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ABSTRACT

CURVILINEAR INTERFACE METHODOLOGY 
FOR FINITE-ELEMENT APPLICATIONS

Ollie James Rose 
Old Dominion University, 2000 

Director Dr. Oktay Baysal 
Co-Director Dr. Norman F. Knight, Jr.

Recent trends in design and manufacturing suggest a tendency toward 

multiple centers of specialty which results in a need for improved integration 

methodology for dissimilar finite element or CFD meshes. Since a typical finite 

element or CFD analysis requires about 50% of an engineer's effort to be 

devoted to modeling and input, there is a need to advance the state-of-the-art in 

modeling methodology. These two trends indicate a need to for the capability to 

combine independently-modeled configurations in an automated and robust way 

without the need for global remodeling. One approach to addressing this need is 

the development of interfacing methodology which will automatically integrate 

independently modeled subdomains.

The present research included the following objectives: (i) to develop and 

implement computational methods for automatically remodeling non-coincident 

finite element models having a pre-defined interface, (ii) to formulate and 

implement a parametric representation of general space curves and surfaces 

with a well-defined orientation, and (iii) to demonstrate the computational 

methodology with representative two- and three-dimensional finite element 

models.

Methodology for automatically remodeling non-coincident subdomains 

was developed and tested for two- and three-dimensional, independently 

modeled subdomains. Representative classes of applications have been solved 

which gave good agreement with reference solutions obtained with conventional 

methods. The two-dimensional classes of problems solved included flat and
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curved membranes multiple subdomains having large gaps between the 

subdomains and general space curves representing an interface for re-modeling 

the portions of subdomains adjacent to the interface. The three-dimensional 

classes of problems solved includes multiple three-dimensional subdomains 

having large three-dimensional gap between previously modeled subdomains. 

The interface was represented by general surfaces with a well-defined 

orientation and having curvature in possibly more than one direction.

The results demonstrated the re-modeling methodology to be general, 

flexible in use, highly automated, and robust for a diverse class of problems.

The research reported represents an important advancement in the area of 

automated re-modeling for computational mechanics applications.
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CHAPTER I 
INTRODUCTION

1

1.1 Overview and Motivation

The finite element method of today (2000) is a powerful, versatile, and 

widely-used technique for solving engineering problems computationally. Three 

central reasons for the power, versatility, and widespread use of the method are: 

(i) the basic idea of the method is to replace a complex continuous problem with 

a simpler discrete one, (ii) the method, as practiced today, takes advantage of 

rapidly evolving computational technology involving computer hardware, software 

integration, and network communications, and (iii) the finite element method 

derives power from its ability to handle arbitrary configurations comprised of 

complex mechanical components, boundary conditions, and loading states.

The capability to treat a diversity of complex configurations is a two-edged 

sword, since such problems often require significant modeling effort by the 

analyst to define the transition from one geometric shape to another (e.g., 

circular to rectangular) or from one discretization level to another (e.g., coarse 

mesh to refined mesh). This situation has been highlighted in studies conducted 

by Clerk and Muller.1 From their investigations, they concluded that the cost of a 

typical finite-element structural solution is divided into approximately 80% 

engineering and 20% computing cost. Of the engineering cost, 65% is modeling 

and input preparation and 35% is interpretation of results. One may therefore 

infer that just over half (52%) of the cost can be attributed to modeling and input 

preparation.

Recent trends in approaches to design and manufacturing suggest that 

the role of engineering computation in general, and that of finite element analysis 

in particular, may be changing. One emerging new feature of modem 

manufacturing is the tendency toward multiple collaborating centers of specialty 

with the resulting need for integration methodology. For instance, finite element

The journal model for this dissertation is the International Journal for Numerical 
Methods in Engineering.
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2
discrete models of components may be created by various groups anywhere in 

the world and brought together at a central destination for integration and 

analysis. This trend is increasing as a result of companies subcontracting not 

only manufacturing tasks, but also engineering design and analysis tasks. These 

activities have been made possible by widespread growth of computer networks 

within and between companies. Structurally distinct subdomains are often 

modeled differently for convenience, except their interfeces must be defined with 

coincident nodes for analysis using “standard” finite-element methods. Several 

avenues have been explored in response to the need for combining these 

independently modeled subdomains, a particular avenue being the development 

of finite-element interface methodology. Consequently, a need exists for the 

capability to combine, re-model, and analyze independently modeled finite 

element domains in a convenient manner. The ability to combine independently 

modeled subdomains in an automated manner would open the possibility for 

creating and having available a library of standard finite element models for use 

in defining more complex configurations by combinations of these models. This 

would result in considerable savings.

A second trend is that, as labor costs rise and computation costs fall, there 

is growing interest in including finite element analysis as part of the design 

process, whereas it has traditionally been used as a design validation tool.

Taken together, these trends indicate a need to minimize the cost of 

modeling, especially to minimize the frequency of global remodeling. As methods 

to address these needs are developed, accuracy should be maintained. Indeed, 

it would be desirable to have adaptive modeling and analysis methods that 

improve the accuracy and reliability of results. Of course, this happy situation is 

rarely possible and inevitable compromises have been made in attempts to 

address the problem of reducing modeling labor.
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3
1.2 Literature Survey

Discussion of the literature begins with a brief historical perspective of 

finite elements, intended to provide a context for interface research. More 

detailed historical perspectives and bibliographies are provided by Zienkiewicz,23 

Gupta and Meek,4 Robinson,5 Gallagher,6 and Noor.7,8 This general literature 

background is followed by a more detailed discussion of previous interface- 

related research in finite elements. The interface literature review is organized 

according to the different approaches to addressing the problem of achieving the 

transition from a fine to a coarse spatial discretization. Nearly all the literature in 

this area deals with applications to structural problems in solid mechanics.

A similar but less extensive survey of approaches to the mesh refinement 

problem in finite differences concludes the literature survey. Most of the literature 

in combining dissimilar meshes for finite differences or finite volumes deals with 

applications in computational fluid dynamics (CFD).

1.2.1 General Background

Although the term “finite element” was not coined until 1960, the idea of 

replacing a continuous problem by a simpler discrete one and making use of 

what amounts to “elements” as they are called today has been around since 

antiquity. For example, one of the greatest of the early mathematicians, 

Archimedes, is credited by H. Eves9 with the earliest known applications of this 

idea to solve geometrical problems. In the first application, ca. 240 B.C., 

Archimedes approximated the perimeter of a circle using regular inscribed and 

circumscribed polygons. There the “elements” were straight-line segments 

comprising the polygons. With this technique, and without the advantage of 

computer technology, he obtained a value for jr between 377/71 and 22/7 (3.14 

to two decimals). The second application by Archimedes was in approximating 

the volume of a solid sphere. There the “elements” were thin slices of the 

sphere, treated as squat circular cylinders. Martin and Carey10 credit Tsu Ch’ung 

Chih, an early Chinese engineer, with having approximated a circle with slender
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4

rectangular "elements” ca. 480 A.D. and having obtained, without computer 

technology, a rational approximation of *  as 355/113 = 3.1415929; a value 

correct to six decimal places.

Threads for the tapestry of ideas that form the present subject of finite 

element analysis can be traced back to the late seventeenth and early eighteenth 

centuries. Variational formulations together with approximation functions form the 

core of today’s finite-element theory. One of the first contributions to variational 

calculus was the brachistochrone problem11 posed by Johann Bernoulli in 1696. 

Euler developed much of the subsequent mathematical theory for the calculus of 

variations in the eighteenth century11 (e.g., the famous Euler-Lagrange equation). 

The use of approximating functions to obtain useful solutions of complicated 

vibrating systems was originated by Lord Rayleigh12 (John William Strutt) in 

1873. This procedure, which makes use of expressions for the maximum 

potential and kinetic energies, was generalized by W. Ritz13 in 1909 to include 

equilibrium problems, and is now known as the Rayleigh-Ritz method.

Some of the ideas forming present-day finite elements were expressed in 

1943 in a foundational paper by R. Courant.14 This paper originated as a talk 

delivered before the May 3, 1941 meeting of the American Mathematical Society 

and was subsequently published in the Society Bulletin. In his paper, Courant 

formulated the two-dimensional elasticity problem (membranes) in variational 

form. He reviewed solution techniques based on classical Rayleigh-Ritz 

procedures and the method of gradients (steepest descent). There was a short 

section discussing statistical methods (now called Monte Carlo methods) and 

what he termed finite differences, but which contained the essence of certain 

finite-element concepts. For example, the ideas of “net-points” (nodes) and 

"linear interpolation functions” (shape functions) were introduced and discussed 

in that paper. Almost as an afterthought, in an appendix he proposed breaking a 

two-dimensional continuum domain into triangular regions and replacing the 

continuous fields with piecewise approximations over the triangles; in the next-to- 

last sentence he even calls the triangles elements, but not finite elements.
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Very little in the way of applications was done with Courant’s ideas for 

about ten years. A possible reason for this, in the opinion of G. Barron,15 was that 

computers large enough and fast enough to exploit the method were not 

available until the 1950's. Another possible reason was that many engineers, 

who might have been interested in applications, were simply unaware of this 

work. After all, there was a wartime atmosphere during this era, and many 

engineers were doing critical national business. Because of the wartime 

atmosphere, extensive communication about certain subjects was probably 

discouraged. Even today, with electronic publishing, Internet databases, etc., it is 

not unusual for one to overlook work in another discipline. Whatever the real 

reason, interest waned until work by Poyla16 (1952), Hersch17 (1954), and 

Weinberger18 (1956) applied Courant’s method to compute bounds for 

eigenvalues, which marked a renewed interest in the subject by mathematicians. 

Also, by this time, computational capability and aerospace technology needs 

were fostering interest among engineers, particularly aerospace engineers.

The advent of electronic computers with sufficient capacity, reliability, and 

speed in the 1950’s came about just as interest in advancing the development of 

jet aircraft was growing.19 The stringent analysis requirements associated with jet 

aircraft development provided impetus for growth in fundamental aerospace 

technology. Because of weight and strength requirements in aircraft, part of the 

interest in more advanced structural analysis methods was surely inspired by the 

needs of the aerospace industry during this era of technological innovation. One 

of the first responses to these needs was groundbreaking work by Turner et al. in 

a classic paper20 published in 1956. In this paper, the authors addressed the 

problem of deflection analysis for wing-box structures. In this work, the authors 

laid out many of the basic features of finite elements as known today. For 

example, bar elements were introduced, the classic stiffness matrix was 

assembled for the wing-box configuration, and the displacement/force equations 

were solved. Of course, some of the terminology was unlike the standard 

nomenclature in use today. Clough, one of the co-authors of this paper,
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subsequently coined the term “finite element” in a later (1960) paper21 in which 

he applied the method to analyzing plane stress problems.

One year prior to Clough’s paper (i.e., 1959), Greenstadt22 outlined an 

approach using what he termed “cells." In his development, he described a 

procedure for representing the unknown function by a series of functions, each 

associated with one cell, which is reminiscent of today’s “shape functions." 

Greenstadt’s theory allowed for irregularly shaped cell meshes and included 

many of the fundamental mathematical ideas of present day finite element 

methodology. In just a few years after the basic theories and methods were 

published, computer codes were developed and the first finite-element textbooks 

were written.

Development of the first major general-purpose finite-element program, 

NASTRAN, was started by NASA in 1966, and was first released in 1969. By 

1971, NASTRAN was available as a commercial product23 and has been on the 

market since that date. Other major codes15 (e.g., MARC, ANSYS, ABAQUS, 

ASKA, SESAM, and ADINA) soon followed, and the market has flourished to the 

present day. The first edition of a pioneering textbook by 0. C. Zienkiewicz and 

Y. K. Cheung24 was published in 1967. Having met with great success and 

widespread use, the book is now in its fourth edition and has grown from one 

volume to two volumes. By 1974, R. D. Cook25 had produced the first edition of 

his classic textbook, which is now in its third edition. At present, researchers and 

students interested in finite elements have a plentiful selection of text and 

reference books from which to choose (e.g., Bathe,26 Krishnamoorthy,27 Huebner 

and Thornton,28 Reddy,29 Kardestuncer and Norrie30). In the two decades since 

the mid-l970’s, as computer technology has advanced, finite-element methods 

have matured and have been widely applied as an engineering analysis tool. 

Further research directions for finite-element technology have progressed into 

the areas of nonlinear analysis, including buckling and collapse, and research 

into the computationally intensive field of optimization and design applications is 

active (e.g., Knight31,32).
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Widespread application of the finite-element method and active research 

in the field inevitably inspired an interest in solving increasingly complex 

engineering problems, as well as creating a demand for flexibility and ease of 

use. Active research areas now include the development of new element 

formulations, new computational procedures, new numerical techniques for 

solving sets of algebraic equations, and advanced modeling methods. Modeling 

methods have evolved to include commercial pre- and post-processing software 

systems such as PATRAN, IDEAS, FEMB, and many others. The next section 

describes the methods used to model and interface multiple subdomains for 

structural and fluid applications and reviews the previous work in this area.

1.2.2 Methods for Modeling Multiple Structural Subdomains

The desire to solve problems arising from configurations with complex 

mechanical components led to sophisticated meshing requirements that often 

involved local cutouts and discontinuities. Attempts to address these challenges 

resulted in a variety of loosely related approaches. These approaches have been 

treated in the literature under one or more of the following categories: global/local 

analysis, zooming, substructure modeling, submodeling, mesh transition 

modeling, multiple methods, and interface technology. These methods are all 

approaches to solving the central problem of where, when, and howto introduce 

mesh refinement for accuracy and they differ in various ways and performance, 

although the methods are related. Particular features and attributes of each 

category are discussed next.

1.2.2.1 Global/Local Analysis Methods

Global/local analysis, in the usual sense as discussed by Ransom,33 

Ransom and Knight,34 and Knight et al.,35 is defined as a procedure to determine 

local, detailed stresses using information obtained from a previous, independent 

global analysis. In the three papers just cited, the authors presented four key 

components that are necessary for a successful global/local analysis procedure. 

First, there must be an “adequate" global analysis in that the global structural
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behavior must be accurately determined and local details must be included at 

least crudely. Second, there must be a strategy for identifying regions in the 

global model requiring refined analysis. Third, there needs to be a procedure for 

defining suitable “boundary conditions” along the global/local interface boundary. 

Fourth, the local analysis must be "adequate” in that the local detailed stress 

state is accurately determined and compatibility requirements along the 

global/local interface are satisfied. The authors of references 33-35 suggested 

that if critical regions requiring refined models are not known a priori, i.e., obvious 

regions with a high-stress gradient such as near cutouts, then stresses or strain 

energy computed from the global model may be used as a guide for where to 

introduce a local refined grid. Boundary conditions for the local analysis are 

obtained by an interpolation of solution variables based on the global model. 

Ransom36 suggested that various global/local approaches differ mainly in 

methods of interpolation for the boundary conditions. In this method, no direct 

interfacing of the discretized models occurs. The interfacing is performed through 

the specification of "boundary conditions" on the local model based on the global 

model solution. Krishnamurthy and Raju37 extended this method to develop an 

independent refinement and integration procedure for coupling a finite element 

and boundary element procedure that used a frontal solver approach.

1.2.2.2 Zooming Methods

The term “zooming” in connection with finite-element computations was 

introduced in a paper by Hirai,38 wherein the method of zooming was applied to 

computing stress concentration factors for a benchmark case of a plate-with-hole 

in tension. The method is a type of adaptive grid refinement based on triangular 

elements. An extension of the method to allow for successive local zooming in 

areas of high stress gradient was published in a subsequent paper by Hirai et 

al.39 There does not appear to be significant use of this method beyond these two 

papers.
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1.2.2.3 Substructuring and Submodeling Methods

The concept of substructure modeling, in the sense of simplifying a 

structure as an assemblage of components, is a standard engineering approach 

that predates the computer-based finite-element method. One of the early papers 

discussing the use of substructures in the context of finite-element analysis was 

written by J. S. Przemieniecki40 in 1963, in which he applied the method to an 

aircraft structure. Later (1966), I. C. Taig41 extended those ideas and presented a 

systematic procedure for inclusion of substructure modeling into finite-element 

computer programs.

The concept of “macro elements” for substructures was introduced in 

1977 by Cavendish and Gordon.42 Substructure modeling of components 

typically requires coincident nodes along the substructure interface or boundary, 

and the resulting system of equations is solved using procedures that exploit the 

special matrix structure.

Submodeling, as discussed by Ransom33 for the ANSYS analysis code, 

includes any method that has node-by-node correspondence at global/local 

interface boundaries. On the other hand, the term submodeling as used by 

Hibbitt et al.43 is more in the sense of a global/local analysis as previously 

discussed. Hence, there is not complete standardization of terminology. 

Submodeling in ABAQUS is based on executing multiple-(usually two) 

successive simulations. First the global model is solved for the entire structure, 

and then a “submodel” is solved using a refined mesh of a subregion of interest. 

The submodel boundary conditions are obtained by interpolating the global 

model solution.

1.2.2.4 Mesh Transition Modeling

Connecting a region having a refined mesh (local grid) and a region 

having a coarse mesh (global grid) while maintaining node-by-node 

correspondence has been accomplished in four ways. The four approaches are 

illustrated in Figure 1.1. Transitioning from a coarse mesh to a refined mesh can
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be accomplished using quadrilateral base elements and triangular transition 

elements as shown in Figure 1.1(a) or using all the same type and order of 

elements is shown in Figure 1.1(b), with distorted quadrilateral elements effecting 

the transition between the refined and coarse regions. The transition 

accomplished by variable-order quadrilateral elements is illustrated in Figure

1.1 (c). Finally, the linking of displacements by multi-point constraints 

(interpolation) is presented in Figure 1.1(d).

Variable-order quadrilaterals are discussed, usually in the context of 

isoparametric elements, in many finite-element textbooks (e.g., Bathe26 and Cook 

et al.25). In a brief note, Somervaille44 applied them to mesh grading for plate 

bending problems. Gupta45 treated two-dimensional transition elements and 

elements with a form of constraint nodes. Variable-order elements and triangular 

transition elements were discussed and applied to defining a so-called macro­

element by Cavendish et al.,42 which included an extension of the method to 

three-dimensional elements.

The mesh transition strategies shown in Figure 1.1 suffer from several 

drawbacks. If constant-strain triangles are used as the triangular transition 

elements, there is a possibility of severe error if the transition region happens to 

be in a high-gradient location; to a lesser extent, a similar danger exists with 

distorted quadrilateral transition elements. Furthermore, formulation and 

implementation of transition elements is quite difficult in three dimensions. A 

more serious weakness applying to any of these mesh transition strategies is that 

their use with independently-modeled subdomains is unlikely to be worthwhile 

because of the extensive modeling required in the transition region. It is desirable 

to have an alternative methodology free from these weaknesses.

1.2.2.5 Multiple Methods Integration

An alternative approach based on the concept of interface elements has 

been sponsored for several years by the NASA Langley Research Center. The 

rationale and basic concepts for this work were proposed by Housner et al.46 at a
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1990 NASA conference, and was subsequently published in a 1991 NASA 

conference proceeding. A concept termed “multiple methods integration” was 

discussed, and in this context, the idea of interfaces in finite-element structural 

analysis was introduced. The interface element idea is depicted in Figure 1.2, 

which shows two independently modeled finite-element domains having non­

matching nodes along their adjacent edges with an associated “interface 

element." The interface element is intended to insure displacement compatibility 

and traction continuity in an integrated or variational sense. Additional early 

developments of interface methodology were also reported in 1991 by Housner 

et al.47

1,2.2.6 Interface Technology

Part of the motivation for the interface element concept stems from work 

published in 1988 by Maday et al.48 in which the concept of “mortar elements” 

was introduced. Although this paper treated only spectral methods of solution 

and did not use Lagrange-multiplier constraints, it did present the basic idea of 

interfaces between contiguous subregions. Further motivation was derived from 

a subsequent paper in 1990 by Giles and Norwood49 in which they discussed the 

concept of coupling data between structural regions obtained by different 

analysis methods, i.e., the concept of multiple methods. Other researchers have 

investigated the coupling of finite element models with boundary element models 

and finite difference models, particularly for modeling different physical 

phenomena in different domains (i.e., fluid-structure or acoustic-structural 

interactions). Hybrid analysis methods have also been developed (e.g.. Rao et 

al.50).

