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ABSTRACT 

IMAGE-GUIDED ROBOTIC DENTAL IMPLANTATION 
WITH NATURAL-ROOT-FORMED IMPLANTS 

Xiaoyan Sun 
Old Dominion University, 2012 

Director: Dr. Frederic D. McKenzie 

Dental implantation is now recognized as the standard of the care for tooth 

replacement. Although many studies show high short term survival rates greater than 

95%, long term studies (> 5 years) have shown success rates as low as 41.9%. Reasons 

affecting the long term success rates might include surgical factors such as limited 

accuracy of implant placement, lack of spacing controls, and overheating during the 

placement. 

In this dissertation, a comprehensive solution for improving the outcome of current 

dental implantation is presented, which includes computer-aided preoperative planning 

for better visualization of patient-specific information and automated robotic site-

preparation for superior placement and orientation accuracy. Surgical planning is 

generated using patient-specific three-dimensional (3D) models which are reconstructed 

from Cone-beam CT images. An innovative image-guided robotic site-preparation system 

for implants insertion is designed and implemented. The preoperative plan of the implant 

insertion is transferred into intra-operative operations of the robot using a two-step 

registration procedure with the help of a Coordinate Measurement Machine (CMM). 

The natural-root implants mimic the root structure of natural teeth and were proved by 

Finite Element Method (FEM) to provide superior stress distribution than current 



cylinder-shape implants. However, due to their complicated geometry, manual site-

preparation for these implants cannot be accomplished. Our innovative image-guided 

robotic implantation system provides the possibility of using this advanced type of 

implant. 

Phantom experiments with patient-specific jaw models were performed to evaluate the 

accuracy of positioning and orientation. Fiducial Registration Error (FRE) values less 

than 0.20 mm and final Target Registration Error (TRE) values after the two-step 

registration of 0.36±0.13 mm (N=5) were achieved. Orientation error was 1.99±1.27° 

(N=14). Robotic milling of the natural-root implant shape with single- and double-root 

was also tested, and the results proved that their complicated volumes can be removed as 

designed by the robot. The milling time for single- and double-root shape was 177 s and 

1522 s, respectively. 
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NOMENCLATURE 

cs Coordinate System 

vcs Virtual Coordinate System 

RCS Reference Coordinate System 

ocs Operation Coordinate System 

CMM Coordinate Measurement Machine 

CBCT Cone-Beam Computed Tomography 
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VD Volume Decomposition 

FEM Finite Element Method 

FLE Fiducal Localization Error 
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CHAPTER 1 

INTRODUCTION 

Dental implantation is now recognized as the standard of care for tooth replacement 

[1-2]. The loss of teeth can harm one's ability of eating, alimentation, speech and 

appearance, thus significantly affecting the patient's quality of life. According to the 

American Dental Association, there are approximately 45 million tooth removals in the 

United States every year [3]. The dental implant market worldwide expects strong growth 

through 2015 to reach $4.2 billion at a compound annual growth rate (CAGR) of 6% [4], 

or a global market of $7.9 billion with a CAGR of 13% according to another source [5]. 

With such a huge need for dental implantation, however, there are still several 

problems that need to be improved. Although many studies show high short term survival 

rates greater than 95%, long term studies (> 5 years) using Albrektsson, et al. [6] criteria 

have shown success rates as low as 41.9% [4-7]. Reasons for such low success rates 

might include inappropriate planning, limited accuracy of implant placement, instability 

and hygiene factors during the procedure. Robotic placement of the implants can improve 

accuracy and natural-root-formed implants can improve stability, thereby providing the 

foundation for long term success rates under any criteria. 
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1-1 Thesis Statement 

To improve the outcome of current dental implantation, an innovative image-guided 

robotic system can be developed enabling more accurate and controlled site-preparation 

of implants including novel natural-root-formed implants for superior biomechanics. 

Better results than current manual methods within the sub-millimeter range needed for 

implant placement can be achieved. 

1-2 Challenges 

One of the important factors that affect the final outcome of dental implantation is 

successful insertion of the implant into the patient's jawbone. An ideal placement of a 

dental implant considers the bone density and neighboring anatomical structures for the 

site-preparation, in particular, the schneiderian membrane of the maxillary sinus in the 

upper jaw and the mandibular nerve in the lower jaw. The development of imaging 

technologies provides the information desired for the ideal implantation. Cone-Beam 

Computer Tomography (CBCT) provides superior 3-dimensional (3D) imaging quality 

especially for bones, with a significantly lower radiation dose than previously used 

panoramic radiographs or normal CT [8-9], thereby becoming very attractive for 

preoperative planning in dental applications. Much pre-surgical planning software is 

commercially available on the market, for example, BioDental Model System from 

Biomedical Modeling, Inc., SimPlant from Materialise, Implant Guidance System from 

DENX, and so on [10]. With the planning software, 3D anatomical information is 

visualized and a preoperative surgical plan can be generated accordingly. 
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Appropriate surgical planning is valuable only if the exact transfer of the plan to the 

intra-operative implant placement is achieved. In fact, it has been the most challenging 

part of implant dentistry. Currently, two major categories of methods are applied for the 

transfer: navigation and drill guide. Navigation provides the surgeon with the location of 

the surgical tool in real time, relative to the important anatomical structures of the patient. 

It is usually achieved by using an optical or electro-magnetic tracking system. Another 

category is the drill guide (template). It is a small device with several holes on it, whose 

position and orientation are manufactured according to the preoperative plan. Both 

methods are proved to provide better results than conventional free-hand implant 

placement [11-14], which solely depends on the experience of the surgeon. On the other 

hand, these two methods are not perfect. For example, navigation utilizing optical 

tracking can be obstructed by objects along the light path, and electro-magnetic tracking 

might be influenced by the metal objects in the surrounding area. Most crucially, both the 

navigation and drill guide methods still require manual drilling for the site-preparation of 

the implant, with which errors caused by human factors like limited identification 

accuracy, trembling, and fatigue, etc. are hardly avoidable. Therefore, the accuracy 

introduced by the computer-aided preoperative planning could be impaired, and even the 

patient's safety might be endangered. 

Looking at the implant itself, research indicated that the design of an implant 

including geometry, material, surface treatment, etc. can affect the outcome of 

implantation. A typical dental implant is usually in a cylinder shape mostly because of its 

easy-to-prepare feature. Finite Element Method (FEM) analysis indicated that the optimal 

designs for implant load distributions followed closely the natural root forms [15-16]. 
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Nevertheless, the authors dismissed such designs because they are "difficult to 

manufacture" [16] and site-preparations would be manually impossible. 

1-3 Proposed approaches & innovation 

In this dissertation, a comprehensive solution is given regarding the challenges in 

dental implantation as defined in Section 1-2. A preoperative planning software based on 

patient-specific CBCT images is implemented to generate appropriate surgical plan and 

support our novel implants, and a two-step registration strategy which provides an 

accurate transfer of the surgical planning to the actual operation of the robot while 

ensuring the patient's safety, are designed. An image-guided robotic site-preparation 

methodology is developed, which will control proper spacing and orientation on the bone 

according to the preoperative planning. The development of novel implants in an 

optimized natural-root form is proposed, which we believe can achieve superior stability 

and uniform load distribution than current cylinder-shaped implants. With such novel 

implants, CBCT image-based preoperative surgical planning and image-guided robotic 

operation to allow precise preparation of the natural-root form that is not manually 

possible, a comprehensive system to improve the outcome of dental implantation is 

presented. With this design, the following contributions can be anticipated: 
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Wholly integrated image-guided, robotic system for dental implantation with a 

clinically acceptable overall accuracy 

• No 1: Provide a novel two-step registration procedure to transfer the surgical plan 

to the robot operation 

A wholly integrated image-guided robotic system for dental implantation is presented. 

Computer-aided technology and a robot-assisted method are combined to provide an 

advanced application for dental implantation. In the system, instead of registering the 

image coordinate system and the surgery coordinate system directly, a novel two-step 

registration procedure was designed to transfer the preoperative planning to the robotic 

operation. A coordinate measurement machine (CMM) was used to act as a reference 

coordinate system thus unnecessary and potentially hazardous contact between the robot 

and the patient was avoided. 

• No 2: Use image-guided robotic dental implantation with sub-millimeter accuracy 

The overall accuracy is one of the most crucial considerations for all kinds of surgery 

systems. Usually, a sub-millimeter accuracy is regarded as clinically acceptable for dental 

implantation systems. Among all factors that may affect the system accuracy, registration 

error plays a very important role. As a result of proper system design and the usage of a 

high accuracy CMM, phantom experiments indicated an error of 0.36±0.13 mm and 

1.99±1.27 ° on position and orientation after registration, respectively, proving that a sub-

millimeter accuracy was achieved in our system. 
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Automated robotic site-preparation methodology for natural-root-formed implants 

• No 3: Implement an innovative automated site-preparation methodology for dental 

implants using a robot 

A robot-based site-preparation methodology for dental implants was given to control 

proper spacing, orientation, and thermal effects on bone. A robot with six degrees of 

freedom (DOF) was introduced into the system and acts as a high-accuracy milling 

machine. Researchers from other groups already proposed similar robot-assisted systems. 

However, most of these systems involve "tele-operation" (remote control mode) or 

"hands-on" (cooperative control mode) for the robot, in which case, a human still needs 

to control the surgical operation to a great extent. The application is among the limited 

applications that apply a robot in the system in a totally automated way, which might 

open a new era for the dental implantation. In addition, the novel natural-root-formed 

implants have a more complicated geometry than current cylinder-shape implants, which 

makes manually site-preparation impossible. The volume of certain natural-root-formed 

implants is removed by calling some pre-defined subroutines, which makes the 

application of the novel natural-root-formed implants possible. 

• No 4: Establish a standardized set of proven (via FEM) natural-root-formed implant 

designs that can achieve superior load distribution over current dental implant 

designs 

The idea of implants with natural-root form was initially proposed by Quality Dental 

Lab (QDL). It was implemented by generating a standardized set of implants based on 



7 

the shapes of natural teeth, and optimized according to the simulation result of Soft Kill 

Option (SKO) optimization implemented by Yongki Yoon from the Department of 

Mechanical and Aerospace Engineering of Old Dominion University. These implants 

mimic the root structure of natural teeth, and have been proven through FEM 

(implemented by Yongki Yoon) to provide superior stress distribution than current 

cylinder-shape implants. Although it still needs to be proven by animal experiments, it is 

believed that a natural-root-formed implant can achieve the stability and uniform load 

distribution necessary for immediate loading. 

• No 5: Provide a volume decomposition algorithm for robot milling sequences 

generation 

The 6 DOF robot works as a milling machine in the system. However, milling the 

volume (geometry) that needs to be removed for the insertion of a certain implant in a 

point-by-point basis requires large data storage in the robot, which can cause memory 

outage of the robot and lead to operation termination. A novel algorithm was 

implemented to generate the robot milling sequence for each natural-root-formed 

implant, utilizing a volume decomposition concept. The volume is decomposed into the 

combination of several pre-set standard shapes. In this way, only several parameters are 

needed to define the milling sequence, and it also allows the most efficient reutilization 

of the robot sub-routines. 
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1-4 Organization of this dissertation 

The rest of the dissertation is organized as follows: In Chapter 2, a wide review of 

related topics of the application will be given, and the related works are introduced in 

Chapter 3. In Chapter 4, a description of the novel natural-root-formed implants were 

designed is provided: where the idea came from, the theoretical proof, and what results 

achieved. Chapter 4 illustrates the design and architecture of our application at the 

system level, including the major components, system operation flow and the 

architectures of hardware and software. The detailed description of each component of 

the system is provided in Chapter 6, which includes the planning, registration and robot 

operation. Later in Chapter 7, the methods and materials for the experiments conducted 

to test the feasibility and accuracy of the system are explained, and the experiment results 

are provided in Chapter 8. Chapter 9 gives the conclusion of this dissertation. 
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CHAPTER 2 

BACKGROUND 

According to American Association of Oral and Maxillofacial Surgeons, "69% of 

adults ages 35 to 44 have lost at least one permanent tooth" and "26% of adults have lost 

all of their permanent teeth" by age 74 [17]. A missing tooth not only will affect one's 

appearance, speaking ability and eating ability, but also causes bone loss and tooth decay. 

Without a tooth, adjacent teeth tend to shift closer and cause "crooked teeth" which are 

harder to clean. Additionally, the bone surrounding the area begins to deteriorate and 

gums begin to shrink, thus affecting long term quality of life. 

Several options are available for replacing missing teeth, including dental bridges, 

removable dentures and dental implants (Fig. 1). A dental bridge is made up of two 

crowns and a false tooth/teeth in between that bridges the gap created by one or more 

missing teeth. It may require the shaping or cutting down of adjacent healthy teeth 

underneath bilateral crowns. "Recurrent decay, periodontal (gum) disease and other 

factors often doom fixed bridgework to early failure." [17] A removable denture can be a 

partial (Fig. 2 b-1) or complete (Fig. 2 b-2). It is removable because it sits over a 

patient's gums but without secure connection to the jawbone. Dentures are probably the 

cheapest and the most convenient way of dealing with a missing tooth. However, its 

outcome is not satisfactory neither esthetically nor functionally. As the patient's jawbone 

shrinks over time, the denture becomes loose and could cause problems such as gum 

damage, nerve injury, and difficulties in chewing and speaking. Dental bridges and 
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dentures usually need to be replaced every 7 to 15 years, and the failure rate is up to 30% 

after 5 to 7 years [17]. Dental implants are "frequently the best treatment option for 

replacing missing teeth", according to American Association of Oral and Maxillofacial 

Surgeons [17]. It has been almost a half century of clinical research since Branemark, et 

al. reported the osseointegration property of titanium [18]. A dental implant is an 

artificial piece which substitutes for the root part of a missing tooth. Currently, most 

dental implants are Branemark osseointegrated titanium implants. As seen in Fig. 1, it is 

the only way which substitutes the root portion of a missing tooth. Its presence and 

osseointegration in the jawbone prevents the bone loss caused by the missing teeth, and a 

success rate of around 95% was reported by many researchers [19-20]. However, 

different voices do exist. Long term studies (> 5 years) using Albrektsson et al. [6] 

criteria have shown success rates as low as 41.9% [4-7]. 

