# Old Dominion University [ODU Digital Commons](https://digitalcommons.odu.edu/)

[Psychology Faculty Publications](https://digitalcommons.odu.edu/psychology_fac_pubs) **Psychology** Psychology

2024

# An EWAS of Dementia Biomarkers and Their Associations with Age, African Ancestry, and PTSD

Mark W. Miller Boston University

Erika J. Wolf Boston University

Xiang Zhao Boston University

Mark W. Logue Boston University

Sage E. Hawn Old Dominion University, shawn@odu.edu

Follow this and additional works at: [https://digitalcommons.odu.edu/psychology\\_fac\\_pubs](https://digitalcommons.odu.edu/psychology_fac_pubs?utm_source=digitalcommons.odu.edu%2Fpsychology_fac_pubs%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Biological Psychology Commons,](https://network.bepress.com/hgg/discipline/405?utm_source=digitalcommons.odu.edu%2Fpsychology_fac_pubs%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages) [Medical Genetics Commons,](https://network.bepress.com/hgg/discipline/670?utm_source=digitalcommons.odu.edu%2Fpsychology_fac_pubs%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages) and the [Neurology](https://network.bepress.com/hgg/discipline/692?utm_source=digitalcommons.odu.edu%2Fpsychology_fac_pubs%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages) [Commons](https://network.bepress.com/hgg/discipline/692?utm_source=digitalcommons.odu.edu%2Fpsychology_fac_pubs%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages)

# Original Publication Citation

Miller, M. W., Wolf, E. J., Zhao, X., Logue, M. W., & Hawn, S. E. (2024). An EWAS of dementia biomarkers and their associations with age, African ancestry, and PTSD. Clinical Epigenetics, 16, 1-13, Article 38. <https://doi.org/10.1186/s13148-024-01649-3>

This Article is brought to you for free and open access by the Psychology at ODU Digital Commons. It has been accepted for inclusion in Psychology Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [digitalcommons@odu.edu](mailto:digitalcommons@odu.edu).

# **RESEARCH**



# An EWAS of dementia biomarkers and their associations with age, African ancestry, and PTSD

Mark W. Miller<sup>1,2\*</sup>, Erika J. Wolf<sup>1,2</sup>, Xiang Zhao<sup>1,4</sup>, Mark W. Logue<sup>1,2,3,4</sup> and Sage E. Hawn<sup>1,5</sup>

# **Abstract**

**Background** Large-scale cohort and epidemiological studies suggest that PTSD confers risk for dementia in later life but the biological mechanisms underlying this association remain unknown. This study examined this question by assessing the infuences of PTSD, *APOE* ε4 genotypes, DNA methylation, and other variables on the ageand dementia-associated biomarkers Aβ40, Aβ42, GFAP, NfL, and pTau-181 measured in plasma. Our primary hypothesis was that PTSD would be associated with elevated levels of these markers.

**Methods** Analyses were based on data from a PTSD-enriched cohort of 849 individuals. We began by performing factor analyses of the biomarkers, the results of which identifed a two-factor solution. Drawing from the ATN research framework, we termed the frst factor, defned by Aβ40 and Aβ42, "Factor A" and the second factor, defned by GFAP, NfL and pTau-181, "Factor TN." Next, we performed epigenome-wide association analyses (EWAS) of the two-factor scores. Finally, using structural equation modeling (SEM), we evaluated (a) the infuence of PTSD, age, *APOE* ε4 genotype and other covariates on levels of the ATN factors, and (b) tested the mediating infuence of the EWAS-signifcant DNAm loci on these associations.

**Results** The Factor A EWAS identifed one signifcant locus, *cg13053408*, in *FANCD2OS*. The Factor TN analysis identifed 3 EWAS-signifcant associations: *cg26033520* near *ASCC1, cg23156469* in *FAM20B,* and *cg15356923* in *FAM19A4*. The SEM showed age to be related to both factors, more so with Factor TN (*β*=0.581, *p*<0.001) than Factor A (*β*=0.330, *p*<0.001). Genotype-determined African ancestry was associated with lower Factor A (*β*=0.196, *p*<0.001). Contrary to our primary hypothesis, we found a modest negative bivariate correlation between PTSD and the TN factor scores (*r*=− 0.133, *p*<0.001) attributable primarily to reduced levels of GFAP (*r*=− 0.128, *p*<0.001).

**Conclusions** This study identifed novel epigenetic associations with ATN biomarkers and demonstrated robust age and ancestral associations that will be essential to consider in future efforts to develop the clinical applications of these tests. The association between PTSD and reduced GFAP, which has been reported previously, warrants further investigation.

**Keywords** Aβ40, Aβ42, GFAP, NfL, pTau-181, PTSD, EWAS, African ancestry, Plasma, Biomarkers, Dementia, Alzheimer's disease, Structural equation model

\*Correspondence: Mark W. Miller mark.miller5@va.gov Full list of author information is available at the end of the article



This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit [http://creativecom](http://creativecommons.org/licenses/by/4.0/)[mons.org/licenses/by/4.0/](http://creativecommons.org/licenses/by/4.0/). The Creative Commons Public Domain Dedication waiver [\(http://creativecommons.org/publicdomain/](http://creativecommons.org/publicdomain/zero/1.0/) [zero/1.0/\)](http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

# **Background**

Large-scale cohort and epidemiological studies suggest that stressful life events [[1\]](#page-11-0), psychological distress [[2\]](#page-11-1), and PTSD [[3–](#page-11-2)[6\]](#page-11-3) confer increased risk for Alzheimer's disease (AD) and related dementias (ADRD) in later life. However, the causal mechanisms underlying this association, including the infuence of genetic and epigenetic factors on the relationship between PTSD and ADRD, remain an open question. This study was designed to address this by examining age- and AD-associated biomarkers in an ageand ancestrally-diverse cohort with a high prevalence of trauma exposure and PTSD.

In the past decade, considerable progress has been made in the identification of ADRD biomarkers. The neuropathological features of AD include the presence of amyloid β plaques and neurofbrillary tangles containing hyperphosphorylated tau. Amyloid positron emission tomography (PET) has been shown to offer a valid in vivo tool for assessing the presence of amyloid β deposits, and levels of the amyloid-beta peptide Aβ42 (or the Aβ42/ Aβ40 ratio) in cerebrospinal fuid (CSF) also provide a valid indicator of the pathologic state of cerebral  $Aβ$  [\[7](#page-11-4)]. However, the high cost and invasiveness of PET and CSF assessment have motivated the search for inexpensive, minimally invasive, and objective peripheral biomarkers of ADRD that can be used not only to aid in diagnosis, but also for prognostic evaluation, tracking treatment response, and monitoring of disease progression.

The development of ultra-sensitive immunoassay technologies, such as the single-molecule digital assay (Simoa) by the Quanterix Corporation, now permits the reliable assessment of central nervous system (CNS) derived proteins in blood samples at extremely low concentrations. The Simoa markers most relevant to ADRD, many not previously detectable in blood due to their low concentrations (or even known to exist in the periphery), include Aβ40 and Aβ42, glial fibrillary acidic protein (GFAP), neuroflament light chain (NfL), and phosphorylated tau at threonine 181 (pTau<sup>181</sup>). Aβ peptides are the main components of senile plaques and cleaved from the amyloid precursor protein into 40 and 42 amino acid residual peptides termed Aβ40 and Aβ42, respectively. Lower plasma Aβ42 and a lower Aβ42/Aβ40 ratio is associated with greater brain amyloid pathology and thought to be attributable to the aggregation of Aβ42 into amyloid plaques [[8\]](#page-11-5). GFAP is a protein expressed in astrocytes and released during astrocytic activation. Elevated GFAP levels have been observed in association with traumatic brain injury and several neuroinfammatory and neurodegenerative CNS diseases [[9\]](#page-11-6). NfL is a cylindrical protein that provides structural stability to, and enables the growth of, myelinated axons. It has been shown to provide a reliable index of axonal injury across several neurological disorders  $[10]$  $[10]$ . Finally, pTau<sup>181</sup> is a form of phosphorylated tau that aggregates into deposits that form the neurofbrillary tangles characteristic of Alzheimer's Disease and other tauopathies [\[11](#page-11-8)]. Each of these biomarkers has also been shown to increase as a function of age [\[12](#page-12-0)–[14\]](#page-12-1).