Later, in 1991, Farhat and Roux,51 in a paper primarily devoted to parallel 

solution algorithms, introduced the use of constraints and Lagrange multipliers to 

enforce compatibility at interface nodes. Since they were mainly interested in 

parallel algorithms, Farhat and Roux did not attempt a global solution using these 

methods. This work was extended by Farhat and Geradin52 in 1992 to require
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fewer Lagrange multipliers with an associated increase in computational 

performance.

Use of the ideas of an interface element, Lagrange multiplier compatibility 

constraints, and a variational formulation based on minimum potential energy for 

obtaining a finite element solution for a structural configuration with two 

subdomains was presented by Aminpour et al.53,54 The interface element 

presented in these two papers was a one-dimensional element comprised of 

straight, planar line segments. The interface element was developed to connect 

independently modeled subdomains by enforcing displacement continuity across 

the interface in a variational sense. The structure of the assembled finite-element 

equations was shown to become more complex than the assembled matrix for a 

standard finite-element model. In addition, the positive-definite feature of the 

assembled matrix was lost. The vector of unknowns in the assembled equations 

included the nodal displacement degrees of freedom from each subdomain, 

coefficients of the displacement approximation along the interface, and traction 

parameters for each subdomain. This one-dimensional interface element 

formulation has provided the inspiration for the present research.

Subsequently, Ransom et al.55 extended this interface-element research 

to include an arbitrary number of connected two-dimensional subdomains and 

possible nesting of interfaces using the one-dimensional interface element. As 

such, these results illustrated the use of the interface technology in the same 

manner as telescoping substructures or the zooming method. The authors 

discussed three applications in Reference 55: (i) a composite laminated panel 

having two circular holes and loaded in tension, (ii) a composite laminated 

cylindrical panel having a central circular hole and loaded in compression, and 

(iii) a free-edge composite laminate loaded in tension. Solutions for models with 

interfaces were compared to solutions from a reference globally refined model 

without an interface. Results included normalized axial stress contours and line 

plots of axial stress along the panel centerlines. The interface results shown in 

this paper correlated well with the reference results.
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In 1994, Davila et al.56 further extended the one-dimensional interface- 

element capability to include subdomains with a cross-surface connection, i.e., 

domains having non-aligned or skewed grids and one-dimensional interfaces 

possibly curved in a plane. Reference 56 considered three applications of this 

extended capability.

The first application was a cantilevered plate with stiffener support and a 

tip-bending load applied to one end. The authors stated that this case 

represented a very stringent interface problem since the stiffener introduces a 

severe discontinuity in the moment and transverse force for the plate elements. 

Tip deflection results were shown in this paper and compared to “bracketing” 

non-interface cases where the stiffener was located at the nearest exact line of 

element edges on either side of the location for the coupled model. The authors 

argued that errors in the interface-element computed results were always smaller 

than errors introduced by modeling the stiffener on an exact line of element 

edges to avoid having a need for an interface. By this line of reasoning, the 

authors concluded that the method was therefore verified.

The second application considered in this paper was a blade-stiffened 

composite panel with a central hole loaded in axial compression. Results 

showing out-of-plane displacement contours and line plots of normalized axial 

stress for the interface case were compared to results from a reference solution 

having a refined global model without an interface. The interface results were in 

close agreement with the reference results. The third application was a fuselage 

panel with a window and two frames. The authors did not state what the loading 

condition on the panel was, nor were results from a reference solution shown for 

comparison. Radial displacement contours for the interface model were 

presented and briefly discussed. Evidently, this case was included just to 

illustrate the potential use of the cross-surface interface element for airframe-type 

substructures.

Further extensions to include three-dimensional structures with two- 

dimensional interfaces were discussed by Aminpour and Krishnamurthy.57 Two
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applications were considered by the authors in this paper, (i) a solid, rectangular 

cantilever beam loaded in tension, bending, shear, and torsion and (ii) a solid flat 

plate with a central circular hole loaded in tension. The cantilever beam was 

modeled with two dissimilar subdomains, and cases with fiat and curved 

interfaces (curvature in one direction) were shown. A reference model with a 

single global refined grid was used for comparison to results from the interface 

solutions. Qualitative displacement contours were presented which showed good 

agreement between the interface results and the reference results. Results from 

the interface model for the plate with hole were compared to a single-grid 

reference model. Axial displacement contours were given in the paper and there 

was close agreement between the reference and interface results. The authors of 

this paper implied that the capability was limited to models with interfaces that 

can be projected onto a plane and retain rectangular structure after projection.

The representation of the interface for these computations was 

accomplished using the software package, FITPACK. The extensions discussed 

by the authors did not include automatic local re-modeling to a specified interface 

surface; it did, however, allow for limited “noise” to be present in the element 

node coordinates along the interface.

Following this work, Aminpour et al.58 removed the previous restriction of 

requiring the finite-element meshes on the interface to have a rectangular 

structure. With this paper, the two-dimensional interface could take on an 

arbitrary shape and the finite-element mesh could have an unstructured form. 

Simple test cases were considered wherein the interface element always 

remained in a plane.

Other applications of the one-dimensional interface element methodology 

include a proof-of-concept problem of a plate with a circular cutout59 and a 

complex, stiffened crown panel60 showing computed displacements and stresses. 

Housner et al.61 gave a detailed summary of the interface-element methodology 

and reviewed applications through 1995. Applications to geometrically nonlinear 

problems were given by Ransom.62
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1.2.3 Modeling Methods in Computational Fluid Dynamics

Solution procedures in computational fluid dynamics (CFD) are generally 

based on finite-difference or finite-volume algorithms, in contrast to solution 

procedures in solid mechanics that are usually finite-element based.

Thermal loading, which can occur in either fluids or solids, is treated by 

finite elements in solids and by finite differences/finite volumes in fluids.

The physical underpinning of finite elements is generally a variational 

statement expressing the principle of minimum total potential energy. The 

corresponding discrete mathematical expression of this formulation results in a 

node (or grid point) and its associated degrees of freedom being of central 

importance, as it represents the place at which generalized displacements are 

calculated. Additional physical quantities of interest, such as the stress field, are 

computed from the displacements using the basic elasticity equations and the 

constitutive relations.

By contrast, the physical underpinning of the finite difference/finite volume 

CFD method is a statement of conservation of mass, momentum, and energy.

The flux of these various quantities through the walls of the grid cells is of central 

importance and cell-centered methods are widely used. Related quantities of 

interest are obtained from the constitutive relations and equations of state.

The contrasting needs of finite-element based solid mechanics 

computations and finite-difference-based fluid mechanics computations naturally 

give rise to different approaches to grid generation over the physical domains of 

interest. Moreover, the development process in each discipline appears to have 

proceeded more-or-less independently. In the case of fluids for example, a 

physical object (e.g., aircraft, turbine blade, projectile, etc.) serves as the inner 

boundary of the computational domain, and the outer boundary is either a 

containing vessel (e.g., a pipe) or the "far field.” Thus, for the case of fluids, there 

is typically a very large volumetric region that must be discretized. If supersonic 

speeds are involved, shock waves must be captured or fitted, with either case 

requiring clustered grids or some type of interface. With viscous fluids, regions
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near solid bounding surfaces must have grid refinement in the surface-normal 

direction to resolve the boundary-layer velocity gradients adequately.

For reasons such as these, there has been a long-standing need for 

domain partitioning and corresponding interfacing procedures in CFD. 

Practitioners of CFD had been struggling with the interfacing problem long before 

it was addressed in solid mechanics. The “interface-type” technology in CFD is 

thus more mature than in solid mechanics computations. There are obvious 

differences in the disciplines, but there are some striking parallels and an 

opportunity for synergistic interaction may exist. This possibility is discussed in 

detail in Chapter VI, where recommendations for further research are presented.

In CFD, any method for generating and interfacing multiple complex grids 

is generally called a domain-decomposition technique or DDT (e.g., Fouladi- 

Semnani63). In essence, a DDT partitions the global computational domain into 

simpler subdomains on which subgrids with possible grid refinement or non- 

similar topologies are constructed. These subgrids are generally independent of 

each other and are created by any standard grid modeler, for example the 

GRIDGEN code (see Steinbrenner et al.64). For structured grids, there are three 

widely used methods of domain decomposition: (i) multiblock grids, (ii) zonal 

grids, and (iii) overlapped grids. Each method is examined next.

1.2.3.1 Multiblock Grid Methods

The multiblock approach partitions the grid domain into a set of mutually 

disjoint subgrids that completely fill the computation space without overlaps or 

voids. At the interfaces where the subgrids meet, the nodes match in a one-to- 

one manner. Information is passed between the subgrids by boundary conditions 

at the cell faces, which express one or more conservation laws.

An example of the multiblock approach was discussed by Arabshahi et 

al.65 in which the authors presented solutions to the three-dimensional unsteady 

Euler equations for a wing/pylon/store configuration. The solutions were for a 

transonic flight condition (free-stream Mach number = 0.85) and include local
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shock waves as well as significant aerodynamic interference between the store, 

pylon, and wing. The Euler equations were written in conservative form and 

discretized using an implicit finite-volume formulation. The solution algorithm 

used flux difference splitting. Results shown in the paper compared predicted 

surface pressures with experiment and were in good agreement except near 

where there were large adverse pressure gradients. In such regions, the flow is 

probably separated, and an Euler method is not expected to give correct 

predictions.

A second representative example of the multiblock approach was 

presented by Nishida et al.66 in which the method was applied to an Euler 

analysis of a wing-mounted propfan with slipstream effects included. The solution 

algorithm is based on a second-order central-difference scheme with artificial 

dissipation for stability. Results were given as pressure distributions compared 

with experiment and were in good agreement except in regions where Euler 

theory is clearly inadequate. Two noteworthy features of this investigation were 

that it employed a multigrid algorithm for convergence acceleration and it uses 

out-of-core storage for all blocks except the one currently being solved. The 

concept of a multi-grid algorithm is distinct from the concept of multiblock grids in 

the sense that multigridding is a systematic grid coarsening/refinement technique 

which uses a proper subset of a fine grid for the purpose of accelerating solution 

convergence (e.g., see Brandt67 and Zhu and Craig68). The capability of out-of- 

core storage of inactive blocks is a possibility for any DDT.

1.2.3.2 Zonal Grid Methods

The zonal approach, also called grid patching, partitions the grid domain 

into a set of subgrids that completely fill the computation space without voids, but 

the requirement of one-to-one node matching between nodes of adjacent 

subgrids is relaxed. Communication between neighboring blocks is achieved by 

an interpolation procedure based on a one or two-cell overlap between the 

adjacent subgrids. The information required at the boundary of one zone is
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interpolated from the interior of another zone.

Two examples of the zonal approach were given by Holst et al.69'70 The 

authors of these papers treated Euler and Navier-Stokes equations for transonic 

flow over wing/fuselage configurations. The Navier-Stokes solutions were based 

on a Baldwin-Lomax71 turbulence model with a thin-layer approximation to the full 

Navier-Stokes equation (TLNS). The solution method used an alternating 

direction implicit (ADI) algorithm similar to the Beam-Warming72 scheme. The 

procedure also employed out-of-core storage of inactive blocks. Results 

presented included computed pressure distributions compared with measured 

pressures and computed particle paths compared with oil-flow photographs. The 

pressure distributions were in good agreement with experiment except right 

where there was shock-induced separation. The authors of the paper asserted 

that the computed position of the separation was in good agreement with the on­

flows, as were many other qualitative details of the flow field.

1.2.3.3 Overlapping Grid Methods

The overlap method, also called the overset method or Chimera scheme, 

defines independent grids based on the local topology of a configuration 

component. For example, grids for a finite wing might be defined with a C-H 

topology, a fuselage with O-H topology, and a nacelle with 0 -0  topology; all of 

which might be immersed in a global grid of H-H topology. The nomenclature: C-

H, 0 -0 , etc. is a standard CFD shorthand derived from the geometrical 

appearance of a grid topology. The essence of this nomenclature can be 

understood by reference to Figures 1.3 and 1.4, in which Figure 1.3 has two- 

dimensional examples and Figure 1.4 has three-dimensional examples. Figure

I.3(a) shows an airfoil section together with a grid having C-topology, Figure

1 3(b) shows a two-dimensional channel with a grid of H-topology, and Figure 

1 3(c) shows a cylinder section having a grid of O-topology. Figure 1.4 (a) 

presents a finite wing having combined a grid of combined C-H topology and 

Figure 1.4(b) has a cylinder with an O-H grid. Other combinations are, of course,
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possible and are covered by the nomenclature.

Following the individual grid definitions, a preprocessor is then used to 

"cut holes” in the various grids where configuration components are defined. The 

preprocessor also sets up boundary-condition specifications to facilitate 

communication between neighboring blocks. The hole cutting procedure 

maintains overlap between the various grids at least two or three cells deep for 

information transfer based on an interpolation strategy.

Overlapped grids allow great versatility in modeling complex, realistic 

configurations. A disadvantage of the method is that it requires sophisticated 

bookkeeping to label and keep up with the various node types arising from the 

method. A second disadvantage, which may go away with better algorithms, is 

that it generally takes more computation time than a similar solution based on 

one-to-one multiblock methods. On the other hand, the multiblock approach is 

more labor intensive in the modeling phase, which will likely become a more 

serious weakness as computer technology improves and computation time is 

less of an issue.

One of the earliest papers using the overlap method was by Atta, 73 in 

which he developed a method for constructing a two-dimensional grid system for 

solving for the transonic flow about an airfoil wherein the airfoil grid was 

embedded in a rectangular global grid. A subsequent paper by Atta et al.74 

extended this two-dimensional overlap scheme to three dimensions and 

presented solutions for transonic flow over a wing/pylon/nacelle configuration.

Apparently, the first use of the term "chimera” was in a paper by Steger et 

al.76 on grid generation in which the overlap method was used. The use of the 

word chimera in this regard is evidently an allusion to Greek mythology. In a 

standard dictionary edited by Daves,76 there were two definitions given for the 

word chimera: (i) “a fire-breathing monster with the head of a lion, the body of a 

goat, and the tail of a serpent” and (ii) “an impossible or foolish fancy”. It is not 

clear to which meaning the authors of Reference 76 were alluding, perhaps both. 

Under the auspices of U. S. Air Force sponsorship, this work was extended and
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resulted in a series of papers by Benek et al.77 78 79 discussing various 

refinements and applications of the method.

A significant gain in efficiency for the overlap method was achieved by 

Baysal et al.80 in an approach having two noteworthy features: (i) the method was 

extended to include multigridding in combination with overlapping and (ii) the 

method was employed as part of a hybrid scheme using the best features of 

each DDT technique. The basic grid-overlapping tool for this approach was the 

MaGGie code developed by Lessard.81 Significant applications of the hybrid 

approach were accomplished by Fouladi-Semnani,63 Newman and Baysal,82 and 

Baysal et al.83 The work by Fouladi-Semnani addressed the problem of 

supersonic viscous flow around stores exiting a cavity. Newman and Baysal82 

solved for transonic viscous flow around a wing/pylon/finned-store configuration. 

Baysal et al.83 discussed supersonic viscous flow for a cylinder/fin/sting/cavity 

assembly. The computed pressure distributions in the paper of Reference 83 

were compared to wind-tunnel measurements and showed excellent agreement 

except at the cavity rear face where there was experimental evidence of massive 

flow separation. The hybrid approach has also been applied to time-dependent 

problems for moving objects by Baysal et al.84,85 and to aerodynamic shape 

optimization by Eleshaky and Baysal.86

Two other recent innovations for the overlap method include: (i) the 

introduction of so-called collar grids by Parks et al.87 for resolving viscous details 

in confined regions with several close-fitting components, and (ii) an application 

to simulate rotor aerodynamics by Meakin.88 As an indication of the maturity and 

acceptance of the method, it presently exists as a standard option in the widely 

used CFL3D flow solver developed and supported by the NASA Langley 

Research Center.

1.2.3.4 Dynamic Grid Methods

A currently active area of CFD grid methodology research is in that of 

dynamic mesh evolution for grids around bodies in relative motion. An
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advancement of the DDT research is Dynamic Domain Decomposition (D3M) for 

structured grids and Dynamic Unstructured Technique (DUT) for unstructured 

grids. A discussion these two advances is given by Baysal et al.89 in a useful 

review paper. A representative example of an application of the D3M technique is 

presented by Yen and Baysal,90 in which solutions for an oscillating cylinder are 

described. Typical examples of the DUT method are given by Yen and Baysal91 

and Baysal and Luo.92

1.3 Objective and Scope of Present Research

The overall objective of this research is to develop a methodology for 

obtaining curvilinear interfaces between independently modeled and dissimilar 

two-dimensional or three-dimensional finite-element models. Specific goals of 

this research include the following:

1. Develop techniques for treating independently modeled subdomains 

with possibly non-coincident regions or interface regions having 

deviations in interface-coordinate locations.

2. Formulate and implement a parametric representation for general 

one-dimensional space curves and for two-dimensional surfaces, 

including a 360-degree enclosure.

3. Develop methodology for the projection of the subdomain interface 

nodes to a common interface-geometry surface.

4. Develop computational algorithms for evaluating displacement and 

traction-constraint surface integrals.

5. Demonstrate the interface methodology on selected representative 

geometries that model structural applications.

1.4 Organization

The dissertation is organized as follows. Chapter I presents a motivating 

overview of the background and the need for interface methodology and gives a 

historical general and specific review of related research conducted by other
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investigators. Chapter II presents a general formulation of the interface-element 

theory based on a hybrid variational principle. This chapter also includes a 

discussion of the steps followed in the solution process. Chapter III gives a 

formulation of the theory, original to this research, used to interface and 

automatically re-model independently modeled subdomains. Chapter IV presents 

a detailed discussion of the methodology for evaluating sub-matrices that couple 

two or more domains and the assembly of these sub-matrices into the global 

generalized stiffness matrix. Chapter IV concludes with a discussion of the 

solution methodology for the generalized stiffness matrix. Chapter V presents 

and interprets results from selected cases obtained by applying the methodology. 

Finally, Chapter VI presents conclusions drawn from the research and gives 

recommendations for future investigation.
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(a) Transition modeling using 
triangular elements

(b) Transition modeling using 
quadrilateral elements
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(c) Transition modeling using 
variable-order elements

(d) Transition modeling using 
constraints

Figure 1.1 Commonly used transition-modeling strategies

Figure 1.2 Interfacing dissimilar finite-element meshes
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(a) Airfoil section with C-grid
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(b) Channel with H-grid

(c) Infinite cylinder with O-grid

Figure 1.3 Example nomenclature for two-dimensional CFD grid topologies.
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(a) Finite wing with C-H grid

H - d i  r e c t i  o n
O-directon

(b) Cylinder with O-H grid

Figure 1.4 Example nomenclature for three-dimensional CFD grid topologies.
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THEORETICAL FORMULATION
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2.1 Introduction

Early formulations of finite element methods leaned strongly toward 

physically based reasoning and the direct stiffness method with assumed 

displacements (e.g., Turner et al.20). Current formulations are usually based on a 

variational statement from solid mechanics or on a weighted-residual method in 

general field problems (e.g., Cook et al.,25 Reddy,29 Huebner and Thornton28). For 

structural formulations, there is an assortment of approaches that can be used to 

obtain variational equations (e.g., Shames and Dym11). The approach used in the 

present research is based on the method of minimum total potential energy 

together with Lagrange multipliers to enforce integrated traction and displacement 

constraints across the interface between multiple subdomains. The present 

formulation belongs to a family of methods generally called hybrid variational 

methods. Examples of this approach have been discussed at various levels of 

detail by Zienkiewicz and Taylor,93 Aminpour et al.,55 Ransom et al.,56 and 

Housner et al.62 A discussion of the previous formulation and extensions for the 

present research are given in this chapter.