(a) (b-1) fl>-2) (c) 

Fig. 1. Solutions for replacing missing teeth [21]. (a) dental bridge; (b-1) partial 

denture; (b-2) complete denture; (c) dental implant 
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2-1 Design of a dental implant 

A human tooth is composed of two parts: crown and root. The latter is the lower part 

of a tooth, which serves to anchor the crown in position. Nearly all the dental implants 

available today are endosseous implants. When a tooth or several teeth are missing, a 

dental implant is the manmade piece that substitutes for the root part of the missing 

tooth/teeth. For the majority of implant designs, a two-piece design is utilized: an implant 

which is the portion embedded and osseointegrated with the jawbone and an abutment 

affixed to the implant with a screw (Fig. 2). Such a design is based on the two-stage 

surgery concept, which places the osseous component (implant) first and the restorative 

component (abutment) a certain time later (usually several months) with another small 

surgery. As noticed by many researchers, this two-piece design does introduce problems 

like screw-loosening and infection within the micro-gaps between the two parts [1-22]. 

Fig. 2. Natural tooth and dental implant [21] 
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Research has indicated that "contamination of the implant-abutment junction, the 

microgap, and violation of the biological width are the causes for the initial bone loss" 

[23]. A one-piece design that encompasses the abutment together with the implant or in 

other words, without the abutment, was designed in order to minimize marginal bone 

loss. Research has shown that one-piece implant has comparable results as the two-piece 

ones in simulation [24], and a "biologic width"—the vertical dimension of healthy 

periodontal soft tissues, more similar to natural teeth dimensions as compared to two-

piece implants [25]. Nevertheless, one-piece implants are not widely accepted in the 

dental industry although they are actually commercially available. A typical example is 

NobelDirect by Nobel Biocare (Kloten, Switzerland), which was launched in 2004. It 

incorporates both an implant and an integral fixed abutment in one piece, and was 

designed to "simplify use and ensure long-term healthy, beautiful teeth" [26]. However, 

many clinical cases reported poor clinical outcomes with an excessively high amount of 

marginal bone loss surrounding the implant and lower success rates [27-28]. In a one-

year prospective study, 20% of analyzed 550 NobelDirect showed a marginal bone loss 

of >3 mm, while the success rate (under grade 1 criteria) was 46.1% compared to 85.5% 

of the two-piece implants [23]. Although some other studies reported a survival rate of 

97.9% after three years [29], and even a success rate (33 months) of 100% with a mean 

marginal bone loss of 0.53 ± 0.37 mm at the 12-month follow-up visit [30]. Nobel 

Biocare has been sued by a California dentist seeking class-action status on behalf of 

dentists whose patients have suffered complications such as bone loss. In fact, in 2005 to 

2006, the Swedish Medical Products Agency investigated NobelDirect after receiving 

complaints about the same problem, however, its continued sales was approved after the 
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investigation [31]. Other one-piece implants available in market include Zimmer One-

Piece Implant by Zimmer Dental Inc. (Carlsbad, CA USA) [32], One-piece 3.0 by 

BioHorizons, Inc. (Birmingham, AL USA) [33], etc. 

Research indicated that the shape of dental implants has an effect on implant 

biomechanics [34]. Today, screw- or cylinder-shaped implants are the standard for dental 

implantation. While such designs mimic the structure of natural roots and ease the 

drilling procedure into the bone, it is hard to achieve the ideal stability provided by 

natural human roots, especially for molars, thus leading to loosening and fracture [35]. 

Attempts were made by placing two single screw-type implants instead of a single 

implant in large molar case [35]. Results indicated that it was a "more functional and 

biomechanically sound method of molar replacement" [35]. Balshi, et al. conducted a 

three years follow-up, which showed a cumulative success rate of 98.6% and less 

complications but with increased bone loss [36]. Leung, et al. implemented the first in 

vitro study using the connection of two mini-implants with a mini plate [37], which 

proved to be a stable system. All these trials attempted to get an implant more similar to 

the shape of a natural root of a human tooth, and showed very encouraging preliminary 

results. In fact, an optimum design problem indicated that the optimum shape of an 

implant was somehow close to a natural root shape [15], and the conclusion was also 

supported by FEM results [16]. However, such designs were not pursued because they 

are "difficult to manufacture [16]", thus site-preparation would be manually impossible. 
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2-2 Image-guided dental implantation 

Image-guided technology has been applied in dental surgery and has shown the 

capability of optimizing preoperative planning and improving the quality of the intra

operative performance [38]. Here, "image" means the clinical data received from imaging 

modalities such as computer tomography (CT), magnetic resonance imaging (MRI), and 

ultrasound (US). These data provide important information about the patient including 

bone density and neighboring anatomical structures, which is crucial to the success of 

implant placement, therefore helps preoperative planning, intra-operative navigation, and 

post-operative evaluation. An ideal placement of a dental implant considers the patient's 

anatomical structures, in particularly, the schneiderian membrane of the maxillary sinus 

in the upper jaw and the mandibular nerve in the lower jaw. Cone-beam computer 

tomography (CBCT) is suitable for use in dental practice, which provides superior 3-

dimensional (3D) imaging quality with lower radiation dose and less scan time [8]. Much 

software is available for image-guided dental implantations (RoboDent, DenX, SimPlant, 

etc. [10]). 

Implant space is one of the concerns in dental implantation. Appropriate spacing 

between an implant and a neighboring implant, or natural tooth, is required to provide 

sufficient blood supply and avoid overheating during drilling with subsequent death of 

the bone cells. A space of 4 mm to 7 mm is recommended by most implant manufactures. 

The minimum space between an implant and a neighboring natural tooth, and the space 

between two adjacent implants should be no less than 3 mm and range from 3 mm to 5 

mm, respectively [39]. To achieve the requirement for implant space, it adds the upper 
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limit to the accuracy of the implantation system. Usually, a sub-millimeter accuracy is 

regarded as clinically acceptable. However, it is not very easy to achieve. The overall 

accuracy of an image-guided dental implantation system can be affected by many factors 

in the system structure, including resolution of medical imaging scans, result of 3D 

models, preoperative planning, registration and accuracy of hardware. 

In computer-aided surgery, registration is one of the most important steps. Registration 

is the process that aligns different sets of data obtained from different objects (for 

example, the patient's anatomy, medical images, robots, and sensors) or from different 

time. Registration is "fundamental to all areas of computer-integrated medicine" [40]. 

Registration error may mainly determine the final accuracy of the system. For image-

guided surgery, several different principles are applied to transfer the surgical plan to 

actual surgical operation: 

(a) VectorVision [41] (b) Artma Biomedical Inc. [42] (c) FAU [43] 

Fig. 3. Examples of image-guided surgery with different methods to transfer the 

surgical plan to the operation 
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1) Navigation, involving dynamic tracking, tracks the surgical tool intra-operatively 

with an optical [44-45] or magnetic tracking system [36] and its position is 

superimposed onto the virtual model of the patient and shown to the surgeon on a 

screen. Systems with navigation include VISIT (Vienna, Austria), VectorVision 

(Brainlab, Munich, Germany), InstaTrak (GE medical systems), etc. [46]. 

One significant drawback of such systems is that the navigation is given on the 

monitor but not directly on the surgical site, therefore it may be difficult to align the 

display relative to the surgical field, and it also distracts the surgeon's attention from 

the operative field which might cause errors and danger to the patient. Additionally, 

optical tracking can be obstructed by objects between the cameras and the target, 

while the results from magnetic trackers are easily disrupted by metal objects in the 

surrounding area. Also, the system accuracy is affected by the working distance of the 

tracking device. 

2) Augmented reality also supports navigation but by projecting extracted structures 

from preoperative images directly onto the patient, thus solving the problem of 

monitor navigation. The structures could be anything that is important to the surgery 

but is not otherwise visible by the surgeon, for example, tumors underneath tissue 

such as the breast [47]. The projection of structures could be on a head-mounted 

display [48-49], or a specially designed semi-transparent mirror [50-51]. A problem 

with the augmented reality guided system is the usage of the bulky head-mounted 

displays, which may deteriorate the surgeon's perception. 
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3) A surgical guide/template is generated according to the real/virtual geometric 

information of the patient, which can be physically accessed by the surgeon, therefore 

navigation is not necessary. This method is usually applied in the field of oral and 

maxillofacial surgery and is currently the most acceptable by surgeons because it is 

the closest to the conventional way. Several rapid prototyping technologies could be 

applied to manufacture the surgical guide, including stereolithography (SLA), 3D 

printing [52], or computer numerical control (CNC) technology [53]. However, 

intraoral fixation of the template in edentulous patients could cause serious problems. 

It not only may provide inaccurate guidance, but may also create a nauseous response 

in the patient due to template movement [54]. 

For registration, some artificial markers (namely fiducials) are usually applied to help 

align the two coordinate systems. Several kinds of registration techniques have been 

proposed in the literature. Among them, paired-point registration is the simplest method 

and is widely used for image-guided systems. This method aligns a set of N points (N>3) 

in the first coordinate system with another set of corresponding points in the second 

coordinate system, using one-to-one mapping. It is straightforward and easy to conduct 

when fiducials are used or a tracking probe is used to physically contact each of these 

points. Currently, it is the only registration algorithm that has a closed form solution with 

well-understood error predictors, if measurement error is independent and identically 

distributed (IID) with a zero mean Gaussian distribution [55]. Point-to-surface 

registration, which matches a cloud of points to a 3-D surface constructed from the 

preoperative image, is another kind of rigid registration technique. The major advantage 

of this technique lies on that it avoids error introduced by fiducial marker identification 
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from preoperative images. However, the transformation between the virtual and real 

object cannot be analytically calculated by using a surface matching method and it is 

difficult to quantify the quality of the registration [56]. Another category for registration 

methods is non-rigid (elastic or defonnable) registration, which is suitable for situations 

where objects change their shape during the procedure. Non-rigid registration still 

remains an open area of research. 

Validating the accuracy of an image-guided dental implantation system is a challenge 

because evaluation in vivo is impractical. Instead, phantom experiments are conducted for 

validation purpose. A unitary definition of system accuracy seems to be non-existent in 

clinical practice for computer-aided surgery systems (CAS systems). A number of 

different parameters can be found in the literature to describe accuracy [57]. Among these 

parameters, the following three are widely used for evaluating the accuracy of point-

based registration methods [58]: 

1) Fiducial localization error (FLE): the error in locating the fiducial points 

(displacement error of the fiducial localized point from the correct position); 

2) Fiducial registration error (FRE): the distance between corresponding fiducial 

points after registration; 

3) Target registration error (TRE): the distance between a corresponding target point 

after registration, where the target is a position different from fiducials. 

For paired-point registration, FRE and TRE can be calculated as follows: Suppose 

registration is done between two coordinate systems: CSl and CS2. Pi(z') and P2O) are 

two sets of fiducial points in CSl and CS2, respectively; while Qi(/) and Q2OI are two 
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sets of target points in CSl and CS2, respectively. Here, /=1~M and y'=l~N, where M and 

N are the number of fiducial points and target points, respectively. For each /, Pi(z) and 

P2O) compose paired-points; while for each j, Q\(f) and Qi(j) compose paired-points. 

After paired-point registration, fiducial points P2(0 and target points ChO") are mapped 

into P'2(0 and Q'2(/) in CSl. Then, FRE and TRE can be calculated as: 

Accuracy of image-guided implantation was reported in numerous publications, where 

TRE values at either the entry or the apex of the implant were usually utilized to indicate 

position accuracy after registration. TRE values reported by different research groups 

have a huge variance, even with very similar system setups. In a review given by 

Widmann, et al. [59], the registration errors from 16 systems, all with optical navigation, 

were listed, and the mean TRE values for each system ranged from 0.35 mm to 5.6 mm, 

and the maximum error ranged from 0.73 mm to 10.5 mm. On the other hand, registration 

accuracy with templates seems to be more delightful than the results with navigation. The 

mean errors at the entry and the apex of the implant are between 0.8~1.51 mm (with the 

maximum of 1.2-4.7 mm) and 0.9~3.07 mm (with the maximum of 1.6—7.1 mm), 

respectively [48]. Apart from the position of implant insertion, its orientation is also a 

very important factor which will affect the final success of the implantation. Similar to 

positioning errors, the deviation of angulation errors reported is large as well. It ranges 

from less than one degree to more than ten degrees [48-60]. The registration errors are 

(1) 

(2) 
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evaluated in two ways: in either the image domain or the operation domain. The first is 

done by fusion of the pre- and post-operative images together and measuring the 

difference between [61-62], and the latter usually compares the calculated coordinates of 

the target after registration with the actual coordinate measured by a device [60]. 

Usually, registration between two coordinate systems is calculated by finding the 

transformation which minimizes the sum of squared residuals of the sample data set, i.e., 

fiducials. Because registration is the overall best fit for all the fiducials, and target points 

are different from fiducial points, target registration error (TRE) can differ from fiducial 

registration error (FRE), and the distribution of TREs within the surgical space might be 

different from point to point. Moreover, the placement of fiducial points has a great 

influence on error minimization for paired-point registration. The centroid of the fiducial 

points should be as near as possible to the target point and also arrangement for these 

points should avoid being near-collinear [63]. Additionally, the type of fiducials, 

including anatomical landmark, skin fiducial, bone fiducial and other external frames, 

also affects the final registration accuracy [59]. Anatomical landmarks are stable but very 

difficult to identify, thus would lead to a rather inaccurate result (3.1-10.5 mm as 

reported by Mascott et al. [64]). The accuracy from skin fiducials are better than 

anatomical landmarks, however, it still does not meet the sub-millimeter requirement [64-

66]. Bone fiducials have been proved to have high accuracy (possibly sub-millimeter 

accuracy) and represent the current gold standard [59]. The only problem with bone 

fiducials is its invasive feature. Instead of being placed directly onto the patient, the 

fiducials could also be integrated with an external frame, which is worn by the patient. 

Such a frame is noninvasive while providing similar registration accuracy to the invasive 
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bone fiducials [67-68]. It also allows the usage of larger fiducials, which are not possible 

if internal fiducials are used in a craniomaxillofacial surgery. However, as mentioned 

earlier, the locating pattern of fiducials in the frame could affect the registration accuracy. 

Another important concept in computer-aided or robot-assisted surgical system is 

calibration. Different from its meaning as in "instrument calibration", the concept of 

calibration here is closer to "offset calibration". In a system with a localizer or a robot, 

the points of interest usually are not accessed by the end-effecter of the localizer or robot 

directly. Instead, a probe or other device is attached to the localizer or robot to provide 

direct contact to those points. In this case, the offset between the tip of the probe and the 

end-effecter of the localizer or robot must be calculated. "Calibration" usually refers to 

procedures like this in computer-aided or robot-assisted surgical application. 

