
Old Dominion University
ODU Digital Commons
Electrical & Computer Engineering Faculty
Publications Electrical & Computer Engineering

2014

Generator Polynomial Formulation for Parallel
Counters with Applications
Lee A. Belfore II
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_fac_pubs

Part of the Mathematics Commons, Signal Processing Commons, and the Systems and
Communications Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for
inclusion in Electrical & Computer Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information,
please contact digitalcommons@odu.edu.

Repository Citation
Belfore, Lee A. II, "Generator Polynomial Formulation for Parallel Counters with Applications" (2014). Electrical & Computer
Engineering Faculty Publications. 184.
https://digitalcommons.odu.edu/ece_fac_pubs/184

Original Publication Citation
Belfore, L. A., II. (2014). Generator polynomial formulation for parallel counters with applications. International Journal of Computers
and Their Applications, 21(1), 4-13.

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs/184?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

4 IJCA, Vol 21, No. 1, March 2014

Generator Polynomial Formulation for Parallel Counters with Applications

Lee A. Belfore, II *

Old Dominion University, Norfolk, VA 23529, USA

Abstract

Parallel counters have been studied for several decades

as a component in high speed multipliers and multi-operand

adder circuits. Using a generator polynomial as a formalism

for describing parallel counters in the general case, parallel

counter properties can be derived and inferred. Furthermore,

the structure and decomposition of the generator polynomial

can suggest different implementation strategies. These

include simple implementations of (7,3) and (15,4) parallel

counters. By grouping factors, the design of a fast

(7,3) parallel counter is presented. Finally, the generator

polynomial is extended to permit factors of different weights.

This extension provides a means for describing the design of

the (5,5,4) and (4,5,5,5) multicolumn parallel counters.

Keywords: Parallel counter, generator polynomial, GF(2)

algebra, logic synthesis, fast multipliers.

1 Introduction

A parallel counter is a combinational logic circuit that, in

its most basic form, inputs a collection of equally weighted

binary literals and outputs a binary number reporting the

number of these literals that are one. Parallel counters are

used in applicationswhich are sped up whenmultiple addends

can be concurrently added to form a result. This occurs in

such applications as fast combinational multipliers and signal

processing applications. Methods for describing parallel

counters usually take the form of heuristics that build upon

the basic description of a parallel counter. As such, no known

general formalism exists for representing parallel counters

algebraically.

Because applications vary, thereby changing the number

of operands, a generalized approach for synthesizing parallel

counters is of value. Many of the approaches build general

parallel counters from (3,2) parallel counters (e.g., full

adders) as well as higher order parallel counter building

blocks. Indeed, the references [6, 7] provide good

overviews of the design and specification of parallel counters.

Applications of parallel counters in fast multipliers were first

formulated in [3, 8]. Because parallel counters are used

in high performance applications, they are often designed

with high speed and compactness in mind to manage the

∗Department of Electrical and Computer Engineering, Email:

lbelfore@odu.edu

complementary issues of performance and implementation

complexity.

This paper is organized into five sections including an

introduction, a short tutorial of parallel counter multiplication

applications, a development of the parallel counter formalism,

a presentation of several circuit synthesis examples based on

the formalism, and a summary.

2 Basic Overview of the use of Parallel

Counters

Parallel counters have an application where the sum of a

collection of values is required. In particular, much effort has

been devoted to devising fast multipliers for high performance

computation. In this section, we provide a basic introduction

to the use of parallel counters in fast multipliers. For more

information, the interested reader is encouraged to consult

[4, 5]. A simplified schematic of a fast multiplier strategy

is presented in Figure 1.

0

PP7

(7,3) PC

PP

Multiplier

Multiplicand

Level 3

Level 2

Adder

Level 1

Figure 1: Strategy for fast multiplication

One strategy for fast multiplication is to perform all

operations using combinational logic implementations of

parallel counters, employ a carry save strategy, and then

ripple carries in the very last phase of the computation. The

multiplication example shown above effectively goes through

four phases. In the first phase, the partial products are

generated which is simply the products of each bit in the

ISCA Copyright© 2014

• • • • • • • •
• • • • • • • •

- , _,~~ -,i __,,,,,.. t 1 ♦ , 1 ,

I T ' ; , •

1!H ;: ..
- c.:::-I-i-.----I-l-.3> i

1/~ / / .
✓

///1///////// ..

1//////////// ...
• • • • • • • • • • • • • • • •

IJCA, Vol 21, No. 1, March 2014 5

multiplier with the multiplicand, placing each partial product

in the appropriately shifted position depending on the bit of

the multiplier. This gives the level 1 partial products. Adding

columns and saving the carries results in the Level 2 and 3

partial products. Finally, in the last phase, a fast adder adds

the results to form the product. Noted also in this diagram

are the parallel counters in Level 1 along with the results

produced in Level 2. Highlighted is a (7,3) parallel counter

and its result. In addition, other organizations are possible

using multiple column parallel counters as will be noted later

in this paper.

3 Generator Polynomial Formulation

Before introducing the generator polynomial formulation,

we first state some assumptions. First, the GF(2) algebra is

used in the formulation. Recall that GF(2) has two operators,

Exclusive-OR (XOR) and AND, which will be denoted by

+ and · (often implied) respectively. Literals in the GF(2)

system nominally take on the values 0 and 1. The GF(2)

system serves as the mathematical system that is used in a

variety of applications including, for example, encryption and

error correcting codes. In this section, we explore a generator

polynomial formulation for parallel counters [1].

