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In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo
methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of
few- and many-body systems. In this Letter, we present Green’s function Monte Carlo calculations of light
nuclei based on the family of local two-body interactions presented by our group in a previous paper in
conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the
three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange
components. We obtain predictions for the energy levels and level ordering of nuclei in the mass range
A ¼ 4–12, accurate to ≤ 2% of the binding energy, in very satisfactory agreement with experimental data.

DOI: 10.1103/PhysRevLett.120.052503

A major goal of nuclear theory is to explain the spectra,
structure, and reactions of nuclei in a fully microscopic
approach. In such an approach, which we will refer to
below as the basic model of nuclear theory, the nucleons
interact with each other via many-body (primarily, two- and
three-body) effective interactions, and with external
electroweak probes via effective currents describing the
coupling of these probes to individual nucleons and
many-body clusters of them.
The nuclear Hamiltonian in the basic model is taken to

consist of nonrelativistic kinetic energy, and two- and three-
body interactions. There are indications that four-body
interactions may contribute at the level of∼100 keV in 4He,
but current formulations of the basic model do not typically
include them (see, for example, Ref. [1]). Two-body
interactions consist of a long-range component, for inter-
nucleon separation r≳ 2 fm, due to one-pion exchange
(OPE) [2], and intermediate- and short-range components,
for, respectively, 1 fm ≲ r≲ 2 fm and r≲ 1 fm. Up to the
mid-1990s, such interactions were based almost exclu-
sively on meson-exchange phenomenology. Those of the
mid-1990s [3–5] were constrained by fitting nucleon-
nucleon (NN) elastic scattering data up to lab energies
of 350 MeV, with χ2=datum ≃1 relative to the database
available at the time [6]. Two well-known and still widely
used examples in this class are the Argonne v18 (AV18) [4]
and CD-Bonn [5]. These so-called realistic interactions

also contained isospin-symmetry-breaking (ISB) terms. At
the level of accuracy required [6], full electromagnetic
interactions, along with strong interactions, had to be
specified in order to fit the data precisely, and the AV18
model included electromagnetic corrections up to order α2

(α is the fine structure constant).
Already in the 1980s, accurate three-body calculations

showed that contemporary NN interactions did not provide
enough binding for the three-body nuclei, 3H and 3He [7].
In the late 1990s and early 2000s this realization was
extended to the spectra (ground and low-lying excited
states) of light p-shell nuclei in calculations based on
quantum Monte Carlo (QMC) methods [8] and later
confirmed independently in no-core shell-model studies
[9]. Consequently, the basic model with NN interactions fit
to scattering data, without the inclusion of a three-nucleon
(3N) interaction, is incomplete.
Because of the composite nature of the nucleon and, in

particular, the prominent role of the Δ resonance in pion-
nucleon scattering, multinucleon interactions arise quite
naturally in meson-exchange phenomenology. The Illinois
3N interactions [10] contain a dominant two-pion exchange
(TPE)—the venerable Fujita-Miyazawa interaction [11]—
and smaller multipion exchange components resulting from
the excitation of intermediate Δ’s. The most recent version,
Illinois-7 (IL7) [12], also contains phenomenological
isospin-dependent central terms. The small number (four)
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of parameters that fully characterize it were determined, in
conjunctionwith theAV18, by fitting 23 ground or low-lying
nuclear states in the mass range A ¼ 3–10. The resulting
AV18þ IL7 Hamiltonian then led to predictions of about
100 ground- and excited-state energies up to A ¼ 12,
including the 12C ground- and Hoyle-state energies, in good
agreement with the corresponding empirical values [1].
A new phase in the evolution of the basic model, and