Both calibration and registration are used to determine the geometrical relationship 

between different entities in a system. However, calibration is for frames connecting to 

the same object rigidly; while registration is for independent coordinate systems [69]. In 

other words, calibration is the procedure to determine fixed offsets between different 

components in the same coordinate system, and registration is the process to link the 

coordinates of the same object between different coordinate systems. The former is a 

static procedure, while die latter is a dynamic one. 
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2-3 Robotic surgery and its safety consideration 

Robots were introduced into the surgical area in the 1980s. Now, a large amount of 

robot-assisted surgery systems are developed by researchers and their applications cover 

the medical areas of orthopedic surgery, neurosurgery, gynecologic surgery, 

cardiothoracic surgery, urology etc. [70]. According to one report, the market for medical 

robotics and computer-assisted surgery (MRCAS) devices and equipments worldwide is 

expected to be $5.7 billion by 2011, with an average annual growth rate of 34.7% [71]. 

Robot-assisted surgery can be expected to keep sustainable development because of the 

unique advantages of robots, including flexibility, stability, rapid response capability, and 

so on [72]. 

For robot-assisted surgery, two types of robots exist: "positive" and "active" robots. 

The positive type robots are used to enhance the visualization and dexterity of surgeons. 

Because of the complexity of the surgical environment and the diversity of patients' 

situations, robot-assisted surgeries are usually solutions with human-integrated control, 

such as in "tele-operation" (remote control mode) or "hands-on" (cooperative control 

mode). The former composes a tele-operated system, in which the surgeon manipulates 

the robot from a remote location using data sensed by the robot. In cooperative control 

mode, the surgeon and the robot both hold the surgical tool, which provides both 

precision and sensitivity of a machine, and the manipulative transparency and immediacy 

of hand-held tools. [73] They are typically used during minimally invasive procedures. 

The da Vinci System from Intuitive Surgical Inc. is the only commercially available and 

FDA approved tele-operated system. Active type robots execute a predefined plan, thus 
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combine preoperative medical imaging with the accuracy of the robot to achieve optimal 

intraoperative positioning. Navigation of the robot is required and is accomplished using 

images and virtual models of the target object or organ that is registered with the actual 

patient allowing complex surgeries to be performed safer and faster. 

Because robots can only follow pre-programmed commands and cannot react 

autonomously when unexpected situations happen, certain measures must be taken to 

guarantee the safety of a robot-assisted surgical application. Due to the limited space and 

delicate nature of the mouth cavity, one important way for safety consideration is motion 

constraints which restrict a robot's motion in the dental implantation. Traditionally, drill 

guides are used to serve as physical fixtures for surgeons' drills (Fig. 4). 

Fig. 4. Drill guide acts as a physical fixture 

Another way to introduce motion constraints for the surgery is the implementation of a 

"Virtual Fixture (VF)". The concept of virtual fixture was first introduced by Rosenberg, 

in 1993. It was defined as "an overlay of abstract sensory information on a workspace in 

order to improve the telepresence in a telemanipulation task". [74] There are two 

categories of virtual fixtures (VFs): guidance virtual fixture and forbidden-region virtual 
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fixture. The former guides the robot to move along desired paths or surfaces, and the 

latter prevents the robot from entering into forbidden areas of the workspace [75]. 

Different technologies for virtual fixtures and their applications in different surgical areas 

have been discussed in many research papers. A few of these are discussed below. 

Robot-assisted craniofacial surgery is a major application area in which virtual fixtures 

are applied. In the work presented by Matinfar, et al. [76], three types of regions were 

defined for virtual fixture purposes: safe zone, boundary zone, and forbidden region. The 

virtual fixture implanted in the paper used linear constraints. Phantom experiments 

indicated that penetration of die forbidden region was up to 0.7 mm. As the authors 

stated, a better virtual fixture strategy may be required, such as the one presented by 

AnkurKappor, et al. [77] 

Taylor's group in Johns Hopkins University did intensive research on virtual fixtures. 

They presented a method to customize VFs by combining several task primitives, for 

example, stay on a point, maintain a direction, etc. A constraint optimization problem 

was formulated for each task primitive, where potential-collision boundary constraints, 

task behaviors and joint limits served as constraint conditions [78]. The constraint 

optimization problem can be implemented with both linear and nonlinear constraints [77]. 

In addition, they introduced a "soft" virtual fixture mechanism to allow some freedom for 

a robotic tool inside safe areas. 

One of the most challenging problems with VFs is how to regenerate a new motion 

trajectory once the violation of virtual fixture occurs. With human-integrated control, this 

problem can be easily solved since the human can decide which way to go himself. It 
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ensures safety in the intra-operative site; however, the possibility of automated surgery is 

eliminated. For all the research mentioned above, VFs were implemented in robot-

assisted procedures during which humans act as part of the control. Besides, generating 

VFs utilizing constraint optimization requires the knowledge of robot's forward kinemics 

and also feedbacks from the robot, which is difficult to achieve in the dental implantation 

system. In order to explore the possibility of automated implantology without a surgeon's 

manual guidance, methods for virtual fixtures need to be adapted and tested in our 

system. 

2-4 Robotic volume machining 

Due to the small size scale and relative delicate complex structure of the natural roots, 

milling for natural-root-formed implants inside the mouth manually by a surgeon is not 

feasible. On the contrary, it can be easily achieved by a robot, which normally has an 

accuracy of sub-millimeter order of magnitude. 

There are many commercial computer-aided machining (CAM) solutions for 

machining tool path generation. Also, several dental CAM systems are available 

especially for manufacture in dentistry. For example, DentMILL by Delcam [79], 

inciseTM dental milling system by Renishaw [80], etc. These systems usually are 

designed for machining of dental products in vitro, although algorithms used in these 

systems for transferring designed 3-D volumes into machining tool path generation might 

be the same as what is needed by inside the mouth milling. However, the expensive 

prices of these solutions act as an impediment. 
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Small amounts of open source CAM are also available through the internet, for 

example, through www.sourceforge.net. Unfortunately, after downloading and testing, 

none was found practicable for our application. Besides, some commercial CAM 

software provide free versions for demonstration or advertisement purpose. However, 

these versions are usually less capable and some crucial functions are cut off. 

Another possible way of CAM is generating the machining scheme according to 

algorithms presented in publications. There are two main categories for the machining 

design: direct tool-path generation from a 3-D model, and planning based on volume 

decomposition. For the 3-D milling process, cutter contact (CC) points and corresponding 

tool orientations are generated according to geometric features of the volume, in direct 

tool-path generation. If planning is done using a volume decomposition method, the 

volume of material to be removed, so called Delta Volume, is divided into several sub-

volumes and removed according to the natural sequences of machining [81]. One can tell 

from the above definition that direct tool-path generation focuses mostly on the surfaces 

of Delta Volume, while volume-decomposition considers features of the whole volume. 

http://www.sourceforge.net
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CHAPTER 3 

RELATED WORK 

Researchers from Shanghai Jiao Tong University in China proposed an image-guided 

oral implantology system (IGOIS) and applied it in the placement of zygoma implants 

[62-82]. The IGOIS included 3D models reconstruction, preoperative planning, 

registration, and intra-operative motion tracking. Two software developed by the authors' 

institute were used in the system for CT images processing, 3D models reconstruction 

and preoperative planning. Also, a Polaris optical tracking device was used for real-time 

motion tracking. 

Fig. 5 gives the framework of the IGOIS presented in their paper. There were five 

main components in the framework: 

1. image processing for preoperative CT images; 

2. reconstruction of 3D models from the processed CT data; 

3. preoperative planning based on the 2D images and the 3D models; 

4. registration of fiducial markers between Virtual Coordinate System and Real 

Coordinate System; 

5. real-time navigation for the surgery. 
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Fig. 5. Framework of IGIOS [62] 

It is obvious that the frameworks of their system and the one used in this dissertation 

are very similar. Preoperative planning based on medical images, and intra-operative 

navigation using optical tracking and image-guided technology, are the two features of 

their work. 
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The major difference between this system and theirs lies in the application of robot. In 

their system, there was no robot employed and surgical operations are still executed by a 

surgeon. It means that only computer-aided techniques were used in their application but 

not robot-assisted techniques. Besides, in their system, intra-operative position and 

orientation of the surgical tool is recorded by an optical tracking device; while in this 

system, because the implementation of robot, this information can be reported by the 

robot itself, which makes an additional tracking device not necessary. However, for 

registration purposes, a Coordinate Measurement Machine (CMM) was employed in this 

system to perform the job of coordinate measurement, which is performed in charge by 

the optical tracking device in their IGOIS. The major reason to not choose the optical 

tracking or electro-magnetic tracking devices as applied in many image-guided systems is 

that there is no real-time tracking (navigation) required as in this system design. 

Therefore, CMM, as a more stable and accurate device, fits the need better. Navigation 

utilizing optical tracking can be obstructed by objects along the light path, and electro

magnetic tracking might be influenced by the surrounding metal elements (the robot is 

obvious in the case of this system). 

An image-guided robotic system was developed in Taiwan to help with surgical 

positioning and drilling [83], which has the most closest system design as the one in this 

dissertation. Their system utilized an ultrasound machine to capture the images of the 

brain area with tumors. Surgical paths were planned preoperatively using a GUI with 

patient's images. After the registration procedure to find the optimum transformation 

matrix among coordinate systems, surgical paths were transformed to the frame of a six-

axis robot. The system overview is shown in Fig. 6. 
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Fig. 6. SPANS robotic system [83] 

This system shares the same goal as the one used in this dissertation, which is an 

automated robotic system. To this end, a six-axis robot was utilized in both systems. 

However, the job complexity of the robot is different in the two systems. In their system, 

only the positioning and simple drilling was carried out by the robot; but in this system, a 

complicated milling operation for the natural-root shapes is required, which necessitates 

much effort on the robot controlling strategy. 

Similar to the system from Shanghai Jiao Tong University, the device for registration 

is another major difference between the two systems. An optical localizer was 

incorporated in their system to record the coordinates for registration. As explained 

earlier, while navigation is not required for this system, the optical localizer might cause 

unnecessary trouble because of any object along the light path. 
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CHAPTER 4 

NOVEL IMPLANTS DESIGN 

According to the research of Choi, et al., die optimum shapes of an implant are in 

some sense similar to those of the natural human tooth roots [IS]. Shi, et al. in a finite 

element method (FEM) study of dental implants found a corresponding result that natural 

root shapes evolved under optimal load distribution given certain values of bone bearing 

stress [16]. However, the authors dismissed the double-root designs because they are 

"difficult to manufacture" and site-preparation would be manually impossible. The 

majority of dental implants in use clinically are single cylinder-shaped ones, which cause 

instability especially for the tooth replacement of multi-root cases such as molars. An 

attempt was actually made by placing two single screw-type implants instead of a single 

implant in a large molar case [35]. Although it was a "more functional and 

biomechanically sound method of molar replacement" as the authors stated, both surgical 

complexity and cost were increased. 

What we are trying to achieve is a complete set of natural-root-formed implant designs 

to mimic the features that natural roots offer. It should include implants with one-, two-, 

and possibly three-root types and each should offer different sizes. These implants should 

be generated based on the natural root shapes of human teeth, but with the following 

optimizing efforts: 

1) Humans usually have 32 permanent teeth, which can be notated according to the 

"Universal numbering system" [84] as illustrated in Fig. 7. Human teeth are 
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classified as incisors, canines, premolars, and molars, according to their functional 

and geometric differences. There are teeth with one-, two-, and three-root shapes in a 

mouth; further, the shapes of the natural roots for each person could be different. 

Therefore, extractions of the generalized shapes are necessary. 

Fig. 7. Numbering and types of human teeth [85] 

2) The natural-root-formed implant is much more complex than the currently used 

cylinder-shape implant in geometry, which is the major reason why previous 

researchers had to give up such ideas because of its manufacture and placement 

problem. Robotic-based placement will allow precise site-preparation of the natural-

root-formed that is not manually possible. However, under-cuts are not suitable for 

the robotic milling due to the facts of the small scale and limited space available 

intra-orally; therefore we would want to optimize/simplify the shapes of natural roots. 
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4-1 FEM simulation 

As described earlier, Shi, et al. in a FEM study of dental implants revealed that 

optimal designs for implant load distributions followed closely a natural root form [16]. 

FEM simulation was also run by Yongki Yoon from the Department of Mechanical and 

Aerospace Engineering of Old Dominion University to check the stress distribution for 

the natural-root-formed implants. Geometric models of the root-form extracted from a 3D 

human skeleton model were used in the FEM study. Fig. 8 gives the comparison of stress 

distribution between a natural-root-formed implant with two roots and a common 

cylinder-shape implant. It is easy to tell that the natural-root-formed has better 

mechanical characteristics at every feature point. 

Fig. 8. Stress distribution comparison of a two-root implant with a cylindrical implant 

using FEM [86] 
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4-2 Standardized set of novel implants 

Generalization and refinement based on natural-root shapes 

Our standardized set of natural-root-formed implants were designed based on the 3D 

shape of human teeth. As described earlier, we need to generalize as well as refine the 

natural root shapes. In order to do so, firstly, the characteristics of human teeth were 

analyzed in an attempt to extract some common features, for each group that has a 

different number of roots. Because human teeth are symmetrical between the left and 

right side areas, only the 16 teeth from the right side of a mouth were explored. The 3D 

models of human teeth were extracted from an anatomical correct digital female skeleton 

(Fig. 9). 

There was a totally 9 teeth that have single root, i.e., tooth #4, 6, 7, 8, 25, 26, 27, 28, 

29 as identified in Fig. 9. There are differences among shapes of different teeth although 

they all have only one single root. Particularly, (1) the contour defined in the top view, 

(2) the ratio of its height (along Z-axis), width (along X-axis) and length (along Y-axis), 

and (3) the curvature of its tip at the bottom are the three major characteristics which 

identify one teeth from the others. 
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Fig. 9. Extracting teeth from a female skeleton model: (a) female skeleton; (b) teeth 
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TABLEI 

CHARACTERISTICS FOR HUMAN TEETH WITH SINGLE ROOT 

Dimensions 
Teeth# 

Normalized 
ratio Shape of top 

view 
Curvature of the 

tip 
X y z X y 

4 3.952 6.952 9.070 1.759 l rectangular smooth curved 

6 5.192 6.730 16.788 1.296 l rectangular obvious hook 

7 4.022 5.268 14.284 1.310 l oval tiny hook 

8 5.143 6.564 15.466 1.276 I egg-shape none 

25 3.250 5.406 12.289 1.663 l egg-shape tiny hook 

26 3.350 5.287 12.486 1.578 l egg-shape tiny hook 

27 4.026 6.234 15.396 1.548 l egg-shape tiny hook 

28 4.186 6.347 12.595 1.516 l oval tiny hook 

29 3.985 6.161 12.365 1.546 I rectangular smooth curved 

TABLE gives the parameters for each tooth with one root. Among these teeth, the 

root shape of tooth #29 was chosen as the initial template for the natural-root implant 

with single root. 