3.1 Properties of the Generator Polynomial

Rather than formulating a fixed coefficient generator

polynomial, the generator polynomial coefficients described

here are determined by literals. A literal a can be represented

by the following factor

F(r) = 1 + a · r, (1)

where r is the generator polynomial indeterminate variable.

Representing literals using (1) suggests a mathematical

formulation for combining literal factors into higher order

generator polynomials. For example, the product of the

factors for a1, a2, and a3 is

F (3)(r) = (1 + a1r)(1 + a2r)(1 + a3r)
= 1 + (a1 + a2 + a3)r

+(a1a2 + a1a3 + a2a3)r
2

+(a1a2a3)r
3

= 1 + F
(3)
1 r + F

(3)
2 r2 + F

(3)
3 r3.

(2)

Note that the degree for each coefficient matches the number

of literals in the contributing product terms, or cubes,

included in the coefficient. Furthermore, and curiously, the

second and first degree coefficients, respectively, are the sum

and carry functions for the full adder function with input

literals a1, a2, and a3. Indeed, these also define the outputs

for the (3,2) parallel counter:

F
(3)
2 = S1 = Carry = a1a2 + a1a3 + a2a3

F
(3)
1 = S0 = Sum = a1 + a2 + a3.

(3)

Traditionally, the full adder carry function is expressed as sum

of products form with AND and OR primitives. While in

GF(2) ‘+’ is XOR, it is easy to confirm the correctness of the

full adder carry function.

Extending this result, a generator polynomial can be

formulated in the general case for n literals a1, a2, ..., an

F (n)(r) =
n
∏

i=1

(1 + air)

= 1 + F
(n)
1 r + F

(n)
2 r2 + · · ·+ F

(n)
n rn

= 1 +
n
∑

d=1

F
(n)
d rd.

(4)

From (4), several useful properties can be elicited.

Theorem 1. Each coefficient F
(n)
d in F (n)(r) is the XOR

sum of all
(

n
d

)

distinct degree d cubes.

Proof: The binomial expansion,

F(r) = (x0 + x1)
n, (5)

can be expressed as

F(r) =

n
∏

i=1

(x0 + x1). (6)

In (6), the product is composed of 2n terms where each can

be uniquely identified by an n bit codeword, Sm, representing

the contribution of either x1 or x0 from each of the n factors

at position i and is expressed as

Sm =

nn

i=1

{

x1 for mi−1 = 1
x0 for mi−1 = 0

(7)

where ‖ is the concatenation operator and m is the "value"

of this codeword. The codeword value is determined by

associating a 1 for x1, and 0 for x0 in the following expression

m =

n
∑

i=1

{

2i−1 for x1

0 for x0.
(8)

Generalizing (6), we substitute x0 = 1 and x1 = air,

resulting in the unexpanded and expanded polynomial forms

given in (4). Since it has been shown that all codewords, and

therefore all terms, are generated by the binomial product,

(4) is exhaustive and includes all unique cubes. In this

formulation, each polynomial coefficient i will be the sum of

all different cubes composed from exactly i literals, because

cubes having greater or fewer literals will be included in

higher or lower degree coefficients.

Lemma 1. The number of degree d cubes in (4) is Nd =
(

n

d

)

.

□

6 IJCA, Vol 21, No. 1, March 2014

Proof: The Binomial Theorem can be used to determine

the number of product terms fitting a particular composition,

i.e. the multiplicity of x1 and x0. Consider the expression

F(r) =

n
∏

i=1

(1 + air). (9)

In (9), 2n cubes result, and each can be associated with an

encoding, m, that reflects the contribution of the literals, ai.

Each cube is unique because it reflects of a different selection

of literals from each of the respective n factors. Furthermore,

each cube’s degree, d, is the number of literals in the product

and is also the the number of ones in the encoding m. Thus,

the number of cubes for a particular degree follows from the

binomial coefficient

Nd =

(

n

d

)

, (10)

where Nd is the number of degree d cubes. Each degree d

coefficient, F
(n)
d , is the XOR of the Nd different degree d

cubes.

3.2 Power of Two Combinatorics

In §3.1, the first and second degree coefficients from

F (3)(r) were the sum and carry functions for the full

adder. In order to generalize the formulation to parallel

counters of arbitrary size, the number of cubes contributing

to a coefficient will be determined to study coefficient

properties. Since the polynomial is GF(2), the focus will

be determining whether the number of cubes contributing to

specific coefficients is even or odd.

Lemma 2. For an integer k > 1, (2k)! is divisible by two
with multiplicity (2k − 1).

Proof: The lemma can be proven by repeatedly factoring

out two. Note that the number of even terms in (2k)! is 2k

2 ,

the number divisible by four are 2k

4 , the number divisible by

2i for i ≤ k are 2k

2i . Let p be the number of twos that can be

factored out and is expressed as

p =
k
∑

i=1

2k

(2i)

=
k
∑

i=1

2k−i

=
k−1
∑

j=0

2j

= 2k − 1.

(11)

Equation (11) accounts for all factors of two and the final

step in (11) establishes that (2k)! is divisible by two with

multiplicity (2k − 1).

