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Abstract: Cryo-electron microscopy (Cryo-EM) is a powerful technique to produce 3-dimensional density
maps for large molecular complexes. Although many atomic structures have been solved from cryo-EM den-
sity maps, it is challenging to derive atomic structures when the resolution of density maps is not sufficiently
high. Geometrical shape representation of secondary structural components in a medium-resolution density
map enhances modeling of atomic structures. We compare twomethods in producing surface representation
of the β-sheet component of a density map. Given a 3-dimensional volume of β-sheet that is segmented
from a density map, the performance of a polynomial fitting was compared with that of an iterative Bézier
fitting. The results suggest that the iterative Bézier fitting is more suitable for β-sheets, since it provides more
accurate representation of the corners that are naturally twisted in a β-sheet.

1 Introduction
Cryo-electron microscopy (cryo-EM) is a biophysical technique to produce electron density maps of large
molecular assemblies [12, 18, 31, 33, 34]. A density map is a 3-dimensional image in which each voxel is
associated with a density value that represents the local density of electrons. Many molecular complexes,
such as ribosomes and viruses, have been resolved to atomic resolutions using this technique [7, 20, 32].
At high resolutions about 3Å, details of amino acids are resolved, and atomic structures can be derived.
However, it is challenging to obtain high-resolution 3D images for many biological specimen due to the na-
ture of biological samples. At medium resolutions, such as 5-10Å, amino acid details are not resolved, and
it is often not possible to distinguish the chain of a protein in the image. What is possible to be distin-
guished frommedium-resolution images includes rough location of secondary structures, such as α-helices,
β-sheets [8, 14, 19, 22, 26, 27, 29, 30], and possible connections among secondary structures [4, 21]. An α-helix
appears as a cylinder and a β-sheet appears as a thin layer of density image at medium resolutions. Various
computational methods have been developed to segment secondary structures from cryo-EM images, such
as Helixhunter, SSEhunter, HelixTracer, SSELearner Voltrac, and SSETracer [8, 14, 19, 26, 27, 29]. In addition
to secondary structure detection, it is possible to match secondary structures detected from the cryo-EM den-
sity map to those predicted from protein amino acid sequence, in order to derive the backbone trace of the
protein [1–3, 5, 6, 9–11, 23].

A β-sheet is composed ofmultiple β-strands. Figure 1 shows an example of a 7-stranded β-sheet. Knowing
the position of a β-sheet without knowing the position of β-strands is often not sufficient to model the 3-
dimensional structure of a protein, since each β-strand, not a β-sheet, corresponds to a segment of the protein
sequence. The spacing between twoneighboring β-strands is 4.5–5Å, too small to be resolved in an imagewith
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Figure 1: β-sheet, β-strands and β-sheet image. A β-sheet is composed of multiple β-strands, each shown as a ribbon in (A). An
image (gray) of a β-sheet is superimposed with its atomic structure of β-sheet (ribbons) in (A) and a polynomial surface (golden
dots) in (B). An example of the region where the surface does not fit well the image is marked with an arrow.

5–10Å resolution. In spite of the difficulty in distinguishing individual β-strands from a medium-resolution
map, we previously showed that it is possible to predict the position of the β-strands of a β-sheet through
the analysis of β-sheet twist [28]. A unique nature of a β-sheet is that each one is right-handed twisted [13].
StrandTwister utilizes this special character of a β-sheet to model the orientation of β-strands [28].

Given an atomic structure of a protein, a twist angle can be calculated along the peptide orientation and
has been shown to have right-handed twist on a β-strand [13]. For a given atomicmodel of a β-sheet, the twist
angle is often less than 40∘ [17, 25]. However, when precise location of atoms is not available, as for a β-sheet
image, precise calculationof a twist angle is challenging.Wemeasureda twist angle that is representedby two
neighboring β-traces, each of which is a central line of the β-strand [28]. In such a case, accurate calculation
of twist angles depends on accurate modeling of a β-sheet.

