed0.5

-0.5

150 200 250 300 350 400 450 500
k

100

Figure 5.8 Comparison of the output between true and reconstructed model

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5

c 1-5O)

10-state model 
12-state model 
averarge model with noises

0.5

200 300 400 500 600 700 800 900 1000

Figure 5.9 Comparison of the max. singular values of closed-loop FRF

4.5

3.5

with noises

without noises
1.5

0.5

100 200 300 400 500 600 700 800 900 1000
k

Figure 5.10 Comparison of the max. singular values of closed-loop uncertainty FRF
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Chapter 6

CONCLUSIONS

6.1 Contributions

Closed-loop identification methods have been proposed for linear stochastic system. In 

time domain, projection filter is presented to identify system of unknown feedback 

dynamics. In frequency domain, the relation between closed-loop system parameters and 

Frequency Response Function is presented to identify open-loop system from closed-loop 

input-output data and the simulation model of uncertainty has been proposed to be used for 

robust controller design.

In the existing closed-loop system identification methods, the Kalman filter has been 

used to handle noises in process and measurement. But the Kalman filter requires a priori 

knowledge of covariances of process and measurement noises which are either only 

partially known or totally unknown. Another limitation is that it can neither adjust itself to 

trace a changing environment, nor can it correct the error caused by incorrect a priori 

information. Moreover, after reaching its steady state, the filter “sleeps”. That is, no matter
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how big the estimation error could be due to whatever reasons, the filter just remains 

unchanged. In this dissertation, a closed-loop identification method using projection filter is 

derived, which can simultaneously identify an open-loop system, controller gain and 

Kalman filter gain by using closed-loop input-output data without knowledge of covariances 

of process and measurement noises. Also most of closed-loop identification methods 

require knowledge of feedback dynamics to identify the open-loop system and Kalman 

filter gain. But in this dissertation the recursive relation between the open-loop Markov 

parameters and the coefficients of ARX has been derived to identify the open-loop system, 

Kalman filter gain and controller gain without information of feedback dynamics.

With the advent of sophisticated spectrum analyzers and associated automatic test
j

equipment and also with many failures of LQG controller in real environment which has 

been dominant player o f modem optimal control theory, many researchers begin to pay 

attention back to frequency domain analysis. Too much emphasis on optimality, and not 

enough attention to the model uncertainty issue have been accused of the main culprit In the 

dissertation, a relation between closed-loop system parameters and FRF has been derived to 

identify the open-loop system parameter and Kalman filter gain from input-output data in 

frequency domain. After getting FRF from reference input and system output, the closed- 

loop system and Kalman filter Markov parameters can be recursively calculated from the 

estimated matrix polynomials o f FRF. Then the open-loop system and Kalman filter 

Markov can be derived from the closed-loop Markov parameters, finally to be used to 

identify the open-loop system and Kalman filter gains. Then it is shown that the 

underestimated states model can cause a serious amount of unstructured uncertainty in 

identification. Also it is shown that the process and measurement noise can worse a 

situation when the maximum singular value is used to quantify an uncertainty existing in the 

system, even though the noise don’t make a major difference in identification results. A
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simulation model o f uncertainty is proposed to study robust controller design by 

introducing the underestimated state modes and the process and measurement noises.

6.2 Further Extension of the Research

The algorithms developed in this dissertation can be applied or extended further to other 

areas. For the time domain closed-loop identification, a systematic explanation should be 

explored how the optimal ARX number can be found without trial and error process and 

why it should be the particular number. It will make the method more efficient numerically 

to be used for adaptive or iterative controller design. Also we need to extend the algorithm to 

when we don’t have full state information, which is a more practical case.

For the frequency domain method, the proposed maximum singular value of uncertainty 

model should be examined in test process how efficiently it can be used to robust controller 

design. Up until recently, the robust control community has largely taken for granted certain 

types of uncertainty description, e.g., parameters lying in fixed intervals or Hx  frequency 

domains, without questioning how these descriptions might be obtained in practice. More 

systematic approach should be addressed to enable robust high-performance feedback 

design of systems which would be otherwise difficult to characterize and control reliably. 

