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Chapter I 

INTRODUCTION 

1.1 Motivation for the Dissertation Research 

It is well known that human eyes perform much better than cameras when imaging 

real-world scenes, which generally have high dynamic range that can span more than six 
Q 

orders of magnitude. Human eyes have about 10:1 absolute range from fully adapted dark 

vision to fully adapted lighting conditions at noon on the equator. They can see about 

3xl04:l range of luminance when adapted to a normal working range. This is achieved 

through a series of adaptive mechanisms for brightness perception. First, the size of pupil is 

variable to accommodate different levels of radiance from different regions in a scene 

while the camera aperture is fixed when capturing the scene. When staring at a 

highly-bright region in the scene, the pupil will shrink to compress the dynamic range so 

that the eyes can deal with it. Second, and more importantly, the major dynamic range 

compression process is taking place via the lateral processing at the retinal level [1]. 

Finally, the early visual cortex is also found participating in some of the dynamic range 

processing. 

Conventional imaging devices, e.g. consumer cameras can measure only about three 

orders of magnitude. In addition, image display devices, like monitors and printers, also 

demonstrate limited dynamic range. As a result, images of high dynamic ranges scenes 

commonly suffer from poor visibility due to either overexposure causing saturation or 

underexposure resulting in low contrast dark images in which some important features are 

lost or become hard to detect by human eyes. Computer vision algorithms also have 

difficulty processing such images. 

The Human Visual System (HVS) perceives the color of an object independent of the 

type of light illuminating it. A red apple illuminated by different light sources with 
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different spectral characteristics, still tends to appear red even though reflected spectrum is 

not same each time. Additionally, a yellow patch illuminated with white light or a white 

patch illuminated with yellow light reflect the same spectral distribution, but the yellow 

patch is seen as yellow and the white patch as white. This phenomenon is known as color 

constancy, e.g. the ability to remove the effect of the illumination from the output. The 

HVS has a complex non-linear mechanism of neuro-physiological functions of individual 

neurons that determines the perceived color discounting the illurninant through spatial and 

spectral comparisons of color signals across a scene. 

Image enhancement is an important topic in digital image processing. It can help 

humans and computer vision algorithms obtain more accurate information from enhanced 

images. The visual quality and certain image properties, such as brightness, contrast, 

signal-to-noise ratio, resolution, edge sharpness, and color accuracy can be improved 

through the enhancement process. Many image enhancement algorithms have been 

developed based on various digital image processing techniques and applications. They 

can be developed in the spatial domain, spatial-frequency domain, or space-frequency 

domain (e.g., wavelet transform domain). 

In many image processing applications, magnifying the details in an image may also be 

required, especially when the resolution is limited. Digital satellite, aerial images, and 

medical imaging along with distant object/face recognition are examples of such 

applications. It is necessary to make the magnification (interpolation) without blurring for 

the magnified details to be useful for object/face recognition. 

Due to different properties of various image processing techniques employed in image 

enhancement algorithms, each algorithm may have certain specialties compared to other 

algorithms in terms of capability, performance, robustness, computation load, algorithm 

complexity, and so on. Therefore, it is necessary to investigate different image processing 

techniques to develop new image enhancement algorithms or to improve existing 

algorithms for the purpose of improving the visibility in scenes and strengthening the 

capability to deal with various image processing and computer vision applications. 

This dissertation research is dedicated to developing an innovative image enhancement 
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technique for improving the visibility of low quality digital images caused by many 

reasons such as high dynamic range scene irradiance, poor contrast due to the very narrow 

dynamic range of the captured scene, very low illumination (low light conditions), 

pathological scenes that violate the gray-world assumption, non-uniform illumination or 

the spectral characteristics of the illuminant, and the limited resolution of the imaging 

devices. This research is focused into developing an algorithm that can automatically 

(without any human interventions) enhance images suffering from the previously 

mentioned effects. 

1.2 Summary of the Dissertation Contributions 

In this dissertation research, a novel, fast and robust wavelet-based dynamic range 

compression and local contrast enhancement (WDRC) algorithm to improve the visibility 

of digital images captured under non-uniform lighting conditions has been developed. 