On the basis of prior research suggesting that PTSD is associated with risk for dementia, accelerated DNAm age, and other indices of advanced cellular aging [[15–](#page-12-2) [17\]](#page-12-3), we hypothesized that aging patients with PTSD would show elevated levels of some or all of the brain age- and dementia-associated plasma biomarkers Aβ40, Aβ42, GFAP, NfL, and pTau<sup>181</sup>. Further, in light of recent evidence that the risk that PTSD confers for ADRD increases additively as a function the apolipoprotein E gene ε4 risk allele (*APOE* ε4) [\[3](#page-11-2)], we also evaluated the main and interactive efects of this important genetic risk factor. Specifcally, we hypothesized that the strength of the association between PTSD and the Simoa biomarkers would be greater among *APOE* ε4 carriers compared to non-carriers.

The *National Institute on Aging* and *Alzheimer's Association* have advanced a classifcation scheme for brain aging and Alzheimer's disease biomarker research based on three continuous dimensions, termed *beta-amyloid deposition* (A), *pathologic tau* (T), and *neurodegeneration* (N) [\[7](#page-11-4)]. Known as the "ATN framework," this system lends itself to latent variable modeling, which estimates the shared variance between indicators of a common dimensional construct, or factor (e.g., A, T, or N), and separates it from error variance in the indicators. This can be expected to increase power for association analyses relative to examining individual markers where true score variance and error variance are conflated. Theoretically, in the context of modelling associations among multiple correlated biomarkers, the resulting factors represent the broader biological construct underlying their covariation. Practically, this approach ofers a method of data reduction that reproduces the observed relationships among multiple indicators using a smaller number of latent variables representing their commonalities. For the epigenome-wide association analyses reported here, this approach allowed us to distill the 5 Simoa biomarkers down to a smaller of number underlying factors, thereby reducing the study-wide multiple-testing burden.

This study was based on data from 849 ancestrally diverse individuals with a high prevalence of trauma exposure and PTSD spanning a wide age range with genome-wide DNA and DNA methylation (DNAm) data available for analysis. We began by performing factor analyses of the plasma Aβ40, Aβ42, GFAP, NfL and pTau-181 Simoa biomarkers the results of which yielded a twofactor solution with the Aβs loading on one factor and

the three other markers loading on a second factor. We then performed epigenome-wide association analyses of each participant's scores on the two factors with the aim of identifying novel epigenetic loci associated with levels of the ADRD biomarkers. Finally, using structural equation modeling, we evaluated (a) the infuence of PTSD, age, *APOE* ε4 genotype and other relevant covariates on levels of the ATN factors, and (b) tested the mediating infuence of the EWAS-signifcant DNAm loci on these associations.

# **Methods**

# **Participants and procedures**

Analyses were based on existing clinical, genetic, and biomarker data collected under research protocols led by investigators at the Behavioral Sciences Division of the VA National Center for PTSD [\[18](#page-12-4)]. Data for this report were from 849 individuals, including 580 US military veterans and a subset of 269 of their intimate partners, collectively ranging from 19 to 75 years of age. Clinical and demographic characteristics of the sample are listed in Table [1.](#page-3-0) Each of the original studies, and the research presented in this report, was reviewed and approved by the appropriate institutional review boards. In each study, participants had blood drawn for future genetic and biomarker assays. Blood was collected in EDTA tubes, centrifuged to separate plasma, serum, and bufy coat, then aliquoted and stored at−80 °C until thawed for analysis. Participants also underwent psychiatric assessments using the Clinician-Administered PTSD Scale for *DSM-IV* or *DSM-5* (CAPS [[19](#page-12-5), [20](#page-12-6)]) and Structured Clinical Interview for *DSM-IV or DSM-5* (SCID [[21](#page-12-7), [22\]](#page-12-8)), depending on the version of *DSM* in use at the time of study enrollment. For the CAPS, in addition to determining current diagnosis, frequency and intensity ratings of each symptom were summed to create a dimensional score refecting current PTSD severity. We harmonized CAPS symptom severity across the two *DSM* versions by calculating each participant's symptom severity as a percentage of the maximum possible severity score for the relevant version of the measure (yielding scores ranging from 0–1). All diagnostic interviews were video recorded. Inter-rater reliability was assessed for approximately 25% of participants; kappa for each diagnosis reported here was greater than 0.78. History of psychological trauma was assessed using the Traumatic Life Events Question-naire (TLEQ) [[23](#page-12-9)], an inventory of 23 different types of traumatic experiences that were coded as positive if the participant endorsed (a) exposure to the event, and (b) experiencing "intense fear, helplessness, or horror" when it happened. Additional details regarding the samples,

<span id="page-3-0"></span>



The frst two columns list the sample *n*s and percentages (unless specifed as means/SDs). The second two columns list the bivariate correlations between each independent variable and factor scores derived from the CFA. These scores refect each participant's level on the latent Simoa variable. N=849 except where otherwise noted

*PTSD* symptom severity was a standard score ranging from 0–1; *AUD* Alcohol Use Disorder; *DNAm* DNA methylation; *MDD* Major Depressive Disorder; *SSRI/SNRI* Selective serotonin reuptake inhibitor/serotonin and norepinephrine reuptake inhibitor; *TLEQ* Traumatic Life Events Questionnaire

#### $^{\circ}$  n = 789

**b** PTSD symptom severity was used in the analysis and clinician diagnosis is reported here for descriptive purposes

\**p*<0.05; \*\**p*<0.01; \*\*\**p*<0.001

clinical assessments, and inter-rater reliability are available in previous reports [[24,](#page-12-10) [25\]](#page-12-11). Neurocognitive function was not formally assessed; however, participants were terminated from the procedure if, in the clinician's judgment, cognitive impairment interfered with the participant's ability to complete the procedures. Finally, current psychiatric medication use was assessed using a self-report checklist and then classifed into four categories: (a) SSRI/SNRIs, (b) other antidepressants, (c) typical/atypical antipsychotic, (d) sedatives, hypnotics, anxiolytics.

#### **Genotype and DNA methylation data**

Genetic data were generated using methods described in prior publications [\[18](#page-12-4)]. Briefy, DNA was isolated on a Qiagen AutoPure instrument with Qiagen reagents and samples normalized using PicoGreen assays (Invitrogen, Grand Island, NY, USA). Each DNA sample was run on an Illumina OMNI 2.5 microarray and scanned using an Illumina HiScan System (San Diego, CA, USA) according to the manufacturer's protocol. Imputation was based on the Thousand Genomes Phase 3 reference panel  $[26]$  $[26]$ . Ancestry was determined using a pipeline [[27](#page-12-13), [28](#page-12-14)] that identifed ancestral principal components using 100,000 randomly selected common single nucleotide polymorphisms (SNPs). *APOE* ε4 carrier status was called using the isoform-defning SNPs (*rs7412* and *rs429358*) which were well-imputed  $(r^2=0.96$  and 0.99, respectively). We used "best guess" imputed genotypes with a 90% confdence threshold for these SNPs to derive the *APOE* ε4 genotypes.

DNA methylation (DNAm) studies involve measurement of a methyl group on the DNA strand at a cytosine-phosphate-guanine (CpG) site. DNAm data were generated using methods described in prior publications [[29\]](#page-12-15). In brief, DNAm was measured using the Illumina Infnium Methylation EPIC BeadChips. Zymo EZ-96 DNA Methylation Kits (D5004) were used to bisulfteconvert batched samples. DNA conversion was accomplished via PCR using DAPK1 primers (Zymo) followed by gel electrophoresis of PCR products. Bisulfte-modifed DNA was then whole-genome amplifed, hybridized to the BeadChips, single-base extended, and stained using the Automated Protocol for the Illumina Infnium HD Methylation Assay. Assignment of individuals to chip and chip positions were balanced based on PTSD diagnosis and sex. We applied a quality control (QC) pipeline developed by the Psychiatric Genomic Consortium-PTSD Workgroup [[30\]](#page-12-16) prior to analysis (and recently updated as described at [https://github.com/](https://github.com/PGC-PTSD-EWAS/EPIC_QC) [PGC-PTSD-EWAS/EPIC\\_QC\)](https://github.com/PGC-PTSD-EWAS/EPIC_QC). Proportional white blood cell (WBC) estimates (CD8-T and CD4-T cells, natural killer cells, b-cells, monocytes) were calculated from the methylation data for use as covariates.