This property is generally attributed to Legendre.

Lemma 3. For k > j, (2k − 2j)! is divisible by two with
multiplicity (2k − 2j − (k − j)).

Proof: By Lemma 2, (2k)! is divisible by two with

multiplicity (2k) − 1. Note that (2k − 2j)! has 2j fewer

factors and will thus reduce the multiplicity. Noting further

that (2k−2j)! is on a 2j boundary, the multiplicity is reduced

by (2j) − 1. The very last factor, 2k has only been reduced

by 2j , and so multiplicity must be further reduced by (k− j).
We can express the power of two divisibility in (2k − 2j)! as

p2 = (2k − 1)− (2j − 1)− (k − j)
= 2k − 2j − (k − j).

(12)

Lemma 4. For k > j,
(

2k

2j

)

is divisible by two with

multiplicity k − j.

Proof: Because
(

2k

2j

)

=
(2k)!

(2k − 2j)!(2j)!
(13)

and using the previous Lemmas, (13) is divisible by two with

multiplicity

p2 = 2k − 1− ((2k − 1)− (2j − 1)− (k − j))−
(2j − 1)

= (k − j).
(14)

Thus,
(

2k

2j

)

is divisible by 2k−j .

Lemma 5. The quantity 2j + 2m, for m < j, is divisible

by 2m.

This can easily be confirmed by noting that (2j + 2m) =
(2j−m + 1)2m.

Lemma 6.
(

2k+i
2j

)

is even for j < k and i < 2j .

Proof: For i = 0,
(

2k

2j

)

can easily be shown to be even by

applying Lemma 4. The remaining cases can be examined by

rearranging the factors in the numerator and denominator as

follows:

(

2k+i
2j

)

= (2k+i)!
(2k+i−2j)!(2j)!

=
(

(2k+i)···(2k+1)
(2k
−2j+i)···(2k

−2j+1)

)(

(2k)!
(2k
−2j)!(2j)!

)

= (2k+i)···(2k+1)
(2k
−2j+i)···(2k

−2j+1)

(

2k

2j

)

.

(15)

Because the numerator of
(2k+i)···(2k+1)

(2k
−2j+i)···(2k

−2j+1)
starts on a 2k

boundary and the denominator starts on a 2j boundary not

divisible by 2j+1, each is divisible by the same number of

factors of two by Lemma 5 and thus is odd. By Theorem 2,

the second term,
(

2k

2j

)

is divisible by two with multiplicity

k − j. Thus,
(

2k+i
2j

)

is even for k > j and i < 2j .

Lemma 7.
(

2k+i

2k

)

is odd for i < 2k.

□

□

□

□

□ □

IJCA, Vol 21, No. 1, March 2014 7

Proof: Note that

(

2k+i

2k

)

= (2k+i)!
(2k)!(i)!

= ((2k+i)···(2k+1))(2k)!
(2k)!(i)!

= (2k+i)···(2k+1)
(i)! .

(16)

Since ((2k + i) · · · (2k + 1)) and (i)! begin on 2k boundaries,

each is divisible by two in the same multiplicity and
(

2k+i

2k

)

is

thus odd.

3.3 Properties of Generator Polynomial
Coefficients

In this subsection, the properties of generator polynomial

coefficients will be studied in terms of their relation to the

number of literals that are one. In the previous section,

a collection of combinatorial relations were developed to

ascertain whether a particular combination specification was

even or odd. This is relevant to studying of coefficients

because if we can relate the number of literals that are one

to cubes in polynomial coefficients, the coefficient values can

determined as well as other useful relationships.

We will begin with the following definitions.

Definition 1. An instance, ι, of a degree d cube is denoted

by Cι
d and is an instance ι of a product term composed of d

different literals.

Definition 2. A cube of degree d, Cι
d covers a cubeCs

e , e ≤ d

when the literals that form Cs
e are a subset of the literals used

to form to Cι
d.

Definition 3. The quantity |A| is the number of literals in the
vector A = a1a2 · · · an that are one.

From these definitions, we can state the following two

lemmas.

Lemma 8. If the cube Cι
2k = 1 and j < k, then each

covered cube C
ζ

2j = 1.

Proof: If Cι
2k = 1, then all of the literals in the cube must

be one. Furthermore, any cube ζ formed by a subset of these

literals must also be one so C
ζ

2j = 1.

Lemma 9. The cubeCι
2k covers

(

2k

2j

)

degree 2j cubes when

the 2j literals are subset of the 2k literals used to form Cι
2k .

Proof: Since literals in the degree 2j are a subset of the

literals formed from Cι
2k , the total number of different cubes

is the different 2j degree cubes selected from a pool of 2k, or
(

2k

2j

)

.

Next, the following theorem considers the case where

|A| = 2k and the impact on the degree 2j , j ≤ k coefficients

F
(n)
2j .

Theorem 2. If |A| = 2k, exactly one cube F
(n)

2k evaluates

to one and results in F
(n)

2k = 1. All other coefficients, F
(n)
2j =

0 for j < k.

Proof: If |A| = 2k, then exactly one the cube, Cι
2k is one

and it is included in F
(n)

2k , so therefore F
(n)

2k = 1.