Since the density image of a β-sheet appears as a thin layer, two previous methods exist to represent a
β-sheet from its 3D image. Thinning and pruning is an image processing technique, and has been used to
produce a thin surface from a 3D image at the β-sheet region [21]. This method is an effective way to detect a
β-sheet, but the resulting surface is not smooth enough for direct calculation of twist angles. A polynomial
fitting method was used in StrandTwister [27, 28]. The polynomial was selected using least square fitting of
the voxels in the β-sheet image. Although the surface appears to fit well in most part of the image, it does
not fit accurately for a large β-sheet, particularly at the corner regions (arrow in Figure 1). It is possible that a
polynomial is not a sufficient model to represent a twisted surface.

In this paper, we explore a general mathematical model to represent the surface of any given β-sheet,
large or small. We propose to use an iterative Bézier surface to fit a β-sheet image. We show that the proposed
model improves fitting accuracy, particularly for the corners of a β-sheet.

2 Method
The surface model is derived iteratively using a Bézier model. At each iteration, a set of control points are
identified and used to guide the surfacemodel. The overall process includes fourmajor steps: (1) initial plane
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fitting; (2) generating initial bounding box of the β-sheet image; (3) iterative fitting of Bézier surfaces; (4)
definition of a polygonal boundary of the surface.

2.1 Pre-processing

Before iterative fitting of Bézier surfaces, initial control points need to be identified and the initial boundary
of the image need to be outlined. Since a β-sheet is a thin layer of density, a simple geometrical representation
of a β-sheet is a plane. We utilized a plane to assist the initialization of the boundary and control points. To
search for the best-fit plane of the β-sheet image, we define the plane in (1) and (2) and search for the best fit
plane using (3).

A = sin α cos β
B = sin α sin β
C = cos α
D = ∆

(1)

Ax + By + Cz + D = 0 (2)

Where p = (x, y, z) is a point in 3-dimensional space, α and β are angles variable between 0 and 2π. ∆ is a
real number. P is the set of all points in the β-sheet image.

min
α,β,∆

∑︁
p∈P

(Ax + By + cz + D)2 (3)

In principle a least square fitting of a plane will determine the best-fit plane of the β-sheet image, but we
implemented an approach simply varying α, β, and ∆ based on the feedback of the fitting error in (3). It
appears to work in all test cases. Note that the accuracy of the initial plane is not critical. The optimization
stops when a desired threshold of error is reached.

Once a plane was found, the initial boundary and control points were defined by projecting the β-sheet
image to the plane to create a 2-dimensional image. A rectangle was identified on the 2-dimensional image
using Deming regression [15], a heuristic method to approximate a bounding box. This heuristic method is
in O(n) where n is the number of points to be bounded. Once the bounding box is defined, the four corner
points are projected back to the β-sheet image to define the initial four control points in 3-dimensional space.

2.2 Iterative Bézier Surface Fitting

Bézier surface is a parametric surface S defined as in (4).

S (u, v) =
n∑︁
i=0

m∑︁
j=0

Bni (u) Bmj (v) Ci,j (4)

In which Ci,j is a control point in 3-dimensional space, i = 0, .., n; j = 0, . . . , m. A control point is the
position of a selected voxel of the β-sheet image through a pre-processing step. Bni (u) is defined as in (5).

Bni (u) =
(︃
n
i

)︃
ui(1 − u)n−i (5)

Using the initial four control points derived in the pre-processing step, an initial surface is decided by search-
ing for a Bézier surface that generates the smallest fitting error evaluated as Least Squared Orthogonal Pro-
jection distance in (6).