Wavelet transform is used especially for dimension reduction such that the WDRC 

algorithm is applied only to the approximation coefficients which are obtained by low-pass 

filtering and down-sampling the original intensity image. The normalized approximation 

coefficients are transformed using a hyperbolic sine curve and the contrast enhancement is 

realized by tuning the magnitude of the each coefficient with respect to surrounding 

coefficients. The transformed coefficients are then de-normalized to their original range. 

The detail coefficients are also modified to prevent the edge deformation. The inverse 

wavelet transform is carried out resulting in a low dynamic range and contrast enhanced 

intensity image. A color restoration process based on the relationship between spectral 

bands and the luminance of the original image is applied to convert the enhanced intensity 

image back to a color image. 

The proposed image enhancement algorithm, which provides dynamic range 

compression, while preserving the local contrast and tonal rendition, is also a good 

candidate for real time video processing applications. Although the colors of the enhanced 

images produced by the proposed algorithm are consistent with the colors of the original 

image, the proposed algorithm fails to produce color constant results for some 
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"pathological" scenes that have very strong spectral characteristics in a single band. The 

linear color restoration process is the main reason for this drawback. Hence, a different 

approach is required for tackling the color constancy problem. The illuminant is modeled 

having an effect on the image histogram as a linear shift and adjust the image histogram to 

discount the illuminant. The WDRC algorithm is then applied with a slight modification, 

i.e. instead of using a linear color restoration, a non-linear color restoration process 

employing the spectral context relationships of the original image is applied. The proposed 

technique solves the color constancy issue and the overall enhancement algorithm provides 

attractive results improving visibility even for scenes with near-zero visibility conditions. 

The scheme of the WDRC algorithm is shown in Figure 1.1. 
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Figure 1.1 The proposed WDRC algorithm 
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In this research, new wavelet-based image interpolation technique that can be used 

for improving the visibility of tiny features in an image, is also presented. In wavelet 

domain interpolation techniques, the input image is usually treated as the low-pass 

filtered subbands of an unknown wavelet-transformed HR image, and then the unknown 

high-resolution image is produced by estimating the wavelet coefficients of the high-pass 

filtered subbands. The same approach is then used to obtain an initial estimate to the 

high-resolution image by zero filling the high-pass filtered subbands. Detail coefficients 

are then estimated via feeding this initial estimate to an undecimated wavelet transform 

(UWT). Taking an inverse transform after replacing the approximation coefficients of the 

UWT with initially estimated HR image, results in the final interpolated image. 

Experimental results of the proposed algorithms proved their superiority over the 

state-of-the-art enhancement and interpolation techniques. 

1.3 Specific Objectives 

The specific objectives of this research are: 

• Development of a nonlinear function which mimics the HVS for simultaneously 

enhancing the dark regions and compressing the bright regions in a high contrast 

image. 

• Development of a context-dependent technique that is applied to the 

approximation coefficients of the discrete wavelet transform of the image that is 

to be enhanced. 

• Application of a contrast enhancement algorithm to the enhanced approximation 

coefficients to improve the local contrast. 

• Development of a technique for modification of detail coefficients to preserve the 

fine details and regularity of the edges in the image. 
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• Development of a histogram modification technique to account for the 

illumination spectral variations in the scene. 

• Development of a non-linear color restoration technique based on the relationship 

between spectral bands and the luminance of the original image and the enhanced 

intensity image to obtain the enhanced color image. 

• Development of a wavelet-based interpolation technique to increase the visibility 

of tiny features in an image. 

• Combining the enhancement algorithm with the interpolation technique. 

• Testing and evaluation of the performance of the proposed algorithms on various 

images captured in different scenes with diverse lighting conditions. 

1.4 Organization of the Dissertation 

The remaining chapters are organized as follows: 

In Chapter II, a literature review of the nonlinear image enhancement techniques with 

an emphasis on Retinex-based methods is presented. Among those techniques, MSRCR 

[29]-[33], AINDANE [42], and IRME [43] algorithms which are used as benchmarks to 

the proposed enhancement algorithms are introduced. A review of image interpolation 

techniques especially the wavelet-based interpolation methods is also presented. 