2.2 Variational Formulation

Consider a finite-element model of some generic structure with the finite- 

element model consisting of at least two subdomains, Qi and Q2, whose union 

comprises the model for the structure as shown in Figure 2.1. If the subdomains 

fit together exactly and have coincident nodes where the subdomains touch, and 

if the displacement approximations along this interface are identical, then the 

models are compatible and there is no need for an interface. Traditional 

substructuring follows this approach. If the nodes are not coincident at the 

interface as shown in Figure 2.2, then maintaining continuity of displacements 

requires special treatment. Within each subdomain, the principle of minimum total
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potential energy is used. Continuity of displacements along the interface surface 

between the dissimilar finite-element models is enforced in an integral sense 

using Lagrange multipliers. By imposition of the stationary conditions on this 

constrained variational statement, the subsidiary conditions define the Lagrange 

multipliers to be surface tractions.

If the subdomain geometries do not mate identically (as illustrated for 

example in Figure 2.3), and then a common geometrical interface must be 

defined. Such geometry errors or mismatches may occur due to different discrete 

surface representations, subdomain modeling flexibility, or finite precision in the 

geometric modeler. It is assumed that gaps between the models are a purely 

modeling phenomenon and do not represent gaps in the physical structure itself 

as such gaps would need to be treated with a different approach. It is further 

assumed, for the present, that an interface surface has been independently 

defined and interface nodes from both domains have been adjusted to lie on the 

common mathematical surface of the interface as shown in Figure 2.4. Detailed 

discussion of the methodology to define a parametric representation for a 

common interface surface is given in Chapter III.

If all externally applied loads (body forces, surface tractions, and point 

loads) on an elastic structure are conservative, then the total work done on the 

structure during a virtual displacement can be written as a potential energy 

function. Assuming no initial stresses or strains and that only two subdomains are 

involved, the total potential energy for each subdomain is expressed as

n, = U k '/  [E,]{e, }dV -  |a  {u, >/ [F, ] d V - /& (u,}' {O, }dS -  {D, jT {P,} (2.1)

n 2 = L i f e  f  [E ilfe ld V  -  L  (u2 )r [F2]dV -  k  {u2 }T {<fc,)dS -  {D2 }T {P2} (2.2)

The integrations on Oj are volume integrals over the subdomain volumes, 

whereas integrations over S j are surface integrals over the subdomain surfaces 

(i.e., the bounding surfaces of Qj). The connection between the subdomains is 

obtained by enforcing displacement continuity between the subdomains through a
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common interface surface. The displacement field on the interface surface is 

defined as {v}, and displacement continuity along the interface is achieved when 

{v} - {Uj} = {0} for each subdomain, i = 1,2.

To enforce the constraints expressed by the equation {v} - {Uj} = {0}, (i =

1,2) in an integral sense, Lagrange multipliers are introduced and constraint 

integrals are added to the total potential energy of the configuration resulting in 

the following functional to be minimized:

n = n, + a, + ̂  {x, }T ({v} -  {u, })dS + { x 7 )T ({v} -  {u3 })dS . (2.3)

A mathematical statement of the hybrid variational formulation for two 

subdomains connected along a single interface is given by equation (2.3). This 

relation is generalized to include NS subdomains and Nl interfaces where each 

interface boundary involves a list of NIS subdomains connected to each interface. 

Hence, a general form of equation (2.3) is given by
NS Nl NISO) Tn=In,+I (W-k™})d& <Z4>
J=1 1=1 n *1

where k(n) is the index array connecting the nm subdomain to the im interface. In

the present discussion involving two subdomains and one interface, NS = 2, Nl =

1. NIS(i) = 2, and the corresponding index array k(n) contains values {1,2}.

Implicit in equation (2.3) is the fact that rii and I I 2 represent the total 

potential energies for their respective subdomains rather than element-level 

values as in the traditional variational statement. This difference is due to the 

presence of the interface and the imposition of constraints along it wherein the 

interface involves multiple element surfaces along each subdomain. Hence, terms 

contained in rij represent global, assembled quantities instead of element 

matrices and vectors. In equation (2.3), {A.,} represents the vectors of Lagrange

multipliers for each domain and So denotes the common parametrically defined 

interface surface along which subdomains 1 and 2 are connected. This modified 

form of the principle of minimum potential energy involves three independent
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unknown fields: the displacement field within the subdomains, the displacement 

field along the interface, and the tractions along the interface. As such, a three- 

field hybrid variational statement is involved rather than the usual single-field 

principle of minimum total potential energy. The modified functional of equation 

(2.3), a specialized form of equation (2.4) for two subdomains and one interface, 

forms the basis of a variational procedure for obtaining the generalized finite- 

element formulation of the equations which will be solved in the present work. 

Derivation of the finite-element equations from the variational statement given by 

equation (2.3) is discussed next.

2.3 Finite-Element Derivation

To obtain a finite-element representation from the modified total potential 

energy functional requires three basic steps. First, the strain field is expressed in 

terms of the displacement field through the strain-displacement relations. Second, 

all field variables, including displacements, are approximated from nodal degrees- 

of-freedom with suitable shape functions. Third, the approximate field variables 

are substituted into equation (2.3), and the first variation of the modified total 

potential energy functional with respect to the various degrees-of-freedom (dof) is 

obtained and set to zero (i.e., stationary conditions are imposed). This process 

results in a system of linear algebraic equations, the solution of which provides 

the nodal values for each degree of freedom. For this hybrid variational 

statement, the stationary condition gives rise to three sets of equations due to the 

three fields being used.

2.3.1 The Strain Field

Expressions for the linear strain field in terms of displacement are found in 

standard textbooks on elasticity (e.g., Timoshenko and Goodier94). For a three- 

dimensional solid, the strain-displacement relations are generally written as,
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au£■„ = ---* ax (2.5)

av
£y"ay

(2.6)

aw
” az (2-7)

au av
/xv-a7+^

(2.8)

au aw 
~ d z + ~dx

(2.9)

av aw
^  az + ay (2.10)

For finite-element derivations, equations (2.5) - (2.10) are more usefully 

written in a compact form using a linear differential operator matrix, [ a ], as,

M - [*]{■<}.

where the symbols in equation (2.11) have the following definitions:

}  —  { * « '  '  / x y  ’  / x z '  / y z  }  '

(u} = {u,v,w}T,

(2.11)

(2 . 12)

(2.13)

and

[a]T =

3_
cx

0 0 —  —

o_

ay

L i _
c“y dz 
c_

ax
_a_
az

_a_
az

a a 0 —  —  ax ay

(2.14)
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For two-dimensional plane elasticity problems (assuming the x-y plane), 

only two displacement fields are present (namely u and v) and only three strains 

are nonzero: ex, ey, and Yxy- The linear differential operator in this case is given by

d_ d_
_dy dx

The next step is to express all unknown field variables as interpolations on 

the degrees-of-freedom using suitable shape functions.

2.3.2 Field-Variable Approximations

The displacement field within the jm domain, { Uj}, is written in terms of the 

nodal dof, {qj}, using standard element shape functions, [NJ, as

where the subscript j denotes the subdomain and no summation is implied. 

Expressions for the Lagrange multiplier vectors, [x.,}, and the interface

displacement field, { v }, are given by

where [Rj] is a global matrix of polynomial shape functions one order less than the 

polynomials used for the displacement shape functions [NJ, and [T] is a matrix of 

interpolation functions for defining the interface geometry surface and are also 

used as shape functions for the displacement along the interface. For 

consistency, the shape functions in [Rj] for the Lagrange multipliers should be one

—  0 
dx

(2.15)

{u, H n , ] M ' (2.16)

(2.17)

and

(2.18)
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order lower that those for [Nj] because they are identified as tractions. Tractions 

are related to the stresses that are obtained from the displacements by 

differentiation to obtain strains and multiplied together with the constitutive 

equations representing material properties. Next, a three-field hybrid variational 

statement is used with these approximations to derive the resulting finite element 

equations.

2.3.3 Three-Field Hybrid Finite Element Model

By substituting equations (2.16) - (2.18) into equation (2.3), the following 

expression for the hybrid variational functional is obtained:

where {qj} represents the assembled global dof vector for subdomain j, [Kj] 

represents the assembled global stiffness matrix for subdomain j, and { P j} 

represents nodal boundary conditions in the form of applied loads or 

displacements, but not both on the same dof at the same time. The vector, {qs}, 

represents the global dof for the interface, and (a ,} represents the global traction

vector for domain j. The matrices [Mj] and [GJ for subdomain j have the following 

integral definitions (repeated subscripts do not imply summation):

The hybrid variational functional of equation (2.19) was minimized by 

applying the first variation with respect to each dof and then setting the result 

equal to zero. This process resulted in the following system of linear algebraic 

equations for the unknown degrees-of-freedom:

(2.20)

and

(2.21)
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'[K,] [0] [0] m [0] ' {q,}' {P,}
[0] [K2] [0] [0] [M2] {q2} {P2>
[0] [0] [0] [G,] [G2] (qj ► —  « {0}

[0] [GJ1 [0] [0] (a j {0}
JO] [MJ1 [G2]t [0] [0] .{“a) .{0} .

The generalized system of linear algebraic equations given by equation

(2.22) is the key starting point for the numerical finite-element solution of coupled 

subdomains by the interface-element approach. This matrix equation involves the 

assembled global stiffness matrices from each subdomain (the K-matrices), 

matrices to enforce traction continuity (the M-matrices), and matrices to couple 

the displacements at the interface (the G-matrices). The matrix on the left-hand- 

side of equation (2.22) is considered in the present work to be a “generalized 

global stiffness matrix", although some of the desirable features of a conventional 

stiffness matrix are lost. The matrix of equation (2.22) is symmetric but not 

positive definite and not banded. The property of non-positive-definiteness meant 

that conventional direct solvers generally used and available in most finite 

element codes, were not suitable and another approach had to be followed. For 

the present research, an approach that deflates the matrix by removing null rows 

and columns followed by Gauss elimination with full pivoting was implemented. 

Details of the numerical implementation for creating and solving the linear 

algebraic system given by equation (2.22) are provided in Chapter IV. The 

process of calculating the component assembled matrices and vectors given in 

equation (2.22); combining these component matrices and solving the resulting 

system constitutes the theoretical approach taken in the present research. This 

process is discussed next.

2.4 Solution Strategy

The approach taken in the present research for constructing and solving 

equation (2.22) is the time-honored method of “divide and conquer," in that the 

process focused on each component of equation (2.22) in a step-by-step fashion.
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The solution procedure was broken down in a natural way into seven major steps.

For the present research, each of these steps was treated as a separate 

software module and information was passed from one step to another in the 

form of computer files. This approach had at least three advantages over an 

approach based on a single large program. First, it isolated each step and 

provided a well-focused, structured environment for program coding and trouble 

shooting. Second, it allowed the results of each step in the process to be 

monitored and any errors can then be corrected immediately. Third, existing code 

for computing the K-matrices was utilized and required only minimum 

modification.

These seven major steps are briefly identified in the following list, and 

each is discussed in detail in subsequent chapters:

1. Define the interface surface and modify the subdomains to fit the 
interface.

2. Compute and assemble each subdomain stiffness matrix, [KJ.

3. Compute and assemble each subdomain traction continuity 
matrix, [Mj],

4. Compute and assemble each subdomain displacement-coupling
matrix, [Gj].

5. Assemble the global generalized stiffness matrix and the global 
boundary-condition vector, thus defining equation (2.22).

6. Solve the global generalized linear algebraic system for the 
nodal displacement degrees-of-freedom.

7. Recover subdomain stresses from the subdomain nodal 
displacement vector, {qj}.

The interface modeling methodology (Step 1) is an essential part of the 

research reported herein, and, therefore, Chapter III is entirely devoted to a 

detailed discussion of the theory concerning this part of the research. The 

remaining steps are discussed in Chapter IV covering the remainder of the 

numerical implementation.
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Interface

Figure 2.1 Finite element model with matching nodes at interface.

Interface

Figure 2.2 Finite element model with non-matching nodes at interface.
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Interface

Figure 2.3 Finite element model with geometrical gaps between subdomains. 
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Figure 2.4 Finite element model with subdomains adjusted to a 
common interface.
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INTERFACE MODELING
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3.1 Introduction

The rationale, theory, and algorithms for modeling geometric interfaces 

between subdomains are discussed in this chapter. First, there is a discussion of 

two-dimensional plane elasticity problems having one-dimensional interfaces.

Next, the methods are generalized to treat three-dimensional elasticity problems 

having two-dimensional interfaces.

3.2 Problem Definition

Suppose a complete structure consists of separate components or can be 

partitioned for modeling convenience into two or more subdomains. It is 

frequently of interest to create independent finite-element models of the structural 

subdomains. Alternatively, a single structure may have high-stress regions that 

require a high-resolution model, and for computational efficiency, a lower 

resolution model is used for the rest of the structure. When the independently 

modeled subdomains are combined, the interface boundaries where they are to 

be adjacent to each other may not fit exactly or may even exhibit small to 

moderately large gaps between the subdomains. For example, see Figure 3.1. A 

situation like this brings up several issues to be addressed and resolved. 

Addressing and resolving these issues forms much of the motivation of this 

dissertation.

First, a way to represent the interface in a mathematically accurate but 

convenient manner is needed. Second, the representation technique must be 

able to redefine the “noisy” or ill-fitting interface nodes from the subdomains in an 

automated way and thus minimize user intervention. Third, the representation 

technique must be of sufficient generality to treat realistic interface shapes that 

are likely to be encountered in practice. In the case of one-dimensional interfaces, 

the technique should be able to handle reasonable but general space curves, with
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plane curves treated as a specialization of space curves. In the case of two- 

dimensional interfaces, the technique should be able to handle full 360° open 

surfaces such as cylinders resulting from drilled holes. Furthermore, the 

technique should be able to treat closed surfaces (e.g., a void in a solid). Closed 

surfaces are assumed to be partitioned into a small number of disjoint open 

surfaces, and the algorithm derived herein will treat these open surfaces.

3.3 Solution Approach: One-Dimensional Interface

Concepts to be discussed in this section are illustrated in Figure 3.2 which 

depicts finite-element models of two subdomains, Qi and Q2- and a typical 

interface curve, So, for connecting the two subdomains. The geometrical 

definition of this interface curve is through a parametric representation of a 

general space curve using selected points, called interface data points (open 

symbols in Figure 3.2) to define the interface curve (i.e., the interface-element 

geometry). These defining points may be chosen arbitrarily and may consist of 

any convenient subset of the interface nodes from the finite-element models of 

either one or both subdomains or chosen in any other convenient manner. The 

approach taken in this research recognizes four distinct classes of points, each of 

which plays a role in the interface modeling. These four classes of points are 

designated as:

• node points on the interface (from a subdomain finite element model)

• interface data points

• parameterization points

• spline breakpoints

The node points are the pre-existing finite-element model nodes at the 

interface element location, which are to be redefined or mapped onto the 

mathematical interface element geometry. The interface data points represent a 

possible subset of the node points on the interface selected to define the 

interface surface. The parameterization points are the points used to define a 

new independent variable used to locate the interface data points. The spline

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39
breakpoints are points at which spline shape-function segments are fitted. In 

general, these four sets of points are inter-related but remain distinct. Each of 

these sets of points and the role they play in the interface modeling are discussed 

in detail in the subsections that follow.

3.3.1 Interface Data Points

The information presumed to define the interface cun/e, which is a general 

space curve, consists of a given set of NP coordinates in three-dimensional 

space: {x,, yt, z*} for i = 1,2,3, . . .  NP. The given set of coordinates for defining the 

interface geometry is referred to in this work as the interface data points.

Previous approaches, (e.g., Aminpour et al.56) assume the interface to be defined 

by the union of nodes comprising adjacent edges of the original finite-element 

model of each subdomain. No such restriction on the interface definition is 

presumed in the present discussion, and the term node is reserved for the nodes 

comprising the finite-element models. The nodes along the adjacent edges of the 

subdomain finite element models may also be used as the interface data points, 

but the interface is not required to be defined in this way. Indeed, many 

advantages are accrued by not choosing the nodes for the interface geometry 

definition. Once a set of interface points is defined, a mathematical representation 

based on the interface data points is obtained in order to have a useful definition 

of the interface for subsequent remodeling computations. It is generally not 

feasible to represent space curves without some kind of parameterization, and 

this is discussed next.

3.3.2 Parameterization and Parametric Points

For theoretical discussion of the differential geometry of general space 

curves, differential arc length, ds = ( dx2 + dy2 + dz2 )1/2, is often used for 

parameterization. On the other hand, for applied computational purposes, 

differential arc length is not the best choice because (i) it is an infinitesimal 

quantity, (ii) its defining equation is non-linear, and (iii) it is known only implicitly.
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These characteristics result in complicated iterative algorithms for computing arc 

length. A better choice for computation is cumulative chord length based on the 

finite Euclidean distance formula between the interface data points. An example 

of the distinction between arc length and chord length is shown in Figure 3.3.

Parameterization based on cumulative chord length is straightforward to 

define and compute. The parameterization process involves three main tasks.

First, define incremental chord length: o = [(Xj+i-Xi)2 + (y^-yi)2 + (zh-i -z02]i /2, for i =

1,2,3, . . ., NP-1. Next, define cumulative chord length as follows: Si = 0, and Sh-i 

= Sj + q, over the same range of i. Finally define normalized cumulative chord 

length: Si = Sj I Snp- The set {s,} ranges over values from 0 to 1 and nicely 

characterizes the coordinate set {Xj, yu z*} in parametric form. An example of this 

type of curve parameterization is shown in Figure 3.4. This parameterization has 

the advantages of being robust and easy to compute, in contrast to the differential 

arc-length approach. The set of numbers comprising the set {s*} of normalized 

cumulative chord lengths between physical points along a general space curve 

are termed parametric points in the present discussion. Thus, the im discrete 

physical point, defined in terms of its coordinates (X*, yi, z*), has a corresponding 

parametric point defined in terms of its normalized cumulative chord length, s*. for 

each of the NP discrete points.

3.3.3 Interface Data Points. Parametric Points and Breakpoints

A natural approach to representing general space curves defined by a set 

of NP interface points is with cubic splines (or any spline, for that matter), treating 

the representation as an interpolation problem. Points at which the spline 

segments are joined are called breakpoints in the present discussion. Hence, for 

a set of NP interface data points and their corresponding parametric values in 

terms of normalized cumulative chord lengths, a set of NB breakpoints can be 

defined. These breakpoints are then used to develop a parametric representation 

for the general space curve. Within the present notation and terminology, direct 

interpolation results when the interface data points are also taken as breakpoints.
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In the case of cubics, there are sufficient polynomial constants available to 

enforce C(1) continuity at each breakpoint. As such, the interpolation process 

generates a general space curve which passes through each interface data point 

and maintains slope continuity at each interface data point. If the interface data 

points are free of noise and are reasonably distributed, then using interface data 

points also as breakpoints works well as indicated by the example shown in 

Figure 3.5(a). On the other hand, if the interface data points are contaminated 

with noise, or if there is a high degree of data-point clustering, then this approach 

results in interpolation curves with unacceptable oscillations as shown in Figure 

3.5(b). In addition, the number of cubic segments is governed by the number of 

data points, giving no independent control over the number of segments, and the 

effect of variations in the data points on the curve representation is not localized. 

