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Abstract. It has been well-known for over six decades that the addition of minute amounts of 
long polymer chains to organic solvents, or water, can lead to significant turbulent drag 
reduction. This discovery has had many practical applications such as in pipeline fluid 
transport, oil well operations, vehicle design and submersible vehicle projectiles, and more 
recently arteriosclerosis treatment. However, it has only been the last twenty-five years that the 
full utilization of direct numerical simulation of such turbulent viscoelastic flows has been 
achieved. The unique characteristics of viscoelastic fluid flow are dictated by the nonlinear 
differential relationship between the flow strain rate field and the extra-stress induced by the 
additive polymer. A primary motivation for the analysis of these turbulent fluid flows is the 
understanding of the effect on the dynamic transfer of energy in the turbulent flow due to the 
presence of the extra-stress field induced by the presence of the viscoelastic polymer chain. 
Such analyses now utilize direct numerical simulation data of fully developed channel flow for 
the FENE-P (Finite Extendable Nonlinear Elastic – Peterlin) fluid model. Such multi-scale 
dynamics suggests an analysis of the transfer of energy between the various component 
motions that include the turbulent kinetic energy, and the mean polymeric and elastic potential 
energies. It is shown that the primary effect of the interaction between the turbulent and 
polymeric fields is to transfer energy from the turbulence to the polymer. 

1. Introduction 
Since the pioneering experiments by Toms [1], it is known that the addition of minute amounts of long 
polymer chains to organic solvents, or water, can lead to significant turbulent drag reduction. This 
discovery has had many practical applications such as in pipeline fluid transport, oil well operation, 
vehicles design and submersible vehicle projectiles, and more recently arteriosclerosis treatment. The 
numerical simulation of this phenomenon is more recent. The availability of high-performance 
computers has allowed direct numerical simulations (DNS) of polymer drag reduction flows from the 
mid-nineties. Sureshkumar et al [2] were the first to perform direct numerical simulations of drag 
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reduction with a viscoelastic fluid. They used the FENE-P model (Finitely Extensible Non-linear 
Elastic in the Peterlin approximation), appropriate for dilute polymer solutions. Afterwards, 
Dimitropoulos et al [3] performed a detailed analysis of the budget of kinetic energy and streamwise 
enstrophy for the FENE-P solution at low Reynolds number, and showed that the inhibition of vortex 
stretching was a possible mechanism responsible for drag reduction. 
 
 More recently, other DNS were carried out with the FENE-P fluid. Dubief et al [4] reproduced the 
low and high drag reduction regimes. At low drag reduction (DR < 40%), the log law region is simply 
moved away from the wall. At high drag reduction, the log region is again moved away from the wall 
but its slope is increased with respect to the Newtonian flow. Dimitropoulos et al [5] considered the 
development of a zero-pressure-gradient flat plate turbulent boundary layer, later extending this study 
to inhomogeneous spatial distribution of polymer concentration [3]. It should be mentioned that while 
DNS has helped to provide more insight into the physics of polymer-turbulence interaction, the 
numerical workload required by viscoelastic DNS make them only amenable to relatively modest 
Reynolds numbers on large scale mainframe computers. From the engineering point of view, it is 
advantageous to envisage viscoelastic turbulent closure models for such flows. In this spirit, there have 
been recent attempts towards RANS (Reynolds Averaged Navier-Stokes) modeling. Such models have 
included zero-equation [6], one-equation [7], and two-equation k − ε  [8] models.  
 
 From a phenomenological point of view, there exists a longstanding controversy between the two 
major theories which have been proposed to explain polymer drag reduction, and which still prevails 
in spite of the large amount of numerical data now available. Some authors [9,10,11] support 
Lumley’s [12] viscous theory, which explains the phenomenon by an increase of the effective 
viscosity in the buffer layer. Others [13,14] gravitate around the elastic theory proposed by Tabor and 
De Gennes [15], which states that Kolmogorov’s energy cascade is interrupted due to the elastic 
behavior of the polymer. We are convinced that studying viscoelastic turbulence may more generally 
lead to a better understanding of the physics of wall turbulence, in particular its self-sustaining 
mechanisms. 
 