Chapter III presents the new wavelet-based image enhancement algorithm: 

wavelet-based dynamic range compression and local contrast enhancement (WDRC). For 

the algorithm, the details of nonlinear dynamic range compression through approximation 

coefficients obtained from the wavelet transformed intensity image, the local contrast 

enhancement based on local statistics of the approximation coefficients, detail coefficient 

modification, and a linear color restoration process are explained. The algorithm is 

discussed using various experimental results showing its capability of enhancing images 

of scenes with various illumination conditions. Drawbacks of the proposed algorithm in 

discounting the illuminant spectral variations for providing color constancy and in 

enhancing the images of some "pathological" scenes are also discussed. 
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In Chapter IV, a new color restoration (CR) process applied to WDRC processed 

images for tackling the color constancy problems is presented. The two steps for the 

nonlinear color restoration are described, namely, the global histogram adjustment before 

applying the WDRC algorithm and the final color restoration. Comparisons of the 

modified WDRC algorithm (WDRC-CR) with other advanced techniques are performed 

and discussed in terms of color constancy, visual quality, and computational complexity. 

In Chapter V, a new wavelet transform-based algorithm for image interpolation is 

presented, which uses undecimated wavelet transform (UWT) for estimation of the 

missing high frequency components i.e. the detail coefficients. For explaining the 

algorithm in detail, an efficient implementation of the UWT using "a trous algorithm" is 

explained as a preliminary and the application of UWT to the image interpolation is then 

introduced. Experimental results from the proposed algorithm are presented. Some 

performance comparisons of the proposed algorithm are also shown with the 

state-of-the-art wavelet-based and spatial domain interpolation techniques along with the 

conventional ones in terms of quantitative similarity measures. Finally, some examples 

that are processed by both non-linear enhancement and wavelet interpolation algorithms 

are shown. 

Finally, Chapter VI presents the major contributions of this dissertation work and 

some comments on related future work. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Spatial Domain Image Enhancement Techniques 

To cope with the high dynamic range scenes given the limited dynamic ranges of 

cameras, monitors, and printers, various image processing techniques which compress or 

modify dynamic range have been developed. Some of those are global histogram 

modification techniques, such as gamma adjustment, logarithmic compression, and 

levels/curves methods. However, those conventional methods generally have very limited 

performance such that some features may be lost during the image processing, or some 

cannot be sufficiently enhanced. The resulting images suffer from degraded global and 

local contrast which is related with the visual quality and the fine features. 

2.1.1 Histogram Equalization-Based Techniques 

Among the contrast enhancement techniques, histogram equalization (HE) and its 

modified versions are commonly used for enhancement. Although HE works well for 

scenes that have uni-modal or weakly bi-modal histograms, its performance is poor for 

scenes with strongly bi-modal histograms. To make it work for multi-modal histograms, 

adaptive histogram equalization (AHE) was introduced [2]. In AHE which is also called 

localized or windowed HE, histogram equalization is performed locally within an 

adjustable size window. AHE provides local contrast enhancement and performs better 

than normal HE. However, AHE suffers from intensive noise enhancement in "flat" 

regions and "ring" artifacts at strong edges due to its strong contrast enhancement [3]. In 

contrast limiting AHE (CLAHE [4,5]), undesired noise amplification is reduced by 

selecting the clipping level of the histogram and controlling local contrast enhancement. 

Multi-scale AHE (MAHE) [6] is the most advanced variation of HE. Unlike traditional 
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single scale techniques, wavelet-based MAHE is capable of modifying/enhancing the 

image components adaptively based on their spatial-frequency properties. Those 

advanced HE variations generally have very strong contrast enhancement, which is 

especially useful in feature extraction applications like medical imaging for diagnosis. 

They are not commonly used in processing color images probably because their strong 

contrast enhancement may lead to excessive noise or artifacts and cause the image to look 

unnatural. Applying HE techniques to equalize each color channel separately by 

neglecting the inter-component correlation would lead to an incorrect result due to the 

vectorial nature of the data, i.e. each pixel is represented by a vector with three 

components and the three components are mutually correlated. Therefore, HE based 

techniques based on joint processing of the three channels have been developed for 

processing color images. Those techniques can be classified in two main groups. 