Noise effects can be minimized to some extent by pre-smoothing the interface 

data points. Apart from not having control over the number of segments and lack 

of localized impact on the curve, pre-smoothing generally requires making 

arbitrary assumptions about the nature of the data.

An alternative approach has been developed that overcomes each of 

these disadvantages. First, a set of breakpoints is selected over which the cubic 

segments are defined independently of the given data points. The resulting cubic 

spline segments are then fit to the interface data points in a least-squares 

manner. As such, the interpolation process generates a general space curve, 

which passes through each breakpoint, maintains slope and curvature continuity 

at the breakpoints, and minimizes the interpolation error in a least-squares sense 

at each interface data point. Results using this approach are shown in Figure 3.6, 

wherein the interface data points are identical to those shown in Figure 3.5. The 

difference between the two approaches is in the choice of breakpoints and the 

least-squares fit for the splines, in contrast to interpolation between every 

interface data point. Comparing of Figures 3.5(a) and 3.6(a) leads to the 

conclusion that the least-squares method represents the smooth data in a very 

acceptable manner with far fewer breakpoints than data points, and thus fewer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42
cubic spline segments are needed. Furthermore, examination of Figures 3.5(b) 

and 3.6(b) reveals that, while the traditional method gives rise to unwanted 

oscillations in the interpolated curve, the present method gives a quite reasonable 

curve. In addition to offering these practical advantages, the approach of having 

distinct breakpoints together with a least-squares fit of interface data points is in 

harmony with the variational philosophy inherent in the finite element modeling 

and interface theory developed in Chapter II.

The least-squares approach is more efficiently carried out when cubic 

basis functions (shape functions) are defined in an analogous manner to the 

shape-function approach used in the finite-element method. The basis functions 

for the parametric representation of the common interface element geometry are 

defined as the geometry approximations used in higher-order isoparametric 

elements with the breakpoints playing the role of nodes. The interplay between 

interface data points and breakpoints is discussed in the next section.

3.3.4 Breakpoint Distribution

For the parameterization discussed in Section 3.3.2, the set of parametric 

points, {S j}, defined in terms of normalized cumulative chord length, may turn out 

to be highly clustered depending on the spatial distribution of the original interface 

data points, {Xj, % a}- However, these parametric values are defined in such a 

way that the set {Sj} will always be strictly monotonic increasing as long as the 

interface data points are distinct. For a given parametric set, {s*}, i = 1, 2, 3... NP, 

a corresponding set of breakpoints, {sbj}, j = 1 ,2 ,3 ,... NB, must be defined 

which will then give rise to a set of cubic polynomial basis functions, and these 

functions provide the subsequent representation of the interface curve. Two 

important questions must be answered in defining the set of breakpoints. First, 

how should the breakpoints be distributed relative to the parametric points? 

Second, what ratio of number-of-parametric-points to number-of-breakpoints 

provides the best performance or best fit? For the present research, an algorithm 

based on the idea of “equally populated breakpoint cells” has been developed. A
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breakpoint cell is the interval between breakpoints; the union of these cells thus 

completely covers the parametric interval, [0,1]. In mathematical terminology 

(e.g., James and James95), the breakpoints and associated cells form a partition 

for the interval [0,1]. The approach of equally-populated breakpoint cells has the 

virtue of clustering breakpoints in a way that reflects the clustering inherent in the 

interface data points themselves. An example of breakpoint definition based on 

this approach is illustrated in Figure 3.7.

To determine the near optimum number of interface data points needed 

per breakpoint cell, numerical experiments were performed using several 

benchmark cases. There is a natural lower bound of four interface data points per 

breakpoint cell, since at least four independent conditions are needed to define a 

cubic segment. The tests revealed that five interface data points per cell resulted 

in a significant improvement over four points per cell. Curves defined by four 

points were too ‘slack” and had a tendency toward spurious oscillation. Very little 

improvement is noted when the number of points per cell is increased above five. 

Beyond 8 or 10 points per cell, the accuracy of the resulting curves tended to 

degrade. Thus, five points per cell was chosen as a default value for the present 

study, although the algorithm allows other values to be selected as a user-defined 

option.

3.3.5 Basis Function Definition

For a given set of interface points, once corresponding breakpoints are 

defined, the basis functions correlated with the breakpoints are then defined. For 

a given number of breakpoints, say NB, a question that must be resolved is how 

many independent basis functions need to be defined (i.e., how many functions 

are required in order to span the space?). For a non-intersecting space curve with 

NB breakpoints, there are NB-1 subintervals along the curve. For a cubic to be 

uniquely defined on each subinterval implies 4(NB-1) degrees-of-freedom since 

each cubic has four polynomial constants to be determined. There are NB-2 

interior breakpoints at which smoothness constraints may be applied to obtain a
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desired level of smoothness in the interface representation. A sufficient number of 

degrees-of-freedom are available with cubics to impose C(2) continuity, which 

usually results in acceptable smoothness for the parametric representation of the 

interface geometry. With NB-1 interior breakpoints, each having three imposed 

conditions, the final number for the degrees-of-freedom is, ndof = 4(NB-1) - 3(NB- 

2), or ndof = NB+2. The function space thus is of dimension NB+2 and requires 

NB+2 linearly independent basis functions to span it.

The individual basis functions are defined on the breakpoints in the spirit of 

finite-element analysis. Shown in Figure 3.8 is a sketch for the km basis function 

defined over five breakpoints denoted by: {sbk-2, sbk-i, sbk, sbk+i, sbk+2} to 

comprise a “5-node element." The “shape functions” are cubic segments 

satisfying C<2) continuity at the three interior breakpoints. The function is required 

to vanish at the boundary points, sbk-2 and sbk+2 and to take on the value of unity 

at the central point, sbk. Outside the set {sbk-2, sbk-1, sbk, sbk+1, sbk+2}, the function 

is taken to be identically zero. These conditions are sufficient to specify 

completely the basis function as a C(2) function over the entire open interval (-1,

+ 1), but being non-zero only over the interval (sbk-2> sbk+2). This is a very 

convenient feature known in the mathematical literature as “compact support" 

(e.g., Faux and Pratt,96 and James and James95). In summary for a set of NB 

breakpoints, {sbj}, j = 1,2,3,. . . NB, there corresponds a function space of 

dimension NB+2 which is spanned by cubic basis functions having compact 

support.

It is convenient for both the theoretical discussion and coding efficiency to 

have a one-to-one correspondence between the indices of the basis functions 

and the indices of the breakpoints. One way to obtain this one-to-one 

correspondence is to extend the breakpoints at each end of the set and renumber 

them, as depicted in Figure 3.9. By extending the original breakpoint set at each 

end and renumbering in this manner, a basis function with index, k , will 

correspond to the center breakpoint of the km 5-point group over which the basis 

function is non-zero. The new breakpoint indices start at the first extended point
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just to the left of the original set and end at the first extended point just to the 

right. There will thus be NB+2 indexed points in this set and the same number of 

basis functions in the spanning set, { bj(s)} (i = 1, NB+2). It is observed from

Figure 3.9 that further extension and function definition adds nothing, since all 

functions beyond bi(s) and bNB+2(s) make only a zero contribution to the interval 

defined by the original breakpoint set. However, bi and bNB+2 do make a non-zero 

contribution, as do all others defined between these functions. A generic 

expression for the k* basis function is obtained using four cubic shape functions 

defined piecewise over the four segments of the five-breakpoint set, {sbk},

(k=1,2, 3, 4, 5). These four cubic shape functions are given by equations (3.1) - 

(3.4):

Y1(s) = a1(s -s b k.2)3, (sbk_2 <s<sbk_,)

Y2(s) = a1(s -s b k.2)3+a2(s -sb k.1)3, (sbk., < s < sbk) 

Y3(s) = a3(sbk.2-s )3 +a4(sbk.1-s )3, (sbk <s < s b kJ  

Y4(s) = a3(sbk.2 -s )3, (sbk., <s<sbk.2).

(3.1)

(3.2)

(3.3)

(3.4)

Because of the form in which the Y  are defined, it is clear by close inspection of 

equations (3.1) - (3.4) that they automatically satisfy C® conditions at sbn and 

sbk*i. The coefficients, {a*}, i = 1 - 4, are determined by enforcing C<2) continuity 

conditions at the km break point and by normalizing the basis function to unity at 

s =  s b k . With these four C(2) functions thus defined, the generic km basis function, 

bk (s), is defined over the entire interval [sbk-2 , sbk+2] by the union of these shape 

functions, i.e..

bk(s) =

Y(s), (sbk_2 < s < s k.1) 
Y2(s ), (sb,., <s < s b k) 
Y3(s), (sbk < s < s b kM) 
Y4(s), (sbk̂ , < s < sbk*2)

(3.5)

An example plot of such a basis function and its first two derivatives,
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defined in this way for an arbitrary set of five breakpoints, is shown in Figure 

3.10. The basic features of compact support and continuity through the second 

derivative are clearly demonstrated in this figure. Having defined a family of NB+2 

basis functions over the extended breakpoint set, the next task is to fit these 

basis functions to the NP interface data points. The procedure to accomplish this 

task is discussed in the next subsection.

3.3.6 Basis Function Representation of Interface Curve

Taking advantage of the compact-support feature, each basis function, 

bj(s), is treated as a function defined over the complete parametric interval, [0,1]. 

The x-coordinate, y-coordinate, and z-coordinate of the interface curve are then 

expressed as linear combinations of the basis functions to obtain a parametric 

mathematical representation of the curve. These representations are written as,

N B-2

f,(s )=  |> ,b ,(s )  (3.6)
i-1

N B -2

f,(s)= £  /J,b,(s) (3.7)

NB*2

f,(s>= 2 > , b,(s) (3.8)
H

where tne coefficients, aj, and ^are determined from the least-squares 

procedure. Each of the functions, f*. fy, and fz are obtained by a similar process, 

so the present discussion will treat a general expression similar to equations (3.6) 

- (3.8) and representing any of the three coordinates. Thus, the generic equation

is written as,
N B -2

f(s)= 2 c ,b ,(s ). (3.9)
j-1

At the km parametric point, sk, the symbol represents the km value of 

either x, y, or z. With this convention, the sum of the squared errors between 

values of f(Sk) and <j>k is defined to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NP

47
2

e = £ [« * ,,> -♦ „ ]  . (3.10)
k=1

Upon substituting equation (3.9) forf(sk), equation (3.10) becomes

NP-I*«1 N B *2

(3.11)

The error sum expressed by equation (3.11) is minimized following the 

usual least-squares method, and this process results in the following linear 

system, the solution of which provides the coefficients, q,

[A]{cJ = {r]. <3 12)

where {c} is the vector of unknown coefficients, [A] is the least-squares matrix, 

and {r} is the corresponding right-hand-side vector. The entries in the coefficient 

vector are obviously just the q occurring in equation (3.11). The elements of the 

A-matrix and right-hand-side vector are given in equations (3.13) and (3.14), 

respectively,

NP

A ^ X b .fs J b .ts ,)  (3.13)
k*1

and
NP

(3.14)

The coefficients obtained from three linear systems similar to equation 

(3 12) are used to define the general space curve in terms of the previously 

discussed basis functions, giving a convenient mathematical representation of the 

interface curve. The final task, which completes the interface model, is to project 

the interface-nodes from each of the original finite-element models onto the 

mathematical curve which is now the common interface. The projection algorithm 

for the one-dimensional interface is discussed in the next section.
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3.3.7 One-Dimensional Projection Algorithm

The problem addressed in this subsection is illustrated in Figure 3.11 

which shows a typical interface curve and two representative examples of 

discrete points to be projected onto the interface curve. The question to be 

answered is, given a general space curve and a discrete point not on the curve, 

where on the curve should the point be placed in order to minimize distorting the 

finite elements in the vicinity of the interface? The approach taken in the present 

research was to select the point on the curve closest to the discrete point 

consistent with any user-defined movement constraints. This approach worked 

well for the representative cases studied. The algorithm used a form of the 

Newton-Raphson iteration to minimize the Euclidean distance function expressed 

as

D = yj [f„ (s) -  x0 ]2 + [fy (s) -  y0 ]2 + [fz (s) -  z0 ]2 , (3.15)

where xo, yo. and zo are the coordinates of the discrete point to be projected, and 

fx, fy, and fz are the functions defining the interface curve as in equations (3.6) -

(3.8).

3.4 Solution Approach: Extensions for Two-Dimensional Interface

An illustration for the two-dimensional case is given in Figure 3.12, which 

shows two independently modeled three-dimensional finite-element subdomains 

and an interface surface for connecting these two subdomains. As in the one­

dimensional case, points defining the interface surface are called interface data 

points, and the geometrical definition of this interface surface is through a 

parametric representation similar to that used for a single independent variable, 

but extended to two independent variables. The geometrical interface surface is 

assumed to be open and to have no self-intersections so that the surface 

Jacobian determinant is well-defined and did not change sign on the surface.

It is further assumed that the set of interface data points is not randomly 

arranged but instead possessed an i-j indexing structure. Requiring the two­
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dimensional interface data points to have this level of indexing structure allowed 

the extended methodology to build upon the one-dimensional procedures. This 

beneficial leveraging is accomplished by means of a tensor product 

representation for the interface surface based on independent one-dimensional 

parameterizations in the i- and j-directions. Since the two-dimensional interface 

theory is built upon the one-dimensional methods, the entire theory discussed in 

Section 3.3 is not recapitulated in the presentation for the two-dimensional case, 

but only the necessary extensions are described in detail.

3.4.1 Interface Data Points

The information needed to define the interface surface consists of a given 

set of NPI ■ NPJ coordinates in three-dimensional space: {xy, yy, zy} for i = 1,2,3, .

., NPI, and j = 1,2,3 NPJ. As for the one-dimensional case, these points are

referred to as interface data points.

3.4.2 Parameterization

The parameterization is based on cumulative normalized chord lengths in 

the i-direction and in the j-direction in a manner entirely analogous to the one­

dimensional case. A complication arises in that there is not a unique 

parameterization except in fortuitous situations. For example, when the 

parameters were computed in the i-direction (which is defined as the s- 

parameterization), there is, in general, a different set of parametric points for each 

j-value. Similarly, when parameters in the j-direction were computed (which is 

defined as the t-parameterization), there is a different set of parametric points for 

each i-value. A unique parameterization is required for successful implementation 

of the procedure, and the approach followed for the present research is to define 

averaged chord-length parameters. Thus, for the s-parameter, the parameters 

were computed for a fixed i, s-parameters were computed for every j-value and 

then averaged over the j-index (NPJ values were averaged). A similar process is 

followed for the t-parameterization, averaging in the i-direction over NPI values.
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3.4.3 Breakpoints

The one-dimensional breakpoint selection algorithm, previously discussed, 

is applied in each of the two parametric directions resulting in a net of rectangular 

cells in the s-t parameter space. Since the default cell population is five interface 

data points per cell in the one-dimensional case, the analogous two-dimensional 

cells contained twenty-five default interface data points per cell. The breakpoint 

net is thus an NBI < NBJ set consisting of the tensor product of two one­

dimensional breakpoint sets.

3.4.4 Two-Dimensional Basis Functions

The breakpoint set in the i (or equivalently, s) direction, having NBI points, 

is extended, and a space of one-dimensional basis functions of dimension NBI+2 

is defined as previously discussed in Section 3.3.5. This set of basis functions is 

denoted in the present discussion by: (bSj(s)}, for i = 1,2,3, . . . , NBI+2. The 

breakpoint set in the j (or t) direction resulted in another, independent space of 

basis functions of dimension NBJ+2. This second set of basis functions is

denoted in the present discussion by: (btj(t)}, forj = 1,2,3 NBJ+2. To obtain

a set of basis functions for representing the two-dimensional interface surface, an 

indexing algorithm is first defined that assigned a one-dimensional index, k, 

running through the entire tensor product of basis-function indices, i. e., k = 1,2,3,

. . ., (NBI+2) ' (NBJ+2). For a given k-value this algorithm returned a unique pair, 

(i,j), which indicated the correct pair of basis functions, bSi(k)(s), and btj(k)(t). A 

new, two-dimensional space of basis functions of dimension (NBI+2) < (NBJ+2) is 

then defined by the product of these functions.This definition is expressed as

btp „ (s, t) = bsi(k) (s) btJ(k, (t) (3.16)

for k = 1,2,3, . . . ,  (NBI+2) < (NBJ+2). This set of basis functions is used to form 

a mathematical representation of the interface surface using the least-squares 

approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4.5 Basis Function Representation of Interface Surface

The coordinates of arbitrary points on the interface surface were written in 

a representation similar to equations (3.6) - (3.9), but using the tensor-product 

basis functions as defined in Section 3.4.4. Using the defining equation (3.16), a 

generic functional form for the surface coordinates is written as

(N BU 2)X(NB J-2)

f(s,t)= £  ck btpk (s,t). (3.17)

Following a least-squares procedure similar to that discussed in the one­

dimensional case, a system of linear algebraic equations similar to equation 

(3.12) is obtained

[A]{c} = {r}. (3.18)

where {c} again represents the vector of unknown coefficients, [A] is the least- 

squares matrix, and {r} is the corresponding right-hand-side vector. The linear 

algebraic system of equations (3.18) is generally of a much higher dimension than 

that of equation (3.12). In addition, the A-matrix and right-hand-side vector have 

extended definitions based on equations (3.17) and (3.18). In particular, the 

elements, Am n of the coefficients matrix, [A], are given by

iN B I-2 )X (N B J-2)

Amn = £  bsi(m)(s jb t1(m)(tk )bsj(n)(sk )btJ(n)(tk), (3.19)
k*1

and the elements of the right-hand-side vector, {r}, are given by

<NBI-2)X(NBJ-2)

rm = ^   ̂ - (3.20)
k=l

3.5 Representative Modeling Examples

To illustrate the methodology discussed in this chapter, two representative 

examples were considered. The first example is a two-domain model of a 

quadrant from a two-dimensional plate with central circular hole as shown in 

Figure 3.13. The region in the immediate vicinity of the hole is modeled using a
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circular topology, whereas the remainder of the plate (L-shaped region) is 

modeled with rectangular topology. Each of these separate models is 

straightforward and convenient to generate independently, as they followed the 

natural topology of their respective physical regions. Modeling each part in this 

way, however, left a substantial, unmodeled gap between the two models. 

Although no competent engineer would create a model having a gap like this, it is 

conceivable that it might result from an automated computational procedure. 

Alternatively, it is so convenient to follow the local topology in modeling, if a way 

existed to conveniently blend two or more such models, it wold be a worthwhile 

gain in ease of modeling.

For this case, the nodes on the outer ring of the circular model were 

selected as the interface data points. Results from applying the interface 

modeling procedure to this case are given in Figure 3.13(b). The gap has been 

eliminated, and nodes adjacent to the interface from each model have been re­

defined to lie on the interface. This case showed minimal distortion of the inner 

circular model with some distortion of the elements from the L-shaped part near 

the interface. Distortion of either domain is controllable by a choice of the 

interface location and definition, and for this case it is anticipated for physical 

reasons that stress gradients would dominate in the vicinity of the hole, so 

distortion is controlled in the circular part. Actual effects of interface location on 

the solution for this case are presented and examined in Chapter V which gives 

solution results for several representative applications.