RMSE (P, S) =
√︂

1
|P|
∑︁

pϵP

(︀
d(p, p̄

)︀
)2 (6)
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p is a point on the β-sheet image, and p̄ is a point on surface S with the shortest distance from p. d(p, p̄) is
the distance between point p and p̄. For a general surface, calculating point projection onto a surface is a
non-trivial optimization problem. We approximate the closest point using a fast local optimization. Initially
a set of points were uniformly distributed on the surface. Given a voxel in the β-sheet image, its closest point
on the surface is searched in the local neighborhood of an initial point using gradient descent method. To
search for the surface with the minimal orthogonal distance, the position of control points were searched in
a local neighborhood.

The iterative step of fitting Bézier surfaces consists of adding more control points and regenerating ap-
proximately best-fit surfaces. The number of control points changed from 2 × 2 to 3 × 3 and 4 × 4, as examples.
The number of control points nm is chosen to balance between precision and performance. Figure 2A was
generated with n = 6 andm = 10. Because each point projection takes a constant amount of time, our heuris-
tic allows us to compute RMSE of orthogonal in O(n) time.

Figure 2: Polygonal boundary and Delaunay triangulation. A: An example of the polygonal boundary (thick lines) of the surface
for protein 1CHD (PDB ID) β-sheet 1. Larger dots are control points of Bézier surface; fine dots are voxels of the β-sheet image.
B: An example of the long edges (gray lines) that are pruned after Delaunay triangulation using χ algorithm [16]. Dark lines are
the resulting boundary of the point set.

2.3 Polygonal Boundary of the β-sheet Surface

A Bézier surface is traditionally defined as a patch, with surface variables u and v ranging from 0 to 1. How-
ever, a β-sheet will not have the shape of a square patch. Thus, a way to outline the β-sheet region on the
Bézier surface is needed. We first projected the voxels of the β-sheet image onto the optimized Bézier surface.
We then calculated theDelaunay triangulation of the point set using the code provided at https://github.com/
ironwallaby/delaunay.

After the triangles are generated using Delaunay, long edges at the boundary are iteratively pruned using
χ algorithmuntil a desiredmaximumedge length is reached [16] (Figure 2). Apolygonal boundary is generated
this way on the Bézier surface to outline the boundary of the β-sheet. Note that the Delaunay triangulation
and the pruning using χ algorithm has O(nlgn) time, since the algorithm uses a relational map to represent
and access the triangulation efficiently. An example of the surface boundary derived for a β-sheet of protein
1CHD (PDB ID) is shown in Figure 2.

2.4 Polynomial Fitting of a β-sheet Image

Previous studies have shown that an order 3 polynomial can be an approximation of a beta-sheet. We sum-
marize the polynomial fitting here. More details can be found in [27, 28]. Given an isolated 3D image of a
beta-sheet, it was first aligned with the Z-axis of the coordinate system using the normal vector that passes
through the center of the image. Least square fitting of the image using (7) was performed to determine pa-
rameters A to J. Finally, the beta-sheet image and the polynomial surface were rotated back to the original
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position.
z = Ax3 + By3 + Cx2 + Dy2 + Ex2y + Fy2x + Gxy + Hx + Iy + J (7)

Fitting error was estimated using the RMSE between the image and the surface in (8).

RMSE (P, S) =
√︂

1
|P|
∑︁

p∈P
(zi − zi)2 (8)

Where zi is the Z coordinate of i-th voxel of the β-sheet image P, and zi is the Z coordinate of its corresponding
point on surface S. Note that the image and the surface are registered using the normal vector of image P and
the Z-axis of surface S.

3 Results
Iterative Bézier surface fitting was tested using two sets of β-sheet images. The first set contains eight sim-
ulated β-sheet images (see 3.1) and the second contains five β-sheet images extracted from cryo-EM density
map EMD1237 (see 3.2). We compared two surface fitting methods – the polynomial fitting and the iterative
Bézier fitting. In evaluation of the performance, we compared the root-mean-square-error (RMSE) between
the β-sheet image and the surfacemodel. Since the polynomial fitting was implemented in StrandTwister, the
RMSE calculation used in StrandTwister, as in (8), was directly used in comparison. The RMSE between the
β-sheet image and the Bézier surface was calculated after each voxel in the image is registeredwith its closest
point on the surface model. We also performed visual inspection by superposition of the atomic structure,
the image, and the surface model of the β-sheet.