#### **Simoa markers**

Simoa assays were performed at the Quanterix Accelerator Lab (Quanterix Corporation, Billerica, MA) using plasma samples. Samples were thawed and diluted per manufacturer's specifcations, centrifuged to remove particulates and debris, then pipetted into 96 well plates, diluted 4x, and run in duplicate. All markers were tested using the HD-1 Analyzer. Aβ40, Aβ42, GFAP, and NfL were assayed using the N4PE advantage kit (Quanterix Item #103,670). pTau181 was assessed using the pTau181 advantage v2 kit (Quanterix Item #103,714). We initially intended to include plasma total Tau, but preliminary analyses showed weak bivariate associations between this analyte and the other Simoa markers (*r*s<0.2). Furthermore, unlike the other fve markers which are primarily brain-derived, the Tau protein is also expressed in peripheral tissues  $[31]$  $[31]$ , and a recent study estimated that only 20% of plasma total Tau originates in the brain [\[32](#page-12-18)]. Calibration was conducted with reference samples and QC procedures included evaluation of average enzyme per bead and coefficient of variation (CV). Samples that did not pass QC procedures were re-run, when possible, with the goal of minimizing freeze/thaw cycles. Samples were excluded (0–4.5%, varying by marker) if (a) the CV was>25%, or (b) a duplicate was not available. Remaining concentrations were then multiplied by the dilution factor  $(x 4)$  prior to analysis. Results below the functional lower limit of quantifcation (fLLOQ) were set to the fLLOQ, and results above the functional upper limit of quantifcation (fULOQ) were set to the fULOQ. In total, data from 713 participants passed the DNAm and Simoa QC procedures, and of those, 704 also had genotype data.

#### **Data analyses**

#### *Exploratory and confrmatory factor analyses*

Exploratory (EFA) and confrmatory factor analyses (CFA) of raw values for the fve Simoa markers (Aβ40, Aβ42, GFAP, NfL, pTau181) were performed using Mplus v8.5  $[33]$  $[33]$ . EFA is a method for identifying the structure and dimensionality underlying the covariation of set of variables when that structure is not known a priori. In EFA, models with diferent numbers of latent variables (factors) are compared to determine which model best accounts for the covarion among the variables. It is similar to principal components analysis except that EFA can distinguish between true score variability and error and separates these two sources of variance. CFA, in contrast, enables examination of the degree to which data ft a predefned, or a priori hypothesized, structure for the number of factors underlying the covariation of variables and loading of individual variables on each factor. In both approaches, the ft of the model to the data is evaluated using several commonly used ft indices including the root mean square error of approximation (RMSEA), standardized root mean square residual (SRMR), and the comparative ft and Tucker-Lewis ft indices (CFI and TLI, respectively). The Bayesian information criterion (BIC) can be used for evaluating the ft of competing models.

We began by conducting an EFA of the five markers in a random half of the sample and evaluated 1 and 2 factor solutions using geomin rotation. (With 5 markers, we could only evaluate 1- and 2-factor solutions due to the fact that a model with more factors would have been statistically under-identified.) The robust maximum likelihood estimator (MLR) was used in all analyses. The results of the best fitting (two-factor) EFA were then used to inform the structure of a CFA that we tested in the other random half of the sample. After identifying a good ftting two-factor CFA, we executed the same model in the full sample  $(N=849)$ , again evaluated ft, then saved those factor scores for use in the EWAS. The factor scores reflect each individual's score on the latent variables (e.g., a higher score on the latent variable would account for higher values on the individual Simoa markers that load on that factor).

## *Epigenome‑wide association analyses (EWAS)*

We performed EWASs of scores from the two factors using linear models in the Bioconductor limma (Linear Models for Microarray Data) package [[34](#page-12-20)], with the base 2 logit-transformed methylated proportion (known as an M values) as the response and the factor score as the predictor. Each EWAS included the following covariates: the top three ancestry principal components, age, sex, estimates of WBC proportions, a categorically coded batch variable representing the methylation project that each sample was assayed under, and a DNAm-based smoking score. The latter was based on efect-size estimates for the top-39 probes from a smoking EWAS [[35\]](#page-12-21) that we have previously shown to be an important covariate to include in DNAm association analyses [[29\]](#page-12-15). We computed false discovery rate (FDR) corrected p values [[36\]](#page-12-22), also known as Q values, to control for multiple testing (denoted "padj"). Finally, we examined the genes corresponding to the top 500 sites from each EWAS for enrichment of specifc gene ontology (GO) term categories using the gometh function from the R miss-Methyl package  $[37]$  $[37]$ . This function is an extension of the GOseq method [\[38](#page-12-24)] which explicitly models the relationship between the number of CpG sites assessed within a gene and the probability of that gene appearing within the target list.

#### *Structural equation model*

Structural equation modeling (SEM) is a multivariate analytic method for simultaneously estimating the strength of associations between latent variables (e.g., in this case, the Simoa factors) and other observed variables in a causal structure containing direct (regressive paths) and/or indirect (mediated) paths in a single analysis. It is like path analysis, but involves paths between latent variables, as opposed to between observed variables. As with the factor analyses, this was performed in Mplus. This model examined (a) the strength of associations between the independent variables (i.e., the demographic, psychiatric and *APOE* ε4 genotypes) and the dependent variables (i.e., the Simoa factors), (b) the infuence of the independent variables on the M values from the CpG sites identifed by the EWAS, and (c) the efects of covariates relevant to each variable in the model. In addition, given the role of DNAm in mediating efects of environmental factors on many forms of gene and protein expression, we also modeled the EWAS-signifcant CpG sites as mediators of the associations between the independent variables and the Simoa factors. Additional fle [1](#page-11-9): Fig. S1 illustrates full structural equation model including the latent variables, regressive paths, factor loadings, factor correlations, and covariates. Given the large number of parameters to be estimated and evidence that Type 1 error can become infated in SEM analyses [[39\]](#page-12-25), we utilized a conservative *p* value threshold of 0.001 for all direct regressive paths in the model. Finally, for signifcant CpG associations, we also evaluated the signifcance of the indirect (mediated) efect of the IV on the DV via the CpG loci using the "model indirect" command in Mplus which computed the products of (a) the efect of each IV on each CpG, and (b) the efect of each CpG on the Simoa factor, along with the *p* values for each indirect path.

# **Results**

# **Exploratory and confrmatory factor analyses**

Descriptive statistics for, and bivariate correlations between, the fve Simoa markers (Aβ40, Aβ42, GFAP, NfL pTau181) are listed in Table [2](#page-6-0). The EFA in a random half of the sample yielded excellent model ft for a 2-factor solution that was superior to the 1-factor model (see Table [3](#page-6-1)). In the two-factor EFA solution, Aβ42 (*λ*=0.76) and Aβ40 (*λ*=0.72) loaded signifcantly on one factor, while pTau181 ( $\lambda$  = 0.50), GFAP ( $\lambda$  = 0.56), and NfL  $(\lambda = 0.72)$  loaded significantly on the second

|                     | <b>Αβ40</b>      | $A\beta42$ | <b>GFAP</b>   | <b>NfL</b>   |
|---------------------|------------------|------------|---------------|--------------|
| $A\beta42$          | 0.632            | $-$        | $\equiv$      | $\equiv$     |
| GFAP                | 0.374            | 0.295      | -             |              |
| <b>NFL</b>          | 0.384            | 0.270      | 0.414         | -            |
| pTau <sup>181</sup> | 0.204            | 0.135      | 0.227         | 0.294        |
| pTau <sup>181</sup> | $A\beta40$       | $A\beta42$ | <b>GFAP</b>   | NfL          |
| 1.70 (0.84)         | 91.69 (18.52)    | 6.78(1.53) | 70.92 (34.38) | 12.28 (7.44) |
| $pTau^{181}$        | A <sub>β40</sub> | $A\beta42$ | <b>GFAP</b>   | <u>NfL</u>   |
| 1.70(0.84)          | 91.69 (18.52)    | 6.78(1.53) | 70.92 (34.38) | 12.28 (7.44) |

<span id="page-6-0"></span>**Table 2** Descriptive statistics and correlations between the Simoa markers

*n*=816 due to some pairwise comparisons having missing data. All *p* values<0.001

Bottom row lists the means and (SDs) for each marker in pg/ml units

<span id="page-6-1"></span>**Table 3** Model ft of the exploratory and confrmatory factor analyses

|      | Model                      |       | df | D       | <b>RMSEA</b> | <b>SRMR</b> | CFI   | TLI   | <b>BIC</b> |
|------|----------------------------|-------|----|---------|--------------|-------------|-------|-------|------------|
| EFAs | Factor (1st half sample)   | 51.87 |    | < 0.001 | 0.15         | 0.07        | 0.85  | 0.70  | 13,120     |
|      | 2 Factor (1st half sample) | 0.004 |    | 0.948   | < 0.001      | < 0.001     | 1.00  | 00.1  | 13,085     |
| CFAs | 2 Factor (2nd half sample) | 4.36  | Δ  | 0.359   | 0.015        | 0.018       | 0.999 | 0.997 | 12,884     |
|      | 2 Factor (full sample)     | 5.41  | 4  | 0.248   | 0.020        | 0.014       | 0.998 | 0.994 | 25,897     |

*n*=849

*EFA* exploratory factor analysis; *CFA* confrmatory factor analysis; *RMSEA* root mean square error of approximation; *SRMR* standardized root mean square residual; *BIC* Bayesian information criterion; *CFI* comparative ft index; *TLI* Tucker-Lewis Index

factor. The cross-loadings were all small and nonsignificant ( $\lambda$ s =  $-$  0.009 to.19, *p*s > 0.05).