renewed interest in its further development, have been
spurred by the emergence in the early 1990s of chiral
effective field theory (χEFT) [13–15], a low-energy effec-
tive representation of QCD. Within χEFT many studies
have been carried out dealing with the construction of NN
and 3N interactions [16–30] and accompanying ISB
corrections [31–33]. These interactions were typically
formulated in momentum space, and included cutoff
functions to regularize their behavior at large momenta
which, however, made them strongly nonlocal when
Fourier transformed in configuration space, and therefore
unsuitable for use with quantum Monte Carlo methods.
Among these, in particular, the Green’s function
Monte Carlo (GFMC) method is the method of choice
to provide reliable solutions of the many-body Schrödinger
equation—presently for up to A ¼ 12 nucleons—with full
account of the complexity of the many-body, spin-, and
isospin-dependent correlations induced by nuclear inter-
actions (see Ref. [1] and references therein for an exhaus-
tive review of GFMC).
In order to overcome these difficulties, in recent years

local, configuration-space chiralNN interactions have been
derived [34–36]. Here, we focus on the family of local
interactions constructed by our group [36]. They are written
as the sum of an electromagnetic-interaction component,
vEMij , including first- and second-order Coulomb, Darwin-
Foldy, vacuum polarization, and magnetic moment terms
(as in Ref. [4]), and a strong-interaction component, vij,
characterized by long- and short-range parts [36]. The long-
range part includes OPE and TPE terms up to next-to-next-
to-leading order (N2LO) in the chiral expansion [37],
derived in the static limit from leading and subleading
πN and πNΔ chiral Lagrangians. The short-range part is
described by charge-independent contact interactions up
to N3LO and charge-dependent ones up to NLO [36],
characterized by a total of 26 low-energy constants (LECs).
Such potentials should therefore be understood as
improved-N2LO, with N3LO contact terms treated as
phenomenological remainders that prove crucial for a good
fit to NN data. In this context, it is worthwhile pointing out
that there exist alternative counting schemes for contact
operators [38–41] based, e.g., on renormalization group
analyses, which imply their promotion to lower orders of
the low-energy expansion, as compared to the ordinary
Weinberg counting. This would in turn explain the promi-
nent role they take in bringing the theoretical description
close to experimental data.

We constructed two classes of interactions, which
only differ in the range of laboratory energy over which
the fits were carried out, either 0–125 MeV in class I or
0–200 MeV in class II (the fits used the 2013 NN database,
including the deuteron ground-state energy and two-
neutron scattering length, as assembled by the Granada
group [42]). For each class, three different sets of cutoff
radii ðRS; RLÞ were considered ðRS; RLÞ ¼ ð0.8; 1.2Þ fm in
set (a), (0.7,1.0) fm in set (b), and (0.6,0.8) fm in set (c),
where RS and RL enter, respectively, the configuration-
space cutoffs for the short- and long-range parts of vij [36].
The χ2=datum achieved by the fits in class I (II) was
≲1.1ð≲1.4Þ for a total of about 2700 (3700) data points.
We will refer to these high-quality NN interactions generi-
cally as the Norfolk vij’s (NV2s), and designate those in
class I as NV2-Ia, NV2-Ib, and NV2-Ic, and those in class
II as NV2-IIa, NV2-IIb, and NV2-IIc.
TheNV2swere found to provide insufficient attraction, in

GFMC calculations, for the ground-state energies of nuclei
with A ¼ 3–6 [36,43,44], thus corroborating the insight
realized in the early 2000s within the older (and less
fundamental) meson-exchange phenomenology. To remedy
this shortcoming, we construct here the leading 3N inter-
action Vijk in χEFT, including Δ intermediate states. It is
illustrated diagrammatically in Fig. 1, and consists [20,21]
of a long-range piece mediated by TPE and denoted with the
superscript 2π, panels (a) and (b), and a short-range piece
parametrized in terms of two contact interactions and
denoted with the superscript CT, panels (c) and (d),

Vijk ¼
X

cyclic ijk

ðV2π
ijk þ VCT

ijkÞ: ð1Þ

In configuration space, the TPE term from intermediate Δ
states, panel (a) in Fig. 1, and from interactions proportional
to the LECs c1, c3, and c4 in the subleading chiral