For j < k, the coefficient F
(n)
2j includes the contribution of

(

2n

2j

)

cubes, all covered byCι
2k , or

(

2k

2j

)

are one. By Lemma 4,
(

2k

2j

)

is divisible by 2k−j and thus is even. Since
(

2k

2j

)

is even,

F
(n)
2j = 0.
One interpretation of Theorem 2 is that if |A| = 2k, all

smaller cubes C
ζ

2j that are formed from the same literals are

covered and effectively masked out because the total number

of these smaller cubes is even. Next, we generalize this result

for cases where |A| 6= 2k in the following two corollaries.

Corollary 1. For 0 ≤ i < 2k, if |A| = (2k + i), then

F
(n)

2k = 1.

Proof: Since (2k + i) ones cover
(

2k+i
2k

)

degree 2k cubes

and each of these 2k cubes is one, then the number of degree

2k cubes are odd by Lemma 7, and F
(n)

2k = 1.

Corollary 2. If |A| = (2k, 2k+1), one cube Cι
2k

covers 2k literals and all cubes composed of these literals.

The remaining |A| − 2k literals are disjoint from Cι
2k and

uncovered.

Proof: By Corollary 1, an odd number of cubes are

one in the coefficient F
(n)

2k . Without loss of generality, we

select one representative cube Cι
2k and the remaining even

number of cubes effectively cancel one and other out. By

Theorem 2, all lower order cubes covered by Cι
2k make

no contribution to their respective lower order generator

polynomial coefficients. The remaining |A| − 2k uncovered

literals, A
d, are disjoint from the representative 2k literals.

Corollary 3. The disjoint literals from Corollary 2, Ad,

form a lower order generator polynomial representative of its

constituent disjoint literals.

Proof: The original general polynomial was given in (4).

Factoring out the contribution of the 2k literals that were one

leaves a generator polynomial with |Ad| = |A| − 2
k factors.

Corollaries 2 and 3 can be used as a sieve to associate

literals that are one with power of two degree generator

polynomial coefficients. The following definition provides a

convenient way to state the starting point for this process.

Definition 4. km is the largest power of two such that 2km

does not exceed n or 2km ≤ n < 2(km−1).

Pulling all this together, one of the principle results of this

paper is captured in the following theorem.

□ □

□

□

□
□

□

8 IJCA, Vol 21, No. 1, March 2014

Theorem 3. For a given assignment of the literals

a1a2 · · · an, the coefficients from F
(n)

2k for k ∈ {km, ..., 0}
encode a binary number which is the number literals that are

one and is expressed as

|A| =

km
∑

k=0

F
(n)

2k 2k. (17)

Proof: Given 0 ≤ |A| ≤ n, where n = 2(km+1)−1. In the
trivial case where |A| = 0, all literals are zero and therefore

all F
(n)

2k = 0.

Next, we will assume that |A| = 2k. In this case, the kth

bit of the encoding is one and the rest are zero by Theorem 2

and F
(n)

2k = 1.

The general case can be shown by repeated application

of Corollaries 2 and 3. If |A| = (2k, 2k+1), for higher
contributions, [k + 1, km] are zero because the cubes for the
respective generator polynomial coefficients must be zero. By

Corollary 2, F
(n)

2k = 1 and it covers the included 2k literals

in the lower order generator coefficients and contributes

2k to the literal count. By excluding the covered cubes

by Corollary 2 and specifying a reduced order generator

polynomial of the remaining literals by Corollary 3, the

process is repeated until all literals are covered, resulting in

the literal count specified by (17).

From Theorem 3 it is useful to define the binary number

that gives the literal count as follows.

Definition 5. Concatenating the coefficients from F
(n)

2k for

k ∈ {km, ..., 0} results in the binary string

S = F
(n)

2km
‖ F

(n)

2km−1 ‖ · · · ‖ F
(n)
20 . (18)

4 Parallel Counter Synthesis

In addition to being able to express parallel counting

function mathematically, it is also exceedingly valuable to

show how the generator function formulation can be used

to influence implementations. Because the operations in

the GF(2) algebra are XOR and AND, any expressions can

lead directly to implementation. In this section, several

implementation examples are presented. The first example

shows how parallel counters can be implemented directly

from the polynomial. The second example uses a recursive

tree formulation that identifies parallelism in the process to

result in an implementation with shorter propagation delays.

The third example extends the basic formulation to show how

multiple column parallel counters can be implemented.

4.1 Simple Synthesis

To this point, we have developed a mathematical

framework for describing parallel counters in the general

case. In this subsection, some basic implementation issues

are addressed [1, 2]. Because the generator polynomial is

formed with AND and XOR operations, in the context of the

generator polynomial coefficients, we can specify AND/XOR

logic circuits to implement the respective logic functions.

Theorem 4. The expressions that specify S can be

implemented with combinational logic circuits.

Proof: This is shown by implementing the logic functions

defined in Theorem 3 with XOR gates and two-input AND

gates.

Assume that we start with the generator polynomial

F (j−1). We can express F (j) as

F (j) = F (j−1)(1 + ajr)

= F (j−1) + ajF
(j−1)r.

(19)

Equation (19) implies three different relations describing the

determination of the coefficients in F (j) depending on the

degree of the associated coefficient. For the first degree

coefficient,

F
(j)
1 = F

(j−1)
1 + aj . (20)

Indeed, in the general case, the first degree coefficient is the

XOR of all literals. For the highest degree, degree j case,

F
(j)
j = F

(j−1)
j−1 aj . (21)

In this case, the highest degree coefficient is the AND of all

literals. In the remaining cases, the coefficients are

F
(j)
k = F

(j−1)
k + ajF

(j−1)
k−1 , (22)

where k < j. Equation (22) indicates a primitive unit

consisting of an AND gate and an XOR gate can be used to

construct arbitrary sized parallel counters.