Figure 3: Bézier surface and polynomial surface fitted in the β-sheet image of 1A12 (PDB ID) chain A sheet A. The image (gray),
atomic structure (blue ribbon), the Bézier surface (cyan), and the polynomial surface (golden dots) are superimposed. The
most prominent visible difference is seen at the lower-right corner, at which the Bézier surface is seen to fit the β-strands more
closely (arrow). (A) and (B) are two views of the same object.

3.1 Fitting Simulated β-sheet Images

For each of the eight simulated test cases, the atomic structure of a β-sheet was used to simulate the β-
sheet image. The atomic structures were downloaded from the Protein Data Bank, and all atoms on a β-sheet
were used to simulate the 3-dimensional image of the β-sheet to 10 Å resolution using molmap function in
Chimera [24]. To guide the surface fitting towards the dense points of the image, a density threshold was used
to generate the β-sheet image. The same threshold was used in each test case for both the polynomial and
Bézier fitting. An example of the simulated β-sheet image (gray region in Figure 4) is superimposed with the
atomic structure (ribbon in Figure 4). Although most of the polynomial surface (golden dots) is fairly close to
the Bézier surface (blue), differences are seen mostly at the corner or the edge of the image (Figure 4). Bézier
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Figure 4: Bézier surface and the polynomial surface for β-sheet 1 of protein 1CHD (PDB ID). Figure 4 and Figure 3 use the same
color annotation.

surface appears to be closer to the atomic structure (ribbon) at the corner in this case than the polynomial
surface.

Each of the eight β-sheets contains three to ten β-strands. We observed that the RMSE error between the
image and the Bézier surface (column 3 of Table 1) is consistently smaller than that for the polynomial surface
(column 4 of Table 1). As an example, β-sheet 1A12_A has four strands. The RMSE between the image and
Bézier surface is 1.01 Å (Table 1). The RMSE between the β-sheet image and the polynomial surface is 1.15 Å.
The major difference in fitting appears to be located at the corner region (Figure 3). Bézier surface represents
more accurately at the corner of a β-sheet, and that is expected since the shape of the corners will be mostly
amplified by the twist of a β-sheet. Our test suggests that the iteratively fitted Bézier surface is more accurate
than the polynomial surface. Although this case involves a β-sheet of only four strands, one of the β-strands
has a significant kink, as seen for some β-sheets. It is possible that a polynomial is not the best way to fit such
a case. We noticed that a Bézier surface is more flexible to represent such a shape.

Table 1: Comparison of surface fitting error.

PDB IDa #Strdb BzFitc PolyFitd Thrshe #Voxelsf

1IG0_B 10 1.19 2.00 0.33 1868
1QNA_C 9 1.07 1.45 0.33 1764
1DTD_A 8 1.64 2.13 0.29 2621

1CHD_SH1 7 0.99 1.53 0.33 1106
1ATZ_A 6 0.99 1.21 0.35 1117
1AKY_A 5 1.37 1.49 0.29 1102
1A12_A 4 1.01 1.15 0.34 644
1A12_B 3 0.87 1.13 0.34 327
a. The PDB and sheet ID;
b. The number of β-strands;
c. The RMSE (root-mean-square-error, in Å)
for the iterative Bézier surface fitting;
d. The RMSE for the polynomial fitting;
e. The density cut-off threshold;
f. The total number of voxels included in each fit;
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Table 2: Fitting Errors of β-sheets in Cryo-EM density maps.