Lagrangian Lð2Þ
πN [45], panel (b), reads

V2π
ijk ¼

g2A
256π2

m6
π

f4π

�
8c1ΣijΣkjT

ðþÞ
ijk þ 2

9
~c3Σ

ðþÞ
ijk T

ðþÞ
ijk

−
1

9

�
~c4 þ

1

4m

�
Σð−Þ
ijk T

ð−Þ
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�
; ð2Þ

FIG. 1. Diagrams illustrating schematically the contributions to
the chiral 3N interaction. Nucleons,Δ’s, and pions are denoted by
solid, thick-solid, and dashed lines, respectively. The circle in
panel (b) represents the vertex involving the LECs c1, c3, and c4
in Lð2Þ

πN .
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with spin and isospin operator structures defined, respec-
tively, as Σlm ≡ ~ZπðrlmÞσl · r̂lm, where rlm ≡ rl − rm, and

Σð∓Þ
ijk ≡ ½ ~Xij; ~Xjk�∓; T ð∓Þ

ijk ≡ ½τi · τj; τj · τk�∓; ð3Þ

~Xij ≡ ~TπðrijÞSij þ ~YπðrijÞσi · σj: ð4Þ

Here ½…;…�∓ denote commutators (−) or anticommutators
(þ), Sij is the standard tensor operator, σi and τi are Pauli
spin and isospin matrices relative to nucleon i, and ~YπðrÞ,
~TπðrÞ, and ~ZπðrÞ are, respectively, standard Yukawa and
tensor functions and combinations of these, regularized by
the cutoff CRL

ðrÞ introduced in Ref. [37] (for convenience,
they are listed in the SupplementalMaterial [46]). The LECs

~c3 and ~c4 are related to the corresponding c3 and c4 in Lð2Þ
πN

via ~c3 ¼ c3 − h2A=ð9mΔNÞ and ~c4 ¼ c4 þ h2A=ð18mΔNÞ,
where hA and mΔN are, respectively, the N-to-Δ axial
coupling constant and Δ-N mass difference. The values
of these constants as well as the LECs c1, c3, and c4, the
(average) pion mass mπ and decay amplitude fπ, and
(average) nucleon mass m and axial coupling constant gA,
are taken from Tables I and II of Ref. [37].
The CT term is parametrized as

VCT
ijk ¼

gAcD
96π

m3
π

Λχf4π
τi · τk ~Xik½CRS

ðrijÞ þ CRS
ðrjkÞ�

þ cE
Λχf4π

τi · τkCRS
ðrijÞCRS

ðrjkÞ; ð5Þ

where CRS
ðrÞ is the Gaussian cutoff introduced in Ref. [37]

(it is also given in Ref. [46]), Λχ is the chiral-symmetry-
breaking scale taken as Λχ ¼ 1 GeV, and the two (dimen-
sionaless) LECs cD and cE are determined by simultaneously
reproducing the experimental 3H ground-state energy,
E0ð3HÞ, and the central value of the neutron-deuteron (nd)
doublet scattering length, 2and. These observables are
calculated with hyperspherical-harmonics (HH) expansion
methods (see Ref. [47] and references therein).

Because of the strong correlation between the observ-
ables E0ð3HÞ and 2and (Phillips line) and between E0ð3HÞ
and E0ð4HeÞ (Tjon line), an alternative way to determine cD
and cE, as pointed out in Refs. [48,49], would be to
constrain these LECs by reproducing the tritium binding
energy and Gamow-Teller matrix element contributing to
its β decay. Such a strategy was adopted in Refs. [50,51] in
relation to the (momentum-space) chiral interactions devel-
oped by Entem and Machleidt [18]. However, the problem
with its implementation here is that the models of nuclear
axial currents developed so far in Refs. [52,53], do not
include Δ intermediate states, in contrast to the present
chiral interactions.
The cD, cE values for NV2-Ia, NV2-Ib, NV2-IIa and