The second example illustrates the three-dimensional procedure (two- 

dimensional interface) using a solid plate with circular hole as shown in Figure 

3.14. This three-dimensional case is equivalent to the case just discussed. Figure 

3.14(a) illustrates the original independently modeled subdomains of circular and 

rectangular topology together with a circular interface. Figure 3.14(b) shows the 

domains after re-modeling with the interface modeling procedure. For this case, 

the interface is defined with independent interface data points as illustrated in 

Figure 3.14(a). The interface is defined using circular topology to again minimize
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distortion of the inner region. The interface is, however, defined with more points 

and thus greater resolution than is available by using nodes from the original 

models, which is an additional capability of the new methodology.

The third example, shown in Figure 4.15, is a solid plate with hole similar 

to example two, except that the interface definition has curvature in more than 

one direction. Figure 4.15(a) gives the L-shaped part of the model and the 

interface before automatic remodeling, and Figure 4.15(b) shows it after 

remodeling.
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Figure 3.1 Independently-modeled, non-coincident subdomains.

Figure 3.2 Relation between subdomains and interface definition.
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D a t a  p o i n t s  o n  g e n e r a l  s p a c e  c u r v e

Chord

Arc

Figure 3.3 Distinction between arc-length and chord-length.
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(a) Non-parametric representation of curve
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(b) Parametric representation of curve

Figure 3.4 Example of parametric representation using normalized cumulative 
chord length.
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(a) Data points having negligible position error
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(b) Data points with random position error

Figure 3.5 Traditional cubic spline representation with interface data points 
taken as breakpoints (NB = NP).
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(a) Data points having negligible position error
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(b) Data points with random position error

Figure 3.6 Least-squares cubic spline representation with breakpoints distinct 
from interface data points (NB < NP).
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o Interface parametnc points 

•  Breakpoints
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Figure 3.7 Breakpoint distribution using equally populated cells.
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Figure 3.8 Typical basis function defined over five breakpoints.
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Figure 3.9 Extension of breakpoint set to agree with dimension of 
basis-function space.
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Figure 3.10 Typical basis function and first two derivatives.
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a  Point to be projected 

O Point after projection

s = G

Figure 3.11 One-dimensional projection algorithm.

D o m a i n - 1

D o m a i n - 2

I n t e r f a c e

Figure 3.12 Independently-modeled subdomains and interface 
(exploded view for clarity).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

subdomains
(b) Interfaced subdomains

Figure 3.13 Automated interface modeling of two-dimensional flat plate 
with hole.

( a )  I n d e p e n d e n t l y - m o d e l e d  
s u b d o m a i n s  a n d  i n t e r f a c e

( b )  S u b d o m a i n s  a f t e r  i n t e r f a c i n g

Figure 3.14 Automated interface modeling of solid plate with hole 
(exploded view for clarity).
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z

( a )  B e f o r e  r e m o d e l i n g

( b )  A f t e r  r e m o d e l i n g

Figure 3.15 Example of automated remodeling for interface having multiple 
directions of curvature.
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CHAPTER IV
GENERALIZED GLOBAL STIFFNESS MATRIX EVALUATION, ASSEMBLY

AND SOLUTION

4.1 Introduction

A discussion of the approach and algorithms for creating the global gener­

alized stiffness matrix, derived in Chapter II, is presented in this chapter. The 

global matrix and sub-matrices discussed herein are based on equation (2.20) of 

Chapter II for two interfaced sub-domains, which is reproduced here for conven­

ient reference as equation (4.1):

[ N [0] [°] [0] ' I W l {P.!
[0] [o] [0] [M*l {%} {P2;
[0] [0] [0] t<3.] [< y w > =  « to)
w T [0] [s ,r [0] [0] {“ >} (0)

m [m 2]t [g , ] t [0] [0] [to)

where the [K, ] arrays are the usual stiffness matrices for each sub-domain, the 

[M, ] arrays are submatrices that couple the displacements and tractions, and 

the [G, ] arrays are submatrices that couple tractions between subdomains as 

discussed in Chapter III. The {P,} arrays are sub-vectors representing loads or 

displacements imposed on the sub-domains. The {q } are unknown degrees-of- 

freedom (dof) for each sub-domain and {q ,} is a vector of unknown dof on the 

interface defined in terms of basis-function coefficients. The {a,} vectors are 

compatibility dof corresponding to the displacement-coupling matrices, [G,].

The overall building process for equation (4.1) is to compute each sub- 

matnx of equation (4.1), assemble the sub-matrices into the global matrix, and fi­

nally compute and assemble the right-hand-side vector from imposed boundary 

conditions and constraints. A chart of the overall process for building and solving
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equation (4.1) showing six major steps is given in Figure 4.1.

The six steps of the process include: automated interface modeling; 

interface parametric representation; concurrent generation of [K,], [Gj J, and[Mj]

sub-matrices for each domain (i=1, 2 in this example); global assembly of sub­

matrices followed by preconditioning of the global matrix; solution of the 

generalized linear system for the displacement field; and finally recovery of the 

stress field from the displacements.

Since the automated interface modeling and parametric representation 

were discussed in Chapter III, the discussion in this chapter centers on evaluating 

the [K,], [Gj], and [M ,] sub-matrices appearing in equation (4.1), assembly and

pre-conditioning of the global generalized stiffness matrix, solution of the resulting 

linear algebraic system, and subsequent stress recovery techniques. The 

generation of the assembled linear stiffness sub-domain matrices (K-matrices) is 

accomplished using a previously existing finite-element code as a framework and 

will therefore be discussed somewhat briefly; the main focus of this chapter being 

on the remaining steps involved in evaluating and solving equation (4.1).

The manner of presentation for this chapter follows an organization similar 

to that of chapter III. Algorithms for two-dimensional configurations having one­

dimensional interfaces are discussed first. This is followed by a discussion of al­

gorithms for three-dimensional configurations having two-dimensional interfaces.

4.2 Evaluation of sub-matrices [K], [G], and [M]

4.2.1 Algorithms for two-dimensional domains

4.2.1.1 Standard linear stiffness matrices

The elements used for two-dimensional plane stress configurations in the 

present research were taken to be four-node plane quadrilaterals with bilinear, 

isoparametric shape functions as defined and discussed in many standard finite- 

element textbooks (e.g., Cook et al.,25 Bathe,26 and Krishnamoorthy27). The node 

arrangement for this element is shown in Figure 4.2, and the shape function
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definitions are given in equations (4.2) - (4.5):

N, = * (1 -0 (1 -1 1 )  

n2 = z (1+0 ( 1- ti )

N 3 = * ( i+ 0 0 + n) 

N4 = * (1 -0 (1  + ti).
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(4.2)

(4.3)

(4.4)

(4.5)

The independent variables 4 and q used in the shape-function definitions are 

local isoparametric variables over the interval [-1,1], as shown in Figure 4.2.

Evaluation of the stiffness matrix, , for each sub-domain proceeds in a

manner similar to that discussed by Cook et al.25 and results from an assembly of 

element stiffness matrices which are evaluated according to the integral pre­

sented in equation (4.6):

•1

(4.6)
-1 -1

where [B] is written as a product of three subsidiary matrices and expresses the 

relation between strains and nodal displacements. The matrix [E] is the linear 

elastic constitutive material property matrix relating stress to strain through 

Hooke's Law. The factor, t, is the element thickness, and J is the determinate of 

the Jacobian of the transformation between global physical coordinates and local 

element isoparametric coordinates.

To evaluate the J-term of equation (4.6), the Jacobian matrix is conven­

iently written in the following form:

M - I W

*1 Yi
x2 y2
x3 y3

y*

(4.7)

where [DN] is an array of partial derivatives of the shape functions as defined in 

equation (4.8):
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[ ° n ]  =

K  Nz, n3., n4,
NZ7 N4.7

(4.8)

With [J] thus defined, its determinate is easily evaluated as J = -  J21J12.The

inverse of [J] is denoted by [r ] = [J]~1 and the elements of the inverse are de­

noted by r 1t, r 12and so on.

The material property matrix, [E], of an isotropic, Hookean material in two 

dimensions, assuming a plane stress condition, is given by equation (4.9):

[E] = \ - v 2

1 V 0
V 1 0

1 -v  
2 .

0 0

(4.9)

where E is the elastic modulus and v is Poisson’s ratio for the material.

The B-matrix is conveniently evaluated as a product of three subsidiary 

matrices in the form, [B] = [H][Gbi0ctJ[DNE]- These three matrices are defined re­

spectively in equations (4.10), (4.11) and (4.12):

0 0 0 
0 0 1 
1 1 0

(4.10)

[G*ock] =

r„ r i2 0 0

r * T22 0 0

0 0 r„
0 0 r 21 T22

(4.11)
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N,., 0 N* 0 n3.. 0 0
N.* 0 Nz, 0 K, 0 Nm 0
0 "u 0 n2. 0 N3„= 0 N4.,
0 0 Nz, 0 n3. 0 Kn

The H-matrix represents the relation between strain and displacement 

derivatives with respect to physical coordinates. The Gwock-matrix couples 

displacement derivatives with respect to isoparametric coordinates and physical 

coordinates and the DuE-matrix expresses displacement derivatives in terms of 

nodal displacements. Finally, the B-matrix expresses the relationship between 

strains and nodal displacements.

4.2.1.2 Traction continuity matrices

Evaluation of the M-matrices reduces immediately to evaluation of the de­

fining integral given in equation (2.18) of Chapter II. For convenient reference, the 

integral is re-stated in equation (4.13):

(4.13)

where [Nj] represents the matrix of shape functions for the element type used in 

domain j and [Rj] represents the corresponding interpolation function for traction. 

Since traction is related to displacement through derivatives, e.g. equations (2.4) 

-(2.14) of Chapter II, the R-functions are generally taken to be polynomials of one 

degree less than the degree of the polynomials defining the N-functions. 

Furthermore, since the N-functions in the present case are bilinear (e.g. 

equations 4.2 - 4.5), the values in the R-arrays will be constant on a given 

element and, in general, discontinuous between elements.

The integral defined by equation (4.13) is evaluated element-by-element 

for those elements on the interface. Thus, equation (4.13) is written as

N E l -1 T

[M l] - - 2 j [ N l} [ R , ] [ B « l l tJ ,d f. (4.14)
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The sum in equation (4.14) proceeds over the elements for each domain j, 

and the N- and R-arrays are defined in the element sense. Each [Bnz] array is a 

Boolean array to place the non-zero contributions of elements and sides of ele­

ments on the interface. Each [Bnz] array is of dimension 8 by (2nj), where nj is the 

number of nodes in sub-domain j. Array [Bnz] is formed as the product of two 

subsidiary arrays, [Be] and [BG], i.e., [Bnz] = [Be] [Bg]. Array [Be], of dimension 8 

by 8, is an element Boolean array that places the integration on the side of the 

element that is on the interface. Array [BG], of dimension 8 by (2nj), is a sub- 

domain global Boolean array that extracts any element that is on the interface. 

The factor. J is the Jacobian determinate relating the local isoparametric coordi­

nate of the side along the interface to the global physical coordinates, and t is the 

local element thickness. The integration variable, dC, is a generic variable 

representing the local isoparametric coordinate of the element side that is on the 

interface.

The expression for the Jacobian determinate is derived by reasoning as 

follows. First, for an element side on the interface, the physical coordinates of the 

nodes defining the side are denoted by: (x^yO and (X2,y2). Second, the arc length

differential, in two dimensions, is given by: ds=Vdx:+dy: . Third, the relation

between the global variables and the isoparametric variable is assumed locally

linear, so the relationship between ds and d<f is: ds = ^/(x: -  x.)*' ^(y: -  y,): d£.

This relation between ds and d^is illustrated in Figure 4.3 for a representative 

example.

From an inspection of Figure 4.3, and by reference to the equation relating 

ds and dC it evident that the local Jacobian determinate is given by:

J, = iV (x2 - xi)2 + (y2- y 1)2- Each [ Nj ] array occurring in the integrand of

equation (4.14) is a 2 by 8 array of shape functions arranged in the form given by 

equation (4.15):
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(4.15)

In equation (4.15), the shape functions Ni, N2, and so on are bilinear 

functions of the isoparametric variables, g and rj, as defined in equations (4.2) -

(4.5). The traction, being derived from derivatives of bilinear shape functions, is 

constant over a given element. Thus, each [Rj] array in the integrand of Equation

(4.14) is a 2 by 8 array of constants, the values of which are chosen to give 

suitable tractions interpolated from the nodal values on the interface. The 

evaluation of the integrals in equation (4.14) was accomplished using two-point 

(second-order) Gauss quadrature.

4.2.1.3 Displacement-coupling matrices

Evaluation of the G-matrices was based on equation (2.19) of Chapter II, 

and that equation is reproduced here for reference as equation (4.16):

O H M ' [ * , ] < *  (4.16)

In equation (4.16), [T] denotes the array of functions used to represent the geo­

metrical definition of the interface between sub-domains 1 and 2. The [Rj] array in

equation (4.16) is the same array as is defined in equation (4.14). As was the 

case for the M-arrays, the G-arrays were also evaluated element-by-element with 

the integration expressed as in equation (4.17):

NEL -J

(4.17)

The array, [T], of dimension 2 by (2nbf), (where nbf is the number of basis 

functions used in defining the geometrical interface) is arranged in the form given 

by equation (4.18):

[T] =
b, 0 b2 0

0 b, 0 b2
"o r

0 b"a
(4.18)
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The functions bk(s(£)) in the T-array are the basis functions defined by equation

(3.5) of Chapter III, and the other terms in the integrand of equation (4.17) are 

defined the same as in equation (4.14).

4.2.2 Algorithms for three-dimensional domains

4.2.2.1 Standard linear stiffness matrices

The elements for three-dimensional configurations in the present research 

are taken to be eight-node hexahedrons (‘bricks’) with trilinear, isoparametric 

shape functions as defined and discussed in References 29-32 and 49, for 

example. The node arrangement for this element is shown in Figure 4.4 and the 

shape function definitions corresponding to the arrangement of Figure 4.4 are 

given in equation (4.19) which are similar to those given by Cook et al.,25

N, = i(1  + ̂ ) (1  + /7j»7)(1 + ̂ lO . (J = U 3  8). (4.19)

The constants, cJt //,, and C\ in equation (4.19) depend on the node index, j, and 

are defined by equations (4.20), (4.21), and (4.21):

fe L .2 *  (4.20)

(4.21)

f c L . 2 . 3 .  . . - { ' . - ' . - U t - t - l 1}1. (4.22)

Evaluation of the stiffness matrix, [K], for each domain proceeds by as­

sembling results from element stiffness matrices similar to the two-dimensional 

case discussed in section 4.2.1.1. The element stiffness matrix, [kj, for this case 

is given by equation (4.23):

[k.J = j  j  J [B f [E ][B lJdf (4.23)
-1  -1  -1

As in the two-dimensional case, the array [B] is written as a product of three 

subsidiary matrices and expresses the relation between strains and nodal 

displacements.
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The array [E] is the material property matrix relating stress to strain, and J 

is the determinate of the Jacobian of the transformation between global physical 

coordinates and local element isoparametric coordinates.

The Jacobian matrix, [J], is defined similarly to equation (4.7) of the plane- 

stress case except now [J] is of dimension 3 by 3 and is given by equation (4.24):

Lx 8

yi
y2

y3

y4
ys
y6

y7

ya

Zi
Zs
Z3

6

Z7
z„

(4.24)

The factor, [DN], is a 3 by 8 array of partial derivatives of the shape functions and 

is given by equation (4.25), wherein subscripts with a comma denote partial 

derivatives:

[Dn] =

K  Nz, N3, N4, n5,  n 6,  n7, n 8;
Nt, N3.„ N4.7 N5.„ N6.7 N77 N9.7
Nr,- N2,  N3, N4,  N5,  N6,  N7,  Na,

(4.25)

The material property matrix, [E], is that of an isotropic, Hookean material 

in three dimensions and is given in equation (4.26):

(1 +  v')(1 - 2 v )

1 - v V V 0 0 O

__
__

J

V 1 - u V 0 0 0

V V 1 - v 0 0 0

0 0 0
: -2 v

2
0 0

0 0 0 0
^-2v

2
0

0 0 0 0 0

M 
NJ

t

(4.26)

As usual, E is the elastic modulus and v is Poisson’s ratio for the material.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73
The B-matrix is conveniently expressed as a product of three subsidiary 

matrices in the form [B] = The H-matrix arises by expressing the

strain vector in terms of the vector of linear displacement derivatives. The Gbiock- 

matrix expresses the relation between derivatives of displacement in global 

variables to derivatives of displacement in local isoparametric variables. The Dne- 

matrix is an array of partial derivatives of shape functions. Thus, in matrix form, 

the strains are expressed in terms of the displacement-derivatives as equation 

(4.27):

f x y  

Y  y z

y 2x

■M m

6.1

V*
V>
V z

W,
W,
W .

9*1

(427)

The H-array of equation (4.27) is written as:

[Hi “

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

(4.28)

and represents the relation between strain and displacement derivatives with 

respect to physical coordinates. Next, the relationship between derivatives of 

displacement in global physical variables and derivatives in local isoparametric 

variables is expressed in equation (4.29):
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> * U.-

Uy
Uz u -

Vx V

Vy [̂ block ]g,9 ' V ,

V z V ,

w* w_.

Wy w „

9.1 w ... . 9̂1

where the Gbiock-array is a 9 by 9 matrix defined by

[GI ock =

r,i r i2 r , 3 0 0 0 0 0 0

r 21 r 22 ~̂23 0 0 0 0 0 0

r,i 3̂2 3̂3 0 0 0 0 0 0

0 0 0 r,i r , 2 r , 3 0 0 0

0 0 0 r 21 ^22 r * 0 0 0

0 0 0 r 31 ~̂32 r 33 0 0 0

0 0 0 0 0 0 r,i Tl3
0 0 0 0 0 0 r 21 ~̂23
0 0 0 0 0 0 r 31 *~32 3̂3

(4.29)

(4.30)

In equation (4.30), each 3 by 3 sub-matrix, [r], is the matrix inverse of the Jaco­

bian which was previously defined in equation (4.24); thus [ r ] is written as

(4.31)

Lastly, matrix [DNE] is given by equation (4.32), a three-dimensional extension of 

the two-dimensional definition in equation (4.12):

T „ r ,3' 1̂1 ^12 1̂3
r 21 r * r * = ^21 J*

J31 *̂32 ^33. _̂ 31 J32 3̂3.
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X 0 0 N2, 0 0 0 0 N„ 0 0 '

Ni, 0 0 n2. 0 0 0 0 n8. 0 0
Nv 0 0 Nj„- 0 0 0 0 N., 0 0
0 V- 0 0 Nw 0 • N7; 0 0 V- 0
0 Ni, 0 0 V, 0 • N,, 0 0 n8. 0
0 Nv 0 0 •V 0 ' V- 0 0 Ng.- 0
0 0 V 0 0 V- ' 0 V- 0 0 IV-
0 0 Ni, 0 0 N,„ • 0 n7, 0 0 «v
0 0 K- 0 0 N,.- • 0 n7, 0 0 N8,

4.2 2.2 Traction continuity matrix for three-dimensional elements

The general expression for the traction-continuity matrix for each sub- 

domain is given in equation (4.11), which is evaluated element-by-element with 

only those elements having a face on the interface producing non-zero contribu­

tions. Equation (4.11) is thus written for three-dimensional elements as:

NEL -J - 1 ,

[ M,] = - S  J J[N, (4.33)
-1  -1

The integration variables, a  and /?, are generic variables that represent local iso­

parametric variables for any element face on the interface. The sum goes over all 

elements of a fixed domain j, and each [N] and [R] array is defined in an element 

sense as for the two-dimensional case. Each [BNz] array of dimension 24 by (3nj) 

(where ^ is the number of nodes in sub-domain j) is a Boolean array that extracts 

the non-zero contributions of the elements and element faces that are on the 

interface.