PDB IDa #Strdb BzFit c PolyFitd Thrshe #Voxelf

2GSY_A 4 1.29 2.34 0.18 362
2GSY_B 5 1.61 2.19 0.16 863
2GSY_C 6 1.65 2.34 0.15 1239
2GSY_E 4 1.49 1.80 0.12 1181
2GSY_G 4 1.45 2.21 0.14 1036
a. The PDB and sheet ID;
b. The number of β-strands;
c. The RMSE (root-mean-square-error, in Å) for the spline fitting;
d. The RMSE for the polynomial fitting;
e. The density cut-off threshold;
f. The total number of voxels included in each fit;

Similar result is observed for 1CHD-SH1 that has seven β-strands. In this case, the β-sheet is larger than
previous case 1A12_A. We observe a difference of 0.54 Å RMSE when two different surfaces are used in calcu-
lating RMSE. Although some of the difference might be resulted from two slightly different ways to register a
voxel with its closest point on the surface, some of the RMSE difference is expected to be from the different
fitting at the corners, since visual inspection clearly shows difference at the corners (Figure 4). It is possible
that a flexible surface is needed to fit a larger β-sheet image, particularly when the corners of a β-sheet appear
highly-twisted, presumably from the accumulation of twist from every pair of neighboring β-strands of the
β-sheet.We observe that the Bézier surface is better in representing the twist of a β-sheet and provides amore
accurate fitting of the β-sheet image (Figure 4).

3.2 Fitting Cryo-EM β-sheet Images

The performance of iterative Bézier surface fitting was further tested using five β-sheet volumes of an exper-
imentally derived cryo-EM density map. Cryo-EM density map (EMD-1237, 7.2 Å resolution) was aligned with
atomic structure 2GSY (PDB ID) and was downloaded in September 2011. Chain A of 2GSY was used to mask
the density region corresponding to chain A. SSETracer was then used to identify α-helices and β-sheets.
Chain A of 2GSY has seven β-sheets, two of them are small β-sheets with 2 of 3 β-strands. The five larger
ones (with four to six β-strands) were segmented out using SSETracer and were used in the test. We observed
similar results as for the test using simulated density maps. The RMSE fitting error of iterative Bézier surface
is consistently lower than that of the polynomial surface (Table 2). We also observed that the fitting error is
generally slightly higher for cryo-EM volumes than for simulated volumes (Table 1 and Table 2). A possible
reason is that cryo-EM maps generally have lower quality than simulated maps.

4 Discussions
Deriving β-strands from β-sheet density volume requires accurate representation of the β-sheet surface. It
was shown in StrandTwistermethod that candidate sets of β-strand traces can be drawn on the surface, and
the correct orientation of β-strand traces can be identified based on maximum twist angle measurement.
Although a polynomial surface fit well in the central region of a β-sheet, it does not fit well at the corners. The
inaccurate surface representation at the cornersmay result in inaccuracy of β-traces at the corner regions.We
show that an iterative fitting of a Bézier surface provides more flexible surface representation for the twisted
corners. We expect that the resulting β-traces on the Bézier surface are more accurately predicted than those
on a polynomial surface.
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5 Conclusions
Cryo-EM technique has recently been used to produce 3-dimensional images for many large molecular com-
plexes. When the resolution of 3-dimensional images is not sufficient to derive atomic structure directly from
the image, it is still challenging to interpret the image. At medium resolution of 5–8 Å, secondary structures
such as α-helices and β-sheets show their characteristic shape. In order to model β-strands from a β-sheet
image, we propose an iterative fitting method using Bézier surface. This method is compared to the polyno-
mial fitting that we previously used in StrandTwister [28]. A test involving eight simulated β-sheet images of
various sizes shows that the fitting error RMSE is reduced for all cases. Iterative Bézier surfaces is capable of
representing twisted corners of a β-sheet imagemore precisely. Our future work will involve the development
of a method to predict β-strand with the enhanced accuracy than StrandTwister.

Acknowledgement: This work is supported in part by NSF Bio-DBI-1356621, NIH R01 GM062968, and Under-
graduate Research Scholarship (to Michael Poteat) of Honors College of Old Dominion University.
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