NV2-IIb with the cutoff radii ðRS; RLÞ in the Norfolk 3N
interactions matching those of the corresponding NV2s to
make the NV2þ 3models are listed in Table I. We observe
that models NV2-Ic and NV2-IIc are not considered any
further in the present work, owing to the difficulty in the
convergence of the HH expansion and the severe fermion-
sign problem in the GFMC imaginary-time propagation
with these interactions [36].
In Table I we also report the nd scattering length and

ground-state energies of 3H, 3He, and 4He obtained without
3N interaction as well as those predicted for 3He and 4He
when this interaction is included. Increasing the laboratory-
energy range over which the NN interaction is fitted, from
0–125 MeV in class I to 0–200 MeV in class II, decreases
the A ¼ 3–4 ground-state energies calculated without the
3N interaction by as much as 1.3 MeV in 4He with model
(b). However, when the 3N interaction is included, the
effect is reversed and much reduced; in 4He the increase
amounts to 140 keV in going from model Ib to IIb. The
dependence on the cutoff radii ðRS; RLÞ, i.e., the difference
between the rows Ia-Ib and IIa-IIb, is significant without
the 3N interaction, but turns out to be negligible when it is
retained, being in this case of the order of a few keV and
hence comparable to the numerical precision of the present
HH methods. This tradeoff is of course achieved through
the large variation of the LECs cD and cE; cE is found to be

TABLE I. The (dimensionaless) values of cD and cE determined for the different NV2þ 3 chiral interactions having cutoff radii
ðRS; RLÞ equal to (0.8,1.2) fm for models Ia and IIa, and (0.7,1.0) fm for models Ib and IIb are shown along with the 3H, 3He, and 4He
ground-state energies (in MeV) and nd doublet scattering length (in fm), obtained in HH calculations without and with the inclusion of
the three-body interactions; the experimental values are E0ð3HÞ ¼ −8.482 MeV, E0ð3HeÞ ¼ −7.718 MeV, E0ð4HeÞ ¼ −28.30 MeV
[54], and 2and ¼ ð0.645� 0.010Þ fm [55]. The E0ð3HÞ and 2and (central value) are exactly reproduced when 3N interactions are
included, and are not listed below in this case.

Without 3N With 3N

Model cD cE E0ð3HÞ E0ð3HeÞ E0ð4HeÞ 2and E0ð3HeÞ E0ð4HeÞ
Ia 3.666 −1.638 −7.825 −7.083 −25.15 1.085 −7.728 −28.31
Ib −2.061 −0.982 −7.606 −6.878 −23.99 1.284 −7.730 −28.31
IIa 1.278 −1.029 −7.956 −7.206 −25.80 0.993 −7.723 −28.17
IIb −4.480 −0.412 −7.874 −7.126 −25.31 1.073 −7.720 −28.17
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natural for all models, while cD only for models Ib and IIa.
Lastly, in the Supplemental Material [46], we show that the
NV2þ 3 chiral interactions developed here do not resolve
the discrepancies between the calculated and measured
polarization observables in low-energy pd elastic scatter-
ing, including the well-known “Ay puzzle” [56,57].
Before presenting the GFMC predictions for the spectra

of larger nuclei, it is worthwhile comparing the HH and
GFMC results for the three- and four-nucleon bound states.
The GFMC-calculated ground-state energies with model
NV2þ3-Ia are E0ð3HÞ¼−8.463ð9Þ, E0ð3HeÞ¼−7.705ð9Þ,
and E0ð4HeÞ ¼ −28.24ð3Þ, where the Monte Carlo stat-
istical errors are given in parentheses. The small differences
(≲0.5%) between the HH results listed in Table I and the
GFMC ones are due in part to intrinsic numerical inaccur-
acies of these methods, and in part to the fact that the HH
wave functions include small admixtures with total isospin
T ¼ 3=2 for A ¼ 3 nuclei, and T ¼ 1 and 2 for A ¼ 4,
beyond their corresponding dominant isospin components
with T ¼ 1=2 and T ¼ 0. These admixtures are induced by
ISB terms present in the NV2 interaction models, which are
neglected in the present GFMC calculations.
The GFMC energy results calculated with the NV2þ