Based on this, we then tested a CFA in the second random half of the sample (*n*=421) in which Aβ40 and Aβ42 were set to load on one factor (that we term "*Factor A*," i.e., "A" from the "ATN" framework) and pTau181, GFAP, and NFL on a second factor (that we term "*Factor TN*"). This model fit the data well (Table  $3$ ) with all indicators loading on their respective factors at the  $p < 0.001$  level. This model also yielded the lowest (i.e., best) BIC value compared to the EFA models. We then ran the 2-factor CFA in the full sample  $(n=849)$  and found that this model also ft well in the full cohort with each indicator again loading signifcantly on its respective factor at the  $p$ <0.001 level. The two factors were correlated at  $r = 0.62$  $(p<0.001)$ . Finally, we saved the factor scores from this analysis for use in the EWASs. Scatterplots of the associations between each factor, their indicators, and between the indicators themselves, are shown in Additional fle [1](#page-11-9): Figs. S2, S3.

# **Epigenome‑wide association analyses**

Lambdas for the EWASs indicated modest infation (Factor TN=1.201; Factor  $A = 1.249$ ). After applying an FDR correction across the two analyses (total #

<span id="page-6-2"></span>



*n*=704 (lower due to samples failing the GWAS, EWAS or SIMOA QC pipeline). Covariates were age, sex, ancestry PCs 1–3, estimated cell proportions (CD4T, CD8T, B cell, NK and Mono), DNAm-based smoking score, and laboratory analysis batch. FDR correction was based on the total number of probes examined across the two EWASs (1,605,282 probes total)

of comparisons =  $1,605,282$ ), 3 loci were identified as signifcantly associated with Factor TN (cg26033520, cg23156469, cg15356923) and one was signifcantly associated with Factor A (cg13053408). See Table [4](#page-6-2) for the EWAS-signifcant loci, Figs. [1](#page-7-0) and [2](#page-7-1) for the EWAS Manhattan plots, and Additional fle [1](#page-11-9): Figs. S4, S5 for the EWAS QQ plots. GO term enrichment analysis of the top 500 most signifcant probes from each EWAS yielded no FDR significant GO terms. The top-50 probes from each EWAS are listed in Additional fle [1](#page-11-9): Tables S1, S2. A comparison of the list of  $p < 0.001$ 



<span id="page-7-0"></span>**Fig. 1** Manhattan plot of the Factor A EWAS. The x-axis depicts chromosomes and the location of each CpG site across the genome. The y-axis is the -log10 of the p value for the association with levels of Factor A Simoa markers defned by Aβ40 and Aβ42. Each dot represents a CpG site. The red line indicates the level for epigenome-wide statistical significance  $(p=1\times10^{-7})$  and the blue line the level for suggestive significance  $(p=1\times10^{-7})$ <sup>5</sup>). The EWAS-significant locus is highlighted in green



<span id="page-7-1"></span>**Fig. 2** Manhattan plot of the Factor TN EWAS with the three EWAS-signifcant loci highlighted in green

signifcant probes from the two EWASs showed that 12.9 percent of these loci overlapped. Full summary statistics from each EWAS are available in the Additional fles [2](#page-11-10) and [3](#page-11-11).

## **Structural equation model**

The bivariate correlations between the two Simoa factors and each of the clinical, genetic, and demographic variables are listed in Table [1.](#page-3-0) Table [5](#page-8-0) lists the bivariate correlations between the primary independent variables and each individual Simoa marker. Figure [3](#page-8-1) shows the signifcant paths and parameter estimates (*p*s<0.001) from the SEM. (Full results are available in Additional fle [1](#page-11-9): Table S3; scatterplots of the associations between the PCs are depicted in Additional fle [1](#page-11-9): Fig. S6). Fit statistics showed adequate model fit  $(\chi^2 = 160.09, df = 68, p < 0.001;$ 

<span id="page-8-0"></span>**Table 5** Bivariate correlations between the primary independent variables and each Simoa marker

|                     | Age        | APOE ε4    | <b>PTSD</b> | Sex         | Trauma     |
|---------------------|------------|------------|-------------|-------------|------------|
| $A\beta40$          | $0.362***$ | $-0.034$   | $-0.034$    | $-0.002$    | $0.120**$  |
| $A\beta42$          | $0.172***$ | $-0.103**$ | $-0.066$    | 0.026       | 0.063      |
| GFAP                | $0.412***$ | $-0.011$   | $-0.128***$ | 0.051       | $0.137***$ |
| Nfl                 | $0.438***$ | $-0.028$   | $-0.105**$  | $-0.040$    | $-0.040$   |
| pTau <sup>181</sup> | $0.239***$ | 0.042      | $-0.013$    | $-0.141***$ | $-0.049$   |

\**p*<0.05; \*\**p*<0.01; \*\*\**p*<0.001

RMSEA= $0.045$ , CFI= $0.93$ , TLI= $0.83$ , SRMR= $0.03$ ). In total, the model explained 54% of the variance in the Factor TN and 23% of the variance in Factor A. As shown in Fig. [3](#page-8-1), age showed the strongest associations with both factors and was more strongly associated with Factor TN than Factor A. To test this diference empirically, we ran

a follow-up model in which these age paths were held to equivalent and found that doing so signifcantly degraded model fit ( $\Delta \chi^2$ =87.32,  $\Delta$  df=1, *p*=9.23e<sup>-21</sup>). Age was also signifcantly associated with *cg15356923* and the indirect efect of age on Factor TN via this DNAm locus was significant ( $\beta$ =0.041,  $p$ =0.005). Sex was positively associated with *cg26033520* (greater for females) and the indirect effect of sex on Factor TN via this locus was signifcant (*β*=− 0.058, *p*<0.001). Lifetime trauma count was positively associated with *cg130534081* and the indirect efect of trauma on Factor A via this locus was also significant ( $\beta$ =0.022,  $p$ =0.008). We also observed a signifcant positive residual correlation between DNAm levels at *cg130534081* and *cg23156469*, implying additional covariation among these loci beyond that which could be attributed to the shared predictors of these loci. *APOE* ε4, PTSD, and their interaction were not signifcantly associated with any of the CpGs or either factor (*p*s>0.001).



<span id="page-8-1"></span>Fig. 3 Diagram depicting the significant direct paths (*ps* < 0.001) and associated variables from the SEM results. The Simoa latent variables are represented as circles with the loadings of each indicator shown as well as the correlation between the two factors. Age was the only variable in the model that showed signifcant (*p*<0.001) direct efects on both variables. PC1 was positively associated with Factor A. The EWAS-signifcant CpG sites were evaluated as mediators of the association between the psychiatric and demographic variables and the latent variables. Signifcant indirect efects were found for **a** the efect of age on Factor TN via *cg15356923*, **b** the efect of sex on Factor TN via *cg26033520*, and **c** the efect of lifetime trauma count on Factor A via *cg130534081*

The SEM analysis also revealed a significant positive association between Factor A and PC1 ( $\beta$ =0.196, *p*<0.001) controlling for age and the other variables in the SEM, indicating that individuals with a greater proportion of African ancestry had lower levels of Aβs relative to those of European ancestry. This difference was also signifcant in the categorical ancestry classifcation based on the genotype data (African vs. European ancestry clusters;  $p = 0.004$ ) and for self-identified Black participants compared to self-identifed White individuals  $(p=0.012)$ . All of these differences were significant when controlling for age. Finally, as a sensitivity analysis, we ran the full SEM with the addition of the four classes of psychiatric medications and found no signifcant associations between current medication use and either factor (all *p*s>0.001).