For the two-root case, 4 teeth fall into this category. Because the root form of tooth 

#30 has the smoothest curvature and least under-cuts, to facilitate the milling operation of 

the robot, it was chosen as the initial template for the double-root form implant. 

After picking the templates for natural-root-formed implants, shape refinement was 

required for the design. Although robotic operation allows site-preparation of the 
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complex shapes of natural-root-formed implants that is not manually possible, there is a 

need for simplification of the natural-root shapes to make automated robotic milling of 

the implant site a possibility due to the facts of the small scale and limited space available 

intra-orally. The biggest issues for natural-root-shape milling are the existence of sharp 

curvatures and undercuts. Therefore, two strategies were applied in Autodesk 3ds Max to 

get the refined shapes of the implants. 

1) Curvature smoothing. The root of a natural tooth has the tendency of curving at its 

apex. While it might provide for better anchoring for the teeth, it requires frequent 

direction changes of the milling tool, which may cause heating and obstructions during 

the operation thus leading to the failure of the site-preparation. The curvature was 

smoothed by creating a segmented system (bones) for each root along its central line 

and then were adjusted the orientations of the segments/bones to make their 

connections smoother. Fig. 10 shows the bones created for the single-root template in 

3ds Max. Three bones were generated according to the curvature of the original model. 

The conjunction between two adjacent bones lies in wherever a big curvature change 

occurs. The joint angle between two adjacent bones was rotated (Fig. 10 b), so that the 

curvature became less sharp. The original model and the modified model after 

applying curvature smoothing are as shown in (c) and (d) of Fig. 10, respectively. The 

difference is easy to tell from the left view. Similarly, curvature soothing was also 

applied to the template for the double-root template, and the before and after 

comparison is provided in Fig. 11. 
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Fig. 10. Curvature smoothing by creating bones in the single-root template, (a) bones 

created in the original model; (b) change of curvature by rotating joint angle of the 

bones;(c) original model; (d) modified model after curvature smoothing 



Fig. 11. Curvature smoothing for double-root template, (a) original model; (b) modified 

model after curvature smoothing 

2) Undercuts removal. When checking the surface of the roots carefully after the 

curvature smoothing, there were still some under-cuts in the models. Because the 

intra-oral operation space is so small that no under-cut could be manufactured in the 

jawbone. All obvious under-cuts were removed manually by dragging the vertices 

outward with soft selection. Fig. 12 illustrates the under-cuts removal with soft 

selection, with which adjacent vertices can be translated smoothly together with the 

center vertices selected. Fig. 13 compares the modified model with the original model 

for both single-root and double-root cases, where the original models are shown in 
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grey and the modified ones are shown in yellow. One can tell that the modified models 

are smoother for the curvature as well as for the boundaries. 

Fig. 12. Remove under-cuts with soft selection 

Fig. 13. Comparison of the original (left side) and the modified (right side) natural-root 

implants, (a) single-root implant; (b) double-root implant. 
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Soft-Kill Option(SKO) optimization 

The shapes of both single- and double-root implants after the generalization and 

refinement procedure as described in the above section were then sent to a further stage 

for topology optimization. This was done by applying one of the topology optimization 

techniques introduced by Mattheck, et.al., called the Soft-Kill Option (SKO) method 

[87]. This method mimics the biological way bones remodel to find the optimum 

structure, where the distribution of Young's modulus adapts to the actual load applied 

over time. The patterns in Fig. 14 reflect the regions of higher stress where stronger 

materials are needed, such as implant material (titanium). As illustrated, SKO results 

suggested that the natural-root shapes should have a more rounded and balanced shape at 

the bottom. Implementation of this SKO method was done by Yongki Yoon. 

(a) c«f =2.0MPa, F=200N (b) =3.0MPa, F=200N (c) =4.0MPa, F=200N 

(a) oref=1.65MPa, F=200N (b) oref=1.8MPa, F=200N (c) oref =2.2MPa, F=200N 

Fig. 14. Optimized material property of natural-root shapes with single-root (a, b, c) 

and double-root (d, e, f) [88] 
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Based on SKO results shown in Fig. 14, the modified models as shown in Fig. 13 

were further polished by expanding the contour manually with soft selection, to get the 

optimized shapes for single- and double-root implants. Fig. 15 illustrates the difference 

between the models before (meshes in white) and after (meshes in blue) this procedure. It 

is obvious that the models after the bottom rounding have expanded bottom shapes as 

desired. Normal smoothing was applied to these models in MeshLab to get the final 

optimized models for the single- and double-root implants. 

Additionally, three different scales were applied to each shape to create a complete set 

of implants with small-, medium-, and large-size in order to fit to different patients' 

somatotypes as well as different intra-oral sites for the implantation. The optimized 

model of the single- and double-root implant has a length of 11.8 mm and 10.7 mm, 

respectively. Dimensions of human teeth from the book "Dental morphology: an 

illustrated guide" by Geoffrey C. Downer [89] are listed in Table II. According to this 

data, the average length of the root portion of teeth with single-root and double-root can 

be calculated as 14.2 mm (N=9) and 12.3 mm (N=3), respectively. Therefore, the current 

models were considered as the small-sized templates and were scaled to match their 

average length as the medium-sized templates. It was assumed that if the small one is x% 

smaller than the average, then large one should be x% larger than the average. The 

calculated lengths for implants with different size are also listed in Table II. The 

complete set of the standardized natural-root-formed implants with single- and double-

root is shown in Fig. 16. 
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Fig. 15. Final models of the optimized natural-root implants with a rounded bottom. 

Refined shape: meshes shown in lighter color; Final optimized shape: meshes shown in 

darker color, (a) single-root implant; (b) double-root implant 
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TABLE II 

LENGTH OF ROOT PORTION OF HUMAN TEETH AND NATURAL-ROOT IMPLANTS 

Number 
of root Tooth Length of 

root (mm) small 

Length of implant (mm) 

medium 
(average) large 

Maxillary Central Incisor 13.0 

Maxillary Lateral Incisor 13.0 

Maxillary Canine 17.0 

Maxillary Second Premolar 14.0 

Mandibular Central Incisor 12.5 

Mandibular Lateral Incisor 14.0 

Mandibular Canine 15.5 

Mandibular First Premolar 14.0 

Mandibular Second Premolar 14.5 

Mandibular First Molar 14.0 

Mandibular Second Molar 12.0 

Mandibular Third Molar 11.0 

11.84 

(16.6% 
smaller 

than 
average) 

10.72 

(12.9% 
smaller 

than 
jiverage^ 

14.2 

12.3 

16.56 

(16.6% 
larger than 
average) 

13.88 

(12.9% 
smaller 

than 
average) 
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t\ t 

Fig. 16. Complete set of standardized natural-root-formed implants with single- and 

double-root. Models of implants with single-root (a) and double-root (b) in different size 

in 3ds Max; (c) printed out models of small-sized implants 
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4-3 FEM verification 

The final standardized natural-root implants with single- and double-root were again 

analyzed using FEM to check the deviation of their stress distribution under certain 

loading when compared to the original natural-root shapes. TABLE III indicates that the 

maximum stress levels are considerably decreased after refinement and optimization 

procedure as described earlier, comparing with the original natural-root shapes. These 

results prove that the optimized implants not only resolve the potential problem for the 

robot milling, but also improve the structural performance under certain loading 

conditions therefore may provide better stability in the patient's mouth. This FEM 

verification was also done by Yongki Yoon [88]. 

TABLE III 

COMPARISON OF STRESS LEVEL IN DIFFERENT MODELS [88] 

Max. 

One-root 

Max. 

Two-root 

Original 
model 
(MPa) 

6.38 

3.64 

Refined 
model (MPa) 

6.26 

2.45 

Value 
(MPa) 

5.03 

2.22 

Optimized model 

% Change % Change 
from original from refined 

model model 

21.16 

39.01 

19.65 

9.39 
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CHAPTER 5 

SYSTEM ARCHITECTURE 

The architecture of our image-guided robotic dental implantation system for the 

natural-root-formed implants as defined in Chapter 4 is shown in Fig. 17. The whole 

system is composed with preoperative and intra-operative phases. During the 

preoperative stage, cone-beam computed tomography (CBCT) images of the patient are 

taken. Patient specific 3D models are reconstructed from the images and a preoperative 

surgical plan is generated accordingly, utilizing a planning software which is specially 

developed for this system. A coordinate measurement machine (CMM) is introduced into 

our system to register between the coordinate system in the planning software and the 

operation site, thereby transforming the preoperative plan into the operation of the robot. 

Therefore, the preoperative surgical plan can be accomplished automatically by the robot 

in the intra-operative stage. 

There are four major components in our system: 

a) preoperative planning 

b) milling sequence generation 

c) registration 

d) intra-operative operation 
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preoperative intra-operitive 

Registration 

Intra-operat i  ve1y 
robotic site-

Preoperatively 
imaging 

Patient / Phantom 

Fig. 17. System architecture 

Preoperative planning is completed utilizing a specially developed software. Two 

jobs are done with this software: the first one is the surgical plan generation which is 

done by a surgeon according to the patient specific 3D model reconstructed from the 

CBCT images of the patient's jaw area. The software allows the surgeon to choose a 

certain type of implant and virtually inserts it into the jaw model thus observing the 

insertion result in real time. The implant type and size, along with its position and 

orientation, all of the surgeon's choosing, are exported into .txt files. The other job of the 

software is to record the coordinates of several fiducials in the virtual coordinate system 

(the coordinate system of the software). Those fiducials are attached on the patient's 

jawbone when the CBCT imaging is taken. After the reconstruction and segmentation 
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procedure, the positions of the fiducials need to be identified by the user of the planning 

software (either by the surgeon or another staff who does not necessarily need to be 

clinically educated). The coordinate of each fiducial will be recorded and saved in a .txt 

file as well. Fig. 18 gives the flowchart for the preoperative planning part. 

Fig. 18. Flowchart for preoperative planning 

Fig. 19. Flowchart for volume decomposition 

Milling sequence generation based on volume decomposition decomposes the shape 

of a certain implant into the combination of several sub-volumes, any of which is one of 

pre-set primary shapes (cylinder, cone, points-sequence, etc.). As in our design, there will 

be a complete set of implants with different shapes and sizes, to meet the desire of 

different tooth replacement types and locations. Any one single implant corresponds to a 
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certain sequence of primary shapes and point sets. The robot sub-functions in MELFA for 

each pre-set primary shape removal were implemented by Yongki Yoon [86]. Therefore, 

the site-preparation of any implant can be completed by calling a sequence of MELFA 

sub-functions. The flowchart of this part is as shown below. 

Fig. 20. Flowchart for registration 

Fig. 21. Flowchart for intra-operative operation 
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Registration is the procedure which aims to transform the preoperative plan to the 

intra-operative operation of the robot. The target of this procedure is a transformation 

matrix which aligns the spatial relation between the virtual coordinate system 

(preoperative plan) and the operation coordinate system (intra-operative operation), i.e., 

Tv20 in Fig. 20. The coordinates in the Operation CS (OCS) need to be recorded by 

commanding the robot to move to the target position. In order to avoid any potential 

danger to the patient, we introduced a so called "reference coordinate system (RCS)" into 

our application. A novel two-step registration method was developed to get Tv2o with the 

help of RCS, as seen in Fig. 20. The Virtual CS (VCS) and the Reference CS (RCS) are 

registered with the fiducials attached on the patient's jaw, and RCS and OCS are 

registered utilizing another set of points which are not on the patient. 

The intra-operative operation for the implantation is automatically performed by the 

robot, which is controlled by running a MELFA program. The site-preparation for a 

certain implant is determined by two factors (Fig. 21): (1) the type and size of the 

implant and, (2) the position and orientation for the insertion of this implant. The first one 

corresponds to a pre-defined MELFA sub-routine. The second one is determined by the 

target coordinate in the operation (robot) coordinate system, which can be calculated 

from the target coordinate in VCS and the transformation matrix gotten from the 

registration procedure. This target coordinate is passed into the main function for robot 

control as an input parameter, along with the MELFA sub-routine. In this manner, the 

robot can be commanded to finish the procedure as designed. 
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5-1 System operative flow 

The whole procedure requires two time points: the first time for preoperative imaging 

and the second time for system registration and the surgery. The first date should be 

several days prior to the surgical date. 

At the first time point, a small procedure will be taken to attach several fiducials in tiny 

half spheres to the patient's troth/jawbone using dental glue or screw. With the fiducials 

fixed, the patient will be set in a specially designed dental chair with which a device will 

be used to restrict the movement of his head and most importantly, fix the position of his 

jawbone. Then, preoperative images will be taken by dental cone-beam computed 

tomography (CBCT). After taking CBCT images, the patient can leave but the fiducials 

need to stay in his mouth until the second visit. 

Before the second time point, a surgical plan will be generated according to the patient's 

CBCT images, which defines the preferred implant type and size, and designated target 

position and orientation. In addition, the coordinate of each fiducial in the virtual 

coordinate system is recorded for later registration. A calibration block with some fixed 

registration points is utilized to determine the relative spatial relationship between the 

reference coordinate system and the operation coordinate system. Coordinates of these 

points in both the reference CS and the operation CS are recorded and a registration 

program is run to get the transformation matrix between these two coordinate systems. 

On the scheduled surgical date (second time point), the patient will go back to the dental 

office and also be fixed as in the first time visit. After the fixation, the coordinates of 
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fiducials in the CMM is recorded by touching the apex of the half-sphere of each fiducial. 

A registration will be done along with the information recorded earlier, which is the 

coordinates of fiducials in VCS, to setup the transformation between VCS and RCS. 

Therefore, the preoperatively designated targets can be transformed into parameters in the 

operation CS. Finally, the MELFA functions for the surgery with these parameters will 

be generated accordingly and the robot conducts the site-preparation automately. 

5-2 Hardware architecture 

The main hardware utilized in our system include a CBCT machine, a CMM, a robot 

and its controller, a dental drill-bit and its motor piece, a computer, and also some 

specially designed tools. Fig. 22 indicates the hardware architecture in our system. 

The CBCT attains the patient's information preoperatively, and provides the basis for 

the Virtual CS. Although it is one of the most expensive hardware components in the 

system, it is also a commonly used equipment in the dental office. The CMM introduced 

in our system as a Reference CS is a Gold Arm from FARO Technologies Inc. It has a 

certified 2 sigma single point accuracy of ±0.051 mm, thus providing very high accuracy 

for measuring coordinates. The robot is the most important component in our system, 

which is the object of the Operation CS. It is a commercial robot from Mitsubishi 

(MELFA RV-3S, Mitsubishi), which has 6 DOF and with a position repeatability of 

±0.02 mm. It comes with a controller (CR1B-571) utilizing MELFA-BASIC IV 

language. The controller runs programs which are created either from a computer or 
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through a teaching pendant. A dental drill-bit with a diameter of 2 mm is attached to a 

dental hand piece from Aseptico (Woodinville, WA, USA), which comes with a high 

performance motor. With this hand piece rigidly connected to its end-effector, the robot 

functions as a high accuracy milling machine. It is commanded to complete the site-

preparation for the implantation automatically, when appropriate parameters are given. 