In the first approach color data are processed in RGB space. The "3-D histogram 

equalization" method [7] consists of three-dimensional (3-D) histogram specification in 

the RGB cube, with the output histogram being uniform. In [8] "histogram explosion", a 

3-D technique that exploits the full 3-D gamut is proposed. For each point in the RGB 

cube corresponding to an image color, a ray that starts from some central point, passes 

through that point and reaches to the surface of the RGB cube is defined. Then, all points 

within a threshold distance of the ray are projected onto the ray. In this way, a 1-D 

histogram along the ray is created and, equalized to determine the new color value for the 

original point. Through this technique, color points are almost uniformly spread in the 

color space. The "histogram decimation" technique [9,10] attempts to uniformly scatter 

the color points over the full 3-D gamut iteratively by shifting the color points in the 

current space so that their average becomes the geometric center of the space. This is 

followed by dividing the current color space into eight equally-sized subspaces which are 

set as the current space for the next iteration. This procedure is repeated until the 

sub-space reaches its minimum value. Thus, the color points are spread to occupy the full 
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range. All of these methods have issues with modifying color hues, which leads, in 

general, to results that look unnatural, since the HVS is extremely sensitive to shifts in 

hue. 

The second approach for color HE is to perform equalization in color spaces other 

than RGB, [11]-[13] such as the Hue-Saturation-Intensity (HSI) space. This allows one to 

modify either only intensity component or both intensity and saturation components 

leaving the hue intact so that the issues concerning the shifts in hue of the above 

mentioned methods are solved. In [12], a method to jointly equalize intensity and 

saturation is presented, concluding that modification of saturation is not advised because 

of the unnatural results. In [14], an adaptive-neighborhood approach that performs its 

equalization only on the brightness component of the color image is presented. The 

method is designed to increase the number of intensity levels in the image by taking into 

account values of pixels within a certain neighborhood when computing the new intensity 

value of a pixel. The neighborhood is determined adaptively for each pixel in the image 

by a region growing algorithm, rather than forcing it to a predefined shape and size. 

HE of the intensity component is only more effective in terms of computational cost 

and producing consistent colors that are not unnatural, compared to modifying the color 

channels separately. Nevertheless, all of the presented techniques are generally 

computationally expensive and have problems with either color consistency due to shifts 

in hue or color constancy (i.e. being independent from illuminant spectral distribution). 

2.1.2 Retinex-Based Techniques 

Land and McCann [15] carried out several experiments demonstrating that color 

perception is not just a simple signal acquisition. They concluded that perception in the 

HVS is realized by computations in the three retinal-cortical systems, each independently 

processing the low, middle, and high frequencies of the visible spectrum. They named 
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this process the Retinex (retina+cortex). In Retinex-based algorithms, the average of 

surface reflectance relative to the surrounding surface reflectance, so called lightness 

values, are computed in each of three distinct spectral bands for computation of the color 

of a pixel. This yields three distinct lightness values that give an invariant description of 

the surface-spectral-reflectance function at each wavelength, implying color constancy 

under some assumptions of image formation [22]. 

According to Land and McCann's original work [15] the lightness values of a pixel i 

in an image is determined by considering a certain number of paths, starting at random 

points and ending at /, and then by accumulating the logarithm of the ratios between the 

intensity values of subsequent points in the paths with the ratio is larger than a threshold. 

In the original work, the Retinex calculation consists of four steps, i.e. ratio, product, 

reset, and average [25]. With the exception of reset [21], these operators have remained 

the same since the introduction of the Retinex; only the way in which these operators are 

applied to the image changed. The main difference in several variants [16]-[21] of the 

original work is the way in which the comparisons of the pixel values with other pixels in 

the image are carried out. Thus, the computational complexity is improved while 

preserving the basic principles. 