 The presentation here will focus on the development of the FENE-P constitutive model followed by 
a discussion of the energetic exchange, based on DNS study at a friction Reynolds number of 1000, 
between the turbulent flow and polymeric fluid as represented by the FENE-P model.  

2. Non-Newtonian and Viscoelastic Fluids 
The theory of non-Newtonian and viscoelastic fluids flourished in the second half of the last century 
with the developments of (molten and dilute) polymers and the growth of materials science and 
engineering that generated many new products and applications. From a fluid and flow dynamic 
perspective, it is useful to provide a brief description of the hierarchy of such non-Newtonian and 
viscoelastic models. Modern constitutive equations have evolved by taking into account more and 
more of the microscopic features of polymeric fluids. The interplay between micro- and macro-scale is 
of importance and leads to a multi-scale approach towards the goal of incorporating more physics into 
the models that range from linear constitutive equations through to more sophisticated relationships. 
The theory of constitutive equations for non-Newtonian and viscoelastic fluids has been described in 
numerous books, and the reader is referred to the following references [16-23]. Of particular relevance 
is the recent text by Deville and Gatski [23] which serves as a guide for the model development 
remarks. 
 
2.1. Mechanical models 
At the introductory limit of non-Newtonian constitutive equations are the generalized Newtonian 
fluids. The constitutive equation for such fluids is generated by allowing the dynamic viscosity to 
depend on the shear rate  !γ  such that  µ = µ( !γ ) . A very common model is the power law 
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  µ( !γ ) = K !γ

m−1   (2.1) 
  
with K  the consistency factor and m  the index of the power law (m = 1 , K = µ  for the Newtonian 
case). For many polymers, blood or food liquids, m  is between 0.3 and 0.6. Fluids with m <1  are 
pseudo-plastic fluids; those with m >1  are dilating fluids. The viscosity µ  decreases with respect to 
increasing shear rate  !γ  for a pseudo-plastic fluid so that the viscosity is shear thinning. In the opposite 
case, where µ  increases with increasing  !γ , the viscosity is shear thickening. 
A slightly more complex constitutive equation describes so-called yield fluids. These fluids exhibit a 
yield stress. This means that the shear stress has to be higher than a threshold yield stress for the fluid 
to flow. Below this threshold, the fluid behaves like a solid, and above it may behave as Newtonian or 
power-law like. An example of such a fluid that occurs in our everyday lives is toothpaste. These yield 
fluids produce plug flows in channels or pipes since near the symmetry axis the shear stress vanishes 
and therefore does not reach the threshold value.  
 
 A characterizing trait of these generalized Newtonian models was the relationship between a 
function of the shear rate and shear stress. The next level of complexity involves not only the stress 
field but also a stress rate. The original concepts for the design of linear viscoelastic models were 
framed with the aid of mechanical parts involving springs and dashpots. A simple example illustrates 
the development of such a model. Consider a spring with constant stiffness k  for the elastic part and a 
dashpot of viscosity µ . If these two mechanical elements are connected in series, the resultant stress 
is described by the Maxwell model. In a one-dimensional extensional flow, for example, the stress-
strain relation for the spring is  Σ = kε1  and for the dashpot   Σ = µ !ε2 . The strains  ε1  and  ε2  are 
respective measures of an extensional motion. The same stress (force), Σ , applied to the model 
generates a displacement Σ / k  in the spring and a velocity Σ / µ  in the dashpot. The total velocity is 
then 
 

 
  
!ε = !ε1 + !ε2 =

!Σ
k
+ Σ
µ

or Σ + λ !Σ = µ !ε  (2.2) 

 
where λ = µ / k  is a characteristic time of the model and   !ε  is the strain rate. Note that if the stress 
strain relation is rewritten as 
 