3-Ia model are shown in Fig. 2 for 37 different nuclear
states in A ¼ 4–12 nuclei. They are compared to results
from the older AV18þ IL7model [1] and experiment [54].
The agreement with experiment is impressive for both
Hamiltonians, with absolute binding energies very close to
experiment, and excited states reproducing the observed
ordering and spacing, indicating reasonable one-body spin-
orbit splittings. The rms energy deviation from experiment

for these states is 0.72 MeV for NV2þ 3-Ia compared to
0.80 MeV for AV18þ IL7 (note that 11B has not been
computed with AV18þ IL7). The signed average devia-
tions, þ0.15 and −0.23 MeV, respectively, are much
smaller, indicating no systematic over- or underbinding
of the Hamiltonians. For both Hamiltonians, the inclusion
of the 3N interactions is in many cases necessary to get
ground states that are correctly bound against breakup; e.g.,
6He is not bound with just the NN interaction [36], but is in
the current work. The lowest 3þ and 1þ states of 10B are of
particular interest. For both AV18 and NV2-Ia without 3N
interactions, the 1þ state is incorrectly predicted as the
ground state (for NV2-Ia by 1.9 MeV) but including the 3N
interactions gives the correct 3þ ground state. However, it is
important to emphasize that in the AV18þ IL7 model the
four parameters in the 3N interaction are fitted to the
energies of many nuclear levels up to A ¼ 10.
Twelve of the states shown are stable ground states,

while another six are particle-stable low-lying excitations;
i.e., they decay only by electroweak processes. The
remaining states are particle-unstable; i.e., they can decay
by nucleon or cluster emission, which is much more rapid
than electroweak decay, but about half of these have narrow
decay widths ≤ 100 keV. Because the GFMC method does
not involve any expansion in basis functions, it correctly
includes effects of the continuum. If the energy propagation
is continued to large enough imaginary time τ, the wave
function will evolve to separated clusters and the energy to
the sum of the energies of those clusters. For the physically
narrow states, the GFMC constrained-path propagation
starting from a confined variational trial function reaches

FIG. 2. The energy spectra of A ¼ 4–12 nuclei obtained with the NV2þ 3-Ia chiral interactions are compared to experimental data
[54]. Also shown are results obtained with the phenomenological AV18þ IL7 interactions [1].
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a stable energy without any noticeable decay over the finite
τ used in the present calculations. For physically very wide
states (> 1 MeV), e.g., the first 2þ and 4þ states in 8Be, the
calculations show a smooth energy decline beyond τ ∼
0.1 MeV−1 [58], while the rms radius shows a smooth
growth, indicative that the propagation is disassembling
the system into its component parts. In these few cases the
energy of the state is estimated from the value at the
beginning of the smooth energy decline. Additional par-
ticle-stable isobaric analog states, e.g., in 8B and 9;10C, have
been calculated in the GFMC method, but are not shown.
AVMC survey of more than 60 additional states has also

been made, including higher excited states, more isobaric
analog states, e.g., in 7Be, and various particle-unstable
nuclei like 7He, 8C, and 9B.While the most important test of
a Hamiltonian is the ability to reproduce known states, it is
also important not to predict states in places where they are
not observed; e.g., predicting a particle-stable 10He ground
state would be a failure of the model. The VMC survey has
found no such problems for either the NV2þ 3-Ia or
AV18þ IL7 models.
The very satisfactory agreement between the predicted