Through the years, the Retinex model has inspired a great variety of implementation 

and discussion, with results that are generally difficult to compare with each other 

[15]-[36]. Even Land and McCann presented different Retinex versions. In [21] Land 

presents the last version of his Retinex computation which has the following 

mathematical form: 

Ri out (x, y) = log /,- (x, y) - log[F(x, y) * /,- (x, y)] (2.1) 

where Ii(x,y) is the image distribution in the z'th color spectral band, "* " denotes the 

convolution operation, F(x,y) is the surround function, and Ri 0at(x,y) is the associated 

retinex output with the f th spectral band to produce Land's triplet values specifying color 
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and lightness. It is apparent that color constancy can be achieved with this form from 

(2.2H2.4): 

It (x, y) = Lt (x, y)rt (x, y) (2.2) 

where Li(x,y) is the spatial distribution of the source illumination and r,{x,y) is the 

distribution of scene reflectance. The reflectance component can be isolated if the 

illumination is known. Unfortunately, for arbitrary images the illumination is generally 

not known. However, if the intensity value at a pixel is divided by its spatially weighted 

average value, the following equation is obtained [22,28]: 

* . ^ > = ' ° g i f ^ = . o g
 L

L
il;T<x'yl (z3) 

Ii(x,y) Li(x,y)ri(x,y) 

where the bars denote the spatially weighted average value. As long as 

Lf (x, y) ~ Li (x, y) indicating the scene illumination is almost constant, then, 

Mx>y) 
'n(x,y) Kiout^y)-1^^2: (2-4) 

The approximate relation in (2.4) is equality for many cases and, for those cases where it 

is not strictly true, the reflectance ratio should dominate illumination variations [28]. 

Experiments conducted by Jobson et al. [28] show that Land's center/surround retinex 

achieves color constancy and dynamic range compression; but not a good visual rendition. 

Specificially, halo artifacts appear where uniform regions come together to form a high 

contrast edge "graying" in the large uniform zones in an image. Besides, global violations 

of the gray world assumption (e.g., scenes that are dominated by one color) cause a 

global "graying out" of the image. In [28], they investigated the properties of 

"Centre/Surround Retinex" and suggested solutions to some implementation issues they 

encountered during their experimental investigations of the algorithm. Their 

implementation, later so called Single Scale Retinex (SSR) aims to produce color 

constant and dynamic range compressed images with satisfactory rendition. To fulfill this, 
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it specifies the placement of the log function; the functional form of the surround; the 

space constant for the surround; and the treatment of the retinex triplets prior to display. 

To summarize the characteristics of the SSR algorithm [28]: 

1. The functional form of the surround is a Gaussian. 

2. The placement of the log function is AFTER surround formation. 

3. The post-retinex signal processing is a "canonical" gain/offset rather than an 

automatic gain/offset. 

4. There is a trade-off between dynamic range compression and tonal rendition 

which is governed by the Gaussian surround space constant. 

5. A single scale is incapable of simultaneously providing sufficient dynamic range 

compression and tonal rendition 

6. Violations of the gray-world assumption lead to retinexed images which are either 

"grayed-out" locally or globally or, more rarely, suffered from color distortion. 

Since the width of the surround affects the rendition of the processed image, multiple 

scale surrounds were found to be necessary to provide a visually acceptable balance 

between dynamic range compression and graceful tonal rendition. 

The Multiscale Retinex (MSR) [29]-[33] combines the dynamic range compression of 

the small scale retinex with the tonal rendition of the large scale retinex to produce an 

output which encompasses both. The equations for the MSR are defined by 

K 
Ri(x,y) = Gr YJWk{logIi(x,y)-\og[Fk(x,y)*Ii(x,y)^-Or, 

k=l ^ J 

i = l, ,N 

where the subscripts i represents z'th spectral band and TV is the number of the spectral 

bands: N=\ for grayscale images and 7V=3, is {R,G,B} for typical color images. K is 

the number of scales used in computations (with K=l the equation turns to be SSR) and 
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Wk are the weighting factors for the scales, Gr and Or are the gain and offset values 

that map the result of the retinex computation from retinex domain to display domain. 

Although the number of scales used for the MSR is application-dependent, it was 

empirically found that a combination of three scales representing narrow, medium, and 

wide surrounds is sufficient to provide both dynamic range compression and tonal 

rendition [29]-[33]. The narrow-surround acts as a high-pass filter, capturing all the fine 

details in the image but at a severe loss of tonal information. The wide-surround captures 

all the fine tonal information but at the cost of dynamic range. The medium surround 

captures both dynamic range and tonal information. The MSR is the average of the three 

renditions [33]. 