Equations (20)-(22) describe how the jth degree generator

polynomial can be determined from the (j − 1)th generator

polynomial and literal aj . Furthermore, each additional literal

contributes a layer to a combinational logic circuit to give

the implementation for the next higher order polynomial.

Beginning with the first degree generator polynomial, we

can construct the circuit for the nth degree generator

polynomial. The resulting parallel counter outputs are simply

the coefficients from the generator polynomial identified in

Definition 5.

Theorem 4 can be used to describe all the circuitry

necessary to build the generator polynomial coefficients in

the general case. Indeed, the actual circuit can be pruned

by making a couple of observations. First, given 2km ≤
n < 2km−1, only the coefficients up to 2km need be

□

□

IJCA, Vol 21, No. 1, March 2014 9

considered. In addition, coefficients not contributing to

coefficients identified in S may be pruned as well.

The mathematical formulation just presented forms the

basis for the synthesis of parallel counters. Because

the mathematics employs AND and XOR operations for

the expressions, these can be mapped directly to the

implementation. Figure 2 gives a gate level schematic for

a (7,3) parallel counter. In addition, this figure is labeled to

show the generator polynomial coefficients used to synthesize

the circuit. Parts of the circuit that do not contribute to the

count are highlighted in gray and can be pruned from the

circuit representing the generator polynomial. Extending the

process, the circuit for a (15,4) parallel counter can be derived

and is shown in Figure 3. Note that the (7,3) parallel counter

is embedded in the (15,4) counter reflecting the observation

that this can be algebraically factored out.

4.2 Recursive Formulation of Minimum Delay
Parallel Counters

Because multiplication of factors is commutative, the

order and composition of factor products do not affect

the resulting final polynomial. As presented, Equation

(4) presumes the product is computed from left to right,

resulting in the relatively long chain of operations as can

be observed in Figures 2 and 3. Furthermore, these results

presume a serial multiplication process where each factor

is successively multiplied by the result of the previous

intermediate polynomial. This structure does not take

advantage of any parallelism that might exist.

Consider a (3,2) parallel counter. Its generator polynomial

can be expressed as

F (3)(r) = (1 + a1r)(1 + a2r)(1 + a3r)
= 1 + (a1 + a2 + a3)r

+(a1a2 + a1a3 + a2a3)r
2

+(a1a2a3)r
3

= 1 + F
(3)
1 r + F

(3)
2 r2 + F

(3)
3 r3.

(23)

a
5a

4

a
6

a
7

F(7)

7

F(7)

6

F(7)

5

=S F(7)

4
F(7)

2
F(7)

1

F(7)

1

F(7)

2

F(7)

4

F(7)

3

F
(6)

3

F
(6)

4

F
(6)

2

F
(6)

1

F
(5)

1

F
(5)

2

F
(5)

4

F
(5)

3

F
(4)

3

F
(4)

2

F
(4)

1

F
(4)

4

F
(3)

2

F
(3)

1

F
(2)

2

F
(2)

1

F
(3)

3

F
(5)

5 F
(6)

5

F
(6)

6

a
2

a
1

a
3

a. Original

1

a
3

a
5a

4

a
6

a
7

F(7)
1

F(7)
2

F(6)
2

F(6)
1

F(4)
2

F(4)
1

F(3)
2

F(3)
1

F(2)
2

F(2)
1

F(3)
3

=S F(7)
4

F(7)
2

F(7)
1

F(6)
3

F(6)
4

F(7)
4

F(5)
3

F(5)
4

F(5)
1

F(5)
2

F(4)
4

F(4)
3

a
2

a

b. Reduced

Figure 2: (7,3) Parallel counter. In Figure 2a, note the pruned components (gray) and the generator polynomial coefficients.

The final circuit is shown in Figure 2b

10 IJCA, Vol 21, No. 1, March 2014

a
9

a
1

0

a
1

1

a
1

2

a
1

3

a
1

4

a
1

5

F(15)

8
F(15)

4
F(15)

2
F(15)

1
=S

8
F

F

(15)

1
(15)

F
2
(15)

F
4
(15)

F
1
(7)

F
2
(7)

F
4
(7)

a
8

Figure 3: (15,4) Parallel counter with the factor contributing (1 + a11r) highlighted

Grouping the first two factors, the polynomial can be

expressed as

F (3)(r) = ((1 + a1r)(1 + a2r)) (1 + a3r)
=

(

1 + (a1 + a2)r + (a1a2)r
2
)

(1 + a3r)

=
(

1 + F
(2)
1 r + F

(3)
2 r2

)

(1 + a3r)

= 1

+
(

F
(2)
1 + a3

)

r

+
(

F
(2)
2 + F

(2)
1 a3

)

r2

+
(

F
(2)
2 a3

)

r3.

(24)

The result of (24) shows the manner in which polynomials

may be combinedwith other terms, in this case a single factor.