 
  

d
dt
(Σet /λ ) = µ

λ
!ε⎛

⎝⎜
⎞
⎠⎟ e

t /λ  (2.3) 

  
and if  the constraint that Σ  remains finite when t→∞  is imposed, the integration in time yields [9] 
 

 
  
Σ(t) = µ

λτ =−∞

t

∫ exp − (t −τ )
λ

⎡
⎣⎢

⎤
⎦⎥
!ε(τ ) dτ  (2.4) 

  
with the quantity in the integrand, 
 

 G(t −τ ) = µ
λ
exp − (t −τ )

λ
⎡
⎣⎢

⎤
⎦⎥
 (2.5) 
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called the relaxation modulus. This expression shows that in the Maxwell model the stress at the 
present time depends on the history of the deformation through the strain rate. In addition, the fluid 
possesses an intrinsic property of fading memory that gives more weight to the recent past than to the 
distant past, with the decay rate driven by the material relaxation time. The Newtonian case is 
recovered with G = µδ (t −τ )  and a linear elastic solid for G = G0 . 
 
 These relatively simple ideas can be generalized and comprise the group of constitutive equations 
of the rate type. Stress rate models like the Oldroyd-B fluid, used for dilute solutions are far from the 
industrial fluids of polymer type that offer shear-thinning viscosity, but are nevertheless satisfactory in 
many problems and form a fundamental building block of non-Newtonian modeling. It is assumed that 
the polymers are diluted in a Newtonian solvent so that the Cauchy stress tensor can be split into two 
parts 
 
 Σ = − pI + 2µ0S+Ξ v  (2.6) 
  
where the first part is the Newtonian solvent which consists of an isotropic part and a deviatoric part 
characterized by the viscosity µ0  and rate of strain tensor S , and the second part, the viscoelastic 
stress Ξ v . Now consider a similar generalization of the simple 1D Maxwell model given in (2.2) by 
replacing Σ  with the stress Ξ v  and the strain rate S . This yields a transport equation for Ξ v  given by 
 

 Ξ v + λ  DΞ v

Dt
= 2µ1S  (2.7) 

  
In order to ensure the objectivity of (2.7), an objective stress rate needs to be introduced. The Oldroyd-
B fluid constitutive equation is obtained by replacing the material time derivative of the extra-stress in 
(2.7) with the Oldroyd upper-convected derivative, 
 

 Ξ v + λ  Ξ
∇

v = 2µ1S  (2.8) 
  
or 
 

 Ξ v + λ DΞ v

Dt
−∇vΞ v − Ξ v ∇v( )T⎛

⎝⎜
⎞
⎠⎟ = 2µ1S (2.9) 

  
where ∇v  is the solvent flow velocity gradient. 
 
2.2. Dumbbell models 
It has long been recognized that such mechanical models, formulated by assembling springs and 
dashpots, and simply using tensor generalizations to obtain corresponding multi-dimensional forms 
was inadequate. The latter day approach that developed was to base the model development on the 
nanoscale. However, it does not make sense to work at this level, especially since the intent is to 
design a model that is computationally tractable and efficient, and that takes some microstructure 
features into account. Fortunately, the complexity of the micro-macro description is reduced by a 
statistical mechanics argument. It is not intended here to be all inclusive in both detail and scope on 
the development of such models since there are a wide variety of viscoelastic models that have been 
developed (see [23] for a more inclusive list). The viscoelastic fluid model development will be 
limited polymeric fluids and to the FENE-P model for the viscoelastic/polymeric stress (Ξ v = Ξ p ). 
This is the most popular model currently used in numerical simulations of viscoelastic turbulent flows. 
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The reader is referred to the numerous texts available on polymeric fluid dynamics for a more 
complete description of such model development (for example [16-23]) 
 
 In general, a polymer chain may be composed of N +1  beads connected by N  massless springs, 
each of length b  as sketched in figure 1. The beads are assumed not to deform and may rotate with 
respect to each other with an end-to-end vector r  connecting bead 1 to bead N +1  at the ends of the 
chain.  
 