The halo artifacts around uniform regions that come together to form a high contrast 

edge caused by a small scale also lessen when multiple scales are used. The MSR still 

suffers from graying out of uniform zones much as the SSR does. This occurs because the 

retinex processing enhances each color band separately. The smaller values in the weaker 

channels get "pushed" up strongly, making them approximately equal in magnitude to the 

dominant channel, leading to a graying out of the overall region, which, in some cases, is 

severe. Unexpected color distortions in rare occasions are also reported due to gray-world 

violations [33]. Therefore, a color restoration scheme to remove this drawback is 

considered. MSR with color restoration (MSRCR) is mathematically represented as: 

RMSRCRt = <*i (*>y) • RMSRI (*» y) ( 2 - 6 ) 

with 

<*i(x,y) = filog\ 
N 

i=l 
+ 7 (2-7) 

where J3 and y are the color gain and color offset values, respectively. Again a single 

set of values for /? and y was determined for all spectral channels. There is an analogy 

between the internal forms of the retinex process and the color restoration process. Both 
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computations are contextual, highly relative, and nonlinear. The MSRCR provides the 

necessary color restoration, eliminating the color distortions and gray zones evident in the 

MSR output. However, MSRCR does not completely restore the bright colors that are in 

the original image. To handle that, a white balance [33] process is applied. The pixel 

intensities of the original image and the MSRCR output are compared, and maximum of 

either one is accepted for each pixels. 

Although MSRCR performs well for a very large variety of natural images, 

processing in three spectral channels for at least three scales makes the algorithm hard to 

implement for real-time applications on contemporary PC platforms. In addition, optimal 

performance is not always obtained with default parameter setting, especially when 

images that have a dark subject with a very bright background are being processed, 

MSRCR seems to have difficulty providing sufficient luminance enhancement for the 

subject. Besides, MSRCR with default parameters cannot handle the images with a very 

narrow dynamic range, such as images taken under turbid imaging condition without 

post-enhancement treatment. Moreover, there is a trade-off between using white-balance 

or not in MSRCR processing. If white-balance is turned-off, the uniform bright regions in 

the original image turn to gray in the enhanced image, but local contrast is improved even 

for the brightest regions. When white-balance is turned on this drawback is overcome, 

however, the enhancement of only dark regions can be achieved. Actually, the former is 

useful for computer vision applications, whereas the latter produces good rendition. 

Finally, the "halo effect" appearing at the boundaries with a large luminance change 

between the large uniform regions even though reduced, is not totally removed. 

In a more recent work [37], to overcome all the drawbacks addressed in the previous 

paragraph, Jobson et al. have developed their method with a fundamental shift in 

approach away from purely passive retinex processing to an active measurement and 

control system. The so called Visual Servo (VS) concept is shown in Figure 2.1. In VS 

enhancement, a key visual parameter is first measured, second, based upon the measured 

value, an enhancement control to improve the overall brightness, contrast, and sharpness 

of the image is activated followed by recomputing the visual measure. If the measured 
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value of the parameter achieves a predefined visual standard based upon the local image 

statistics, then the process is terminated; otherwise, the process is iterated until either the 

visual standard has been achieved or the VS has determined internally that all reasonable 

enhancement processing has been exhausted. 

Figure 2.1 The Visual Servo Enhancement (courtesy of NASA). 

A bunch of VS-processed image examples can be seen on the related internet site 

[38]. Those demonstrations show that visual servo automatically matches the type and 

degree of image enhancement to the type and degree of visual deficit in raw image data. 

The only drawback of this kind of enhancement is that it is computationally more 

extensive with its iterative nature than the passive form. 

Inspired by the MSRCR enhancement, many other image enhancement techniques 

have been developed performing their computations on only the intensity channel 

following a linear color restoration process to produce the enhanced color images. 