Further, because the polynomial coefficients are determined

by AND and XOR operations, implementations of circuits

follow from the mathematics. The (3,2) parallel counter can

be implemented with the circuit given in Figure 4. With

close study of this circuit, the reader will correctly conclude

that this factoring will provide no benefit over the originally

proposed implementation strategy.

F(2)
(1:2),1

F(2)
(1:2),2

2a

1a

F(1)
(3),1

F(3)
1

F(3)
2

F(3)
3

3a

Figure 4: Circuit (3,2) parallel counter

Consider the formulation of the (7,3) parallel counter

by partitioning into two smaller polynomials, F
(4)
(1:4)(r) &

F
(3)
(5:7)(r) where the quantity (1 : 4) refers to the inclusion

of literals a1, ..., a4 and the quantity (5 : 7) refers to the

literals a5, ..., a7 [2]. The product of these two polynomials

will provide the polynomial that results in the formulation of

the (7,3) parallel counter

F (7)(r)=F
(4)
(1:4)(r)F

(3)
(5:7)(r)

=
(

F
(2)
(1:2)(r)F

(2)
(3:4)(r)

) (

F
(2)
(5:6)(r)F

(1)
(7) (r)

)

,

(25)

where F
(D)
(i:j)(r) is the degree D generator polynomial

that includes contributions from literals indexed from i to

j. Because the polynomials F
(4)
(1:4)(r) & F

(3)
(5:7)(r) are

independent and share no terms, their logic functions can

be evaluated concurrently. Furthermore, the polynomials,

F
(4)
(1:4)(r) & F

(3)
(5:7)(r), can be decomposed themselves into

the polynomials F
(4)
(1:2)(r), F

(3)
(3:4)(r), F

(4)
(5:6)(r) & F

(3)
(7) (r).

Because these lower order polynomials are also independent

of one and other, the expressions and any logic that

implements their coefficients can operate concurrently as

well. The flow implied in computing the result of the parallel

count is illustrated in Figure 5. Inspecting how factors are

combined in the form of tree clearly highlights the operations

that can be performed in parallel. Indeed, operations that can

be performed in parallel are nodes on the same row.

(2)

a
1

a
2

a
3

a
4

a
5

a
6

a
7

(1)
(1)

(1) (1)
(3)

(1)
(4)

(1)
(5)

(1)
(6)

(1)
(7)

(2)
(5:6)

(2)
(3:4)

(4)
(1:4)

(2)
(1:2)

(3)
(5:7)

F F F F F F F

F

F
FF

F

F
(7)

Figure 5: (7,3) Factor products for recursive formulated

parallel counter

Circuits for the parallel counter follow directly from the

equations that can be derived for each coefficient. First, we

D-----
t t t t t t t
~

'
~ ~

'
~ ~

'
~ ,

' ' ' , , ,
~ ~

,
~

' / ' I

IJCA, Vol 21, No. 1, March 2014 11

show the polynomial for F
(4)
(1:4)(r).

F
(4)
(1:4)(r)=((1 + a1r)(1 + a2r)) ((1 + a3r)(1 + a4r))

=
(

1 + (a1 + a2)r + (a1a2)r
2
)

·
(

1 + (a3 + a4)r + (a3a4)r
2
)

=
(

1 + F
(2)
(1:2),1r + F

(2)
(1:2),2r

2
)

·
(

1 + F
(2)
(3:4),1r + F

(2)
(3:4),2r

2
)

=1

+
(

F
(2)
(1:2),1 + F

(2)
(3:4),1

)

r

+
(

F
(2)
(1:2),2 + F

(2)
(1:2),1F

(2)
(3:4),1 + F

(2)
(3:4),2

)

r2

+
(

F
(2)
(1:2),2F

(2)
(3:4),1 + F

(2)
(1:2),1F

(2)
(3:4),2

)

r3

+
(

F
(2)
(1:2),2F

(2)
(3:4),2

)

r4,

(26)

where each term F
(D)
(i:j),d is the degree d coefficient from the

generator polynomial. From (26), the circuit implementation

for the parallel counter with the inputs a1a2a3a4 is given in

Figure 6.

2

a4

a3

a1

F
(1:2)

(2)

F
(3:4)

(2)
F

(1:4),4

(4)

F
(1:4),3

(4)

F
(1:4),2

(4)

F
(1:4),1

(4)

a

Figure 6: Annotated circuit for (4,3) parallel counter

The degree-3 polynomial that includes literals 5 to 7

follows directly from (24).

F
(3)
(5:7)(r) = ((1 + a5r)(1 + a6r)) ((1 + a7r))

=
(

1 + (a5 + a6)r + (a5a6)r
2
)

· (1 + a7r)

=
(

1 + F
(2)
(5:6),1r + F

(2)
(5:6),2r

2
)

·
(

1 + F
(1)
(7),1r

)

= 1

+
(

F
(2)
(5:6),1 + F

(1)
(7),1

)

r

+
(

F
(2)
(5:6),2 + F

(2)
(5:6),1F

(1)
(7),1

)

r2

+
(

F
(2)
(5:6),2F

(1)
(7),1

)

r3.

(27)

Modifying the annotations of Figure 4, the implementation

for (27) is shown in Figure 7.