The systematic approach to come in the future should be an integrated method for system 

identification, modeling, and robust control.
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APPENDIX A

A finite-dimensional, linear, discrete-time, time-invariant system can be modeled as:

xi+1 = Axk + Buk + wk (A. 1)

yk = Cxk +vk. (A.2)

Here, the state-space parameters of LAMSTF are shown for a sampling rate of 250 Hz as 

follows: I
A =[AU A12]

" 1.1687 0.0006 -0.0000 0.0000 0.0000 '
-0.0000 1.1629 -0.0000 -0.0000 -0.0000
-0.0000 0.0001 1.0178 -0.0017 -0.0037
-0.0000 0.0000 0.0001 1.0051 0.0001
0.0000 0.0002 -0.0004 0.0008 1.0106
0.0000 -0.0000 -0.0021 -0.0240 0.0005
0.0000 -0.0001 -0.0064 -0.0001 -0.0213

-0.0000 -0.0000 0.0109 -0.0009 -0.0045
0.0000 -0.0000 -0.0086 0.0009 0.0032
0.0000 -0.0000 0.0004 0.0002 0.0006
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‘ 0.0000 0.0000 -0.0000 -0.0000 -0.0000'
-0.0000 0.0000 -0.0000 0.0000 -0.0000
0.0021 0.0074 -0.0127 0.0112 0.0006
0.0295 0.0006 0.0015 -0.0011 0.0003

-0.0018 0.0223 0.0066 -0.0039 0.0030
0.9908 0.0028 -0.0010 0.0003 -0.0011
-0.0041 0.9692 0.0064 0.0004 0.0003
0.0021 0.0050 0.9260 -0.0549 0.0028
0.0009 0.0031 -0.0589 0.9125 -0.0008

_ 0.0012 0.0545 -0.0002 -0.0002 0.8652 _

0.0035 0.0706 0.0519 -0.0363 -0.0633'
-0.0434 -0.0326 -0.0340 -0.0425 -0.0396
0.0580 -0.0454 0.0983 -0.0361 0.0254

-0.0926 -0.0315 0.0881 0.0865 -0.0218
0.1160 0.0124 0.0263 0.0982 -0.0242

-0.1015 -0.0368 0.1033 0.0854 -0.0154
0.1373 0.0057 0.0719 0.0859 -0.0066

-0.0159 -0.0637 -0.1326 0.1165 0.0625
0.0158 -0.1531 -0.0261 0.0041 0.1245

-0.0484 -0.0800 -0.0513 -0.0553 -0.1009

C — [Ql Q 2 ]

-0.0313 0.4029 -0.0469 0.2269 -0.0381'
0.0291 -0.4213 0.0006 0.2248 0.0290

-0.4423 0.1071 0.1809 0.0553 0.0669
-0.4254 -0.1184 -0.1787 -0.0092 -0.0829
0.4495 -0.0763 0.0574 0.0273 -0.1861

_ 0.3889 0.1015 -0.0614 0.0085 0.1739

-0.1961 0.1274 -0.0363 0.0198 -0.1513'
-0.2097 -0.1079 -0.0130 0.0297 0.1502
-0.0618 -0.0906 -0.0418 -0.2228 -0.0472
0.0200 0.1217 -0.2197 -0.0559 0.0630

-0.0400 0.1239 0.2109 0.0827 0.0464
_ 0.0012 -0.1277 0.0386 0.1913 -0.0634
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For simulation, the discrete-time state-space parameters of dynamic output feedback

controller can be modeled as:

Bd=

Pk+1 ~  AiPk "*■ Bdyk

The matrices are

uk = Cdpk + Ddyk+ rk,

‘0.3333 0 0 0 0 '

0 0.3333 0 0 0
Ad= 0 0 0.6000 0 0

0 0 0 0.6000 0
0 0 0 0 0.6000

-0.0206 0.0206 
0 0
0 0
0 0

0.0004 0.0004

0
-0.0098
0.0003

-0.0003
0

0
-0.0098

(A.3)

(A.4)