Among those, Multi-scale Luminance Retinex [39] method is proposed to apply the 

MSRCR on only the luminance channel. Luma-Dependent Nonlinear Enhancement 

(LDNE) [40,41] algorithm is another luminance-based multi-scale center/surround 

retinex algorithm. Adaptive Integrated Neighborhood Dependent Approach for Nonlinear 

Enhancement (AINDANE) [42] and Illuminance-Reflectance Model for Nonlinear 

Enhancement (IRME) [43] both implement adaptive luminance enhancement and 

adaptive contrast enhancement separately. Multi-Windowed Inverse Sigmoid (MWIS) 

[44] is an extension of IRME, replacing the inverse sigmoid function used in IRME for 
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adaptive luminance enhancement, by two combined sigmoid functions to deal with the 

bright regions as well. Locally Tuned Sine Nonlinearity (LTSN) is another extension of [45] 

utilizing the trigonometric function for illuminance enhancement to achieve the 

enhancement of dark and bright regions simultaneously. These techniques differ from 

each other in the way they perform luminance enhancement. In all these methods, the 

enhanced chromatic image component is obtained by using a linear color restoration 

process based on the chromatic information in the original image. Although these 

algorithms provide dynamic range compression to some extent, it is not possible to 

achieve color constancy by just modifying the luminance channel, since the chromatics of 

the original image are used linearly to restore the color, which stands in direct contrast to 

the color constancy objectives of the Retinex. The proposed enhancement algorithm in 

this dissertation is based on AINDANE and IRME in some aspects, therefore these two 

techniques are briefly introduced for completeness of the dissertation report. 

2.1.2.1 AINDANE 

The AINDANE algorithm [42] consists of two parts: adaptive luminance 

enhancement and adaptive contrast enhancement. The luminance enhancement part is an 

intensity transformation with a nonlinear transfer function. The contrast enhancement part, 

which is adaptively controlled by the global statistics of the image, tunes the intensity of 

each pixel based on its relative magnitude with respect to the neighboring pixels. To 

convert color images to intensity (gray-scale) images, the National Television System 

Committee (NTSC) standard is used, which is defined as: 

,/ v 76.2457? +149.6851G + 29.075 
i\x>y)= ^ (2-8) 

where R,G and B are the values of the red, green and blue color band of a pixel. Then the 

image intensity is normalized as: 
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in{^y) = 
_ l{x,y) 

255 
(2.9) 

followed by the nonlinear mapping by the transfer function given by (2.10) to get 

dynamic range compression. 

^ . ^ M ^ ^ ^ (210) 

where z provides the curve of the transfer function and is related to the image histogram 

defined as: 

for L<50 

z = i — for 50<Z<150 (2.11) 

for L>150 
100 

1 

where L is the intensity level corresponding to where the cumulative gray level 

distribution is 0.1. L is used as an indication to determine how dark the lowest 10% of 

pixels in an image are. If the z value is 0, the pixel will be a maximum enhanced level 

and if the z value is 1, no pixel will be enhanced. 

A surrounding pixel (neighborhood) dependent contrast enhancement method is 

implemented to achieve sufficient contrast for image enhancement. The luminance 

information of surrounding pixels is obtained by using 2D discrete spatial convolution 

with a Gaussian kernel. The center-surround contrast enhancement S(x,y) is carried out 

as defined in the following equation: 

S(x,y) = 255In'(x,y)E^ (2.12) 

where E(x,y) is the inverse of the center-surround ratio raised with a parameter P. 

E(x,y) = \ 
lconv (x,y) 

i(x,y) 
(2.13) 

where the parameter P is related to the global standard deviation of the input intensity 
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image, l(x,y), and can be determined as: 

P = 

3 for G < 3 
2 7 ~2<J for 3<<7<10 (2.14) 

7 
1 for cr>10 

where global standard deviation a is the indication of the contrast level of the original 

intensity image. If the contrast of original image is poor, P will be larger and further 

increase the contrast enhancement. 

The contrast enhancement defined by (2.12) is carried out for the surround formations 

via three different scaled convolutions and the results are averaged as in MSR to get the 

enhanced intensity image. Finally, the enhanced color image can be obtained by linear 

color restoration based on chromatic information contained in the original image as: 

i(x,y) 
Sj(x,y) = S{x,y)^}J-J-Aj (2.15) 

where j represents the RGB spectral band and A,,• are parameters which adjust the color 

hue. 