Computing the product of the polynomial results in the

following coefficients

F
(7)
1 = F

(4)
α1 + F

(3)
β1

F
(7)
2 = F

(4)
α2 + F

(4)
α1 F

(3)
β1 + F

(3)
β2

F
(7)
3 = F

(4)
α3 + F

(4)
α2 F

(3)
β1 + F

(4)
α1 F

(3)
β2 + F

(3)
β3

F
(7)
4 = F

(4)
α4 + F

(4)
α3 F

(3)
β1 + F

(4)
α2 F

(3)
β2 + F

(4)
α1 F

(3)
β3

F
(7)
5 = F

(4)
α4 F

(3)
β1 + F

(4)
α3 F

(3)
β2 + F

(4)
α2 F

(3)
β3

F
(7)
6 = F

(4)
α4 F

(3)
β2 + F

(4)
α3 F

(3)
β3

F
(7)
7 = F

(4)
α1 F

(3)
β1 ,

(28)

where α = (1 : 4) and β = (5 : 7).

F(2)
(5:6),1

F(2)
(5:6),2

5a

F(1)
(7),1

F(3)
(5:7),1

F(3)
(5:7),2

F(3)
(5:7),3

6a

7a

Figure 7: Annotated circuit for (3,2) parallel counter

Note that the parallel counter result is selected power of

two coefficients

S = F
(7)
4 F

(7)
2 F

(7)
1 (29)

and the expressions for these coefficients can be mapped

directly to the implementation for each. Alternatively, the

result can be combined by using a two-stage ripple carry

adder to combine Sα = F
(4)
α4 F

(4)
α2 F

(4)
α1 and Sβ = F

(4)
β2 F

(4)
β1 .

This alternate implementation would result in a slower circuit

requiring more gates.

Combining the circuits shown in Figures 6 and 7 and using

the expressions given in (28) results in the circuit for a (7,3)

parallel counter shown in Figure 8.

2

(1:2)

(2)

a1

a

a4

a3

2

S1

S0

a5

a6

a7

F
(3:4)

(2)

F
(5:7)

(3)

F
(1:4)

(4)

F
(7)

(1)

F
(5:6)

(2)

S

F

Figure 8: (7,3) Circuit for recursive formulated parallel

counter

______ /

[)--------

12 IJCA, Vol 21, No. 1, March 2014

4.3 Multiple Column Counter Formulation

A multiple column counter adds several columns, with

weights that increase by a factor of two for each additional

column. For example, a (5,5,4) parallel counter adds five

inputs from the first column with a weight of 2j and five from

the second with a weight of 2j+1 and produces a four bit sum.

The resulting parallel counter can be formulated as

F(r) =

5
∏

i=1

(1 + ai,jr)(1 + ai,j+1r
2), (30)

where ai,j is an input from the first column, and ai,j+1 is an

input from the second column. The largest possible sum is 5×
21+5×20 = 15. Thus, the count result is the concatenation of
the coefficients S = F8F4F2F1. Figure 9 gives a generalized

overview of multiple column counters.

2
i+1

2
i

a1

a5

8F 4F 2F 1F

2
i

2
i+k−1

2
i+1

a
n

a
1

1
F

2
F

2
F k−1

2
F rm

(a) (5,5,4) parallel counter (b) (n,· · · ,n,rm)

parallel counter

Figure 9: Generalized block counter

To maintain the proper weights in the contributions to the

generating function, the degree of the generator variable for

each factor must be the weight of the input and must thus be a

power of two. A general formulation of the multiplier column

counter can be expressed in the following relation

F(r) =
n
∏

i=1

c
∏

k=1

(1 + ai,j+k−1r
(2k)), (31)

where c is the number of columns, r(2k) represents the

weighted contribution of the input ai,j+k−1 [2]. The base

two logarithm of highest degree of the generating polynomial

that must be computed is

km =

⌊

log2

(

c
∑

k=1

n ∗ 2k−1

)⌋

(32)

Following from (32), 2km

is the largest power of two

coefficient in F(r).
As with the other parallel counters specified by generator

polynomials, expressions can be found for the (5,5,4) block

parallel counter outputs described by (31). Note that we are

assuming for simplicity that j = 0.

F(r) =
5
∏

i=1

(1 + ai,0r)(1 + ai,1r
2)

=

[

5
∏

i=1

(1 + ai,0r)

] [

5
∏

i=1

(1 + ai,1r
2)

]

=
[

F
(5)
0 (r)

] [

F
(5)
1 (r2)

]

(33)

Each polynomial factor can be expressed as fifth degree

polynomials, but can be factored to reduce the delays

associated with the implementation of the respective

networks. In the following

F (5)(r)=
(

F
(1)
(1) (r)F

(1)
(2) (r)

) (

F
(1)
(4) (r)F

(1)
(5) (r)

)

F
(1)
(5) (r)

=F
(2)
(1:2)(r)

(

F
(2)
(3:4)(r)F

(1)
(5) (r)

)

=F
(2)
(1:2)(r)F

(2)
(3:5)(r)

=F
(2)
(1:2)(r)F

(2)
(3:5)(r)

(34)

Note that (34) can be used for the first and second columns

in the block parallel adder by expressing the polynomials in r

and r2 respectively. Because the second column polynomial

is degree 10 and half the coefficients are zero, the expressions

for the resulting degree 15 polynomial are simpler compared

with the general case polynomial. The result is further

simplified by recognizing that only the degree 2k coefficients

are necessary

F1 = F
(5)
0,1

F2 = F
(5)
0,2 + F

(5)
1,1

F4 = F
(5)
0,4 + F

(5)
0,2 F

(5)
1,1 + F

(5)
1,2

F8 = F
(5)
1,4 + F

(5)
0,4 F

(5)
1,2 .