 
 

Figure 1. Polymer as chain of beads (from 
[23]) 

Figure 2. Elastic dumbbell (from [23]) 

 
The required interplay between the micro and macro behavior of polymeric chains can be represented 
by a Langevin equation for the vector connector r  containing the (macro) drag and friction forces and 
the (micro) Brownian forces, 

 ζ dr
dt

− ∇v( )r⎡
⎣⎢

⎤
⎦⎥
− fs = B  (2.10) 

 
where inertial forces have been assumed small, the local solvent velocity field is homogeneous with 
∇v  the local velocity gradient, ζ  ( = 6πµsa ) is the friction coefficient associated with the Stokes drag 
on the beads (each of readius a ), and the Brownian force is B = −npkBθ  ∂lnψ / ∂r  with θ  the 
absolute temperature. The probability density function ψ (r,t)  is associated with the movement of the 
dumbbell and satisfies the Fokker-Planck equation, 
 

 
∂ψ
∂t

+ ∇v( )r ⋅ ∂ψ
∂r

− 2 kBθ
ζ

∂2ψ
∂r2

− 2
ζ

∂
∂r

⋅(ψ fs ) = 0   (2.11) 

 
The Cauchy stress of the fluid is assumed to be an ensemble average over a volume  V  that can be 
decomposed into the solvent volume  Vs , and the polymeric volume  Vp . The stress in the solvent part 
is the classical Newtonian stress involving the pressure, the rate of deformation tensor S  and the 
viscosity µs . These volume averages can also be represented by integration over the configuration 
space of the polymer using the pdf ψ .  
 
 The polymeric contribution to the stress is due to the drag force of the beads exerted on the solvent. 
As (2.10) shows, the drag force is balanced by the Brownian force and the nonlinear spring force so 
that the polymeric stress is then given by 
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 Ξ p = r⊗B( )∫ ψ (r,t) dr + r⊗ fs( )∫ ψ (r,t) dr   (2.12) 
 
where ⊗  denotes the tensor product of two vectors. Since the pdf ψ  vanishes on the polymer 
surface, the Brownian force contribution is isotropic and the resulting polymeric stress is 
 

 
Ξ p = −npkBθ I + npHf Ξ( ) r⊗ r( )∫ ψ (r,t) dr

= −npkBθ I + npHf Ξ( ) r⊗ r = −npkBθ I + npHf Ξ( )c
  (2.13) 

 
where for the FENE-P model f Ξ( )  is the Peterlin function accounting for the nonlinear spring 
behaviour, H = 3kBθ / Nb2( )  is an entropic spring constant, np  is the number density of polymer 

chains per unit volume, and c = < r⊗ r >( )  is the conformation tensor. Equation (2.13) is known as 
Kramers equation. 
 
 From (2.10) there remains one other contribution to the polymeric stress, that is, the drag force 
contribution. It is easier to evaluate this contribution to the stress by the polymeric chain by 
representing the complex chain by an elastic dumbbell model as shown in figure 2. The model 
corresponds to two spherical beads connected by either a nonlinear (entropic) spring. The single spring 
of the elastic dumbbell represents the net effect of the N  springs of the polymer chain and the two 
beads represent the net effect of the N +1  beads of the chain with each bead moving with velocity 
w1,2 . The contribution from the drag force to the polymer stress can be represented by 
 

 