The [B Nz] arrays are formed as the product of two subsidiary arrays, [Be] 

and [Bg]. The [Bg] arrays, each of dimension 24 by (3nj), are sub-domain global 

Boolean arrays that extract the elements of the sub-domain that are on the in­

terface. The [Be] arrays, each of dimension 24  by 24, are element-level Boolean 

arrays that extract the face of the element that is on the interface. The factors, Ji, 

are the Jacobian determinates relating the local isoparametric variables of the
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element-face on the interface to the global coordinate variables. The evaluation of 

the integrals in equation (4.33) was accomplished by second-order Gauss 

quadrature (two points per integration variable) as in the two-dimensional case 

previously discussed.

4 2.2.3 Displacement coupling matrices for three-dimensional elements

Evaluation of the G-matrices for three-dimensional configurations is based 

on equation (4.16) written for element-by-element evaluation as:

NEL -1

[® ,] = Z f  f [T l [« ,l[B « l4 d o d /J . (4.34)
1-1  - 1  - 1

where a and p  are generic variables of integration representing local iso­

parametric variables for the element-face on the interface, and Ji is the 

determinate of the Jacobian matrix relating the isoparametric variables on the 

face of element T  to the global variables. The relationship between local 

integration variables, da and dp, and interface parametric variables, ds and dt, is 

shown in Figure 4.5. The array, [T], is an array of basis functions used in defining 

the geometrical interface between the finite-element models of the three 

dimensional structure. This array, of dimension 3 by (3nbf), where nbf is the 

number of basis functions used to define the interface, is given in equation (4.35):

btp, 0 0 btp2 0 0 " btP-v 0 0

[T]« 0 btp, 0 0 btp2 0 0 WPnM 0

.  0 0 btp, 0 0 btp2 • 0 0 WPn*

The functions, btpk(s(ar,i5),t(ar,>S)), in the T-array are the tensor-product basis 

functions defined by equation (3.16) of Chapter III, and the other terms in the 

integral of equation (4.34) are the same as defined in equation (4.33). 

Incidentally, the notation “btp” was chosen to indicate tensor-product basis 

functions.
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4.3 Global assembly and solution

4.3.1 Global assembly

Numerical implementation of the procedures described in Sections 4.1 and

4.2 result in computer files containing the sub-matrices: [Ki], [K2], [Mi], [M2], [Gi], 

and [G2]. These six files are assembled with the load and constraint vectors into a 

modified global linear system of algebraic equations as expressed in equation

(4.1). The procedures used to create the sub-matrices, as implemented, result in 

a sparse global array that contains a significant number of zero rows and 

columns. Thus, as initially assembled, the generalized global stiffness matrix is 

singular and quite sparse.

In order to obtain a non-singular linear system, which could be solved by 

standard methods, a deflation and scaling procedure was implemented to modify 

the initial system. This process not only removes singular rows and columns but 

also additionally detects rows that are nearly redundant in a generalized vector 

sense. Such rows and corresponding columns are also deflated out of the sys­

tem, and the resulting deflated system is scaled to have row-norms of similar 

magnitude. The procedure, as implemented, keeps track of indices that corre­

spond to node locations in the finite-element model where displacements are to 

be computed. The method uses a pointer indexing system so that after the solu­

tion is obtained all results are relocated in their respective correct locations.

A master file, which is produced by the assembly pre-conditioning module, 

contains the deflated linear system coefficients, the corresponding modified right- 

hand-side vector, and the pointer vector containing integer index-recovery infor­

mation. This master file is the file received by the solution module where the 

linear system is then solved for the unknown displacements.

4.3.2 Solution of the linear algebraic system

The generalized linear stiffness matrix, as received from the assembly 

module, is non-singular but it may not be positive definite. Such a linear algebraic 

system can be efficiently solved by the method of Gauss elimination and full piv-
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oting. Although this method has been implemented in several standard packages

go
over the years, the implementation described by Dongarra et al. for the 

UNPACK system is robust, well tested, and widely available. Routines from the 

UNPACK system were therefore included as part of the solution module for the 

present research. For additional robustness and versatility, a user option was 

included to also allow solution by a standard singular value decomposition (SVD) 

method. In practice, if the deflated system is near singular, as evidenced by its 

condition number, then Gauss elimination with full pivoting may not give 

satisfactory results. In this case, the SVD approach may be used although it 

requires considerably more computation time than the Gauss elimination method.

After the solution to the modified system is obtained, by either the Gauss 

elimination method or the SVD method, the displacement values at the correct 

node locations are obtained by using the indexing information carried by the 

pointer vector. The resulting array of displacement values at the node locations is 

then used to obtain the stress field.

4.4 Stress recovery

4.4.1 Introduction

The displacement degrees-of-freedom obtained from a finite-element 

analysis are normally available at the node locations. Moreover, since many 

graphics packages (e.g., TECPLOT99) are based on having information at the 

node locations, and it is also useful to have stress values at the nodes. 

Unfortunately, from an accuracy standpoint, direct computation of stress at the 

node locations appears to be among the poorest of choices (e.g., Hinton and 

Campbell100). A method of obtaining accurate stress values at the node locations 

was therefore of primary importance.

4.4.2 Stress Recoven/ Procedure

The stress recovery methodology used in the present research is a 

generalized form of an approach developed for two-dimensional finite-element
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models discussed by Krishnamoorthy.27As implemented, the present method 

entailed three basic steps. First, the stresses were computed from constitutive 

equations and displacement derivatives at optimum sampling points for the 

element in use. Second, the resulting stress values were extrapolated to the node 

locations by means of isoparametric shape functions similar to those used for the 

original finite-element model. Third, multiple stress values, which arise at nodes 

having two or more elements in common, were averaged to obtain unique values 

at each node location.

4.4.2.1 Optimum stress sampling locations

The location of optimal stress sampling points for a given element type has 

been investigated by previous researchers. Representative examples of these

investigations are discussions by Strang and Fix,101 Zienkiewicz and Taylor,90 and
102Barlow. The best choice of location for the stress sampling points is related to 

the order of the Gauss quadrature rule (i.e., the number of Gauss points) used in 

computing the integrals for evaluating the entries in the generalized stiffness 

matrix. The second-order rule (two Gauss points per dimension) was used for the 

present research as recommended in the following quotation from Cook et al.:25

For an isoparametric element based on an assumed displacement field, the best 
quadrature rule is usually the lowest-order rule that computes the volume cor­
rectly and does not produce numerical instability.... For bilinear and eight-node 
plane elements, and for the eight-node linear solid element, an order 2 Gauss 
rule is favored (four and eight points for plane and solid elements, respectively).

The above recommendation by Cook is based on the idea of choosing the

order of quadrature to have a correct assessment of the strain energy in the

structure. The logic goes as follows. First, the element must satisfy the patch test

(represent a constant stress state) and the elements considered herein satisfy

this requirement (this is shown in detail in Chapter V). Second, the element must

exhibit zero strain for rigid-body motion. Third, the elements must be compatible

and exhibit invariance with respect to coordinate rotations. These requirements

are inherently satisfied by isoparametric elements, which are the elements used
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herein. Fourth, the quadrature rule should integrate exactly the element volume 

for arbitrary element shape. The quadrature rule stated in the above quote meets 

this requirement, and is the reason for Cook's recommendation.

The choice of related stress-sampling points used in the present research 

was based on the locations recommended by Hinton and Campbell,100 who found 

that “In analysis involving numerically integrated elements such as isoparametric 

elements, experience has shown that the integration points are the best stress 

sampling points.” On the other hand, for four-node quadrilateral and eight-node 

brick elements, Cook et al.25 states that the most accurate stress sampling points 

are the element centroids. The drawback is that centroids used as sampling 

points makes extrapolation to the node points crude because it is impossible to 

capture a within-element variation with only one point.

For the present research, second-order Gauss quadrature (two points per 

dimension) was used and the corresponding locations in the element were used 

as stress sampling points for extrapolation to the nodes to get compatibility with 

contour plotting software. The stress was also computed at the centroids and 

saved to a file as a check on accuracy using of the stresses sampled at the 

Gauss points. It is evident from the literature that the last word on stress recovery 

algorithms has not been written and there is further room for research in this 

topic.

4.4.2.2 Extrapolation to the node locations

For second-order (two point) Gauss quadrature and four-node quadrilat­

eral or eight-node brick elements, as was used in this research, the total number 

of Gauss points and stress sampling points in an element was the same as the 

number of nodes, i.e. four or eight depending on the element type. In each case, 

the coordinates of the Gauss points in terms of isoparametric variables were

~TT'

The spatial relationship between the element node-locations and the 

Gauss point locations for a four-node quadrilateral element is shown in Figure
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4.6. By extension, a similar spatial relation holds for three-dimensional eight-node 

brick elements. The number of stress sampling points was the same as the 

number of nodes for the elements used in the present research, so the same 

functional form was used for extrapolation from the sampling points as was used 

for displacement interpolation within the element. The distinction being that 

different isoparametric variables were used. For the case of quadrilateral 

elements, the isoparametric variables based on node locations were denoted by 

(c, rf) and the isoparametric variables based on Gauss points were denoted by 

(4,n). Now, since the Gauss points were located at ±-V in the variables (£ rf)vo

and at ±1 in the variables {4,ff), the two sets of variables were related as in 

equations (4.36) and (4.37):

l  = V3«

(4.36) 

and

rf =  y/Zrj.

(4.37)

Evaluation of stress within the element was accomplished by using a 

representation in terms of the values at the Gauss points and the element shape 

functions with (J, rf) as arguments for the functions. In particular, stresses at the 

node locations were obtained by evaluating the element bilinear shape functions, 

(N,,N2,N3,N4}at ±V3. The values of the normal stress in the x-direction at the

nodes are expressed in terms of the corresponding values at the sampling points 

by equation (4.38):

"N,(-V3,->/3) N2(-V 3 ,-V 3) N3(W 3,-V 3 ) N ,(-V 3 ,-V 3)'

K
N,(>/3,-V3) N2(V3,W 3) N,(>/3,-V3) N4(>/3.->/3)

! * ■
>

N,(V3,V3) N2(>/3,V3) ^ ( 7 3 . ^ ) N4(>/3,V3)

k 4’ ^ ( - ^ , 7 3 ) N2(-V3,V3) N3(W 3.V3) N4(-a/3,V3) _
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where the values at the sampling points are and the

corresponding values at the nodes are ’.ctJ;4’}1’ .

Similar equations for cry and txy were obtained based on the same ap­

proach, and completely analogous relationships were used for the eight-node, 

three-dimensional element. In the present work, the 4 by 4 matrix in equation

(4.38) is called a bilinear extrapolation matrix, and the analogous 8 by 8 matrix for 

the brick element is called a trilinear extrapolation matrix.

The extrapolation procedure begins by first computing the appropriate 

bilinear or trilinear extrapolation array. Then, by means of equations similar to 

equation (4.38), stress values at the nodes were computed from corresponding 

values at the sampling points for each element in the model.

4.4 2.3 Averaging nodal extrapolated stress values

During the course of extrapolating stress values at the Gauss points to 

values at the element node locations, it was possible that more than one stress 

value might be obtained at a single node when two or more elements had a node 

in common. This possibility is illustrated in Figure 4.7 for both quadrilateral and 

brick elements. Examination of the figure shows that there are three cases for the 

nodes; shared, not shared, and nodes on the subdomain boundary. In the event 

of shared nodes, the multiple nodal stress values from the common elements are 

averaged to obtain a single stress value for each node location in the finite- 

element model. A straightforward arithmetic average of the extrapolated values, 

as was done in the present research, implicitly assumes equal contribution from 

each of the adjacent elements. A more refined and sophisticated averaging 

method would use some type of weighting procedure based upon a predefined 

criterion such as element area or volume.

Values of the stresses are not treated differently from interior nodes in the 

extrapolation process, i.e., no distinction is made between boundary and interior 

nodes in the extrapolation process. Since nodes on a boundary will, in general, 

be shared by fewer elements than are shared by interior nodes, the nodes on the
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boundary have stress values that are obtained with less information than is used 

for a typical interior node. This may sometimes lead to more inaccurate values at 

the boundary nodes, particularly if the element density is low in the extrapolation

direction.

Values of stress at the interface nodes are treated in the same way as 

boundary nodes, i.e., the interface node values are obtained with information only 

from the associated subdomain. To do it this way, and thereby forego ‘smoothing’ 

between the subdomains, was a deliberate decision for the present research in 

order to be able to identify effects due to the interface. In practice, one would 

likely use information from all subdomains connected to the interface and 

subsequently apply a smoothing or averaging process.
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Stress Recovery

Geometric 
Interface Definition

Independently Modeled 
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Interfaced DomainsInterface Parametric 
Representation

Automated Interface Modeling

Global Assembly of Submatrices and 
Preconditioning of Global Matrix

Solve Linear System for Displacements 
(Gauss Elimination with Full Pivoting)

Concurrent Generation of K, G, M Submatrices 
For Each Domain

Figure 4.1 Major steps in the solution process for the generalized global 
stiffness matrix.
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Figure 4.2 Four-node plane isoparametric quadrilateral element.
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Figure 4.3 Relation between isoparametric and interface coordinates 
along an interface curve.
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(b) Local element space
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Figure 4.4 Eight-node isoparametric brick element.
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Figure 4.5 Relation between isoparametric and interface coordinates along 
an interface surface.
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Figure 4.6 Relationship between element nodes and Gauss sampling points 
for quadrilateral elements and two-point quadrature.
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Figure 4.7 Node sharing for quadrilateral and brick element types.
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CHAPTER V 
APPLICATIONS AND RESULTS

89

5.1 Introduction

The results presented in this chapter include analyses of two-dimensional, 

three-dimensional, and curved membrane configurations. The two-dimensional 

results were obtained using a four-node quadrilateral element, whereas the three- 

dimensional results were obtained using an eight-node brick element. These two 

elements were introduced and briefly discussed in Chapter IV and are shown in 

Figures 4.2 and 4.4, respectively. Although these two elements tend to stiffen in 

bending, they are widely used and relatively straightforward to implement. The 

present research is devoted to interface methodology; therefore, use of 

sophisticated elements and detailed investigations of element properties perse 

are not justified as long as care is taken to distinguish between interface effects 

and element-related effects. It is prudent, however, to verify that the elements as 

implemented can represent constant strain states (i.e., pass a standard patch 

test).

5.2 MacNeal-Harder patch tests

More than a decade ago, MacNeal and Harder103 proposed a set of 

standard problems to use for testing finite element behavior and accuracy. In the 

intervening years, this set of problems has been widely used to test existing and 

new elements. Several members of this set are known as patch tests, and 

accuracy on the patch tests is considered an important benchmark for an element 

type. In a general sense, a patch test compares the theoretical values of a 

standardized model to a finite element solution using the element being tested.

The patch test problem for two-dimensional plane stress quadrilateral 

elements is shown in Figure 5.1, and the corresponding specified displacements 

and theoretical solution is summarized in Table 5.1. To apply the patch test, 

values of the nodal displacements from the theoretical solution are specified on
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the element boundaries, displacements are computed at the interior nodes and 

strains and stresses are computed at each node and compared with the 

theoretical values.

Table 5.1 Patch test for four-node quadrilateral element

Specified displacement Theoretical strain and stress

u = 10'3(x + ̂ y) £* = £r = r Xi = 10'3

v = 10~3(y + -^x) ax = <ry = 1333 

rty = 400

The patch test for the three-dimensional solid element is shown in Figure 

5.2, and the corresponding boundary conditions and theoretical solution is 

summarized in Table 5.2.

Table 5.2 Patch test for eight-node brick element

Specified displacement Theoretical strain and Stress

u = 10'3(x + yy +yZ) £x ~ Sy ~ £z -'/xy -Yfz - / a  j

v = 10*3(jX  + y + jz ) °x=<ry=<?z= 2000 j

w = l O ^ x  + -̂y + z) = V  = ra = 400 ,

It was found in the present research that the computed values were in 

complete agreement with the theoretical values for both the quadrilateral plane- 

stress element and the solid brick element.

5.3 Two-dimensional bar in tension

A basic configuration for benchmark investigation is the constant cross- 

section bar in tension with the material taken to be isotropic and linearly elastic. 

The analytical solution for this configuration with transverse roller boundary 

conditions at the attached end ( i.e., boundary conditions needed to recover a
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uniaxial stress state) and imposed axial displacement at the free end of 0.05- 

inches is straightforward and widely known to be constant longitudinal normal 

stress, zero values for the other stress components, and linear displacement 

variation along the length of the bar. A rectangular two-dimensional plane stress 

configuration with the general layout and dimensions shown in Figure 5.3(a) was 

chosen for this investigation. The same figure also shows the finite-element 

model used for the computation. The bar was 5-inches long, 1-inch high and 0.1- 

inch thick. Longitudinal displacements of 0.05-inches were imposed on the right 

end-nodes. Material properties, similar to aluminum, were taken to be E = 107 psi 

and v  = 0.333. The finite element model, as shown in the figure, consisted of two 

subdomains; the left subdomain had 12 nodes and 5 elements whereas the right 

subdomain had 15 nodes and 8 elements. The interface geometry was a vertical 

line defined by the code-default minimum number of 5 interface nodes and 

located at x = 1.00-inch to the right of the fixed boundary. It is clear from the 

figure that the interior nodes of the subdomain models do not coincide at the 

interface.

Results from the plane stress computation are shown in Figures 5.3(b) and 

5.3(c). These u and v displacement contours depict the plane stress solution for 

the prescribed bar response boundary conditions. It is clear from the figures that 

the displacement variations are linear in both directions and that the transverse 

displacement, v, is smaller than the u displacements by a factor of v=0.333, in 

complete agreement with linear elasticity theory. Numerical values of the 

displacements and corresponding stresses agree nearly exactly with analytical 

values. These results verify the single domain and multiple domain software 

implementations for a uniaxial stress problem in two dimensions.

5.4 Three-dimensional bar in tension

A three-dimensional bar in tension was also chosen as a basic 

configuration for investigation to provide a benchmark test of correctness and 

accuracy for the algorithms and corresponding implementation of the three-
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dimensional solid element. The configuration chosen was a bar 10.0-inches in 

length with a square cross section of dimension 1.0-inch by 1.0-inch. The material 

properties were taken to be the same as for the two-dimensional bar E = 107 psi, 

and v = 0.333. The finite element model, shown as an exploded view in Figure 

5.4(a), had a short domain with 50 nodes and 16 elements and a longer domain 

with 160 nodes and 81 elements. Roller boundary conditions were applied at the 

= 0 end with sufficient fixity to prevent rigid-body translation or rotation and not to 

generate any transverse normal stresses. The model had a planar interface 

between the domains, 1.00-inch from the fixed the fixed boundary in the positive 

x-direction, defined by a 4X4 array of 16 points. Longitudinal displacements (u- 

displacements) of 0.1-inch were applied on the x = 10.0-inch plane of the model. 

As in the two-dimensional case, this model should generate a uniaxial stress field 

and linear variations of longitudinal displacement.

A contour plot of computed u-displacement values is shown in Figure 

5.4(b). From the figure, it is readily seen that the displacement contours were 

planar and the longitudinal displacement varied linearly along the length of the 

bar, as is known to be correct for a uniaxial stress solution for a uniform bar. 

Inspection of the file containing computed displacements showed the values were 

exact to eight significant digits throughout the bar. Additionally, the corresponding 

longitudinal stress value, as for the two-dimensional case, was determined to be 

essentially constant and of the expected magnitude. These results verify the 

single domain and multiple domain software implementation for a uniaxial stress 

problem in three dimensions.