Several small fiducials are generated for registering the coordinates between the 

CBCT images and the CMM. Each fiducial is designed as a small semi-sphere with a 

radius of 1 mm and is manufactured using dental-friendly material, which can be fixed 

onto the patient's teeth or jaw easily with the help of dental glue or screw. A set of points 

for registration between the CMM and the robot are defined on a registration block. It is 

actually a piece of dental guard, thus having the natural curvature of human jawbone. 

Another hardware component needed in our system is a head/jaw fixation device, 

which makes sure the position of the patient's jaw is unmoved during the registration and 

the site-preparation procedure. The design of this fixation device is still under discussion. 

In order for our system to be clinically applicable, such designs will be explored to find 

the most feasible option. 

One more important hardware in our system is a PC. It runs the preoperative planning, 

records and finishes registration, and also controls the operation of the robot. The PC for 

system testing in this dissertation is a DELL Precision 690 with 2.33GHz CPU and 4GB 

RAM. The CMCT images are transmitted to the PC through the internet and the 

connection from the PC to the CMM and the robot are both through RS232. 



Registration block with FRPs 

Drill-bit motor 

Fiducials 

Fig. 22. Hardware in our system 
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Fig. 23. Software Architecture in our system 
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5-3 Software architecture 

For each phase defined earlier in this chapter, software is developed to accomplish the 

task. An executable implemented in OpenGL and FLTK visualizes the patient-specific 

3D model and provides the user (the surgeon) a graphic interface to develop an 

appropriate surgical plan. The implant type and the site-preparation parameters are 

exported through the I/O module of this planning application into two separate files, 

which will be passed to the executable for volume decomposition and registration. The 

milling sequence generation application is implemented using Matlab. It decomposes the 

shape of a given type of implant into the combination of some pre-defined primary sub-

volumes. The detailed algorithm for this application will be given later in this 

dissertation. The decomposition result generated from this application is passed on to the 

robot site-preparation executable through an IPC program. The registration application is 

also implemented in Matlab. A novel two-step registration strategy is applied to register 

the three coordinate systems as defined in Fig. 20. With the target positioning 

information passed from the planning application, the registration application calculates 

the target coordinates in the robot coordinate system accordingly and shares this 

information with the robot site-preparation executable. The robot site-preparation 

executable is the software that controls the operation of the robot during the intra

operative stage. Several robot sub-function files were implemented using a Mitsubishi 

Electric Factory Automation (MELFA) script, each of which corresponds to the robot 

operation of removing a certain shape of volume, but with default spatial parameters. The 

main program of the robot application calls the sub-routine (a combination of sub-

functions) needed according to the implant type and inputs the target coordinates to the 
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sub-routine, thus the robot is commanded to complete the site-preparation at the 

designated position and orientation. Fig. 23 illustrates the architecture of these four 

executables in our system. 
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CHAPTER 6 

IMAGE-GUIDED ROBOTIC DENTAL IMPLANTATION 

The detailed description of each component of our system is given in this chapter, 

including preoperative planning software, registration & calibration, robotic milling for 

natural-root-formed implants, and virtual fixtures. 

6-1 Preoperative planning software 

Software for preoperative planning of the implantation procedure was implemented 

especially to support our novel implants. With this software, the user, generates a surgical 

plan for each patient and coordinates information is also recorded from this software for 

later registration. 

Segmentation and model reconstruction 

The patient specific 3D model is reconstructed from CBCT images of the patient, 

which are taken during his first time point as defined in 5-1. Fig. 24 illustrates an 

example of the procedure of segmentation and model reconstruction utilizing 

commercially available software, Analyze 8.1 (AnalyzeDirect, Inc, USA). The part of the 

patient's jaw is segmented from each image and reconstructed into a 3D model. If the 

implantation is going to be in the mandible (lower jaw), the inferior alveolar nerves are 

also segmented separately. Meanwhile, the fiducials attached to the patient during the 

CBCT imaging are identified and segmented as well. Therefore, three parts are 
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segmented: the jaw, the nerves and fiducials. Two models are going to be exported from 

Analyze 8.1 in .vrml format: one is the jaw model with the nerves segmented (as Fig. 24 

e), and the other is the combination of the jaw (Fig. 24 d) and fiducials. The two models 

exported from Analyze need to be converted to .3ds format before loaded into the 

planning software. Please note, there is no fiducial visible in the CBCT images below 

because no fiducials was attached to this patient when CBCT was taken. 

This segmentation was performed by Xu Han and Suchita Manandhar [26]. 

Fig. 24. Segmentation and model reconstruction from CBCT images in Analyze 8.1: (a) 

one layer of CBCT image, where the red arrows point are the nerves; (b) original parts 

loaded; (c) parts segmented using seeded region growing; (d) segmented mandible 

(lower jaw); (e) mandible with nerves segmented (the pink parts) 

(b) (c) 

(a) 
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Surgical planning 

The jaw model with nerves segmented is loaded into our preoperative software to 

generate a surgical plan for the implantation. A graphical user interface (GUI) is provided 

to visualize the 3D model, with the capabilities of scaling, rotation and translation (Fig. 

25 b), so the surgeon can examine the anatomical structure of the patient's jaw 

thoroughly to gain a general idea about the implant placement. As shown in Fig. 25 (c), 

once both the jaw model and the implant are loaded, the software provides the surgeon 

with the capability to interactively planning of the implant insertion into the jawbone. He 

can adjust the orientation of the implant by using the three sliders at the bottom-left 

corner to control its rotation along X-, Y- and Z-axis, respectively; and move the implant 

to the position where the mouse clicks with the "click to move" function at the lower-

right comer enabled. The result of the implant placement with current choices of 

orientation and position will be instantly visualized to the user. If it is not appropriate for 

any reason, for example, too close to the nerve or adjacent teeth, the surgeon may always 

adjust it as he wishes until a satisfying outcome is achieved. Besides, our system provides 

a standard set of implants as introduced in 4-2. The surgeon could also try a different type 

of implant in order to find the best match for the case. 



61 

(a) (b) (c) 

Fig. 25. Visualization of the surgical planning in the planning software, (a) menu for 

loading models; (b) patient specific jaw model with nerve segmented is loaded; (c) an 

implant (the pink one) is virtually inserted into the jawbone 

Once the surgeon satisfies with the virtual outcome of the implant placement, the 

results could be saved into a .txt file by clicking the "save result" button as shown in Fig. 

26 (a). The results include the id number of the implant among the standard set of 

natural-root-formed implants, and the current chosen coordinates of the entry point and 

apex point of the implant, which define both the position and orientation of the implant in 

the virtual coordinate system of the planning software simultaneously. Fig. 26 (b) gives 

an example of the result output, which will be sent to the robot site-preparation software 

later. 

This preoperative planning software was implemented using OpenGL and FLTK. 
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(a) (b) 

Fig. 26. Savingsurgicial planning result, (a) "save result" button in the planning 

software GUI; (b) saved result in a .txt file 

Registration predefinition 

Another function of the preoperative planning software is to get the coordinates 

information about the fiducials. As defined earlier, two models are exported after the 

segmentation and model reconstruction procedure, one of which is the jaw model with 

fiducials on it. In our software, a menu for loading this model is provided as seen below. 

Once the model is selected, the user is asked to input the number of fiducials in this 

model and the number of measures for each fiducial (Fig. 27 b). In Fig. 27 (c), a jaw 

model with five fiducials (the blue semi-spheres) is displayed. Here, the exact 

identification point for each fiducial is the apex of the semi-sphere. The coordinate of 

each fiducial is recorded by mouse clicking. The software allows rotation and scaling of 

the model (Fig. 27 d), so that a better view of the fiducial could be achieved and the 

coordinate of the fiducial can be recorded at different angles thus decreasing the 
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identification error caused by view distortion. For each fiducial, the number of measures 

as defined by the user will be recorded and their average is calculated as the final 

coordinate of the current fiducial. Note, for the registration predefinition function, the 

user of the software is not necessarily a surgeon. No clinical knowledge is a prerequisite 

here. 

(b) (c) (d) 

Fig. 27. Identifying fiducials and recording their coordinates in the preoperative 

planning software, (a) menu for loading the jaw model with fiducials; (b) input the 

parameters by the user; (c) jaw model with fiducials is loaded; (d) rotating and scaling 

for better fiducial coordinate identification 

6-2 Registration & calibration 

The preoperative planning software helps the surgeon to generate an ideal surgical 

plan for the implant placement, which is patient specific according to the anatomical 

structures of the patient's jaw. However, an ideal plan alone does not guarantee the 
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success of the surgery. The surgical plan must be exactly transferred to the placement 

operation, which requires registering the preoperative coordinate system to the intra

operative coordinate system. The former is the Virtual CS (VCS) of the planning 

software and the latter is the Operation CS (OCS) of the robot. A Coordinate 

Measurement Machine (CMM) was introduced into our system acting as a third 

coordinate system, called the Reference CS (RCS). RCS serves as a bridge to align VCS 

and OCS instead of registering them directly, avoiding unnecessary touching of the 

patient with the robot before actual implant preparation and thus ensuring the safety of 

the patient. 

Calibration 

The tool frame of OCS is not the end-effecter of the robot, but the dental drill-bit 

attached to it. Therefore, the coordinate of a target position in OCS is actually the relative 

position from the tip of the drill-bit to the origin of the robot coordinate system, denoted 

as Ptip. Because the dental drill-bit is attached to the robot's end-effecter rigidly, the 

coordinate of the drill-bit tip is a known constant in the coordinate system of the robot 

end-effecter. Let us denote it as vcai. Meanwhile, the rotation and position information of 

the end-effecter in the robot coordinate system (i.e. OCS) is known from the robot 

controller software, which can be recorded as Rrob and to*, respectively. R^b and tr0b 

together transfer a coordinate in the robot end-effecter CS to the corresponding 

coordinate in the robot CS (OCS). The spatial relationship of these variables in the 3D 

space is illustrated in Fig. 28. 
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A A: Origin of the OCS A A: Origin of the OCS 
B: Position of the robot end-effecter 
C: Position of the tip of the drill-bit 

Fig. 28. Illustration of calibration in OCS 

Accordingly, once the value of vector vcaj is known, PtjP, which is the coordinate we 

are interested in, can be expressed as in (3): 

The offset Vcai can be determined by applying a standard pivot calibration, which is 

explained as follows: 

The tool frame, in this case, the dental drill-bit attached to the robot is commanded to 

rotate while its tip keeps in an arbitrary position, called the pivot point (Fig. 29). For 

each posture while pivoting, we have Ptip = Rn>b(0 'Vcai + trob(/)> given that the parameters 

returned by the robot are Rn>b(0 and WO")- Therefore, we get the following set of 

equations, where N is the total number of postures the tool frame is set to. 

Ptip Rrob *Vcal + tfob (3) 
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rPtip — ^rob(l) " "cal ^rob(^) 

A Ptip = Rrob(2) " Vcal + trob(2) 

kPtip = Rrob(N) " vcal ^rob(N) 

Equation (4) may be written compactly in a matrix form: 

Ptip [RrobCl)] "Vcal" trob(l) 

Ptip = Rrob(2) 
• 

Vcal 
+ trob(2) 

-Ptip- •Rrob(N). Vcal. -trob(N). 

which may be summarized as: 

Ptip = ^' vcal "t" t (6) 

vcai can be solved from (6). Therefore, for any given posture of the robot, the 

coordinate of the tool frame in OCS is determined from the rotation and translation 

information of the robot, as defined by (3). However, this only creates a directional 

mapping from (Rrob, W,) to Ptip. For the tool frame (the dental drill-bit), apart from the 

position of its tip, its orientation is also an important parameter which needs to be 

determined for the surgical operation. A checkboard with a standard line distance of 1 cm 

was applied to help to determine the rotation matrix between the tool frame and the end-

effecter of the robot. The end-effecter of the robot was commanded to be vertically down, 

and the relative angles between the drill-bit and each axis in the Cartesian coordinate 

system of the robot was determined manually (Fig. 30). Because the orientation of the 

tool frame is fixed in the robot's end-effecter CS, which means the orientations of the 

tool frame and the robot have a one-to-one mapping; thus, with a desired orientation of 
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the tool frame, there is only one single rotation matrix Rrob. In this case, the relationship 

between (Rrob, WO and the position and orientation of the tool frame is established. 

Fig. 29. Pivot calibration for the robot tool frame 

Fig. 30. Orientation calibration for the robot tool frame [86] 
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Fig. 31. Calibration in the reference coordinate system 

Similarly, calibration is required in the reference coordinate system, which is a CMM 

(Gold Arm) from FARO Technologies Inc. A point probe (from Faro) was attached to the 

CMM to accurately measure the objects' coordinates. A sphere method using a 1" 

Calibration Sphere (from Faro) with FARO CAM2 Measure software was conducted to 

calibrate the probe (Fig. 31). 27 points on the 1" calibration sphere were taken according 

to the instructions of the software, and a calibration error of 0.1290 mm was achieved. 

Registration 

In our system, three different coordinate systems are involved: the Virtual CS (VCS), 

the Reference CS (RCS), and the Operation CS (OCS). As mentioned earlier, the aim of 

registration is to transfer the preoperative surgical plan in VCS to the intra-operative 

robotic operation in OCS, which is fulfilled with the help of the CMM in RCS. Let tv, tR, 

and to be the coordinates of the target position in the virtual, reference and operation CS, 
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respectively; TV2R and Tr2o be the transformation matrix transforming coordinates from 

VCS to RCS and from RCS to OCS, respectively. We have: 

to = Tn2o(tR) = Titto(Tv2R(tv)) (7) 

which can be rewritten as: 

to = Tmo(Tv2R(tv)) = T(tv) (8) 

where T =TR2O*TV2R, and it is the transformation matrix that transforms coordinates from 

VCS to OCS, i.e., from the preoperative plan to the intra-operative surgical operation. 