Ξ p = npζ r⊗ dr
dt

− ∇v( )r⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥∫ ψ (r,t) dr

=
npζ
4

d
dt
r⊗ r − ∇v( ) ⋅ r⊗ r − r⊗ r ⋅ ∇v( )T⎡

⎣⎢
⎤
⎦⎥

=
npζ
4

δ c
δ t

  (2.14) 

 
where δ /δ t  is the Oldroyd (upper convective) derivative. Its appearance is necessary to ensure that 
the polymeric stress tensor is objective. Equation (2.14) is known as the Giesekus equation. From 
(2.10), the contributions to the polymeric stress from the drag forces should balance those from the spring and 
Brownian forces. Thus, the polymeric stress contributions from (2.13) and (2.14) can be equated yielding an 
evolution equation for the conformation tensor 
 

 λ δ c
δ t

= − kBθ
H
I + f Ξ( )c  (2.15) 

 
where λ = ζ / 4H( )  is a relaxation time associated with the polymer chain. Equation (2.15) coupled 
with (2.13) provides the necessary mathematical formulation for the polymer chain motion and the 
polymeric stress link with the equations of fluid motion.  
 
 The Peterlin function, f (Ξ ) = L2 / L2 − c{ }( )  where L  is the maximum extension length of the 
polymer chain, is an important component in the interaction between the turbulent and polymeric 
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energies. (For the cases of interest in most DNS studies   L ∼O 10 −102( ) .) Before completing this 
section on the development of the FENE-P model, both the conformation evolution equation and 
polymeric stress equation can be non-dimensionalized with kBθ /H  for the conformation tensor c  and 
a rescaling of the conformation tensor to ensure that at equilibrium δ c /δ t = 0( )  so that c = I  (see 
[24] for a thorough discussion of this rescaling).  The final non-dimensional set of equations for the 
conformation tensor and polymeric stress tensor are given by 
  
 

 λ δ c
δ t

= −I + f c{ }( )c   (2.16) 

 
and 
 

 Ξ p =
µ p0

λ
f c{ }( )c − I⎡⎣ ⎤⎦  (2.17) 

   
 
where µ p0  is a polymeric viscosity such that npkBθ ≈ µ p0 / λ , and the Peterlin function is now 
redefined as 
 

 f c{ }( ) = L2 − 3
L2 − c{ }   (2.18) 

  
 A consequence of this rescaling is the fact that at equilibrium c = I  so that f c{ }( ) = 1  and 
Ξ p = 0 . The vast majority of studies done in connection with DNS of polymeric viscoelastic flows 
have utilized the FENE-P model. Such models are representative of nonlinear dumbbells, which 
preclude the infinite extendability of the linear dumbbell models represented by the Oldroyd-B fluids. 

3. Numerical Simulations: Focus and Formulation 
As with the case of Newtonian fluids, a primary motivation for using numerical simulations in the 
study of flow physics is the absence, or near-absence, of dynamic modeling. In the case of viscoelastic 
fluids, as the previous section showed, model development for the Cauchy stress introduced by the 
polymeric chains required careful consideration of the phenomenological behavior of a polymer chain. 
When such polymers are embedded in a turbulent flow, the multi-scale dynamics is quite complex. 
Until recently, and even today, the state-of-the-art is such that many aspects of the dynamic 
interchange between the turbulent flow stress fields and viscoelastic (polymeric) fluid stress fields is 
not completely understood. 
 
 The large majority of DNS studies of polymeric flows are performed in a fully developed channel 
flow. The obvious advantage is the simplification of boundary conditions and computational resources 
in both the streamwise and spanwise flow directions. This additionally enhances any spectral analysis 
of the flow dynamics since two directions can be Fourier analyzed. Fortunately such flows display a 
broad range of drag reduction (DR) features so there is no compromise from a dynamics standpoint.  
 