5.5 Two-dimensional cantilever beam

A two-dimensional cantilever beam subject to transverse in-plane loading 

is a more stringent case to examine than a two-dimensional bar in tension since 

the stress state is not uniform along the beam length. The right-end boundary 

conditions for this case were implemented as an imposed transverse 

displacement of 0.05-inches for all nodes on the loaded end of the beam. The
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configuration, material properties, and model were the same as the two- 

dimensional bar-in-tension case previously discussed. These conditions simulate 

a beam solution. The computed transverse displacements and outer-fiber, 

longitudinal stresses along the outer surface fiber of the beam are shown on 

Figure 5.5 as filled circles. The corresponding results from strength-of-materials 

theory (solid line) and from a single-domain finite element analysis (open 

symbols) are also shown for comparison. The transverse displacement results 

are normalized by the tip deflection, the longitudinal position along the beam is 

normalized by the beam length, and the bending stress results are normalized by 

the maximum bending stress at the fixed end of the beam (for this case, aret= 30 

000 psi). The deflection results indicate the cubic behavior of the transverse 

displacement along the beam. The single domain finite element solution and the 

multiple domain finite element solution correlate exactly with the strength-of- 

materials beam solution for deflections. This is true even at the interface for the 

multiple domain solution.

The bending stresses plotted in Figure 5.5 show the strength-of -materials 

theory as a solid line. The finite element stresses for both the multi-domain and 

the single-domain models are evaluated at the Gauss points. These Gauss-point 

stresses are then extrapolated to the nodes by means of the procedure discussed 

in Chapter IV. The values obtained by extrapolating to the nodes are shown in 

Figure 5.5 as '+' symbols of the multi-domain method and open circles for the 

single-domain model. From the figure, it is clear that the single-domain and multi­

domain values correlate well except at the interface. The finite-element stress 

values extrapolated to the nodes correlate well with the corresponding strength- 

of-materials values except near the ends of the beam. The longitudinal density of 

elements in the finite element models was not particularly refined, and the 

differences between the FEM results and strength-of-materials was attributed to 

the longitudinal mesh coarseness and the consequent lack of stress "information" 

available for the extrapolation procedure near the ends of the beam. The validity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94
of this conclusion was investigated by extrapolating the Gauss-point stresses 

directly to the beam edge.

The Gauss-point stresses extrapolated to the beam edge are shown as 

filled triangles for the multi-domain model and as open squares for the single­

domain model in Figure 5.5. Thus, results for a given element are associated with 

each pair of points (either open squares or filled triangles). The figure shows that 

there is good correlation between the single-domain and multi-domain values 

extrapolated to the beam edge.

A striking feature is that the values extrapolated for each pair of Gauss 

points from the same element "bracket" the strength-of-materials line. Evidently, if 

values extrapolated from the two Gauss points were averaged, the resulting 

mean values would fall very nearly on the strength-of-materials line. This result 

suggests that a possible way of obtaining more accurate stress, especially near 

the boundary of a domain, by direct extrapolation followed by averaging and 

taking the resulting value to be located at the midpoint between the locations of 

the extrapolation points.

A natural question that occurs is why not simply sample the stresses at the 

element centroids as advocated by some researchers for bilinear elements. One 

important disadvantage of this approach is that only a single stress value is 

obtained within an element. The only way that extrapolations to the boundary can 

then take place is to include a centroid stress-value from an adjacent interior 

element.

A variation on this theme is, in fact, practiced in the CFD arena. Flow 

quantities of interest are obtained at the cell centroids in the finite-volume 

approach and widely available post processor such as PLOT3D and its 

successor, FAST110 provide the values at other locations via interpolation and 

extrapolation. The application of CFD post-processing software based on cell- 

centered data to analyze FEM results evaluated at element centroids is a 

promising approach.
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Finally, part of the differences in stress results between multi-domain and 

the single-domain models at the interface are attributed to the fact that the 

interface theory is an integrated formulation (see equation (2.4) of chapter II) and 

stress is expected to be continuous across the interface in an integral sense, but 

not necessarily continuous in a pointwise sense.

5.6 Three-dimensional cantilever beam

The same finite-element model used for the three-dimensional bar was 

investigated using transverse tip loads to obtain a cantilever beam in a manner 

similar to the two-dimensional cantilever beam case.

Displacements and surface compressive stresses along the compression 

side are shown in Figure 5.6 together with corresponding strength-of-materials 

theory and single-domain finite element results. The displacement values are 

normalized by the tip value of v^ = 0.1-inch and the stresses are normalized by 

the maximum bending stress at the fixed end of the beam (for this case, aref = 15 

000 psi). The points shown plotted in Figure 5.6 are average extrapolated values 

for a given x-plane, averaged over y and z. It is clear from the figure that there is 

excellent agreement between the displacements for all the methods, and that the 

overall trends for the stresses were similar for the various methods. As was the 

case for the two-dimensional beam, there was good agreement for the bending 

stress between the finite-element and strength-of-materials results except for 

differences at the two ends of the beam.

As with the two-dimensional case, the differences in nodal stress values at 

the ends was attributed to coarse mesh size in the longitudinal direction with 

resulting limited "information" for the stress recovery procedure as implemented. 

Values of stress at the Gauss points were also extrapolated directly to the beam 

surface for comparison. In this case, there were two extrapolated values obtained 

per x-location in an element, these values were averaged, and are the points 

shown in the figure. There were only slight differences between the multi-domain 

and single-domain results at the interface, and these were attributed to the
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formulation being an integral formulation wherein continuity is expected in an 

integral sense (equation (2.4) of Chapter II).

The behavior of the values obtained in this way was similar to that 

observed for the two-dimensional cantilever beam previously discussed. One 

difference between the two-dimensional and the three-dimensional results is a 

tendency for the directly extrapolated values to be larger that the strength-of- 

materials values over much of the beam length rather than consistently 

"bracketing" the strength-of-materials results as was true for the two-dimensional 

beam. The reason for this difference in behavior is not completely understood.

5.7 Flat plate with circular hole loaded in tension

A flat rectangular finite plate having a centrally located circular hole is a 

configuration of considerable interest because it exemplifies many of the 

characteristics that occur in a variety of practical applications. Civil engineering 

structures, such as bridges or building frames that are riveted or bolted together, 

embody repeated patterns of plates with holes. For many years, riveted steel 

plates were the standard construction method in shipbuilding. Although this 

procedure has been generally replaced by welding, the bulkheads and decks 

must still have hatch openings and these are plate-with-hole patterns. Today, 

metal aircraft are routinely constructed of sheet metal riveted together and 

supported by ribs and spars also riveted together. Welding and more exotic 

construction methods and materials are replacing this, but many aircraft 

substructures are still assembled by the method of rivets or screws. Additionally, 

the fuselages of aircraft have door and window openings, which are essentially 

plate-with-hole patterns. Because this configuration-type occurs so often in 

practice, it has been studied from early on in structural mechanics.

One of the first solutions for this configuration type was obtained in 1898 

by G. Kirsch104 for a doubly infinite two-dimensional plate having a circular hole 

and loaded in tension in one direction. The solution by Kirsch is now treated as a
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standard problem in elasticity texts (e.g., Timoshenko and Goodier94). Making use 

of a successive approximation procedure, Kirsch's results were extended by 

Howland105 to allow for an infinite strip of finite width having a hole of significant 

diameter compared to the strip width. Howland's paper, in part motivated by the 

needs of the shipbuilding industry in the 1930's, presented an early definitive 

solution to the problem and tabulated stress concentration factors for selected 

values of the problem parameters. Since the appearance of Howland’s work, 

several treatises have been published concerning stress concentration factors 

that include the plate with hole (e.g., Peterson106 and Savin107). It is common 

practice nowadays for standard mechanical engineering design textbooks to have 

charts of stress concentration factors that include the plate with a circular hole 

(e.g., Spotts108 and Shigley109). The results presented in the present research 

include both two-dimensional and a three-dimensional finite element solutions for 

this important case. Plane stress assumptions are imposed on the two- 

dimensional finite element models. The configurations selected for investigation 

are shown in Figures 5.7(a) and 5.21.

5.7.1 Reference solutions

For comparison, single-domain finite element reference solutions were 

generated for the two-dimensional plane stress case (see Figure 5.7(b)) and the 

three-dimensional elasticity case (Figure 5.21(c)). Modeling the plate with a hole 

using a single-domain model requires a transition from a circular topology near 

the hole to a rectangular topology near the plate boundary. While readily 

performed by many commercial pre-processing codes such as PATRAN, it is 

desirable to have regular-shaped elements near the hole. The finite element 

model herein is defined by the number of radial spokes of nodes from the hole, 

the number of rings of elements around the hole, the number of elements in the 

remaining x-direction rectangular region to the right of the hole, and the number 

of elements in the remaining y-direction rectangular region above the hole. These 

four numbers are used to define the mesh (e.g., see Figure 5.7(b)). In the three-
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dimensional models, the number of elements in the thickness direction (here 

taken as the z-direction) also needs to be specified. Solutions obtained using 

these single-domain finite element models serve as reference solutions for the 

multiple-domain cases.

In addition, the analytical solution of Howland105 is used for comparison. 

Designers often work with stress concentration factors that are multipliers of the 

nominal stress across net section area. For the case considered (w/D = 5), 

Peterson106 gives a stress concentration factor of K = 2.51. This stress 

concentration factor includes finite width effects and is based on nominal stress 

across net section area.

5.7.2 Two-dimensional Plate with circular hole

The configuration dimensions and material properties used in the present 

investigation are shown and summarized in Figure 5.7. The plate was 16.0 inches 

long and 8.0 inches in width. The hole was centrally located and was 1.6 inches 

in diameter. The material properties were those of aluminum: Young’s modulus E 

= 107 psi and Poisson's ratio v = 0.333. The plate was constrained to have 

displacement boundary conditions corresponding to an in-plane tension load and 

free to expand in the transverse direction. Due to symmetry, only one quarter of 

the plate was analyzed. For this loading, a stress gradient near the hole 

boundary along the horizontal symmetry plane is expected. The stress field away 

from the hole should become uniform. Results from three investigations are 

presented and discussed: (i) a mesh-refinement study, (ii) an interface location 

study, and (iii) an interface-shape study. The stress results presented for this 

case were normalized by the nominal stress over net section area, which for the 

present configuration and loading was Oref = 156 250 psi.

5.7.2.1 Mesh refinement

The finite element models for the mesh-refinement investigation are shown 

in Figure 5.8, which gives the models before and after remodeling. The finite
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element meshes of each domain were independently generated to conform to the 

natural topology of the respective subdomain. Around the hole, a circular topology 

was used and for the rest of the plate, an L-shaped rectangular domain was 

used. As seen in the figure, this resulted in a significant gap between the two 

models and thus presented an extreme test of the automatic remodeling 

methodology developed for this research. Results from the automatic remodeling 

phase are labeled as "interfaced domains" in the figure and demonstrate the 

ability of the methodology to perform extreme remodeling. The remodeling 

resulted in moving the nodes on the interface boundary of the L-shaped domain 

to the boundary of the circular domain. This automatic remodeling capability 

represents a unique new feature for interface technology. It permits the use of 

convenient modeling approaches for subregions and eliminates the need for 

exact boundary modeling along the interface.

The coarse model had 15 nodes and 8 elements in the circular domain and 

29 nodes and 18 elements in the L-shaped domain. The medium mesh had 35 

nodes and 24 elements in the circular domain and the same number of nodes and 

elements in the L-shaped domain as for the coarse model. The fine mesh had 63 

nodes and 48 elements in the circular domain the same number of nodes and 

elements in the L-shaped domain as for the coarse model. The most refined case 

analyzed, designated the reference case, had 99 nodes and 80 elements in the 

circular domain and 96 nodes and 75 elements in the L-shaped domain.

For this study, the interface definition was taken as a set of points 

coincident with the outer boundary of the circular region. With this choice, 

elements in L-shaped domain near the interface became distorted during the re­

modeling process. Since large stress-gradients are expected to occur near the 

hole but not away from the hole, less error due to element distortion was 

expected in the L-shaped domain that was expected in the circular domain nearer 

to the hole. It is more important to have regularly shaped elements near the 

region with the stress gradient.

Contours of field quantities computed in this investigation are shown in
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Figures 5.9 and 5.10, which give v-displacement contours and longitudinal stress 

contours respectively for the coarse and refined meshes. Also shown are results 

for a single-domain finite-element computation for comparison. The single-domain 

model had mesh-resolution comparable to the reference two-domain interface

case.

Examination of the displacement contours shows remarkable agreement 

between the single-domain results and the multiple-domain interface reference 

results. The results indicate no discontinuity in the displacement contours across 

the interface. The coarse-mesh results had minor differences compared to the 

single-domain, attributed to the mesh resolution and are not considered an effect 

of the interface methodology. For example, the slight gaps in the coarse-mesh 

contour plot indicate the geometry error associated with a coarse mesh of linear 

elements used to model a curved boundary.

The stress contours show an overall agreement between the multiple- 

domain interface reference case and the single-domain reference case except for 

some isolated discontinuities near the interface. Some of the discrepancy is due 

to the stress recovery procedure based on averaged nodal stresses. Examination 

of the contours in the vicinity of y = 0 showed that there was excellent agreement 

between these two cases; an important design result since the y = 0 line near the 

hole is where maximum stress occurs and therefore where failure is likely to 

occur.

More detailed results for the important y =0 line are shown in Figure 5.11 

which gives a line plot of stress concentration factor based on net section area. 

The plot shows results for the coarse, medium and fine meshes. Included on the 

plot for comparison are values from Howland's paper105 and a single-point stress 

concentration factor from Peterson's treatise.106 Examination of the figure 

indicates excellent agreement between the fine-mesh results, the single-domain 

results, and Howland's values. All of the results shown are in good agreement, 

and differences shown by the coarse and medium grids were attributed to mesh 

resolution and not to the interface methodology.
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5.7.2.2 Effect of interface location

Finite elements for the interface location study are shown in Figure 5.12. In 

this study, the outer radius, R, of the circular domain was varied to examine the 

interface location effect on the plane stress solution. Three finite element models 

representing circular interfaces located at an R of 1.5-inches, 2.0-inches and 3.0- 

inches from the hole center are shown in Figure 5.12. All of the physical 

dimensions and material properties were kept the same as shown in Figure 5.7. 

As was the case for the mesh refinement study, the interface definition was taken 

to lie on the outer boundary of the circular domain, and this kept element 

distortion confined to the L-shaped domain. However, for small values of R, the 

interface boundary approaches the expected area of large stress gradient near 

the hole. The three finite element models for this interface location study each 

had 99 nodes and 80 elements in the circular domain and 96 nodes and 75 

elements in the L-shaped domain. The spatial distribution of these nodes and 

elements changed for each model.

The v-displacement contours for the three cases are given in Figure 5.13, 

and an examination of the results showed that there were no significant 

differences due to the variation of interface location for this configuration. 

Contours of the corresponding longitudinal stress are shown in Figure 5.14. 

Examination of these contours revealed general overall agreement for the three 

models except for isolated discontinuities in the contours across the interface.

A line plot of normalized longitudinal stress is given in Figure 5.15 for the 

important y = 0 line. Included on the figure are results from Howland's previously 

cited analytical investigation, results from the single-domain finite element 

computation, and a single-point result on the hole boundary taken from 

Peterson's treatise previously cited. There is excellent agreement between all the 

results, and this observation fosters confidence in the present methodology as 

well as indicating a general insensitivity of the method to interface location 

(provided, of course, that the interface is located beyond the region of maximum 

stress gradient very near the hole).
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5.7.2.3 Effect of interface shape

The previous two analysis studies used a circular interface coincident with 

the outer boundary of the circular subdomain and wherein elements of the L- 

shaped domain suffered distortion due to the remodeling process. In order to 

have further confidence in the methodology, it was important to investigate the 

effect of interface shape on computed results. An interface that conformed to the 

L-shape boundary was defined and the remodeling resulted in a slight distortion 

of the elements from each domain that were adjacent to the interface. Since the 

interface in this instance had a sharp comer, the effect of maintaining or removing 

the sharp corner was also investigated. The models used for this are shown in 

Figure 5.16 where the independent domain meshes are plotted together with the 

meshes produced by the automatic remodeling with and without retention of the 

node at the sharp comer.

Contours of computed field quantities from the analyses are given in 

Figures 5.17 and 5.18, which show v-displacements and longitudinal stress, 

respectively for the single-domain reference and the two interface cases. 

Examination of the displacement contours revealed only minor differences 

between the three results. The longitudinal stress contours were quite similar 

near the hole; however, isolated discontinuities at the interfaces occurred similar 

to those arising in the previous cases.

A plot of normalized longitudinal stress along the y = 0 line is given in 

Figure 5.19, which also shows Howland's and Peterson's results for comparison.

It is evident from the figure that the results were relatively insensitive to the 

interface shape. For this case, there was a slight difference between values 

computed within each domain just at the interface. Such a discontinuity was not 

observed for the models with circular interfaces. Although the exact reason for 

this effect is not known for sure, it may have been due to the distortion of some 

elements in the critical circular region, a possibility to bear in mind when one 

models similar applications.
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5.7.3 Three-dimensional plate with circular hole

5.7.3.1 Configuration details and problem definition

The configuration dimensions for this case are shown in Figure 5.20. 

Because of symmetry, it was only necessary to consider one quadrant of the full 

plate, as is shown in the figure. The configuration had material properties similar 

to the two dimensional case: E = 107 psi and v = 0.333. The plate was taken to 

be 1.00-inch thick and the hole was chosen to be 1.00-inch in radius. Since the 

full plate was 8.00-inches wide, the hole-diameter to plate-width ratio was 

therefore 0.25. The reference stress use to normalize the stress results 

presented was cref = 166 667 psi.

For this case, the circular domain model had 64 nodes and 27 eight-node 

brick elements. The L-shaped domain had 160 nodes and 81 eight-node brick 

elements. The interface was defined by 66 points in an 11 by 6 array having the 

geometrical form of a cylindrical surface. The original subdomain models, 

interface surface, and subdomain models after automatic remodeling are shown 

in Figure 5.21 together with the single-domain reference model.

5.7.3.2 Results for tension loading

The model was subjected to displacement constraints that represented 

tension loading in a manner similar to the two-dimensional case. Displacement 

contours for the multi-domain and single-domain models are shown in Figure 

5.22. These contours are shown in a two-dimensional view with the z-axis 

pointing out of the paper, but they are three-dimensional contours.

Because of the symmetry of the configuration and boundary conditions, it 

was expected that the three-dimensional displacement contours should exhibit 

negligible variation in the z-direction. An examination of the contours in Figure 

5.22 reveals that this was indeed the case, as no discernible variation in this 

direction could be seen. The sharpness of the contour lines between the contour 

levels is an indication of the lack of variation in the depth, or z-direction. 

Examination of the actual computed values also confirmed this lack of z-variation.
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The contours shown in this figure are quite similar to the two-dimensional model 

results shown in Figure 5.17.

Longitudinal stress contours for a similar view with the z-direction pointing 

out of the paper are given in Figure 5.23 for the single-domain reference model 

and the two-domain interfaced model. The general characteristics of these 

contour plots are similar to the two-dimensional results shown in Figure 5.18. 

There is some "fuzziness1' in the contour lines for the stresses that indicate a 

slight variation in the stress contours in the z-direction. This slight variation was 

attributed to two sources. First, small variations in the displacements are 

amplified in the differentiation process to obtain the stress. Second, the stress 

recovery procedure is based on an extrapolation and nodal averaging technique 

that could introduce small variations.

A line plot of longitudinal stress along the y = 0 plane averaged in the z- 

direction is shown in Figure 5.24. The figure includes the multi-domain interfaced 

results, the single-domain reference results, and values from Howland’s analytical 

solution of the semi-infinite two-dimensional flat plate. The overall agreement 

between the results shown is excellent in the same way as the two-dimensional 

results.