and observed spectra validates the present formulation of
the basic model in terms of NN and 3N chiral interactions,
constrained by data in the few-nucleon systems only. Of
course, one should not dismiss the earlier success of the
AV18þ IL7 realistic interactions, even though the agree-
ment in that case was obtained by relying on experimental
data beyond A ¼ 3 in order to constrain the 3N interaction.
If anything, the overall success of the chiral and realistic
formulations shows that Hamiltonians containing two very
different models of the NN force, both of which provide
good fits to NN data, and 3N forces containing just a small
number of parameters fitted to a few data, can give very
similar descriptions of light-nuclei spectra. This gives us
confidence in predictions made in the framework of the
basic model of nuclear theory.
Key to this significant advance is our group’s ability

to reliably solve the nuclear many-body problem for
bound states of up to A ¼ 12 nuclei with QMC methods,
and for the three- and four-nucleon bound and scattering
states with HH methods. This capability, especially for
QMC methods, is driven by ever expanding computational
resources and by continuing improvements in algorithms.
In particular, the development of specific libraries operating
under MPI [59]—the Asynchronous Dynamic Load
Balancing (ADLB) library and Distributed MEMory
(DMEM) library—have allowed us to fully exploit the
massively parallel Theta supercomputer (3,624 Intel
Knight’s Landing nodes with 64 cpu/node) of the
Argonne Leadership Computing Facility. Even under these
favorable conditions, however, the final 12C ground-state
calculation still consumed 650 000 cpu-h.
Future work will investigate the other chiral Hamiltonian

models developed here, in particular, their impact on

nuclear spectra, as well as refinements in the 3N interaction
obtained by retaining subleading terms [23,60] and by
constraining them via fits to either nuclear spectra or 3N
scattering observables.
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Laboratory Computing Resource Center, by the Argonne
Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract No. DE-
AC02-06CH11357 (via a Theta Early Science grant), and
by the National Energy Research Scientific Computing
Center (NERSC).

[1] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R.
Schiavilla, K. E. Schmidt, and R. B. Wiringa, Rev. Mod.
Phys. 87, 1067 (2015).

[2] H. Yukawa, Prog. Theor. Phys. Suppl. 1, 1 (1955).
[3] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J.

de Swart, Phys. Rev. C 49, 2950 (1994).
[4] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev.

C 51, 38 (1995).
[5] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
[6] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and

J. J. de Swart, Phys. Rev. C 48, 792 (1993).
[7] J. L. Friar, B. F. Gibson, and G. L. Payne, Annu. Rev. Nucl.

Part. Sci. 34, 403 (1984).
[8] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper,

and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).
[9] P. Navrátil, J. P. Vary, and B. R. Barrett, Phys. Rev. C 62,

054311 (2000).
[10] S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J.

Carlson, Phys. Rev. C 64, 014001 (2001).
[11] J. Fujita and H. Miyazawa, Prog. Theor. Phys. 17, 360

(1957).
[12] S. C. Pieper, AIP Conf. Proc. 1011, 143 (2008).
[13] S. Weinberg, Phys. Lett. B 251, 288 (1990).
[14] S. Weinberg, Nucl. Phys. B363, 3 (1991).
[15] S. Weinberg, Phys. Lett. B 295, 114 (1992).
[16] C. Ordonez, L. Ray, and U. van Kolck, Phys. Rev. C 53,

2086 (1996).
[17] E. Epelbaum, W. Glöckle, and U.-G. Meissner, Nucl. Phys.

A637, 107 (1998).
[18] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001

(2003).
[19] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[20] U. van Kolck, Phys. Rev. C 49, 2932 (1994).
[21] E. Epelbaum, A. Nogga, W. Glockle, H. Kamada,

U.-G. Meissner, and H. Witala, Phys. Rev. C 66, 064001
(2002).

[22] V. Bernard, E. Epelbaum, H. Krebs, and U.-G. Meissner,
Phys. Rev. C 84, 054001 (2011).