0
0.0098

-0.0003 -0.0003 
0.0003 -0.0003

0 0

0 ‘ 
0.0098 
0.0003 
0.0003 

0

Q =1.0e+03*
0.0796 0.0000 
0.1032 0.0716
0.0886 0.0442
0.0886 -0.0442

7.3872 
-5.9772
2.2836
2.2836

0.1032 -0.0716 -5.9772 -4.3222 -1.7160

0.0000 -5.5493' 
4.3222 -1.7160

-6.9917 4.4907
6.9917 4.4907

10.8171 3.9903
6.7151 -2.1362 

-2.1923 -9.7904 
-2.1923 -9.7904
6.7151 -2.1362

-7.0133
11.2687
-7.9381
3.6020
0.0807

7.0133
-8.3349
9.7505

-5.4144
-3.0144

7.0133
-3.0144
-5.4144
9.7505

-8.3349

-7.0133'
0.0807
3.6020

-7.9381
11.2687
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For experiments, the discrete-time state-space parameters of dynamic output feedback

controller of (A.3) and (A.4) are listed as follows:

0.1111 0 0 0 0 '
0 0.1111 0 0 0
0 0 0.4286 0 0
0 0 0 0.4286 0
0 0 0 0 0.4286

Brf—l.Oe + 05*
r - 0 . 0 0 0 0  0 . 0 0 0 0  - 0 . 0 0 0 0  - 0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  

0.0000 
-1.4372 
-1.4373

-0.0003
-0.9021
-0.9018

0.0003
-0.9021
-0.9018

-0.0000 -0.0000 -0.0002

0.0000 -0.0000 -0.0000
1.4372 -1.4378 1.4378
1.4373 -1.4379 1.4379
0.0002 0.0002 - 0.0002

Q =

'0.0000 0.0628 0.0940 -0.0940 -0.1220'
0.0613 0.0814 -0.0033 0.0033 0.0988
0.0379 0.0699 -0.0236 0.0236 -0.0378

-0.0379 0.0699 -0.1289 0.1289 -0.0378
-0.0613 0.0814 0.0618 -0.0618 0.0988

'  9.7516 3.7430 -6.3953 6.3953 6.3953 -6.3953'
5.9817 -1.8087 10.2313 -7.6492 -2.7002 0.1180

-2.1164 -8.8038 -7.2708 8.8660 -4.9120 3.3168
-2.1164 -8.8038 3.3168 -4.9120 8.8660 -7.2708
5.9817 -1.8087 0.1180 -2.7002 -7.6492 10.2313
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APPENDIX B

function [G,yf,uf]=frf(ys,us);
% convert time data to frequency data via fft 
%

%

[noi,N]=size(ys) ;
[ni,N]=size(us); 
no=noi/ni; 
nol=no-l; 
nl=0; i

%

yf=fft(ys')'; 
uf=fft(us')';

%

nd=fix(N/2);
G=zeros(no,nd*ni); 

for i=2:nd+l 
kl=0; 

for k=l:ni 
kl=kl+l; 
k2=kl+nol; 
nl=nl+l;
G (:,nl)=yf(kl:k2,i)/uf(k,i); 
kl=k2; 

end; 
end;
%

%

%

%

%

f m e t  ion [Ai.Bi/Ci.Di.Ki.mo.Y^O/q] =clidf (G,a,b,c,d,TS) 
% G= Frequency Response Fmction;
% TS= spampling time;
% output data y(no,N);
% no=number of outputs 
% input data r(ni,N);
% ni=number of inputs 
% N=number of data points 

[ni,n]=size(c);
[no,N]=size(G); 
nd=N/ni; 
p=no+ni;
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input('order of AKX mode=(0=skip)'); 
if ans~=0, 
q=ans;
input('identify D(l=yes,0=no)'); 
th=arx_fre(G,q,ans,nd,1,0);

% coefficient of ARX model;
end;

input('number of Markov parameters for ERA=(0=skip)'); 
if ans~=0 
n=ans;
Ak=eye(size(a)); 
h=zeros(ni,no*(n+1)); 
h(:,l:no)=d;

for i=no:no:n*no,
h (:,i+1:i+no)=c*Ak*b;
Ak=a*Ak;

end;
nol=no+l;
nil=ni-l;
noml=no-l;
nni=npl*ni;
nno=npl*no;
Y=zeros(no,nni);
N=zeros(no,nno); 

for i=l;q+l 
il=i-l; 
nl=il*ni+l; 
n2=nl+nil; 
n3=il*no+l; 
n4=n3+noml; 
nll=il*p+l; 
nl2=nll+nil; 
n21=nll+ni; 
n2 2 =n21+noml;
Y (:,nl:n2)=th(1:no,nll:nl2);