# **Discussion**

Research on blood-based biomarkers of ADRD is rapidly advancing, yet relatively little is known about how these markers covary, or what infuence various genetic, epigenetic, demographic, and psychiatric factors have on their levels. In this study, we used factor analyses to identify two dimensions that explained the covariation among Aβ40, Aβ42, GFAP, NfL and pTau-181. Drawing from the *National Institute on Aging* and *Alzheimer's Association* "ATN" research framework, we termed the frst factor, defned by Aβ40 and Aβ42, "Factor A". GFAP, NfL and pTau-181 loaded on a second factor that we accordingly termed "Factor TN." Next, we performed an EWAS of each factor, the results of which identifed 4 DNAm loci that survived multiple-testing correction across the two analyses. The most strongly associated CpG from the Factor TN EWAS, *cg26033520*, was located in the vicinity of the *Activating Signal Cointegrator Complex Subunit 1* gene (*ASCC1). ASCC1* transcribes a protein that plays a role in gene transactivation via its efects on several transcription factors. This locus was one of two EWAS-signifcant CpGs identifed in a recent study of blood DNA methylation in Parkinson's disease patients, with the same direction of association [[40](#page-12-26)]. In a subsequent metaanalysis of epigenome-wide associations across Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis (ALS), this CpG also showed signifcant shared efects across all three disorders [\[41](#page-12-27)]. ASCC1 exerts an inhibitory efect on *nuclear factor kappa-B* (NF-kB) [[42](#page-12-28)], a well-established infammatory transcription factor implicated in tau pathology, glutamate excitotoxicity, and reactive microglia and astrocytes  $[43]$  $[43]$ . The top-hit from the Nabais et al. [[41\]](#page-12-27) EWAS, *cg03546163* in *FKBP5*, was also among the top-50 most highly associated probes in our Factor TN results.

The other two EWAS-significant loci from the Factor TN analysis were *cg23156469* and *cg15356923*, located in *FAM20B* and *FAM19A4* (aka *TAFA4*), respectively. *FAM20B* transcribes a kinase that phosphorylates xylose residues and triggers the synthesis of peptidoglycan, the main component of the cell wall in most bacteria. Though the literature on this is gene is very limited, a SNP in *FAM20B* (*rs4652345*) was the 16th most strongly associated locus in a GWAS of individuals with polygenic risk extremes for Alzheimer's disease in the UK Biobank [[44\]](#page-12-30). *FAM19A4 (*aka *TAFA4)*, on the other hand, transcribes a well-known neurokine that has been implicated in the regulation of immune responses and pain signaling within the nervous system [\[45](#page-12-31)].

The Factor A analysis identified one EWAS-significant locus, *cg13053408*, located in *FANCD2OS* (i.e., "*FANCD2* opposite strand" aka C3orf24). As an opposite strand gene (i.e., located on the antisense or noncoding strand of DNA), this region of DNA serves as the template for making *FANCD2* messenger RNA. FANC2D has been identifed as a mediator of the efect of the amyloid precursor protein fragment *APP intracellular C-terminal domain* on FOXO3 [[46\]](#page-12-32) which has a well-established role in aging and many age-related disease processes [\[47](#page-12-33), [48](#page-12-34)] including Amyloid-β induced astrocytosis and astrocyte death [\[49\]](#page-12-35). *FANCD2OS* overexpression has also been shown to modulate expression of the steroidogenic acute regulatory protein (STAR1 or STARD1) [\[50](#page-12-36)]. STAR1 is an intracellular cholesterol carrier that has been observed to be elevated in the cortex of Alzheimer's disease and Down syndrome patients and correlated with Aβ42 deposition in regions of the hippocampus [[51](#page-12-37)]. Also relevant to our fndings, a pair of SNPs in *FANCD2* and *FANC-2DOS* (*rs1552244* & *rs9849434*) were among the top-25 hits from an early Alzheimer's disease GWAS meta-analysis [[52\]](#page-12-38) (albeit not replicated in more recent studies with larger Ns).

We then submitted the EWAS-signifcant DNAm values to an SEM analysis that evaluated these CpG sites as possible mediators of associations between age, sex, trauma history, PTSD, *APOE* ε4 genotypes and the two Simoa factors. Age was positively associated with both factors and signifcantly more so with Factor TN than Factor A. These findings align with a rapidly growing body of research showing that these markers are present in plasma of adults across the lifespan, trending gradually higher through early and middle adulthood, and then increasing exponentially in old age  $[12-14]$  $[12-14]$  $[12-14]$ . Mediation analyses identifed three small but statistically signifcant indirect efects of age and sex on Factor TN, and number of lifetime traumas on Factor A, that were mediated by the CpGs. Though interesting and worthy of future

examination, given the small size of the efects and novelty of the fndings we are hesitant to over-interpret those results.

Genotype-determined ancestry PCs were included as covariates of the two Simoa factors and each CpG locus in the EWAS and SEM. The SEM revealed a significant positive association between Factor A and PC1 indicating that individuals with a greater proportion of genotype-determined African ancestry tended to have lower levels of Aβ40 and Aβ42. Similarly, self-identifed Black participants showed signifcantly lower levels of Factor A than self-identified White individuals. Though not an a priori focus of the study, these fndings are consistent with results of recent studies that examined racial differences in levels of plasma Aβs and brain amyloid levels. For example, Hajjar et al. [[53](#page-13-0)] examined associations between self-identifed race and genetic ancestry in 300 Black and 429 White individuals, the majority of whom had mild cognitive impairment and were over 60 years of age. Results showed that Black participants had signifcantly lower unadjusted levels of Aβ40 compared to White individuals and, as in our study, the percentage of African ancestry in the sample was negatively correlated with Aβ40 levels. Similarly, Deters et al. [[54\]](#page-13-1) examined racial diferences in positron emission tomography (PET) measured amyloid in cognitively normal older adults and found that Black individuals had lower amyloid levels compared to White participants and this diference was enhanced as a function of the participant's proportion of African ancestry. Finally, in an earlier study of nearly onethousand adults in their seventies approximately 50% of whom were Black, Metti et al. [[55](#page-13-2)] found significantly lower levels of plasma Aβ40 and Aβ42 among self-identifed Black compared to White individuals. In sum, results of this study add to a growing body of fndings suggesting that there are important racial and ancestral diferences in age- and AD-related biomarkers that may be relevant for advancing understanding of racial diferences in the rates of ADRD reported in large-scale epidemiological and cohort studies [[3,](#page-11-2) [56](#page-13-3)].

We had hoped that this study would shed new light on possible mechanisms by which PTSD confers risk for dementia but hypotheses for our primary variables of interest, *APOE* ε4, PTSD (and their interaction) were not supported. Specifcally, none of the direct efects of *APOE* ε4, PTSD, or the *APOE* ε4 x PTSD interaction term on the Simoa factors met our SEM criterion for statistical significance  $(p<0.001)$ . Rather, and contrary to our hypothesis that PTSD would be associated with elevated levels of ATN biomarkers, the SEM revealed a negative correlation between PTSD and Factor TN that fell just short of our multiple testing threshold (*β*=− 0.140, *p*=0.003) controlling for age, sex, number of lifetime traumas, *APOE* ε4, the *APOE* ε4 x PTSD interaction term, the ancestry PCs, a DNAm-based smoking score, and efects of the four EWAS-signifcant probes. The simple bivariate correlation between PTSD severity and the TN factor scores showed a similar association (*r*=− 0.133, p<0.001) driven primarily by reduced levels of GFAP in individuals with more severe PTSD symptoms  $(r=- 0.128, p<0.001)$ . We also noted that antipsychotic medication use was associated with reduced levels of both Simoa factors, but our sensitivity analyses showed that the negative PTSD efect remained signifcant and unchanged with medication use in the model.

Though unexpected and opposite in direction of what we hypothesized, the fnding of reduced GFAP in association with PTSD is not without precedent. Pierce et al. [[57\]](#page-13-4) examined a panel of ATN plasma biomarkers in a younger cohort of 550 post-9/11 veterans (from the same VA medical center, but independent of the participants evaluated in this study) and also reported a modest negative correlation between PTSD severity and GFAP controlling for age and sex ( $r = -0.10$ ,  $p < 0.05$ ). Kulbe et al. [[58\]](#page-13-5) conducted a prospective observational study of 1,143 emergency department patients with mild TBI evaluated within 24 h of injury then re-assessed 6 months later and found that day-of-injury plasma GFAP levels were signifcantly lower among those with a PTSD diagnosis at follow-up. Finally, Natale et al. [\[59](#page-13-6)] examined a sample of 1,520 World Trade Center responders and also found that PTSD was associated with reduced levels of plasma GFAP. These authors offered several hypothetical explanations for this fnding and while the association appears worthy of future investigation, its biological signifcance remains unclear.