PHYSICAL REVIEW LETTERS 120, 052503 (2018)

052503-5

https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1143/PTPS.1.1
https://doi.org/10.1103/PhysRevC.49.2950
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.63.024001
https://doi.org/10.1103/PhysRevC.48.792
https://doi.org/10.1146/annurev.ns.34.120184.002155
https://doi.org/10.1146/annurev.ns.34.120184.002155
https://doi.org/10.1103/PhysRevC.56.1720
https://doi.org/10.1103/PhysRevC.62.054311
https://doi.org/10.1103/PhysRevC.62.054311
https://doi.org/10.1103/PhysRevC.64.014001
https://doi.org/10.1143/PTP.17.360
https://doi.org/10.1143/PTP.17.360
https://doi.org/10.1063/1.2932280
https://doi.org/10.1016/0370-2693(90)90938-3
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1016/0370-2693(92)90099-P
https://doi.org/10.1103/PhysRevC.53.2086
https://doi.org/10.1103/PhysRevC.53.2086
https://doi.org/10.1016/S0375-9474(98)00220-6
https://doi.org/10.1016/S0375-9474(98)00220-6
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1103/PhysRevC.49.2932
https://doi.org/10.1103/PhysRevC.66.064001
https://doi.org/10.1103/PhysRevC.66.064001
https://doi.org/10.1103/PhysRevC.84.054001


[23] L. Girlanda, A. Kievsky, and M. Viviani, Phys. Rev. C 84,
014001 (2011).

[24] H. Krebs, A. Gasparyan, and E. Epelbaum, Phys. Rev. C 85,
054006 (2012).

[25] A. Ekström et al., Phys. Rev. Lett. 110, 192502 (2013).
[26] A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T.

Papenbrock, B. D. Carlsson, C. Forssén, M. Hjorth-Jensen,
P. Navrátil, and W. Nazarewicz, Phys. Rev. C 91, 051301(R)
(2015).

[27] E. Epelbaum, H. Krebs, and U.-G. Meißner, Eur. Phys. J. A
51, 53 (2015).

[28] P. Navrátil, Few Body Syst. 41, 117 (2007).
[29] I. Tews, S. Gandolfi, A. Gezerlis, and A. Schwenk,

Phys. Rev. C 93, 024305 (2016).
[30] A. Ekström et al., arXiv:1707.09028.
[31] J. L. Friar and U. van Kolck, Phys. Rev. C 60, 034006

(1999).
[32] J. L. Friar, U. van Kolck, M. C. M. Rentmeester, and

R. G. E. Timmermans, Phys. Rev. C 70, 044001 (2004).
[33] J. L. Friar, G. L. Payne, and U. van Kolck, Phys. Rev. C 71,

024003 (2005).
[34] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler,

A. Nogga, and A. Schwenk, Phys. Rev. Lett. 111, 032501
(2013).

[35] A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi,
K. Hebeler, A. Nogga, and A. Schwenk, Phys. Rev. C 90,
054323 (2014).

[36] M. Piarulli, L. Girlanda, R. Schiavilla, A. Kievsky, A.
Lovato, L. E. Marcucci, S. C. Pieper, M. Viviani, and R. B.
Wiringa, Phys. Rev. C 94, 054007 (2016).

[37] M. Piarulli, L. Girlanda, R. Schiavilla, R. N. Perez,
J. E. Amaro, and E. R. Arriola, Phys. Rev. C 91, 024003
(2015).

[38] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B
424, 390 (1998); Nucl. Phys. B534, 329 (1998).

[39] A. Nogga, R. G. E. Timmermans, and U. van Kolck,
Phys. Rev. C 72, 054006 (2005).

[40] M. C. Birse, Phys. Rev. C 74, 014003 (2006).
[41] M. P. Valderrama and D. R. Phillips, Phys. Rev. Lett. 114,

082502 (2015).
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