(35)

Expressing the (5,5,4) block parallel counter in this manner

suggests two possible implementations. The first is to provide

the implementations for the generator polynomials for the

weights 20 and 21 respectively. From the coefficients of the

polynomials F
(5)
0 (r) and F

(5)
1 (r2), the expressions in (35)

can be implemented directly. The second is to distribute the

terms to form expressions from the parallel counter inputs.

This second approach provides a result that has a minimum

number of layers of logic but the expressions that result are

more complicated.

The relative sparseness of the coefficients in (35) is a result

of the higher degree coefficients from the second column.

Since the second column polynomial has no odd degree

terms, only half of the coefficients from the first column

contribute to resulting higher order (degree two and higher)

polynomial coefficients. A higher order block parallel counter

of order (4,5,5,5), selected because of its naturally count

dense maximal sum of 25 − 1 = 31, further highlights the
simpler coefficient expressions that result from this induced

• •
• •
• •
• •
• •

• • • • •

•
•
•

•
•

• •
• •
• •

• •
• •

IJCA, Vol 21, No. 1, March 2014 13

sparseness. The (4,5,5,5) counter sums three successive

columns of 4, 5, and 5 columns respectively. Note that one

can study the properties of this counter as a (5,5,4) counter

embedded within the (4,5,5,5) counter which, viewed from

the perspective of the generator polynomial, is just a term that

is factored out. The polynomial for the (4,5,5,5) counter can

be expressed as coefficients for the (5,5,4) polynomial can be

expressed as

F(4,5,5,5)(r) =
[

F
(5)
2 (r4)

]

[

F(5,5,4)(r)
]

. (36)

The unity term from F
(5)
2 (r4) includes the polynomial

coefficients from F(5,5,4)(r) with no other coefficients from
the former contributing. Further, the higher order coefficients

are only necessary in so much as they contribute to the power

of two coefficients of the (4,5,5,5) counter. Noting this

feature, the coefficients for the (4,5,5,5) counter can be shown

to be

F1 = F(5,5,4),1

F2 = F(5,5,4),2

F4 = F(5,5,4),4 + F
(5)
2,1

F8 = F(5,5,4),8 + F(5,5,4),4F
(5)
2,1 + F

(5)
2,2

F16 = F(5,5,4),12F
(5)
2,1 + F(5,5,4),8F

(5)
2,2 +

F(5,5,4),4F
(5)
2,3 + F

(5)
2,4 .

(37)

5 Summary and Future Work

In this paper, a formalism for describing parallel counters

using a GF(2) generator function was presented. An

important result is that the power of two coefficients

from the polynomial directly provide the parallel counter

sum. Furthermore, because GF(2) operands are AND and

XOR, implementation strategies can also be studied.

Several parallel counter examples were studied and

implemented using the mathematics that followed from

different manipulations and decompositions of the generator

polynomial. In particular, a minimum delay parallel counter

was formulated by recursively building the final sum from

the constituent factors. In addition, a general expression was

provided for describing multiple column parallel counters

and two specific examples were examined. Future work

will include identifying methods to identify and exploit

parallelism and other circuit optimizations. In addition,

identifying new applications for this formalism will be

pursued.

References

[1] L. A. Belfore II, “Parallel Counter Applications Based

on a Generator Polynomial Formulation,” The 2012

International Conference on Computer Design, 2012.

[2] L. A. Belfore II, “Generator Polynomial Expansion

Applied to Parallel Counter Applications,” International

Conference on Computers Applications in Industry and

Engineering (CAINE-13), 2013.

[3] L. Dadda, “Some Schemes for Parallel Multipliers,” Acta

Frequenza, 45:574–580, 1965.

[4] M. J. Flynn and S. F. Oberman, Advanced Computer

Arithmetic Design, Wiley Interscience, 2001.

[5] I. Koren, Advanced Computer Arithmetic Design, A K

Peters, 2002.

[6] E. E. Swartzlander, Jr, “Parallel Counters,” IEEE

Transactions on Computers, C-22(11):1021–1024, Nov.

1973.

[7] E. E. Swartzlander, Jr, “A Review of Large Parallel

Counter Designs,” Proceedings of the IEEE Computer

Society Annual Symposium on VLSI (ISVLSI’04), pp.

89–98, 2004.

[8] C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE

Transactions on Electronic Computers, EC-13(1):14–17,

1964.

Lee Belfore is presently an Associate

Professor of Electrical and Computer

Engineering at Old Dominion

University, in Norfolk, Virginia,

USA. He received his BS in Electrical

Engineering from Virginia Tech

in 1982, his MSE in Electrical

Engineering & Computer Science from

Princeton University in 1983, and his

Ph.D. in Electrical Engineering from

the University of Virginia in 1990. His research interests

include computer arithmetic, low power digital design, and

medical modeling and simulation.

	Old Dominion University
	ODU Digital Commons
	2014

	Generator Polynomial Formulation for Parallel Counters with Applications
	Lee A. Belfore II
	Repository Citation
	Original Publication Citation

	IJCA Vol 21 No 1 2014.pdf