More generally, previous studies on the association between PTSD and ATN biomarkers have shown mixed and largely null results. For example, in arguably the most methodologically rigorous prior study on this topic, Weiner et al. [[60](#page-13-7)] examined 289 non-demented Vietnam-era veterans with traumatic brain injury (TBI) and/or PTSD who underwent cognitive testing, cerebrospinal fuid collection, and Aβ and tau PET scans. Results showed that compared to controls, veterans with histories of TBI and PTSD were more likely to have mild cognitive impairment and lower mental status scores but there were no diferences between groups in any of the ATN biomarkers examined. The apparent discrepancy between fndings from large cohort and epidemiological studies on PTSD and risk for ADRD, and studies of the association between PTSD and ATN biomarkers, may be attributable to a variety of issues including (a) the possibility that the PTSD-dementia association is mediated by medical comorbidities such as cardiovascular disease and diabetes, (b) that this association is driven by non-AD

specifc neuropathology such as vascular or other forms of dementia, and/or (c) inherent diferences between the clinical diagnosis of dementia in medical records versus the biological processes indexed by specifc ATN biomarkers.

The findings of this study should be evaluated in the context of several limitations. Most notably, the study was based on cross-sectional archival data from projects that did not include neurocognitive measures or neuroimaging data and most of our participants were well below the age at which dementia is normally manifested. It is conceivable that signifcant efects of PTSD on brain age- and AD-associated biomarkers would be observed in older cohorts and/or individuals with PTSD and mild cognitive impairment or dementia. On the other hand, the study featured a large and ancestrally diverse sample with genome-wide SNP and DNAm data, and 5 Simoa markers indexing essential components of the ATN biomarker framework. Findings identifed (a) novel and biologically plausible epigenetic associations with the factors that underlie the covariation of these markers which should inform future eforts to identify epigenetic loci reliably associated with ADRD and its biomarkers, and (b) robust age and race/ancestral associations that will be essential to consider in future efforts to develop the clinical and diagnostic applications of these tests.

# **Supplementary Information**

The online version contains supplementary material available at [https://doi.](https://doi.org/10.1186/s13148-024-01649-3) [org/10.1186/s13148-024-01649-3](https://doi.org/10.1186/s13148-024-01649-3).

<span id="page-11-10"></span><span id="page-11-9"></span>Additional file 1. Supplementary Figure 1. Illustration of the Full Structural Equation Mode

<span id="page-11-11"></span>**Additional fle 2.** Supplementary Data Files.

**Additional fle 3.** Supplementary Data Files.

#### **Acknowledgements**

Not applicable.

#### **Author contributions**

MWM contributed to conceptualization. MWM, XZ, EJW, ML, and SEH provided methodology. XZ, EW, ML, and SH involved in data curation. XZ, EW, and SH involved in data analysis. MWM involved in writing initial draft. XZ, EJW, ML, and SEH involved in writing—review and editing.

#### **Funding**

This work was supported by NIH awards 1RF1AG068121-01 (EW), and 5T32MH019836 (SH) and VA Merit Review Awards 5I01CX000431-02 (MM) and I01 CX-001276-01 (EW). This content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the U.S. Department of Veterans Afairs, or the United States Government.

#### **Availability of data and materials**

Qualifed investigators can gain access to study data by contacting Dr. Miller and developing a Data Use Agreement with the PTSD Genetics Data Repository (Miller, PI).

#### **Declarations**

#### **Ethics approval and consent to participate**

All participants gave written informed consent for the original projects as approved by the VA Boston Healthcare System IRB. The analyses reported in this paper were based on archival de-identifed data and were exempt from IRB review.

# **Consent for publication**

Not applicable.

#### **Competing interests**

The authors declare that they have no competing interests.

#### **Author details**

<sup>1</sup> National Center for PTSD, VA Boston Healthcare System (116B-2), 150 S. Huntington Avenue, Boston, MA 02130, USA. <sup>2</sup> Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA.<sup>3</sup> Biomedical Genetics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA. <sup>4</sup>Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA.<sup>5</sup> Department of Psychology, Old Dominion University, Norfolk, VA 23529, USA.