 Since such studies focus on the inner layer dynamics of the channel flow, wall scaling is usually 
used and is based on zero-shear rate variables with the length and time scaled by ν tot / uτ  and ν tot / uτ2 , 
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where ν tot = ν s +ν p0  is the total zero-shear kinematic viscosity, and uτ  the friction velocity. In the 
following, standard notations for the channel flow geometry will be used, i.e. the channel streamwise 
direction is x1+ = x+ , the wall-normal direction is x2+ = y+ , and the spanwise direction x3+ = z+ , with the 
velocity field in the respective directions (U + ,V + ,W + ) = (U1

+ ,U2
+ ,U3

+ ) .  
 Finally, in this section the notation will change from using matrix tensors and vectors to index 
notation, which will facilitate the presentation of material. Using this scaling, the dimensionless 
conservation equations are 
 

 
∂Uj

+

∂xj+
= 0  (2.19) 

 

 
DUi

+

Dt+
=  ∂Ui

+

∂t+
+Uj

+  ∂Ui
+

∂xj+
= − ∂P+

∂xi+
+  

∂Σ ij
+

∂xj+
,  (2.20) 

  
with ∂P+ / ∂x+  the pressure gradient (this includes the constant non-zero contribution driving the flow 
as well as a time-dependent contribution), and the total stress tensor Σ ij

+  being composed of 
(Newtonian) solvent and (polymeric) viscoelastic contributions 
 
 Σ ij

+ = 2β0 Sij+ +Ξ ij
p+  (2.21)  

 
Here, Sij+ = (∂Ui

+ / ∂xj+ + ∂Uj
+ / ∂xi+ ) / 2  is the strain rate tensor, β0  the ratio of the Newtonian viscosity 

ν s  to the total zero-shear viscosity ν tot . For a FENE-P dumbbell model, the polymeric stress is given 
by (cf. (2.17)) 
 
 Ξ ij

p+ = α 0 f ({c})cij −δ ij⎡⎣ ⎤⎦ (2.22) 
  
 
where α 0 = (1− β0 ) /Weτ 0 , and with Weτ 0 = λuτ2 /ν tot  the friction Weissenberg number representing 
the ratio of the elastic relaxation time λ  relative to the viscous timescale. The polymeric stress for a 
FENE-P fluid includes the Peterlin function f {c}( )  that was defined in (2.18), ensuring shear-
thinning behavior and a finite elongational viscosity for a finite value of the extension rate, with L  the 
fully-stretched polymer length and {c}  designating the trace of the conformation tensor c . The 
equation system is closed with an evolution equation for c  (cf. (2.16)) 
 

 
Dcij
Dt+

= cikSkj+ + Sik+ckj( )− cikWkj
+ −Wik

+ckj( )− f ({c})cij −δ ij

Weτ 0
, (2.23) 

 
 
where Wij

+ = (∂Ui
+ / ∂xj+ − ∂Uj

+ / ∂xi+ ) / 2  is the rotation rate tensor. 
 
 For the results to be shown here, the simulation parameters are set as β0 = 0.9  and Reτ 0 = 1000 , 
where Reτ 0 = uτh /ν tot   (with h  the channel half-width) is the zero-shear friction Reynolds number 
setting the turbulence level. Two drag reduction cases are studied: L = 30 , Weτ 0 = 50 , medium 
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percentage DR of 30%, and L = 100 , Weτ 0 = 115 , high percentage DR of 58%. The simulation details 
can be found in [11,25,26]. 
  
The Peterlin function can be related to the potential energy associated with the extension of the 
polymer molecule. The nonlinear spring force of a finitely extendable nonlinear elastic (FENE) 
polymer model was given in equation (2.13) and leads to a relation for the elastic potential energy 
given by 
 
  Ep

+ −Ep0
+ = α 0L ln[ f ({c})] (2.24) 

 
where α 0L = α 0 (L2 − 3) / 2 , and  Ep0

+  is a constant reference energy at equilibrium (recall Ξ p+ = 0  at 
equilibrium). This yields for the Peterlin function the relation, 
 
  f ({c}) = e

(Ep
+−Ep0

+ )/α 0 L  (2.25) 
  
and the polymeric stress 
 
  

 
Ξij

p+ = α 0 e(Ep
+−Ep0

+ )/α 0 L cij −δ ij⎡⎣ ⎤⎦  (2.26) 
  
The polymeric energy Ξii

p+ / 2  is then directly linked to the exponential of the potential energy of the 
extended polymer. 