2.1.2.2 IRME 

IRME [43] is an image enhancement algorithm based on a physical description of the 

creation of a radiance map of the real world scene. It divides the object radiance into two 

parts: illumination and reflectance. IRME runs its computations on the illumination and 

leaves the reflectance unchanged to improve the visual perception of those scenes. 

The algorithm consists of four steps: (a) illumination estimation and reflectance 

extraction; (b) adaptive dynamic range compression of illuminance; (c) adaptive mid-tone 

frequency components enhancement; (d) image restoration. 

The first step of the algorithm is to obtain the intensity image, i.e. the value 

component of the HSV color space. Based on the relation given in (2.2), reflectance is 
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extracted. Following the assumption that the illumination L(x,y) is slowly varying it is 

assumed to be contained in the low frequency components of the image and a Gaussian 

low-pass filtered result of the intensity image is used in estimating the illumination. This 

process is realized by using a 2-D discrete spatial convolution of the intensity image with 

a Gaussian kernel of a narrow surround, i.e. 2~5. 

In the second step, adaptive dynamic range compression of illuminance is performed 

using the windowed-inverse sigmoid (WIS) function. The sigmoid function is defined as: 

/ ( V ) = J—^T (2.16) 

where a is a parameter that determines the steepness of the curve shape. This function is 

used as the intensity transfer function for dynamic range compression by performing the 

equations (2.17)-(2.19). 

V = W ( 0 - / ( V n n n ) ] + /(VmJ (2.17) 

1 ( 1 ^ 

v = - l n — -i (2.18) 

L " -v . 
T n mm 

L n , e n h - (2.19) V —V . 
max mm 

where Equation (2.17) linearly maps the input range [0,1] of the normalized illuminance 

Ln to the range [f(vmin),f(vmw()] to be an input to the windowed-inverse sigmoid. Equation 

(2.18) is the inverse sigmoid function. Equation (2.19) is applied to normalize the output 

illuminance Ln" to range [0,1]. Parameters vmax and vmin are used to tune the curve shape 

of the transfer function. The coefficient vmin is empirically determined by the global mean 

Im of the intensity image as: 

^min=^ 

. - 6 for Im<70 
^ / w - 2 3 0 x 

V 
for 7 0 < / w <150 (2.20) 

80 , 
_ 3 ' for Im >150 
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The third step of the IRME is adaptive mid-tone frequency component enhancement 

which is same as the contrast enhancement part of AINDANE for a single medium scale 

of the Gaussian. The enhanced intensity image is obtained by multiplying the modified 

illumination L'nenh (x, y) and reflectance R(x, y) and is expressed as: 

l\x,y) = L'nenh (x,y)R(x,y) (2.21) 

Color restoration in IRME is also same as AINDANE's with Xj in (2.15) are taken as 

unity in IRME. 

2.2 Wavelet Transform Domain Image Enhancement Techniques 

Mathematical formulation of signal expansion using wavelets gives wavelet 

transform (WT) pairs, which is analogous to the Fourier transform (FT), in which signals 

are represented as a sum of sinusoids. A 'wavelet' is a small wave which has its energy 

concentrated in time with varying frequency and limited duration. The WT has the ability 

to provide both spatial (or temporal) and frequency information (i.e. space-frequency or 

time-frequency analysis) thus it is a suitable tool for transient, non-stationary or time 

varying phenomena whereas the non-local FT gives only frequency information. The 

need for simultaneous representation and localization of both time and frequency for 

non-stationary signals (e.g. speech and music) led toward the evolution of WT from the 

popular FT. The WT has been investigated and applied to many image processing 

problems. 

Based on several fields, i.e. subband coding from signal processing [46], quadrature 

mirror filtering (QMF) from speech recognition [47], and pyramidal image processing 

[48], Mallat [49] first proposed multiresolution analysis (MRA) by using the WT. This 

turned to be a powerful signal processing tool resulting in a very wide area of 

applications including image denoising [50]-[52], image coding or compression [53], 