#### Received: 20 September 2023 Accepted: 20 February 2024 Published online: 02 March 2024

#### **References**

- <span id="page-11-0"></span>1. Franks KH, Bransby L, Saling MM, Pase MP. Association of stress with risk of dementia and mild cognitive impairment: a systematic review and metaanalysis. J Alzheimers Dis. 2021;82(4):1573–90. [https://doi.org/10.3233/](https://doi.org/10.3233/JAD-210094) [JAD-210094.](https://doi.org/10.3233/JAD-210094)
- <span id="page-11-1"></span>2. Sulkava S, Haukka J, Sulkava R, Laatikainen T, Paunio T. Association between psychological distress and incident dementia in a populationbased cohort in Finland. JAMA Netw Open. 2022;5(12):e2247115. [https://](https://doi.org/10.1001/jamanetworkopen.2022.47115) [doi.org/10.1001/jamanetworkopen.2022.47115](https://doi.org/10.1001/jamanetworkopen.2022.47115).
- <span id="page-11-2"></span>Logue MW, Miller MW, Sherva R, et al. Alzheimer's disease and related dementias among aging veterans: Examining gene-by-environment interactions with post-traumatic stress disorder and traumatic brain injury. Alzheimers Dement. 2022. [https://doi.org/10.1002/alz.12870.10.](https://doi.org/10.1002/alz.12870.10.1002/alz.12870) [1002/alz.12870.](https://doi.org/10.1002/alz.12870.10.1002/alz.12870)
- 4. Meziab O, Kirby KA, Williams B, Yafe K, Byers AL, Barnes DE. Prisoner of war status, posttraumatic stress disorder, and dementia in older veterans. Alzheimers Dement. 2014;10(3 Suppl):S236–41. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.jalz.2014.04.004) [jalz.2014.04.004](https://doi.org/10.1016/j.jalz.2014.04.004).
- 5. Yaffe K, Vittinghoff E, Lindquist K, et al. Posttraumatic stress disorder and risk of dementia among US veterans. Arch Gen Psychiatry. 2010;67(6):608–13. <https://doi.org/10.1001/archgenpsychiatry.2010.61>.
- <span id="page-11-3"></span>6. Yafe K, Lwi SJ, Hoang TD, et al. Military-related risk factors in female veterans and risk of dementia. Neurology. 2019;92(3):e205–11. [https://doi.org/](https://doi.org/10.1212/WNL.0000000000006778) [10.1212/WNL.0000000000006778.](https://doi.org/10.1212/WNL.0000000000006778)
- <span id="page-11-4"></span>7. Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological defnition of Alzheimer's disease. Alzheimers Dement. 2018;14(4):535–62. <https://doi.org/10.1016/j.jalz.2018.02.018>.
- <span id="page-11-5"></span>8. Patterson BW, Elbert DL, Mawuenyega KG, et al. Age and amyloid efects on human central nervous system amyloid-beta kinetics. Ann Neurol. 2015;78(3):439–53. <https://doi.org/10.1002/ana.24454>.
- <span id="page-11-6"></span>9. Abdelhak A, Foschi M, Abu-Rumeileh S, et al. Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol. 2022;18(3):158–72. [https://doi.org/10.1038/s41582-021-00616-3.](https://doi.org/10.1038/s41582-021-00616-3)
- <span id="page-11-7"></span>10. Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neuroflament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry. 2019;90(8):870–81. [https://doi.org/10.1136/](https://doi.org/10.1136/jnnp-2018-320106) [jnnp-2018-320106.](https://doi.org/10.1136/jnnp-2018-320106)
- <span id="page-11-8"></span>11. Karikari TK, Ashton NJ, Brinkmalm G, et al. Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility. Nat Rev Neurol. 2022;18(7):400–18. [https://doi.org/10.1038/s41582-022-00665-2.](https://doi.org/10.1038/s41582-022-00665-2)
- <span id="page-12-0"></span>12. Bornhorst JA, Figdore D, Campbell MR, et al. Plasma neuroflament light chain (NfL) reference interval determination in an age-stratifed cognitively unimpaired cohort. Clin Chim Acta. 2022;535:153–6. [https://doi.](https://doi.org/10.1016/j.cca.2022.08.017) [org/10.1016/j.cca.2022.08.017](https://doi.org/10.1016/j.cca.2022.08.017).
- 13. Hendrix JA, Airey DC, Britton A, et al. Cross-sectional exploration of plasma biomarkers of Alzheimer's Disease in Down Syndrome: Early data from the Longitudinal Investigation for Enhancing Down Syndrome Research (LIFE-DSR) Study. J Clin Med. 2021;10(9):1907. [https://doi.org/10.](https://doi.org/10.3390/jcm10091907) [3390/jcm10091907](https://doi.org/10.3390/jcm10091907).
- <span id="page-12-1"></span>14. Simrén J, Andreasson U, Gobom J, et al. Establishment of reference values for plasma neuroflament light based on healthy individuals aged 5–90 years. Brain Commun. 2022;4(4):fcac174. [https://doi.org/10.](https://doi.org/10.1093/braincomms/fcac174) [1093/braincomms/fcac174.](https://doi.org/10.1093/braincomms/fcac174)
- <span id="page-12-2"></span>15. Wolf EJ, Logue MW, Hayes JP, et al. Accelerated DNA methylation age: associations with PTSD and neural integrity. Psychoneuroendocrinology. 2016;63:155–62. <https://doi.org/10.1016/j.psyneuen.2015.09.020>.
- 16. Wolf EJ, Maniates H, Nugent N, et al. Traumatic stress and accelerated DNA methylation age: a meta-analysis. Psychoneuroendocrinology. 2018;92:123–34. [https://doi.org/10.1016/j.psyneuen.2017.12.007.](https://doi.org/10.1016/j.psyneuen.2017.12.007)
- <span id="page-12-3"></span>17. Zhao X, Logue MW, Hawn SE, et al. PTSD, major depression, and advanced transcriptomic age in brain tissue. Depress Anxiety. 2022;39(12):824–34. [https://doi.org/10.1002/da.23289.](https://doi.org/10.1002/da.23289)
- <span id="page-12-4"></span>18. Logue MW, Baldwin C, Gufanti G, et al. A genome-wide association study of post-traumatic stress disorder identifes the retinoid-related orphan receptor alpha (RORA) gene as a signifcant risk locus. Mol Psychiatry. 2013;18(8):937–42. [https://doi.org/10.1038/mp.2012.113.](https://doi.org/10.1038/mp.2012.113)
- <span id="page-12-5"></span>19. Blake DD, Weathers FW, Nagy LM, et al. The development of a Clinician-Administered PTSD Scale. J Trauma Stress. 1995;8(1):75–90. [https://doi.](https://doi.org/10.1007/BF02105408) [org/10.1007/BF02105408](https://doi.org/10.1007/BF02105408).
- <span id="page-12-6"></span>20. Weathers FW, Bovin MJ, Lee DJ, et al. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): Development and initial psychometric evaluation in military veterans. Psychol Assess. 2018;30(3):383–95. [https://](https://doi.org/10.1037/pas0000486) [doi.org/10.1037/pas0000486](https://doi.org/10.1037/pas0000486).
- <span id="page-12-7"></span>21. First MB, Spitzer R, Gibbon M, Williams J. Structured clinical interview for axis I DSM-IV disorders--patient edition (SCID-I/P, version 2.0). *Biometrics Research Department, New York State Psychiatric Institute*. 1994.
- <span id="page-12-8"></span>22. First MB, Williams JBW, Karg RS, Spitzer RL. Structured Clinical Interview for DSM-5—Research Version (SCID-5 for DSM-5, Research Version; SCID-5-RV). *Arlington, VA, American Psychiatric Association*. 2015.
- <span id="page-12-9"></span>23. Kubany ES, Haynes SN, Leisen MB, et al. Development and preliminary validation of a brief broad-spectrum measure of trauma exposure: the Traumatic Life Events Questionnaire. Psychol Assess. 2000;12(2):210–24. <https://doi.org/10.1037//1040-3590.12.2.210>.
- <span id="page-12-10"></span>24. Miller MW, Wolf EJ, Logue MW, Baldwin CT. The retinoid-related orphan receptor alpha (RORA) gene and fear-related psychopathology. J Afect Disord. 2013;151(2):702–8. [https://doi.org/10.1016/j.jad.2013.07.022.](https://doi.org/10.1016/j.jad.2013.07.022)
- <span id="page-12-11"></span>25. Miller MW, Wolf EJ, Reardon AF, et al. PTSD and confict behavior between veterans and their intimate partners. J Anxiety Disord. 2013;27(2):240–51. [https://doi.org/10.1016/j.janxdis.2013.02.005.](https://doi.org/10.1016/j.janxdis.2013.02.005)
- <span id="page-12-12"></span>26. 1000 Genomes Project Consortium, Auton A, Brooks LD, et al. A global reference for human genetic variation. *Nature*. 2015;526(7571):68–74. <https://doi.org/10.1038/nature15393>
- <span id="page-12-13"></span>27. Logue MW, Amstadter AB, Baker DG, et al. The psychiatric genomics consortium posttraumatic stress disorder workgroup: posttraumatic stress disorder enters the age of large-scale genomic collaboration. Neuropsychopharmacology. 2015;40(10):2287–97. [https://doi.org/10.](https://doi.org/10.1038/npp.2015.118) [1038/npp.2015.118](https://doi.org/10.1038/npp.2015.118).
- <span id="page-12-14"></span>28. Nievergelt CM, Maihofer AX, Klengel T, et al. International meta-analysis of PTSD genome-wide association studies identifes sex- and ancestryspecifc genetic risk loci. Nat Commun. 2019;10(1):4558. [https://doi.](https://doi.org/10.1038/s41467-019-12576-w) [org/10.1038/s41467-019-12576-w.](https://doi.org/10.1038/s41467-019-12576-w)
- <span id="page-12-15"></span>29. Logue MW, Miller MW, Wolf EJ, et al. An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci. Clin Epigenetics. 2020;12(1):46. [https://doi.](https://doi.org/10.1186/s13148-020-0820-0) [org/10.1186/s13148-020-0820-0.](https://doi.org/10.1186/s13148-020-0820-0)
- <span id="page-12-16"></span>30. Ratanatharathorn A, Boks MP, Maihofer AX, et al. Epigenome-wide association of PTSD from heterogeneous cohorts with a common multi-site analysis pipeline. Am J Med Genet B Neuropsychiatr Genet. 2017;174(6):619–30. <https://doi.org/10.1002/ajmg.b.32568>.
- <span id="page-12-17"></span>31. Dugger BN, Whiteside CM, Maarouf CL, et al. The presence of select Tau species in human peripheral tissues and their relation to Alzheimer's

disease. J Alzheimers Dis. 2016;54(3):1249. [https://doi.org/10.3233/](https://doi.org/10.3233/JAD-169007) [JAD-169007.](https://doi.org/10.3233/JAD-169007)