The above equations indicate a two-step registration procedure composed of the 

registration between VCS and RCS, and the registration between RCS and OCS, 

respectively. Since both the planning site and the surgical operation site that need to be 

registered is the jaw of the patient, which has an inflexible geometric structure, a classic 

rigid-body point-based registration method was applied. Several fiducials that were 

rigidly attached to the patient's jaw or teeth were used as the paired points in VCS-RCS 

registration. In order not to touch the patient directly with the robot before the intra

operative operation stage, this set of fiducials was designed not to serve the RCS-OCS 

registration. Instead, another set of markers that were not on the patient, called the Fixed 

Registration Points (FRPs), was utilized. The two-step registration procedure can be 

described as follows: 
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1. Step 1: registration between VCS and RCS 

(D Identify the positions of the set of characteristic points (fiducials, A,) that were 

attached to the patient in the preoperative planning software, and record their 

coordinates in VCS by mouse clicking, denote as {Av,/}; 

(2) Record coordinates of the fiducials on the patient in RCS using the CMM, by 

touching them with the tip of the point probe, denote as {Ar>,}; 

(D Register between VCS and RCS using paired-point registration between {Av,i} 

and {Ar>,}; The transformation from VCS to RCS is determined as TV2R-

2. Step 2: registration between RCS and OCS 

® Record coordinates of another set of characteristic points which are on the 

registration block (Fixed Registration Points - FRPs, B,) in RCS using the CMM, 

by touching them with the tip of the point probe, denote as {Br,, }; 

© Record coordinates of the FRPs in OCS by touching each point from Bi using the 

dental drill-bit attached to the robot, denote as {B0),}; 

® Register between RCS and OCS using paired-point registration between {Br>/} 

and {B0JJ}; The transformation from RCS to OCS is determined as TR2O-

Then the coordinate of the target point in the operation CS can be calculated as 

defined by (7) or (8). 
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Please notice that step 1 and step 2 described above are actually interchangeable, 

meaning these two steps do not need to be done in sequence. As a matter of fact, Step 2, 

which is the registration between RCS and OCS can be carried out without the patient 

because the FRPs are not patient-related. Moreover, this registration may not necessarily 

to be conducted independently for each patient, because the relative position between the 

CMM and the robot is fixed at all times in the operating room. In other words, the 

registration information between RCS and OCS can be saved as a system parameter so 

registration needs not be performed every time. Therefore, by applying this novel two-

step registration strategy, the patient safety is ensured while no additional procedure is 

required compared to direct registration between VCS and OCS. In order to ensure 

system accuracy, in actual applications, Step 2 will be done routinely thus avoiding error 

caused by any slightly movement between the CMM and the robot. 

The relationship among these coordinate systems is shown in Fig. 32. 

registration registration 

I Calibration : Calibration 

Fig. 32. Relationship among different coordinate systems and objects in the system 
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A Matlab toolbox developed by Andriy Myronenko for point set registration is used 

for registration. This toolbox applies the Coherent Point Drift (CPD) algorithm [90], and 

can be selected to use rigid, afiine or non-rigid transformations. Since the patient's jaw is 

rigid and all the fiducials are rigidly attached to it, a rigid-body point-based registration 

was chosen. Meanwhile, another two Matlab functions for registration were also used to 

check the correctness and accuracy of this CPD toolbox, which utilizes Iterative Closest 

Point (ICP) [61] and finite ICP [60] methods, respectively. Consistent results from all 

these three methods were achieved. 

6-3 Robotic milling for natural-root-formed implants 

Natural-root-formed implants have much more complex geometry than traditional 

cylinder-shaped implants, therefore, site-preparation is manually impossible. The six 

degree of freedom (DOF) robot with dental drill-bit attached works as a milling machine, 

which can handle difficult milling schemes with high accuracy. However, the limited 

space intra-orally restricts the robot from milling the site with arbitrary angles as well as 

frequent changing of milling orientation. Therefore, to facilitate the robot milling 

procedure, we optimized the implant design by eliminating under-cuts and smoothing the 

curvatures as described in 4-2. Nevertheless, the geometry of the optimized implants is 

still irregular thus a single routine like cylindrical milling is not applicable. 

Fig. 33 gives an example of an optimized natural-root-formed implant which is 

voxelized with a resolution of 0.2 mm. The original surface model was voxelized using 

an open-source software - ArtOflllusion with a voxelization plugin [91], and then 

converted into a filled model in Matlab. In this voxelized single-root model, there are a 
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total of 22627 voxels, corresponding to 22627 coordinates. If we select a direct milling 

procedure such as milling layer by layer with contour-following, this number of 

coordinates is too large to be stored in the robot controller memory, which has an upper 

limit of only 1000 arrays. Therefore, a volume decomposition strategy was applied to 

simplify the milling procedure. 

Fig. 33. An example of the voxelized model of an optimized implant 

Because the volume of natural-root-formed implants can be approximated by some 

basic geometric volumes (cylinder, com, elliptic-cone, etc.), several pre-routines for the 

removal of these geometric volumes were implemented using Mitsubishi Electric Factory 

Automation (MELFA) language. For each geometric volume, only a few parameters are 

required to define such geometry for the robot operation. For example, a cylinder can be 

determined by three parameters: the radius, the coordinates of the start point, and the end 

point for drilling, which defines both the depth of the cylinder and the drilling direction at 

the same time (Fig. 34). These sub-routines extensively simplify the robot commands 
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and improve the efficiency. They were implemented by Yongki Yoon [86] from the 

Department of Mechanical and Aerospace Engineering of Old Dominion University. Fig. 

35 shows a phantom with which several sub-routines were tested to remove different 

geometries. TABLE IV compares the time required to remove a certain volume with 

point-based milling and with a sub-routine using the robot. It is quite obvious that the 

milling with sub-routines has much shorter operation time than point-based milling, 

which is only about one-third of the later. 

Fig. 34. Parameters for the robot to remove a cylinder shape 

Fig. 35. Phantom results of the robot sub-routines for milling basic geometries 

start point radius 

end point 
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TABLE IV 

COMPARISON BETWEEN THE SPEED OF REMOVING THE SAME VOLUME WITH DIRECT 

DRILLING AND SUB-ROUTINE (OVERRIDE OF THE ROBOT SPEED = 2) 

Geometry type Parameters 
Speedy (second) 

with point-based milling with sub-routine 

Cylinder r=3, d=6 55.84 291.49 

Cone r=3, d=6 311.33 100.17 

Elliptic-cone a=4, b=3, d=6 403.25 130.56 

The volume decomposition strategy we utilized decomposes the volume needed to be 

removed into the combination of several sub-volumes. Each of these sub-volumes could 

be either one of the basic geometric volumes that are defined by a MELFA sub-function, 

or a set of point sequence which has a small amount of points. For each pre-defined 

natural-root-formed implant, an iterative procedure will be used for sub-volume 

decomposition. The main steps of the algorithm are as following: 

1. voxelize the 3D model of an optimized natural-root-formed implant (Vaginal) at the 

user's desired resolution, and load discretized volume (Vdiscrctized) into the application 

program; 

2. segment Vdiscretized into (N+l) major parts, i.e., the top part and N roots, where N is the 

number of roots in the target model; 

3. for i= 1 :N+1, set the alpha volume (the current target volume) to V„ set variable j= 1; 
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4. for current target volume V*, calculate the maximum volume which can be removed 

from V, under a user defined accuracy, with the general geometry of elliptic-frustum. 

Denote the maximum volume as V,{/) and record the corresponding parameters as 

F<(/), among which the drilling depth is d,{/); 

5. segment V, into two portions: the upper one which is the portion that has a depth of 

d,{/) from its top layer of V<; and the lower one which is the remaining part of V,. 

Update the alpha volume V, with the lower portion, and increase the value of 7 by 1; 

6. check if die current alpha volume is small enough. If so, generate milling sequence 

for the remaining volume and save into F/(/); otherwise, go back to step 3; 

7. check if milling function sequences for all (N+l) sub-volumes have been determined. 

If so, finish. 

Following is the flowchart showing the same algorithm. 



Only small piece 
remains? 

finish 

f=l 

Preprocess 

Set the alpha 
volume to V,;/5*! 

Calculate maximum 
volume from V/ 

Segment V/ into upper 
and lower portion 

Segment into 
set V„ (/=i~N+l) 

Generate milling sequence 
for the remaining piece 

Update the alpha volume with 
the lower portion; /=/+l 

Fig. 36. Flowchart for volume decomposition algorithm 
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Within this algorithm, there are four major components: (1) preprocessing; (2) volume 

segmentation; (3) maximum sub-volume extraction; (4) milling sequence generation for 

the remaining piece. In the preprocessing function, the output of the voxelized surface 

model from ArtOflllusion is loaded, which is a Mx3 matrix containing the coordinates of 

the occupied voxels (M is the number of voxels), and filled into a solid model and then 

the unclosed layers on the top are removed. The solid model (i.e., the coordinate matrix) 

is then segmented into 1 top-segment and N root-segments, where N is the number of 

roots in the model (N=l, 2 for single-, double-root models, respectively). For each 

segment, the coordinates of the solid model along with the coordinates of corresponding 

surface model are sent to a generalized function for volume decomposition. This function 

is applied to extract the maximum sub-volume and generate the milling sequence for the 

remaining piece. 

Maximum sub-volume extraction is the key component, which calculates the volume 

that can be removed from the alpha volume (the target volume). This volume should be 

one of the basic geometric volume types, and the distance between any point in the 

removed volume and its closest point in the current layer of the alpha volume should 

below a certain threshold (1 mm, for example). Although each geometric volume type as 

defined by our sub-functions has different parameters for robot milling, when calculate 

the maximum volume, they can be uniformly expressed using an elliptic-frustum. As 

shown in Fig. 37, an elliptic-frustum in a 3D space is described by two sets of 

parameters: the first set of parameters define its geometry, which include its semi-major 

axis at the top (al), semi-minor axis at the top (bl), semi-major axis at the bottom (a2), 

semi-minor axis at the bottom (b2), depth (d); the second set of parameters are the center 
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point at its top (ol) and bottom plane (o2), which determine its position and orientation in 

the 3D space. Additionally, the relationship between al, bl, a2 and b2 is restricted by (9): 

Therefore, there are only three effective parameters among these four, and the other one 

can be determined by these three parameters. 

Fig. 37. Uniform expression using elliptic-frustum (upper: a elliptic-frustum; lower: 

from left to right, cylinder, cone, conical-frustum) 

Cylinder, cone, conical-frustum, elliptic-cylinder, elliptic-cone, and elliptic-frustum 

can all be expressed with the parameters al, bl, a2, b2, under certain conditions as listed 

in TABLE . For this reason, uniform expression of an elliptic-frustum to calculate the 

maximum volume that can be removed from an alpha volume was used. 

al/a2 = bl/b2 (9) 

ol 
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TABLEV 

CONDITIONS FOR DIFFERENT GEOMETRIES USING THE GENERAL ELLIPTIC-FRUSTUM 

EXPRESSION 

parameters (al, bl, a2, b2) conditions 

cylinder al=bl=a2=b2 

cone al=bl; a2=b2=0 

conical-frustum al=bl; a2=b2 ± 0 

elliptic-cylinder al  *bl;a2*b2; al=a2;bl =b2 

elliptic-cone al # a2; a2 = b2 = 0 

elliptic-frustum al ^bl;a2*b2;a2#0;b2*0 

The flowchart of the algorithm implemented for maximum sub-volume extraction is 

shown as in Fig. 38. 



81 

< load current 
alpha volume 

i 
> 

get size info for each layer 
using ellipse fitting 

d~ 1 

N d<~ number 
of layers? 

adjust the model, so that: 
(D the drilling direction is -z, 
® the major axis is aligned to X-axis, 
(D the entry point is closed to (0,0,0) 

calculate range for semi-major 
and semi-minor axes 

traverse to calculate removal volume for each 
combination of parameters (al, bl,a2, b2) 

find the best parameters for 
current depth 

find the best parameters for 
current alpha volume 

save the remaining portion after 
removing the maximum sub-volume 

( finish 

Fig. 38. Diagram of maximum sub-volume extraction algorithm 
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For the remaining portion, the volume will be milled out layer-by-layer from bottom 

to top. With regards to each current layer, those voxels on its contour are removed first by 

applying a contour-following function in Matlab [92]. The contour-following is based on 

the high resolution model (0.08 mm for the one shown in Fig. 33) to preserve a highly 

accurate boundary shape. Conversely, such a high resolution is not necessary for the 

removal of the inner portion because the radius of the drill bit is 1.0 mm, which is much 

larger than the distance in between two adjacent voxels. Therefore, the contour voxels 

extracted from the inner portion of the current layer is based on a relatively lower 

resolution in order to reduce the operation time. With a target resolution of 1.0 mm, the 

number of voxels can be reduced by a magnitude of about 100 (square of 1.0/008). Once 

a certain voxel is removed in the current layer, the corresponding voxels along the same 

line as the drill-bit are all removed with this single operation. Because the models of 

natural-root implants have been refined, it is assumed there is no under-cut in the model. 

For that reason, once a lower layer is removed, there would only be a small amount of 

voxels left around the boundary, which greatly speeds up the milling operation. Fig. 39 

illustrates how the volume with the milling sequence generated from our algorithm 

approximates its original shape. In the original model as shown in Fig. 39 (a), there are 

total 649526 voxels with a resolution of 0.08 mm. After running the volume 

decomposition algorithm, the whole volume was decomposed and thus simplified into six 

portions: 

(1) one elliptic-frustum with a depth of 2.0 mm at the top, 

(2) a set of milling sequence of 1224 points between the top and roots, 
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(3) an elliptic-frustum with a depth of S.6 mm at one root (root #1), 

(4) a set of milling sequence of222 points at root #1, 

(5) an elliptic-frustum with a depth of 6.5 mm at another root (root #2), 

(6) a set of milling sequence of 109 points at root #2. 

The result from this milling sequence generation algorithm for a double-root implant 

is given in Fig. 39 (b). The denser points located at the middle and bottom of the roots 

are the discrete point milling sequences. Here, the threshold of error between the 

approximating elliptic-frustum and the original model was set as 0.8 mm, which makes 

sure the milled out elliptic-frustum shape, is inside the boundary with an error less than 

this threshold. It can be seen that the generated milling sequences enclose a volume 

which is skinnier than the original model. This is because the width of the drill bit is 

taken into consideration when the milling sequence is generated. The actual volume 

removed by these milling sequences is shown in (c), which gives a close approximation 

to the original model. 

When the milling sequence for a certain implant is generated, all the coordinates are 

calculated in the local coordinate system of this 3D model, whose origin lies in its 

centroid. This coordinate system can be considered as align with the virtual CS. 