4. Energetic Exchange 
Although the primary focus in this section will be on the energetic exchange between the turbulent 
flow and the polymeric chain, it is useful to see the net effect on the mean flow at different DR levels. 
Figure 3 shows the mean velocity across the channel for both the 30% and 58% DR cases. At 
Reτ 0 = 1000  a well-defined log-law region starts to appear (cf. [4,27]). When compared to the 
theoretical maximum drag reduction (MDR) limit [28], it is apparent that as Reynolds number and DR 
levels increase both the wall layer intercept and log-law slope change. It is this variation in the 
sublayer/buffer layers that has motivated much of the simulation studies to date. 
 

  
Figure 3. Mean velocity profiles for mod-
erate and high drag reduction case (from 
[11]) 

Figure 4. Turbulent kinetic energy for mod-
erate and high drag reduction case (from 
[11]) 

XXI Fluid Mechanics Conference IOP Publishing
Journal of Physics: Conference Series 530 (2014) 012002 doi:10.1088/1742-6596/530/1/012002

9



 
 
 
 
 
 

 
As figure 4 shows, the turbulent kinetic energy K +  peak level increases for viscoelastic flow relative 
to the Newtonian case. The figure further confirms the thickening of the sublayer since the peak of 
turbulent kinetic energy moves away from  y

+ ! 17  for the Newtonian fluid to  y
+ ! 40  for the high 

DR case. Explaining the increase in the turbulent kinetic energy level for viscoelastic flows is not that 
trivial. It is necessary to examine the dynamic balance associated with the turbulent kinetic equation 
given by 
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  (3.1) 

 
where Pm+ = −τ ik+Ski+  is the mean flow production. From the turbulent kinetic profiles for the Newtonian 
and viscoelastic cases shown in figure 4, the most significant change in the energetic balance should 
occur in the region 10 ≤ y+ ≤ 60  where the peak turbulent kinetic energy level is clearly set. As figure 
5 shows, within this region the dynamics is dominated by the combination of diffusive transport and 
dissipation, namely Dt

+ + Dv
+ − ε + , with Dt

+  and Dv
+  both negative (although not shown growing in 

magnitude as viscoelasticity increases). Note that Dt
+  has the same magnitude as dissipation ε +  at the 

location of peak production by the mean flow,  y
+ ! 25 . Since Dt

+  and Dv
+  spatially redistribute and 

diffuse energy within the channel rather than act as ultimate energy sinks, this suggests that the 
relative influence of ε +  as compared to production diminishes with increasing viscoelasticity. As such 
the peak turbulent energy level in the polymeric cases can reach a higher value than in the Newtonian 
case. 
 

  
Figure 5. Turbulent kinetic energy budget 
for high ag reduction cases(from [11]) 

Figure 6. Elastic potential energy for mod-
erate and high drag reduction case 
(from[11]) 
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 Figure 6 shows the mean elastic potential energy Ep
+   ( =Ep

+ −Ep0
+ ) for both the medium and high 

DR cases. In each case a maximum exists and is located at y+ ≈12  for medium DR and at y+ ≈ 20  for 
the high DR flow. Recall that the elastic potential energy is a direct consequence of the nonlinear 
spring force contribution to the polymer chain force balance. As such the peak in potential energy 
distribution for each DR case should correspond to the location of maximum polymer chain extension 
< L( )  occurring within the channel. In addition, note that the relative peak amplitude between the two 

cases is a factor of 4. The fourfold increase in potential energy can be attributed to both the nonlinear 
behavior of the FENE-P spring (the Peterlin function) (see (2.24)), and the significant difference in the 
coefficient α 0L  between the medium (α 0L = 0.9 ) and high (α 0L = 4.5 ) DR cases.  
 