5.8 Curved membrane with circular hole

5.8.1 Background

A curved membrane with hole is a configuration of considerable interest to 

aerospace researchers because of its obvious similarity to a fuselage section with 

window or other opening. Although the four-node quadrilateral element has only 

plane stress capability and therefore does not support out-of-plane deformations, 

a curved-membrane panel under in-plane loading can be analyzed with the 

present methodology. This configuration also provided an opportunity to test the 

automated remodeling capability for an interface having out-of-plane curvature.
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5.8.2 Configuration and problem definition

The layout and dimensions of the panel investigated is shown in Figure 

5.25. The aspect ratio of the plot distorts the representation and is somewhat 

deceiving; in actuality, the panel was a circular section having a 20-inch radius of 

curvature. The panel arc subtended an angle of approximately 11.5-degrees, 

which made the arc length distance about 4.03-inches. The width of the panel 

was 8.0-inches and the hole was 1.6-inches in diameter. The material properties 

were the same as used for the previous configurations: E = 107 psi and v = 0.333. 

The panel was constrained to have displacement boundary conditions 

corresponding to a tension load in the longitudinal direction (y-direction as given 

in the figure). The reference stress used to normalize stress results for this case 

was Cref = 156 250 psi.

5.8.3 Finite-element models

The model used for the analysis is shown in Figure 5.26. The 

independently modeled subdomains are shown in Figure 5.26(a) and consist of a 

curved L-shaped subdomain and a curved circular subdomain. The interface was 

taken coincident with the outer ring of the circular domain and was defined by 11 

points. The circular subdomain had 99 nodes and 80 elements, whereas the L- 

shaped subdomain had 121 nodes and 96 elements. The remodeled domains are 

shown in Figure 5.26(b), an examination of which showed that the remodeling 

gave results similar to the flat cases thus verifying the remodeling capability for 

interfaces having out-of-plane curvature.

5.8.4 Computed results

Longitudinal displacement contours are shown in Figure 5.27(a) and 

corresponding stress contours are given in Figure 5.27(b). The contours for the 

displacement and stress display characteristics similar to the two-dimensional flat 

plate results (cf. Figures 5.9 and 5.10).

Since this configuration was analyzed chiefly to investigate the automatic
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remodeling capability, previously published analytical or computational results 

were not sought in the literature for comparison. It was thought that the qualitative 

comparison between the flat-plate contour plots and the panel contour plots were 

sufficient to verify the methodology.

5.9 Two-dimensional plate with rectangular hole or re-entrant notch

The cases discussed so far have had either no geometrical variation 

(uniform bars and beams) or have had continuous geometrical transitions (two- 

dimensional plate and panel; three-dimensional plate). The present and 

subsequent cases have discontinuous geometrical variation and sharp re-entrant 

comers in the vicinity of the interface. That is, the interface boundary does not 

necessarily extend over the entire boundary on both subdomains models.

5.9.1 Configuration and problem definition

The two-dimensional configuration studied was a notched flat plate as 

depicted in Figure 5.28. Because of symmetry, the section shown also represents 

a quadrant from a plate with a rectangular hole. The plate was 8.00-inches long 

and 4.00-inches wide. The comer had a 1.50-inch square notch leaving a tab of 

dimensions 1.5-inch by 2.5-inch. The material properties were taken to be the 

same as the previously discussed cases. The plate was constrained to have 

displacement boundary conditions corresponding to a tension load in the longest 

direction (y-direction in the figure). The reference stress used to normalize stress 

results for this case was based on nominal stress over net section area and for 

this case was cyref = 200 000 psi.

5.9.2 Finite element model

The models are given in Figures 5.29(a) -  5.29(d). The single-domain 

reference model in Figure 5.29(a) had 325 nodes and 316 elements giving a 

reasonably high resolution model intended to capture effects in the comer region 

where high gradients in the computed quantities were expected. Two different
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interfaced model types were investigated: one with the edge nodes matching and 

one with the interface edge nodes not matching. For the model type with non­

matching interface edge nodes, the interface node corresponding to the node on 

the larger subdomain was included for one calculation and not included for 

another calculation.

The model having the edge nodes match is shown in Figure 5.29(b). The 

other cases are shown in Figures 5.29(c) and 5.29(d). The smaller subdomain 

(tab) for each of these three models had 91 nodes and 72 equally sized elements. 

The large subdomain for the edge-node matched model had 238 nodes and 208 

equally sized elements, giving a reasonably dense mesh in both subdomains. The 

large subdomain for the edge-node non-matched model had 182 nodes and 156 

equally sized elements, again giving a fairly dense mesh.

5.9.3 Computational results

Plots of longitudinal displacement contours are given in Figure 5.30. 

Corresponding longitudinal stress contours are shown in Figure 5.31, and a line 

plot of longitudinal stress near the y = 1.5-inch line are shown in Figure 5.32. The 

displacement contours for the interfaced models show general characteristics 

similar to the contours for the single-domain reference model. However, there are 

noticeable differences in the vicinity of the comer and interface for the matching 

vs. non-matching models. The matching model is quite similar to the single­

domain case, whereas the non-matching models do not agree with the single­

domain results.

The contour plots of the longitudinal stress in Figure 5.31 show that the 

single-domain and matched edge-node have similar characteristics, but there are 

distinct differences between the single-domain and the non-matched edge-node 

cases.

Examination of the line plot of longitudinal stress given in Figure 5.32 

shows excellent agreement between the single-domain results and the edge-node 

matched results except for slight excursions between the x = 3-inch and 4-inch
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positions. The results from the two multi-domain cases wherein the edge nodes 

were not matched showed relatively large excursions about the single-domain 

curve throughout the plotted range. Since the present methodology was 

developed based on the tacit assumption of matching edge-nodes, these results 

are not too surprising.

5.10 Three-dimensional bar with abrupt size reduction

5.10.1 Configuration and problem definition

The configuration investigated was a solid bar of rectangular section 

having an abrupt section reduction from a 2.0-inch by 2.0-inch size to a 1.0-inch 

by 1 0-inch size. Figure 5.33 shows one quadrant of the configuration, which was 

sufficient for analysis due to the geometrical symmetry and symmetry of the 

loading. The material properties of the bar were taken to be the same as the

cases previously discussed, i.e., E = 107 psi and u =0.333. The overall length of

the bar was 10.0 inches; the larger-sectioned piece was 1.0 inch long and the 

smaller-sectioned piece was 9.0 inches long. The reference stress used to 

normalize stress results for this case was the nominal longitudinal stress in the 

long piece, which for this case was oref = 100 000 psi.

5.10.2 Finite element models

The reference model was a single-domain model with 131 nodes and 52 

elements as shown in Figure 5.34. The 9.00-inch part of the interfaced model had 

81 nodes and 36 elements of the brick type. Two models for the short piece were 

investigated: one having nodes that matched the adjacent surface edges of the 

long piece and one that did not match the adjacent surface edges of the long 

piece. The short model that matched the surface edges had 72 nodes and 25 

elements of the brick type, whereas the non-matching short part had 98 nodes 

and 36 elements (also of the brick type).

In the present three-dimensional case, there is a great deal of scope in
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how the interface itself can overlap the nodes from adjacent subdomains. For the 

present research, two interface geometries were defined: one with its outer edges 

matching corresponding mesh lines on each subdomain and one with its outer 

edges not coinciding with any mesh line of the subdomains. These two interfaces 

are shown in Figure 5.34 as the 0.5-inch by 0.5-inch interface and the 0.6-inch by 

0.6-inch interface, respectively.

Possible variations between the interfaces and interface-node 

assignments on the larger subdomain are shown in Figures 5.35(a) -  5.35(c).

The cases of non-coincident edges are given in Figures 5.35(a) and 5.35(b). In 

these figures, the small circles denote points defining the 0.6-inch by 0.6-inch 

interface. The large circles denote nodes assigned to the interface from the 

longer subdomain. The squares denote nodes assigned to the interface from the 

shorter subdomain.

In Figure 5.35(c) the same symbols denote the respective interface points 

and node assignments, except the interface is 0.5-inch by 0.5-inch and matches 

geometrically the end of the longer subdomain.

5.10.3 Computed results

Longitudinal displacement contours on a slice parallel to the x-z plane and 

at y=0 ( the center plane of the configuration) is shown in Figure 5.36. The single­

domain results are shown in Figure 5.36(a), the matched edge-node results are in 

Figure 5.36(b), the edge-node exterior to the longer subdomain face is in Figure 

5.36(c), and the edge-node interior to the longer subdomain is in Figure 5.36(d). 

The non-coincident results are each similar to each other but differ from the 

single-domain results. On the other hand, the coincident-edge results are quite 

similar to the single-domain results.

Longitudinal stress contours in the y = 0 plane are shown in Figure 5.37. 

Figures 5.37(a)-5.37(d) show results from models corresponding to the 

displacement contours shown in Figure 5.36. The strength-of-materials 

theoretical stresses are shown in Figure 5.37(3) for comparison. Strength-of-
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materials results for a geometry having step size reduction in section are 

unrealistic and are typically supplemented by stress concentration factors for 

design work. For a geometry of this nature, the finite-element solutions are likely 

to be a better representation of reality. Each of the cases in Figure 5.37 captures 

the general nature of the stress in the longer subdomain and the expected stress 

reduction in the shorter piece. There are also large stress gradients near the 

sharp corner as evidenced by the "bunching" of contour lines in the vicinity of the 

comer.
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Figure 5.1 MacNeal-Harder two-dimensional plane-stress patch test layout.
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Figure 5.2 MacNeal-Harder three-dimensional patch test layout.
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Figure 5.3 Two-dimensional bar loaded in tension.
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(b) Longitudinal displacement contours

Figure 5.4 Three-dimensional bar loaded in tension.
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Figure 5.5 Transverse displacement and bending stress for two-dimensional 
cantilever beam.
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Figure 5.6 Transverse displacement and bending stress for three-dimensional 
cantilever beam.
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L = 16.0-inches 
W = 8.0-inches 
D = 1,6-inches 
E = 107 psi 
v  = 0.333

(a) Problem depiction sketch for plate with hole

(b) Single-domain reference model

Figure 5.7 Configuration layout and reference finite element model for 
two-dimensional plate with hole.
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Figure 5.8 Mesh refinement for two-dimensional plate with hole.
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Figure 5.9 Longitudinal displacement contours for plate with hole.
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Figure 5.10 Normalized longitudinal stress contours for plate with hole.
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Figure 5.11 Longitudinal stress at mid-length for two-dimensional 
plate with hole.
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Figure 5.12 Multi-domain grids for different interface locations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

v (in.)

Interface: R = 1.5-in. R -  20-in. R = 3.0-in.
0.100

0.090

0.060

0.070

0.060
0.055
0.050

0.030
0.025
0.020
0.015
0010
0.005
0000

Figure 5.13 Longitudinal displacement contours showing insensitivity to 
interface location.
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Figure 5.14 Normalized longitudinal stress contours showing insensitivity to 
interface location.
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Figure 5.15 Longitudinal stress at mid-length showing insensitivity to interface 
location.
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Figure 5.16 Multi-domain meshes having L-shaped interfaces in finite-element 
model for two-dimensional plate with hole.
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Figure 5.17 Longitudinal displacement contours for two-dimensional plate 
with hole showing insensitivity to interface shape.
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Figure 5.18 Normalized longitudinal stress contours for two-dimensional plate 
with hole showing negligible sensitivity to interface shape.
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Figure 5.19 Longitudinal stress along y = 0 line for two-dimensional plate with 
hole showing insensitivity to interface shape.
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Figure 5.20 Configuration layout for solid plate with circular hole.
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(c) Single-domain 

Figure 5.21 Finite element models of solid plate with circular hole.
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Figure 5.22 Longitudinal displacement contours for solid plate with circular 
hole showing negligible variation in depth direction.
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Figure 5.23 Longitudinal stress contours for solid plate with circular hole 
showing negligible variation in depth direction.
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Figure 5.24 Longitudinal stress along y = 0, z = 0, line for solid plate with 
circular hole.
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Figure 5.25 Configuration layout for curved membrane with circular hole.

(a) Independently modeled

(b) Automatically remodeled

Figure 5.26 Multi-domain finite element model for curved membrane with 
circular hole.
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Figure 5.27 Displacement and stress contours for curved membrane with 
circular hole.
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Figure 5.28 Configuration layout for two-dimensional notched plate.
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Figure 5.29 Finite element models for two-dimensional notched plate.
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Figure 5.30 Longitudinal displacement contours for two-dimensional 
notched plate.
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Figure 5.31 Longitudinal stress contours for notched plate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

3 0

K  2 5
Single-domain
Match
Interior
Exterior

C 20  
T3

0 5

3.0 3.5 4.020 25
x, in.

Figure 5.32 Longitudinal stress along notch line for notched plate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



131

t 1.0-in. 

,0-in.

' 9.0-in.
0.50-in

Figure 5.33 Configuration layout for solid bar with abrupt size reduction.
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Figure 5.34 Finite element models and interfaces for solid bar with abrupt 
size reduction.
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Figure 5.35 Interface variations for multi-domain finite element models of solid 
bar having abrupt size reduction.
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having abrupt size reduction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER VI 
CONCLUSIONS AND RECOMMENDATIONS
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6.1 Summary

An overview of the background and objectives of the present research 

together with a historical review of related research was presented in Chapter I. 

The literature review included a discussion of approaches to interface-type 

investigations for both Computational Fluid Dynamics (CFD) and Computational 

Structural Mechanics (CSM) fields of research. The goals of the research were 

specified in section 1.3.

Chapter II discussed the formulation of previous interface theory based on 

a hybrid-stress variational principle and included the steps followed in the overall 

solution process. Chapter III presented a formulation and solution approach for 

the automatic remodeling of the independently modeled subdomains, a key part 

of the present research. Chapter III also included representative examples of 

independently modeled subdomains remodeled automatically using the present 

methodology. Chapter IV discussed the methodology for evaluating and 

assembling the generalized global stiffness matrix. Finally, Chapter V presented 

and interpreted representative finite element cases that demonstrated the 

methodology.

Cases examined included both two- and three-dimensional patch tests to 

validate the element implementation. Basic configurations studied were bars and 

cantilever beams in both two- and three-dimensions. Flat plates with circular 

holes, both membrane and solid, were analyzed and discussed. The plate with 

hole examples covered mesh refinement, interface location, and interface shape 

studies. A panel with out-of-plane curvature having a circular hole was 

investigated. The example investigations concluded with two- and three- 

dimensional configurations having discontinuous changes in section size and 

included coincident and non-coincident interface edge definitions.
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6.2 Conclusions

The five research objectives defined in Chapter I, Section 1.3 have been 

achieved in the course of the investigations and discussed in the present 

document. In the applications cases presented, the methodology has been 

demonstrated and the results presented have shown good agreement with 

previously published results and benchmark finite element computations.

Specifically, the major conclusions of this research are as follows:

1. Methodology for automatically remodeling independently modeled 

subdomains, having non-coincident regions in the finite element models, has 

been developed and tested for a variety of cases in both two- and three 

dimensions. The remodeling methodology has been shown to be accurate and 

robust for every case considered in the present research. This automatic 

remodeling capability represents a unique new feature for interface 

technology. It permits the use of convenient modeling approaches for 

subregions and eliminates the need for exact boundary modeling along the 

interface.

2. Algorithms for evaluating displacement and traction constraint integrals have 

been developed, implemented and tested individually and as part of the 

combined methodology. The algorithms have been designed to be compatible 

with the general parametric representation used in the remodeling 

methodology, and the resulting implementation is both versatile and robust.

3. Linear solution algorithms have been implemented to address the problem of 

the inherent non-positive-definite character of the global generalized stiffness 

matrices. The implementation includes user-selectable options for solving the 

large linear systems based on condition number of the matrix for the system. 

This feature allows solution, if necessary, of near-singular systems. The trade­

off in invoking the optional, sophisticated capability to solve the more 

intractable systems is additional computational time.

4. Representative classes of applications have been solved that gave good 

agreement with solutions from the literature and from single-domain reference
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solutions. The results obtained and presented in Chapter V demonstrate the 

robustness, accuracy, and versatility of the overall methodology as 

implemented.

5. Overall, the work presented herein demonstrates an original and significant 

research contribution in the area of computational mechanics.

6.3 Recommendations for additional research

Every worthwhile research effort bears more fruit than the original 

questions answered when additional questions to be answered and new areas 

ripe for further investigation are identified.

6.3.1 Element type

The four-node quadrilateral elements and the eight-node brick elements 

used to implement the theory are widely available, straightforward to implement, 

and give generally good results except for configurations and loading resulting in 

significant bending. Adding additional, more sophisticated element types to the 

code capability is an area for additional work.

The cubic spline elements used to define the interfaces provided excellent 

results for the implementation effort invested. There are situations, however, 

where cubic splines can result in spurious curvature in the interpolation curves or 

surfaces. In these cases, a satisfactory possible solution is the use of splines in 

tension. These spline types have the additional satisfying feature of mimicking 

elastic behavior; an interesting property for interface interpolation functions that 

are intended to be used in structural applications to possess .

6.3.2 Stress Recoven/

The stress recovery methods implemented for the present research 

possess several desirable features. One of these being the intuitively natural way 

that the element shape functions are used to extrapolate the stresses from the 

sampling points to the nodes. A second desirable feature is in the coding
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simplicity of arithmetic averaging for node stresses where more that one element 

shares a node. One limitation of the stress recovery, as implemented and for the 

meshes considered in the present research, was revealed in the result from the 

cantilever beam cases. The stresses extrapolated to the end nodes for these 

cases were inaccurate because insufficient element density was modeled near 

the beam ends. This also affected the continuity of the stresses across the 

interfaces.

6.3.3 Global assembly

The most memory-intensive module in the set of codes is the module that 

assembles and preconditions the generalized global stiffness matrix. One reason 

for this is due to the approach chosen for the integral evaluations of the M- and 

G-matrices. These matrices have non-zero contributions only over a limited 

number of element edges or surfaces, but the current methodology performs 

integration over all the elements because it was simpler in the bookkeeping. The 

many zero entries generated by this procedure were later deflated out in the 

preconditioning phase. This approach is computationally inefficient and requires 

unnecessary temporary memory. A clear area for improvement is to make this 

module more efficient by using a more sophisticated and robust evaluation 

method.

6.3.4 Generality of interface definition

The two-dimensional methodology, based on one-dimensional interfaces, 

possesses considerable generality largely due to the more limited geometrical 

possibilities permitted in two-dimensions. The present approach, however, does 

not allow for interfaces skewed with respect to the element edges, for example 

the case of a panel intersecting another panel at an arbitrary orientation. This is 

an important feature that would enlarge the potential application areas.

For the three-dimensional methodology based on two-dimensional 

interfaces, there is even more scope for worthwhile increased capability due in
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large part to the richer variety of geometrical possibilities offered in more 

dimensions. The present implementation is restricted to subdomain surfaces and 

related interface definitions which have their respective edges parallel. The 

capability to include arbitrary relative orientations would enhance the usefulness 

and robustness of the methodology.

An even more interesting area for potential improvement was highlighted 

during the analysis of the bar having discontinuous area change at the interface.

It was observed that there was a possible ambiguity of which interface node to 

include if the interface edges did not coincide. Computed results for these 

situations revealed a less than ideal attempt by the methodology to somehow 

negotiate the discontinuity in cross sectional area. Clearly, there is a need for 

additional research into this; a generalized type of interpolation likely will need to 

be developed to fully solve this problem.

An even more innovative area of potential research related to the core of 

the interface concept would be to see if any of the ideas that have been widely 

employed in the CFD area could be used in CSM applications. In particular, the 

Chimera idea of employing automated grid modification and overlapped meshes 

in two and three dimensions is a fascinating possibility.
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