Therefore, the transformation matrix Ty2o can be used to map the milling sequence 

calculated in this local CS to the robot CS. 
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(b) (c) 

Fig. 39. Milling sequence generation for a double-root implant: (a) the optimized model, 

(b) generated milling sequences, (c) volume removed by the milling sequences 
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6-4 Virtual fixtures 

Two types of virtual fixtures were designed and introduced in the system: one is the 

motion constraint for the path from robot's original position to the start point of the first 

milling operation inside the mouth; the other is the motion constraint for the milling 

operation when it is executed. 

A fixated mouth guard device is designed to be used in our application to restrain the 

patient's head and jawbone in a secured position and orientation. With this device, not 

only the position of the patient in world coordinate system, thus in reference coordinate 

system, is fixed; but also the "no-go" areas for the entrance to the mouth and inside the 

mouth in RCS is determined. Accordingly, their coordinates in OCS can be calculated. 

Within the small area inside the patient's mouth, the robot only has a very limited 

working space there. The relative orientation between the dental drill-bit, which is 

attached to the end-effector of the robot, and the patient's mouth (or the mouth guard 

device) must be chosen carefully to make sure that the drill bit as well as any part of the 

robot do not violate the defined virtual fixtures thus potentially injuring the patient. The 

possible operational space of the drill bit might be limited to a relatively small angle. 

Since the robot is fixed on a table whose location is not supposed to change due to 

calibration requirements, therefore, the operating chair in which the patient sits during 

surgery is designed as rotatable so the operation site for the implant insertion can be 

adjusted to the operating space. 
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For the second type of virtual fixture, which is the constraint for the milling operation 

into the patient's jawbone, is coded into the program for milling sequences generation. 

Since the robot is only commanded to move the tip of the drill bit to where the target 

voxel is, it is important to make sure that none of the upper layers is affected by the 

milling operation. In another words, none of parts on the drill bit shall touch any portion 

outside of the designed volume during the procedure. As described in 7-3, for each 

segment, an elliptic-frustum is first removed from the top layers and then the remaining 

voxels in the bottom layers are milled out. Since this elliptic-frustum always has the 

feature that its top is wider than its bottom due to the geometry of the implant model, no 

VF is necessary when removing this elliptic-frustum. A virtual fixture is set to give the 

boundary for the drill bit only when it is milling the remaining portion of a segment after 

removing the elliptic-frustums. In our case, two different constraints were combined to 

define the boundary of the movement of the drill-bit: 

type I: the maximum projection of the upper segment (if any) onto the plane 

perpendicular to the drilling direction of the current segment; 

type II: top layer of the remaining portion after the elliptic-frustums removal (if any) 

of the current segment. 

The contour of the combination of these two fixtures is defined as the constraint. The 

milling sequence for each remaining layer is first generated by trying to follow its 

contour. If the milling operation for any of the voxels along the contour violates the 

constraint, meaning any part of the drill bit falls outside of the virtual fixture, the contour 

will be contracted until the maximum boundary no longer breaches the area that was 

violated. 
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The milling sequence generated with virtual fixtures was visualized as shown in Fig. 

40, where black dots give the original shape of the model; blue color indicates the area 

where milling sequences locate; red dots are points that violate the VF; yellow color 

illustrates the difference between the surface of the extracted elliptic-frustum and the 

surface of the original model. One can notice that most of the red dots are located around 

the apex of the root, which is due to the relative big size of the drill bit (diameter = 2 mm) 

with regards to the small scale of the volume that needs to be removed. For example, the 

remaining portion of the single-root volume after the elliptic-frustum removal has a 

dimension of about 1.8 mm * 1.6 mm along the X- and Y- axis (Fig. 41), which is even 

smaller than the size of the drill bit. Therefore, those points were discarded in order to 

make sure the drill bit does not go outside of the boundary thus ensuring the safety of the 

patient. 
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(a) 

(b) 

Fig. 40. Results of robotic-milling generation, (a), (b): results for volume type SI and 

Dl, respectively. 

Fig. 41. Remaining portion of the single-root volume after the elliptic-frustum removal 

(projection onto the X-Y plane) 
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CHAPTER 7 

EXPERIMENTS IN REGISTRATION AND ROBOTIC MILLING 

Several experiments were designed to evaluate the registration accuracy of the system 

on both positioning and orientation with the help of a patient-specific phantom. Besides, 

robot milling of the shapes of the optimized natural-root implants was conducted, along 

with the virtual fixture testing. 

7-1 Phantom experiment on position accuracy 

Registration accuracy was tested with phantom experiments by using a patient specific 

model. CBCT images of a patient collected from a Toshiba CBCT scanner with a slice 

thickness of 0.5 mm was reconstructed to a patient-specific 3D model. Five small semi-

spheres (diameter = 1 mm) were artificially created and virtually attached to the model, 

whose apexes acted as both fiducials and targets (one of them was defined as a target 

while the remaining four as fiducials for registration). The patient-specific jaw model 

with fiducials attached was printed out by Krzysztof Rechowicz from the Department of 

Modeling, Simulation and Visualization Engineering, Old Dominion University, using a 

3D printer (Spectrum Z510, Z Corp., Burlington, MA, US). Such a shape of the fiducials 

was chosen because it was not easily broken during the printing process. Their 

coordinates were measured in the virtual CS by identifying the apex of each semi-sphere 

using a mouse. In the reference CS, their coordinates are measured by touching the apex 

of each semi-sphere with the tip of the FARO probe. In order to minimize localization 
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error, ten measures are made for each fiducial position, and their mean value was 

recorded as the final coordinate for a given fiducial. 

Another eight points were defined by marks on the printed out jaw model (points with 

red labels in Fig. 42), as the fixed registration points for the second step registration. The 

coordinates of these points were measured in both the reference CS and the operation CS. 

In the operation CS, the coordinates were measured by commanding the robot to move 

along the X-, Y- and Z-axes, until the tip of the drill-bit reached the apex of a semi-

sphere. 

The two-step registration procedure as described in 6-2 was performed for each target 

and fiducials combination. Two widely used indicators: Fiducial Registration Error (FRE) 

and Target Registration Error (TRE) were calculated to evaluate the positioning error of 

the two-step registration procedure. FRE for registrations between the virtual CS & 

reference CS, and also the reference CS & operation CS were calculated. To evaluate the 

target registration error, one of the fiducials was set as the target and the registration 

procedure was conducted using the remaining four fiducials. After registration, the 

coordinate for each target point in the operation CS was calculated. Accordingly, the 

robot was commanded to move the tip of the drill-bit to the target coordinate and hold its 

position there. Because one of the five fiducials (the five semi-spheres) was set as the 

target, the designated position of the target in the operation CS can actually be measured 

directly by the robot. Therefore, the measured coordinate in the operation CS was set as 

"gold standard value" while the current coordinate of the drill-bit tip was recorded as a 

"registered value", and TRE value after the two-step registration was calculated as the 
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difference between these two values according to (2). TREs for each pair of the two-CS 

registration were recorded. 

Fig. 42. A patient-specific jaw model with five fiducials (shown in italic) and eight 

fixed registration points (show in normal) 

The phantom experiments were at first carried out with a setup as shown in the left 

side of Fig. 43. In this setting, the CMM was on a tripod which was placed on the ground 

next to the table where the robot was fixed. Later, the CMM was fixed on the same table 

as the robot with a specially made fixation plate (Fig. 43, right), and repeated the 

registration procedure trying to evaluate if there was improvement after the CMM 

fixation. 



Fig. 43. The original (left) and improved (right) phantom experiments setup 

7-2 Experiment on orientation accuracy 

In order to calculate the orientation angle, a reference plane was introduced and its 

norm was considered as the reference direction. The physical jaw model was fixed on a 

wood board, thus we set this board as the reference plane. For the virtual model, a plane 

that can hold it as the wood board did in the physical world was generated and its norm 

was calculated by measuring 10 points on it. The angle between each drilling direction 

planned and the norm of this plane was calculated. After the two-step registration, 

orientation error, defined as the difference between the angle in the operation CS and the 

angle in the virtual CS, was calculated. 

In the phantom experiments, five holes were drilled on a drilling base according to the 

drilling direction calculated for each target. It was decided to not drill directly into the 

jawbone because its material is not suitable for drilling. Further, this experiment was only 

for the evaluation of orientation error; therefore, position information did not matter. 

After drilling, a metal stick magnetically attached to one of the blade edges of a digital 
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protractor was inserted into the drilled hole. The other blade of the protractor was then 

adjusted to align to the reference direction of the wood plane, which was defined by one 

side of a rectangular box (Fig. 44 c). The angle between the metal stick (the drilling 

direction) and the reference direction in the operation coordinate system was recorded. 

(a) (b) (c) 

Fig. 44. 3D model on the reference plane in (a) VCS and (b) OCS, (c) measuring 

orientation angle in OCS 

7-3 Robotic milling of the novel implants 

The robotic site-preparation (i.e. robotic milling of the root shape) of the small-sized 

natural-root-formed implants with single- and double-root was tested. Milling sequences 

for these two implants were generated utilizing the algorithm based on volume 

decomposition as described in 6-3. As a result, the single-root model was decomposed 

into a top elliptic frustum with a depth of 9.5 mm and a set of discrete points (N=91), 

while the double-root model was decomposed into three segments, each consisting of an 

elliptic-frustum and a set of discrete points. 
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For robotic milling testing, some milling bases similar to those used for testing 

orientation accuracy were created by mixing one type of powder with water to create a 

hard plaster. The ratio between the powder and water was tested to find a suitable value 

with which the hardness of the plaster bases was good for the robot milling operation. An 

arbitrary point on the surface of the milling base was set as the start point of the robot 

milling, which equaled to either the entry point of the elliptic-frustum (if any existed) or 

the first point in the discrete point set of the top segment. 

Due to the fact that the volume removed for the site-preparation of our natural-root 

implant is very small (even the large-sized double-root implant has a dimension of about 

10 mm *10 mm *14 mm) and is in an irregular shape, the accurate shape of the removed 

volume is very hard to measure. Attempts were taken by molding the shape of the volume 

removed by using a denture material, which helped to approximate and visualize the site-

preparation results. Some measurements of the removed volume in the milling base were 

taken to get its dimensional information, including dimensions of its opening and the 

depth of the volume. The time of the milling operation for each of the implant designs 

was recorded as well. 

In order to assess the accuracy and efficiency of the volume-decomposition-based 

algorithm for each implant model, the milling sequence was also generated without trying 

to extract any elliptic-frustum. The actual volumes removed and the milling time by using 

these two different strategies were compared. 
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CHAPTER 8 

EXPERIMENT RESULTS AND DISCUSSION 

The results of the experiments described in Chapter 7 are provided in this chapter, 

and some related discussions are given as well. 

8-1 Position and orientation accuracy 

The coordinates of the fiducials and the fixed registration points measured in the 

earlier setup (before CMM fixation) and in the later setup (after CMM fixation) are listed 

in TABLE and TABLE , respectively. Please note that the coordinates in the operation 

CS were changed slightly after CMM fixation, because the jaw model fixed on the robot 

table was touched accidentally during the fixation operation of the CMM. The data 

contain targets' coordinates measured by the robot to represent the "gold standard" values 

of the targets for TRE calculation. 

The results from the phantom experiments for positioning accuracy are listed in 

TABLE . After fixing the Faro Arm onto the same table of the robot, the spatial 

relationship of the reference and the operation CS was ensured to remain rigidly 

unchanged during the whole procedure. As a result, the final TREs decreased from 

1.42±0.70mmto 1.14±0.61 mm. 
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TABLE VI 

COORDINATES MEASURED BEFORE CMM FIXATION (UNIT IN MM, N = 10) 

Virtual CS Reference CS Operation CS 

X Y Z X Y Z X Y Z 

1 -18.80 -4.01 24.39 861.73 128.45 -556.88 473.15 25.71 49.89 

2 -10.89 -5.03 29.43 852.57 129.24 -558.69 467.34 18.19 50.66 
Fiducials 
/ Targets 3 -0.05 -4.88 32.42 841.52 130.21 -557.09 464.64 7.44 51.62 

4 9.82 -3.69 29.38 833.75 129.89 -550.05 467.75 -2.36 51.13 

5 18.48 -2.80 24.50 827.64 128.55 -542.39 472.24 -11.06 49.90 

1 905.04 129.95 -527.95 516.30 53.42 51.38 

2 882.68 121.65 -525.17 509.67 31.80 42.95 

3 881.09 120.69 -546.34 489.61 38.88 42.14 

Fixed 4 860.56 126.64 -551.03 477.20 22.00 47.98 
registrati / 

47.02 on points 5 831.48 125.46 -534.82 480.19 -10.76 47.02 

6 823.80 120.75 -520.02 490.56 -24.16 42.20 

7 836.29 120.37 -506.64 507.83 -18.36 41.80 

8 820.39 127.67 -495.33 511.54 -37.34 48.99 

Also, it was noticed that the original orientation of the X-, Y-, Z-axes relative to the 

phantom model matters to the registration accuracy. It is important to realign the axes of 

the "from" CS to align with the "to" CS, in order to get a better registration result. The 

orientation errors measured using the method as described in VII-2 with three different 

designated drilling directions are listed in Table IX. The resulting orientation error in the 

operation CS after registration is 1.99±1.27° (N=14). 

TABLE IX also gives the results when the CS orientation is pre-aligned. TREs after 

stepl decreased from 1.09±0.69 mm to 0.24±0.13 mm, and final TREs decreased from 

1.14±0.61 mm to 0.36±0.13 mm. Thus, the system provided a significant improvement in 

the registration accuracy. 
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TABLE VII 

COORDINATES MEASURED AFTER CMM FIXATION (UNIT IN MM, N = 10) 

Fiducials / 
Targets 

Fixed 
registration 

points 

Virtual CS Reference CS Operation CS 

X Y Z X Y Z X Y Z 

1 -18.80 -4.01 24.39 476.43 -65.99 345.81 476.10 26.11 49.21 

2 -10.89 -5.03 29.43 472.71 -65.13 337.32 470.49 18.55 49.98 

3 -0.05 -4.88 32.42 464.85 -64.07 329.34 467.38 7.86 50.94 

4 9.82 -3.69 29.38 454.56 -64.55 327.05 470.73 -2.12 50.75 

5 18.48 -2.80 24.50 444.61 -65.96 326.66 475.28 -10.78 49.42 

1 478.82 -64.46 396.87 519.17 53.39 51.06 

2 463.33 -72.71 380.43 512.49 31.95 42.63 

3 479.42 -73.73 366.81 492.83 39.21 41.56 

4 
/ 

470.96 -67.78 347.36 480.24 22.30 47.70 

5 
/ 

441.15 -68.87 333.53 483.26 -10.43 46.56 

6 424.48 -73.50 335.04 493.40 -23.99 41.89 

7 420.82 -73.90 354.04 510.92 -18.12 41.44 

8 402.50 -66.83 347.80 514.61 -37.16 48.79 

TABLE VIII 

REGISTRATION RESULTS FOR POSITIONING ACCURACY 

before Faro fixation after Faro fixation 
after Faro fixation and CS 
orientation pie-alignment 

step 1 step 2 step 1 step 2 step 1 step 2 

Target# FRE TRE FRE TRE FRE TRE FRE TRE FRE TRE FRE TRE 

1 0.23 1.82 2.29 0.20 1.90 1.74 0.10 0.43 0.44 

2 0.29 0.80 0.89 0.27 0.86 1.15 0.15 0.23 0.41 

3 0.42 0.16 0.186 0.74 0.43 0.26 0.194 0.42 0.15 0.23 0.194 0.50 

4 0.28 0.80 1.18 0.33 0.71 0.64 0.18 0.07 0.17 

5 0.23 1.80 2.03 0.26 1.72 1.76 0.16 0.25 0.30 

MEAN 0.29 1.08 / 1.42 0.30 1.09 / 1.14 0.15 0.24 / 0.36 

SD 0.08 0.71 / 0.70 0.08 0.69 / 0.61 0.03 0.13 / 0.13 
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The orientation errors measured using the method as described in VII-2 with three 

different designated drilling directions are listed in Table IX. The resulting orientation 

error in the operation CS after registration is 1.99±1.27° (N=14). 