% closed-loop system Markov parameter;
N(:,n3:n4)=th(1:no,n21:n22);

% closed-loop Kalman filter Markov parameter;
end;

Y=markov(Y,N,0,n);
N=markov(N,N ,1,n);
[Y,E]=clmarkov(Y,h,n,N);

% open-loop Markov parameter;
end; [Ai,Bi.Ci,Di, H ]=era(Y,no,q);

% Eigensystem Realization Algorithm; 
Ki=kalman(Ai,Ci,E,n);

% Identify Kalman filter gain;
%

%

%

%

%
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function th=arx_fre(G,q,d,nd,fb,fe)
% identify parameters of ARX model using least square in batch 
% y(k+1)=sum(a(i)y(k-i))+sum(b(i)u(k-i)),i=0,1,...,q 
% q=order of arx model 
% y=noxk of output data;
% u=nixk of input data;
% N=number of data points;
% no=nimber of outputs;
% ni=number of inputs
% th=[b(0) a (0) b (1) a(l)... b(q) a(q)]
%

%

[no,N]=size(G); 
ni=N/nd; 
p=no+ni; 
nil=ni-l;
I=eye(ni); 
w=pi/nd*sqrt(-1); 
z=zeros(q,nd); 

for i=l:q; 
for k=l:nd,

z (i, k) =exp (w*k) ''i; 
end.; 

end; *. 
if d==l
phi=zeros(p*q+ni,N); 
n=ni ;

for i=l:nd,
nl=(i-l)*ni+l; 
phi(l:ni,nl:nl+nil)=1; 

end;
else
phi=zeros(p*q,N); 
n=0 ; 

end;
for k=l:nd

nl=(k-1)*ni+l; 
n2=nl+nil; 
nn=n; 

for i=l:q 
np=nn+p;
phi(nn+l:np,nl:n2)=[I;G(:,nl:n2)]*z(i,k); 
nn=np; 

end;
nl=n2;

end;
nl=fb*ni+l;
Nl=N-fe*ni;
G=G(:,nl:Nl); 
phi=phi(:,nl:Nl);
th=[real(G) imag(G)]/[real(phi) imag(phi)];
[m,n]=size(th); 

if d==l
th=[th(:,l:ni) zeros(m,no) th(:,ni+l:n)]; 

else
th=[zeros(m,p) th];

2nd;
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function Y=markov(yl,y2,eq,n,y3)
% Y=markov (yl ,y2, eq, q, n, no, ni,y3) =yl (k) +
% sum{y2 (i)Y(k-i) , 1,... .k-eq} ,k=l,—  ,n;
% or if y3 exists,
% Y=yl (k)+sum{y2 (i)y3 (k-i) ,1,__,k-eq},k=l,___ ,n;
% extract Markov parameters from arx model parameters 
% Y=nox(nixn) Markov parameters matrix 
% no=number of outputs;
% ni=number of inputs 
% n=number of Markov parameters 
%

%

[no,ni]=size(yl);
Y=zeros(no,ni); 
nl=n+l; 
ni=ni/nl; 

if exist('y3')==0
Y (:,l:ni)=yl(:,l:ni); 

for k=l:n 
kk=k*ni;
h=yl(;,kk+1:kk+ni); 
kl=k-eq; 

for i^lrkl
ii=i*rio;ki=(k-i)*ni; 
h=h+y2(:,ii+l:ii+no)*Y(:,ki+l:ki+ni); 

end;
Y (:,kk+1:kk+ni)=h; 

end;
else

[no,ni]=size(y3);ni=ni/nl; 
for k=l:n 

kk=k*ni;
h=y1(:,kk+1;kk+ni); 
kl=k-eq; 

for i=l:kl 
ii=i*no; 
ki=(k-i)*ni;
h=h+y2(:,ii+1:ii+no)*y3(:, ki+1:ki+ni); 