 Since the polymeric stress (energy) is composed of the nonlinear spring force contribution and the 
(isotropic) Brownian motion contribution, the cross-channel distribution of the polymeric kinetic 
energy should be qualitatively similar to the potential energy distribution. This is shown in figure 7 for 
the mean polymeric energy, Kp

+ = Ξ ii
p+ / 2 . The polymeric energies for both DR cases are larger than 

the corresponding potential energy. The increase is due to the exponential relationship between 
polymeric stress and elastic potential energy given in (2.26) as well as the difference between α 0  for 
the medium (α 0 = 2.0 ×10−3 ) and high (α 0 = 0.9 ×10−3 ) DR cases. It is interesting to observe that the 
turbulent kinetic energy shown in figure 4 reaches a peak value of ≈ 6  at medium DR, and a peak 
value of ≈10  at high DR. This implies that for high DR the polymeric energy and the turbulent 
kinetic energy are of same order of magnitude; whereas, for medium DR the turbulent kinetic energy 
clearly dominates the polymeric energy. This means that as DR increases the polymer takes a 
proportionally larger amount of energy from the turbulent kinetic energy. 
 
 The polymeric energy equation is given by 
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  (3.2) 

 
 
where Ppm+ = Ξ ik

+Ski+  is the production from mean shear. The corresponding cross-channel balance of each term is 

shown in figure 8. The dominant balance for the polymeric energy in the inner layer ( y
+ !15 ) is 

between the production due to mean shear, Ppm+ , and the dissipation rate, ε p
+ . The remaining sinks of 

energy in the overall polymeric energy balance in the inner and buffer layers are from the terms that 
are directly dependent on the mean and fluctuating components of the Peterlin function, Ppf+  and Dpf

+ , 
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where the latter contribution clearly dominates. In the outer layer ( y
+ ! 50 ), the balance is between 

the turbulent exchange term Ppt+  and the mean dissipation. 
 

  
Figure 7. Polymeric kinetic energy profiles 
for high drag reduction case (from [11]) 

Figure 8. Polymeric energy budget for high 
drag reduction case (from [11]) 

 

5. On the Drag Reduction Mechanism 
As the energetic budgets show, the polymer-turbulence interaction is governed by the turbulent 
exchange term Ppt+ . As figure 8 shows, this term is predominantly positive so that the primary effect of 
the interaction between the turbulent and polymeric fields is to transfer energy from the turbulence to 
the polymer. For comparison, figure 9 shows the polymeric energy budget for the low drag reduction 
case.  Note that the magnitude of the exchange term does not change between the low and high drag 
reduction cases. This one-way transfer, with an amplitude independent of the drag reduction regime, is 

in contradiction with the purely elastic coupling 
which is implicit within the elastic theory of the 
polymer drag reduction phenomenon by Tabor and 
De Gennes [15]. The elastic scenario indeed implies 
a two-way coupling where the exchange term would 
change sign, and would vary in magnitude with 
different elasticity levels. 

6. Summary and Perspectives  
Although in the limited space available it was not 
possible to pursue many of the aspects of 
viscoelastic fluid flows in detail, it is hoped that the 
material presented has provided an overview of the 
development of a commonly used and relatively 
accurate polymeric fluid stress constitutive equation 
– the FENE-P model. With this background in model 
development it is easier to see how the energetic 
exchange between the turbulent flow and 

viscoelastic fluid can occur. The solvent flow field provides a force to the polymer chains that both 
induces a stress which acts on the flow and a gain to the entropic springs which elongates the chains 
and effectively increases the polymeric viscosity. This nonlinear behaviour results in a complex 

 

 
Figure 9. Polymeric energy budget for high 
drag reduction case (from [11]) 
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energetic exchange that depends on the distance from the bounding solid surface of the channel. 
Additional insight could also be obtained from a spectral analysis of the energy cascade and which 
could provide further information relative, not only, to spatial location but also on relevant spectral 
scales in the cascade. 
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