TABLE IX 

MEASURED ORIENTATION ERROR AFTER REGISTRATION (UNIT IN DEGREES) 

planned angle 15° 30° 45° 

Target # actual angle error actual angle error actual angle error 

1 18.0 3.00 30.3 0.30 42.1 2.90 

2 18.6 3.60 29.6 0.40 44.0 1.00 

3 17.0 2.00 / / 42.8 2.20 

4 18.6 3.60 29.2 0.80 40.9 4.10 

5 16.1 1.10 29.0 1.00 43.1 1.90 

MEAN= 17.66 2.66 29.53 0.63 42.58 2.42 

SD= 1.09 1.09 0.57 0.33 1.16 1.16 
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8-2 Robotic milling with virtual fixtures 

Robotic milling was performed to prepare the insertion site for the small-sized single-

and double-root implant, with the milling sequences generated using the volume-

decomposition-based algorithm and a point-based strategy for comparison. Therefore, 

four different volumes were milled out using the robot: 

SI: single-root shape with elliptic-frustum from volume-decomposition-based method; 

S2: single-root shape without elliptic-frustum from point-based strategy; 

D1: double-root shape with elliptic-frustum from volume-decomposition-based 

method; 

D2: double-root shape without elliptic-frustum from point-based strategy. 

The results of robotic-milling generation for different models and different methods 

are reported in Table X. It is clear that the results from the volume-decomposition-based 

method have a much smaller amount of discrete points than point-based strategy. It not 

only avoids overloading the robot memory, but also possibly means less operation time. 

It was proven by recording the actual milling time for each volume type. The results 

are given in TABLE . It is obvious that the volume-decomposition-based milling has a 

much shorter processing time than simple point-based strategy, which is about half the 

amount of time shorter than the later. This result is consistent with the speed test for 

simple geometries as listed in TABLE. 
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TABLEX 

RESULTS OF ROBOTIC-MILLING GENERATION 

number of discrete points in total number of 
volume elliptic-frustum 

each segment discrete points 

51 1 (d = 9.5 mm) 91 91 

52 / 1121 1121 

D1 3 (d = 2.0,5.6,6.5 mm) 1224,222,109 1555 

D2 / 813, 1391, 1404 3608 

TABLE XI 

MILLING TIME FOR EACH VOLUME TYPE (UNIT IN SECOND) 

volume SI S2 D1 D2 D3 

total milling time (s) 177.00 391.02 941.95 1382.98 1720.16 

Although points violating the virtual fixtures have been dismissed in the generated 

milling sequence, however, by monitoring the whole milling procedure, it was noticed 

that the top segment was actually affected when the elliptic-frustum decomposed from 

one of the roots was milled out. The body of the drill bit went outside the boundary of the 

top segment due to a relatively big orientation of the elliptic-frustum, thus a small piece 

of milling base was removed (area inside the red square in Fig. 45 al). This result was 

different from its designed shape because we only set the virtual fixtures (the two types 

of boundaries) for the point-sets that remained after the elliptic-frustum removal. Since 

the elliptic-frustum was removed by calling a predefined sub-routine, the robot can not be 

commanded to skip some of the points during the procedure. In comparison, the result 
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from point-based milling (Fig. 45 a2) does not have this issue due to the fact that all the 

points were considered as belonging to the remaining portion thus were set to follow the 

virtual fixtures. Therefore, an attempt was made by combining the volume-decomposition 

and point-based strategies together: the top segment and the root segment that did not 

affect the top segment were removed using milling sequences from volume-

decomposition algorithm and the other root segment which broke the top segment was 

milled out according to the point-based milling. The volume removed by using this mixed 

milling strategy is labeled as D3. 

From Fig. 45 (a3), it is clear that the resulting shape from the mixed milling strategy 

approaches a closer shape at its opening to the designed volume. However, the operation 

time was significantly increased from 942 seconds to 1720 seconds (Table 11), as 

expected, which was about 13 minutes longer. In future work, more tests would be 

necessary in order to find the best tradeoff between the volume accuracy and operation 

time. Also, a methodology can be investigated to allow the predefined sub-routines to 

follow the virtual fixture constraints. 
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(a3) (a4) 

Fig. 45. Milling result for double-root implant, (al) using volume-decomposition-based 

algorithm (Z)i); (a2) using point-based milling (D2); (a3) using a combination of 

volume-decomposition and point-based milling (D3); (a4) using a volume-

decomposition-based algorithm for the model with a straightened root (D4) 

Another attempt was made by straightening the root which caused the errant milling at 

the upper segment due to the relatively large angle. The modified model is labeled as D4. 

Exactly the same parameters (depth, radii, entry point) were used for the milling of this 
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root, but its orientation was set to be vertical down. The difference between the Dl and 

D4 is illustrated below: 

Fig. 46. Milling sequence for (a) the original double-root model Dl, and (b) the 

modified double-root model with a straightened root D4 

By monitoring the milling procedure, it was noticed that the elliptic-frustum removal 

of the straightened root did not affect the upper segment anymore, which proved the 

effectiveness of this modification. The top view of the removed volume of this 

straightened model is given in Fig. 45 (b4). Since this model utilized the volume-

decomposition-based method for volume removal and has the same parameters for the 

elliptic-frustums as in Dl, the milling time was the same as for Dl, which is much shorter 

than the time for D2 and D3. Therefore, D4 provides good results on both the shape 

removed and the milling time. 
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FEM result performed by Yongki Yoon indicated that the stress at the root portion of 

the model with double-root is much lower when compared to the high stress along the 

contour of its top [86]. Although it still needs to be proven by FEM analysis with our 

straightened model, this result suggested that the minor modification of the root should 

not have much influence on the final biomechanics of the double-root model. 

Molds for each of volume removed were made and the figures recording the molding 

procedure are given below. A dental material was filled into each of the removed 

volumes and remained overnight to be set. Six molds were attained by breaking down the 

milling base. As one may notice from Fig. 47 (b), the molds were a little below the 

actual surface of the milling base therefore the molded openings were not very accurate. 

Also, there were some breakages in the molds especially around the root areas. Therefore, 

the casting procedure was repeated to get another set of molds, especially carefulness was 

paid to cover the volume completely trying to solve the problems of collapsed top 

surfaces and the undesirable bulbs. However, after checking the new molds, problems 

still existed: top surfaces were preserved but with some degree of extension, and the root 

areas were still not complete which we believe was due to the existence of bulbs along 

with the extremely small space around those areas. Although the molding was not 

perfect, still it indicated a close approximation to our designed natural-root forms. 



(a) (b) 

$ n f* ?f 

Fig. 47. Casting the removed volumes, (a) site-preparation results; (b) filled with a 

dental material for molds; (cl), (c2) the extracted molds 
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The dimensions of the removed volumes were measured with the second set of molds 

using a caliper, and their designed values were measured with the corresponding virtual 

models. Because the shapes of the natural-root forms are irregular, measurements on their 

dimensions were only performed to get the approximate results. Dimensional results for 

single- and double-root molds are given in TABLE and TABLE , respectively. In these 

two tables, the measured dl and d2 is roughly the opening of the long and short axis of 

the molds' top surfaces. TABLE indicated that all the openings of the molds were 

smaller than the designed values, which could be due to the fact that when the robot 

milling was performed, not all the removed powders were successfully cleared out from 

the volume and may be accumulated inside the volume itself. The accumulation of the 

powders could result in a removed volume which was actually smaller than designed. 

When the site-preparation is actually performed in a dental clinic, water flow will be 

applied to the operation site to clear the removed bones, which may solve the powder 

problem encountered since only a small balloon was used to blow the powders away. The 

dimensions of the opening of the molds with double-root did not follow this rule strictly 

and the possible reason might be the measuring errors for bother the measurements on the 

molds and the measurements on the virtual models, because the opening shapes were 

very complex thus their diameters can hardly be determined. 

In TABLE , "1" denotes length which was measured from the top surface to the apex 

of the root. We noticed that all the measured lengths were shorter than the corresponding 

designed lengths. Apart from the powder accumulation, another reason that caused such 

results was the existence of bulbs during our casting procedure. As a result, the small and 

dedicated parts around the root apexes were broken, causing the truncation of the roots. 
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Besides, for some of the volumes, the apex was the only point in that depth. In this case, 

the milling operation might not able to reach an effective depth of the root shape as 

designed. The subscript "s" corresponds to the designed root length when the apex was 

dismissed from the milling sequence. It is seen that when this factor was considered, the 

errors between the actual and designed lengths were decreased. 

Fig. 48. Molds for different volume types. (al~a4), top view of the mold for Dl, D2, 

D3, D4, respectively; (bl, b2), comparison of the designed and removed volume for 

single- and double-root implant 
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TABLE XII 

DIMENSIONS MEASUREMENTS FOR THE MOLDS WITH SINGLE ROOT 

dl d2 1 Is 
SI designed 6.82 4.76 11.90 10.94 

measured 6.23 4.40 8.63 / 
error -0.59 -0.36 -3.27 -2.31 

S2 designed 6.82 4.58 11.84 11.28 
measured 6.43 4.43 9.40 / 

error -0.39 -0.15 -2.44 -1.88 

TABLE XIII 

DIMENSIONS MEASUREMENTS FOR THE MOLDS WITH DOUBLE ROOTS 

dl d2 11 Us 12 12$ 

Dl designed 8.94 9.06 10.24 9.36 9.78 9.19 
measured 9.78 8.70 9.71 / 9.25 / 

error 0.84 -0.35 -0.52 0.36 -0.53 0.06 
D2 designed 8.42 8.16 10.76 9.81 9.74 9.36 

measured 8.97 8.53 9.35 / 8.72 / 
error 0.55 0.37 -1.42 -0.47 -1.03 -0.64 

D3 designed 8.94 9.06 10.76 9.81 9.78 9.19 
measured 8.75 8.81 8.69 / 7.27 / 

error -0.19 -0.24 -2.07 -1.12 -2.51 -1.92 
D4 designed 8.94 9.01 10.27 9.78 9.50 9.50 

measured 9.44 8.02 9.97 / 9.60 / 
error 0.50 -0.99 -0.30 0.19 0.10 0.10 
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CHAPTER 9 

CONCLUSION 

In this dissertation, an image-guided robotic methodology for dental implantation is 

presented. A medical image supported preoperative surgical planning and an innovative 

robot-based intra-operative site-preparation methodology were combined, to enable more 

accurate placement of current implants and facilitate the insertion of novel natural-root-

formed implants. 

Natural-root implants mimic the root structure of human teeth and were proven by 

Finite Element Method (FEM) to provide better stress distribution than current cylinder-

shaped implants. Two anatomical accurate teeth models were selected and extracted from 

a 3D human model, and served as the initial templates of our novel implants with single-

and double-root. The shapes of the templates were refined by curvature smoothing and 

undercut removal, to facilitate the robot site-preparation. The refined shapes were further 

modified by rounding their bottom area, as indicated by the result of topology 

optimization using Soft-Kill Option (SKO) method. These modified shapes were proven 

by FEM to further improve the structural performance under certain loading conditions 

than the original shapes. These two final templates were scaled according to the statistics 

of human teeth dimensions to get a complete set of the standardized natural-root-formed 

implants templates. 
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An image-based preoperative planning software was implemented to help the surgeon 

to generate an appropriate surgical plan. A patient-specific 3D model reconstructed from 

the patient's cone-beam CT (CBCT) images was loaded into the software and the surgeon 

chose the implant type to be inserted and virtually adjusted its position and orientation in 

the patient's jawbone until a satisfying result was achieved. A novel two-step registration 

method with the help of a coordinate measurement machine (CMM) was designed and 

performed to transform the designated spatial information to the operation coordinates of 

the robot. The CMM was introduced as a reference coordinate system in order to provide 

superior accuracy while avoiding unnecessary contact between the robot and the patient, 

thus ensuring the safety of the patient. Phantom experiments with patient-specific jaw 

models were performed and positioning and orientation errors after registration of 

0.36±0.13 mm (N=5) and 1.99±1.27° (N=14), respectively, were achieved. 

The intra-operative stage of the system features an automated robotic site-preparation 

methodology utilizing a robot with six DOF as a milling machine. A novel strategy for 

milling the volumes of implants including natural-root-formed implants was presented, 

which was based on volume decomposition. Implant models were first segmented into 

their roots and/or the top segment. From each segment, an iterative method was applied 

to decompose it into several elliptic-frustums, which would remove the maximum 

volume from the current piece, and a set of discrete point sequence. The milling tests 

proved that using the milling sequence generated from our volume-decomposition 

algorithm shortens the milling time when compared to utilizing a simple point-based 

strategy while still maintaining a good approximation of the original shape of the implant. 

Furthermore, patient's safety was ensured by implementing some virtual fixtures 
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(constraints) for the milling. Milling results suggested that by deleting those points 

violating the virtual fixtures, the removed volume preserved its designed shape to a large 

degree and no anatomical structure around the implant site was affected by the robotic 

milling. 

The combination of the innovative image-guided robotic site-preparation application 

along with the novel designs of natural-root-formed implants was presented and proved 

to be feasible and accurate. Although improvements, including generalizing the implants' 

shapes to ease the site-preparation, optimizing the milling sequences to find the best 

tradeoff between accuracy and speed, and implementing virtual fixtures for more 

complicated templates were necessary before it could be operationally used for dental 

implantation. 
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