- <span id="page-12-18"></span>32. Barthélemy NR, Horie K, Sato C, Bateman RJ. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer's disease. J Exp Med. 2020;217(11): e20200861. [https://doi.org/10.1084/jem.20200861.](https://doi.org/10.1084/jem.20200861)
- <span id="page-12-19"></span>33. Muthén, L. K., & Muthén, B. O. Mplus user's guide (Version 8). *Los Angeles, CA*. 1998–2020.
- <span id="page-12-20"></span>34. Ritchie ME, Phipson B, Wu D, et al. limma powers diferential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.<https://doi.org/10.1093/nar/gkv007>.
- <span id="page-12-21"></span>35. Li S, Wong EM, Bui M, et al. Causal effect of smoking on DNA methylation in peripheral blood: a twin and family study. Clin Epigenetics. 2018;10:18. [https://doi.org/10.1186/s13148-018-0452-9.](https://doi.org/10.1186/s13148-018-0452-9)
- <span id="page-12-22"></span>36. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289– 300. <https://doi.org/10.1111/j.2517-6161.1995.tb02031.x>.
- <span id="page-12-23"></span>37. Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina's HumanMethylation450 platform. Bioinformatics. 2016;32(2):286–8. [https://doi.org/10.1093/bioinformatics/btv560.](https://doi.org/10.1093/bioinformatics/btv560)
- <span id="page-12-24"></span>38. Young MD, Wakefeld MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14. [https://doi.org/10.1186/gb-2010-11-2-r14.](https://doi.org/10.1186/gb-2010-11-2-r14)
- <span id="page-12-25"></span>39. Cribbie RA (2007). Multiplicity control in structural equation modeling. *Structural Equation Modeling.* 14(1):98–112. [https://doi.org/10.1080/10705](https://doi.org/10.1080/10705510709336738) [510709336738](https://doi.org/10.1080/10705510709336738)
- <span id="page-12-26"></span>40. Vallerga CL, Zhang F, Fowdar J, et al. Analysis of DNA methylation associates the cystine-glutamate antiporter SLC7A11 with risk of Parkinson's disease. *Nat Commun*. 2020;11(1):1238. [https://doi.org/10.1038/](https://doi.org/10.1038/s41467-020-15065-7) [s41467-020-15065-7](https://doi.org/10.1038/s41467-020-15065-7)
- <span id="page-12-27"></span>41. Nabais MF, Laws SM, Lin T, et al. Meta-analysis of genome-wide DNA methylation identifes shared associations across neurodegenerative disorders. Genome Biol. 2021;22(1):90. [https://doi.org/10.1186/](https://doi.org/10.1186/s13059-021-02275-5) [s13059-021-02275-5](https://doi.org/10.1186/s13059-021-02275-5).
- <span id="page-12-28"></span>42. Torices S, Alvarez-Rodríguez L, Grande L, et al. A Truncated Variant of ASCC1, a Novel Inhibitor of NF-κB, Is Associated with Disease Severity in Patients with Rheumatoid Arthritis. J Immunol. 2015;195(11):5415–20. <https://doi.org/10.4049/jimmunol.1501532>.
- <span id="page-12-29"></span>43. Sun E, Motolani A, Campos L, Lu T. The pivotal role of NF-kB in the pathogenesis and therapeutics of Alzheimer's disease. Int J Mol Sci. 2022;23(16):8972.<https://doi.org/10.3390/ijms23168972>.
- <span id="page-12-30"></span>44. Gouveia C, Gibbons E, Dehghani N, Eapen J, Guerreiro R, Bras J. Genomewide association of polygenic risk extremes for Alzheimer's disease in the UK Biobank. Sci Rep. 2022;12(1):8404. [https://doi.org/10.1038/](https://doi.org/10.1038/s41598-022-12391-2) [s41598-022-12391-2](https://doi.org/10.1038/s41598-022-12391-2).
- <span id="page-12-31"></span>45. Zhu S, Hu X, Bennett S, Mai Y, Xu J. Molecular structure, expression and role of TAFA4 and its receptor FPR1 in the spinal cord. Front Cell Dev Biol. 2022;10:911414.<https://doi.org/10.3389/fcell.2022.911414>.
- <span id="page-12-32"></span>46. Greenwood EK, Angelova DM, Büchner HMI, Brown DR. The AICD fragment of APP initiates a FoxO3a mediated response via FANCD2. Mol Cell Neurosci. 2022;122: 103760. <https://doi.org/10.1016/j.mcn.2022.103760>.
- <span id="page-12-33"></span>47. Morris BJ, Willcox DC, Donlon TA, Willcox BJ. FOXO3: A major gene for human longevity–A mini-review. Gerontology. 2015;61(6):515–25. [https://](https://doi.org/10.1159/000375235) [doi.org/10.1159/000375235](https://doi.org/10.1159/000375235).
- <span id="page-12-34"></span>48. Stefanetti RJ, Voisin S, Russell A, Lamon S. Recent advances in understanding the role of FOXO3. F1000Res. 2018;7:1000. [https://doi.org/10.](https://doi.org/10.1268/f1000research.15258.1) [1268/f1000research.15258.1](https://doi.org/10.1268/f1000research.15258.1).
- <span id="page-12-35"></span>49. Saha P, Biswas SC. Amyloid-β induced astrocytosis and astrocyte death: Implication of FoxO3a-Bim-caspase3 death signaling. Mol Cell Neurosci. 2015;68:203–11.<https://doi.org/10.1016/j.mcn.2015.08.002>.
- <span id="page-12-36"></span>50. Zhai X, Li XY, Wang YJ, et al. Fancd2os reduces testosterone production by inhibiting steroidogenic enzymes and promoting cellular apoptosis in murine testicular leydig cells. Endocrinol Metab (Seoul). 2022;37(3):533– 46. <https://doi.org/10.3803/EnM.2022.1431>.
- <span id="page-12-37"></span>51. Arenas F, Castro F, Nuñez S, Gay G, Garcia-Ruiz C, Fernandez-Checa JC. STARD1 and NPC1 expression as pathological markers associated with astrogliosis in post-mortem brains from patients with Alzheimer's disease and Down syndrome. Aging (Albany NY). 2020;12(1):571–92. [https://doi.](https://doi.org/10.18632/aging.102641) [org/10.18632/aging.102641](https://doi.org/10.18632/aging.102641).
- <span id="page-12-38"></span>52. Pérez-Palma E, Bustos BI, Villamán CF, et al. Overrepresentation of glutamate signaling in Alzheimer's disease: network-based pathway enrichment using meta-analysis of genome-wide association studies.

PLoS ONE. 2014;9(4):e95413. [https://doi.org/10.1371/journal.pone.00954](https://doi.org/10.1371/journal.pone.0095413) [13](https://doi.org/10.1371/journal.pone.0095413) .

- <span id="page-13-0"></span>53. Hajjar I, Yang Z, Okafor M, et al. Association of plasma and cerebrospinal fuid Alzheimer Disease biomarkers with race and the role of genetic ancestry, vascular comorbidities, and neighborhood factors. JAMA Netw Open. 2022;5(10):e2235068. [https://doi.org/10.1001/jamanetworkopen.](https://doi.org/10.1001/jamanetworkopen.2022.35068) [2022.35068](https://doi.org/10.1001/jamanetworkopen.2022.35068) .
- <span id="page-13-1"></span>54. Deters KD, Napolioni V, Sperling RA, et al. Amyloid PET imaging in self-Identifed non-hispanic black participants of the Anti-Amyloid in Asymptomatic Alzheimer's Disease (A4) Study. Neurology. 2021;96(11):e1491– 500. <https://doi.org/10.1212/WNL.0000000000011599> .
- <span id="page-13-2"></span>55. Metti AL, Cauley JA, Ayonayon HN, et al. The demographic and medical correlates of plasma aβ40 and aβ42. Alzheimer Dis Assoc Disord. 2013;27(3):244–9.<https://doi.org/10.1097/WAD.0b013e318260a8cb> .
- <span id="page-13-3"></span>56. Mayeda ER, Glymour MM, Quesenberry CP, Whitmer RA. Inequalities in dementia incidence between six racial and ethnic groups over 14 years. Alzheimers Dement. 2016;12(3):216–24. [https://doi.org/10.1016/j.jalz.](https://doi.org/10.1016/j.jalz.2015.12.007) [2015.12.007](https://doi.org/10.1016/j.jalz.2015.12.007) .
- <span id="page-13-4"></span>57. Pierce ME, Hayes J, Huber BR, et al. Plasma biomarkers associated with deployment trauma and its consequences in post-9/11 era veterans: initial fndings from the TRACTS longitudinal cohort. Transl Psychiatry. 2022;12(1):80.<https://doi.org/10.1038/s41398-022-01853-w> .
- <span id="page-13-5"></span>58. Kulbe JR, Jain S, Nelson LD, et al. Association of day-of-injury plasma glial fbrillary acidic protein concentration and six-month posttraumatic stress disorder in patients with mild traumatic brain injury. Neuropsychopharmacology. 2022;47(13):2300–8. [https://doi.org/10.1038/](https://doi.org/10.1038/s41386-022-01359-5) [s41386-022-01359-5](https://doi.org/10.1038/s41386-022-01359-5) .
- <span id="page-13-6"></span>59. Natale G, Kritikos M, Kuan PF, et al. Glial suppression and post-traumatic stress disorder: a cross-sectional study of 1,520 world trade center responders. Brain Behav Immun Health. 2023;30:100631. [https://doi.org/](https://doi.org/10.1016/j.bbih.2023.100631) [10.1016/j.bbih.2023.100631](https://doi.org/10.1016/j.bbih.2023.100631) .
- <span id="page-13-7"></span>60. Weiner MW, Harvey D, Landau SM, et al. Traumatic brain injury and posttraumatic stress disorder are not associated with Alzheimer's disease pathology measured with biomarkers. Alzheimers Dement. 2022. [https://](https://doi.org/10.1002/alz.12712.10.1002/alz.12712) [doi.org/10.1002/alz.12712.10.1002/alz.12712](https://doi.org/10.1002/alz.12712.10.1002/alz.12712) .

# **Publisher's Note**

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.