end;
Y (:,kk+1:kk+ni)=h; 

end;
end;
%

%

%

%

function [H,E]=clmarkov(Y/h,n,N)
% Y=markov(yl,y2,eq,q,n,no,ni,y3) =yl(k)
% +sum{y2(i)Y(k-i),1,...,k-eq},k=l,— ,n;
% or if y3 exists,
% Y=yl(k)+sum{y2(i)y3(k-i),1,...,k-eq},k=l,...,n;
% extract Markov parameters from arx model parameters 
% Y=nox(nixn) Markov parameters matrix 
% no=number of outputs;
% ni=number of inputs 
% n=numb'=-'' of Markov parameters 
%
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%

[no,ni] =size(Y) ;
nl=n+l;
ni=ni/nl;H=Y;
E=zeros(nofno*nl);
H (:,1:ni)-Y {:,1 :ni) ; 

for j=l:n 
jj=j*ni;
hx=Y(:,jj+1:jj+ni); 
je=j*no;
ex=N(:,je+1:je+no); 

for k=l:j-1 
jk=(j-k)*ni; 
jke=(j-k)*no; 

for i=l:k 
ii=i*ni; 
ki=(k-i)*no;

hx=hx-H(:, ii+1: ii+ni) *h(:,ki+1: ki+no) *Y  (:, jk+1:jk+ni) ; 
ex=ex-H(:,ii+1:ii+ni)*h(:,ki+1:ki+no)*N (:,jke+1:jke+no); 
end; 
end;

H (:,jj+1:jj+ni)=hx; 
for i=l:j

ii=i*ni;ji=(j-i)*no; 
i ex=ex-H(:,ii+1: ii+ni) *h.(: , ji+1: ji+no) ; 

end;'
E (:,je+1:je+no)=ex; 

end;
%

%

%

%

%

function K=kalman(A,C,Y,n)
% Calculate Kalman filter gain 
% th = [b(0) a(l) b (1) ... a(q) b(q)];
% q=order of ARX model 
% n=number of Kalman Markov parameters 
% K=Kalman filter gain matrix 
% C=output matrix 
% A=system matrix 

[no,n2]=size(Y);
[m,m]=size(A); 
n2no=n2-no;
0=zeros(n2no,m);
N=zeros(n2no,no);
Ak=eye(m); 

for i=l:n 
ii=(i-1)*no; 
iil=ii+l; 
iino=ii+no;
O(iil:iino,:)=C*Ak;
Ak=A*Ak;
N(iil:iino,:)=Y(:,iino+1:iino+no); 

end;
%

K=0\N;
%
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function [A,B,CfD,H]=era(H,p,q)
% realize A,B,C,D matrices from markov parameters using ERA 
% [A,B,C,D]=era(Y,p,q)
% q=order of ARX model 
% Y=mx(pxn) markov parameters matrix 
% m=number of outputs;
% p=number of inputs; n=number of Markov parameters 
%

%

Y=H;
[m,n]=size(Y);
D=Y(;,l:p);
Y=Y(;,p+l:n); 
n=n/p-l;
r=fix(n/(m/p+1)) ; 
s=n-r; 
mr=m*r; 
ps=p*s;
Hl=zeros(mr,ps);
H2=H1; 

for i=l:r 
for j=l:s 
mi=m*(i-1); 
pj=p*ilj-l); pij=p*(i+j-2);
HI(mi+l:mi+m,pj+l:pj+p)=Y(:,pij+l:pij+p);
H2(mi+l:mi+m,pj+l:pj+p)=Y(:,pij+p+l:pij+2*p); 

end; 
end;

[U, S , V] =svd(Hl) ; 
figure(1);
semilogy(diag(S)%keyboard; 
titlev- singular values '); 
grid;
input ('nxomber of states of realized system =');n=ans;
S=S(l:n,l:n);
S=sqrt(S);
SI=inv(S);
U=U(:,l:n);
V=V(:,l:n);
A=SI*U'*H2*V*SI;
B=S*V'*[eye(p);zeros(ps-p,p)];
C=[eye(m),zeros(m,mr-m)]*U*S;

%

%

%

%

%
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