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Manufacturing Applications of the One-Dimensional 
 Cutting Stock Problem as a Team Project 

 

 

Abstract 

This paper explains the beneficial and practical impact of operations research in two real 
manufacturing settings. Two manufacturing examples used in student projects were (1) cutting 
rails (80‘ or 40‘) to manufacture railroad frogs of many sizes and (2) cutting round metal rolls (12‘ 
to 20‘) to meet customer demands for various lengths of cuts.   Student teams in Engineering of 
Manufacturing Processes and Operations Research courses wrote computer programs. The 
program first identified all possible patterns that can be cut out of a given stock length.  Next, the 
program created a mathematical model (a text file) as an output. This text file was used as an input 
for the optimizer software LINGO.   When compared to the manual solutions obtained by foremen 
in two settings, student teams with no prior experience were able to match the manual solution of 
the foremen in small problems and improve the manual solution by up to 30 % in large problems. 
After finishing the project, each team wrote a technical team report to document the experience 
they gained in manufacturing and mathematical modeling.  Student assessment was based on 
student team reports (knowledge gained) and individual team interviews, exit surveys, and the end 
of semester course evaluations (students’ attitudes). The project outcomes include improved 
understanding of production-related concepts such as remnant minimization in manufacturing, as 
well as enthusiasm for operations research and its applications in manufacturing. 

Introduction 

Kolb’s experiential learning cycle/spiral [1 - 3] is often used as a powerfull metacognitive method 
in many engineering programs. Namely, a learner gains knowledge by answering four questions 
(Why?, What?, How? and What if?) in succession. A set of activities is associated with each 
question. This cycle of questions and activities is repeated for deeper learning regardless of the 
prefered learning style (type) of the learner. Laboratory experiments and other experiential 
learning activities [4-6] are well recognized parts of Kolb’s learning cycle.  

Creating products is the primary function of any manufacturing establishment. Product realization-
based learning seems to be a natural model for learning manufacturing engineering [7].  The 
product realization-based learning can be understood as a part of the project-based learning  (PBL) 
pedagogy which is well accepted in education [8, 9]. PBL is also emphasized as one of the priority 
educational methods in manufacturing engineering [10] and industrial engineering education [11].  
PBL pedagogy is already successfully implemented in some manufacturing processes courses [12, 
13]. Students’ experiences described here are based on product-realization learning concepts. In 
addition, some additional PBL pedagogy strategies and teamwork are implemented.  

In operations research (OR), the one-dimensional cutting stock [20-29] problem describes the case 
of cutting standard length stock material into various specified sizes while minimizing the material 
wasted.  Unusable length is called remnant or drop in manufacturing that involves metal works.   



Solution to this computationally complex optimization problem can be used in many 
manufacturing applications. To solve it, the problem can be formulated as an integer linear model 
first, and then solved using a common optimizer software.  Since the problem is known to have 
multiple optimal solutions in some cases, binary variables can be added to identify all optimal 
solutions, but this is often not necessary. U.S. Customary units are used throughout this paper 
because both manufacturers exemplified in this work operate using the U.S. Customary units in 
almost all aspects of their daily operations.  All machinists and majority of the management in 
these facilities are not only unfamiliar with the metric system, but are also outright against it. 

Curricular Context 

Applications of operations research in manufacturing can be implemented in either operations 
research or manufacturing courses. In our case, there are two courses that can benefit from this 
work: MAE 495 which is an elective senior level course for mechanical engineering majors [14] 
and EN 471, Operations Research, which is a regular one-semester, three-credits, junior-level 
course in an industrial engineering program [15].  The Manufacturing Processes course for senior 
mechanical engineering students was taught from industrial engineering and operations research 
perspective, similarly to the Operations Research course in an industrial engineering program. 
Concepts of manufacturing economics and optimization were emphasized.  Optimization 
examples included one-dimensional cutting-stock problem as a project topic. The described 
experience deals with about 80 students per semester, where students work in teams of three to 
four students per team.  

From the four pillars of manufacturing engineering (a. materials and manufacturing processes, b. 
product, tooling, and assembly engineering, c. manufacturing systems and operations, and d. 
manufacturing competitiveness [16],”) this work addresses two of them (c. and d.).  

Educational Goals, Activities, and Outcomes 

Educational goals of this project include improved understanding of production-related concepts 
such as remnant minimization in manufacturing, as well as increased enthusiasm for operations 
research and its applications in manufacturing. Students’ experience consists of several activities: 
observation of real metal cutting operations, realizing costs due to final length of stock material, 
programming and running OR-based calculations to minimize remnants, and succesfully 
competing with experienced foremen’s manual solutions. Several learning outcomes originate 
from project educational goals and project activities like increased appreciation for manufacturing 
in general, increased appreciation for OR by experiencing a “real life” manufacturing problem, an 
understanding of the role of analytical approaches to engineering problem solving, development 
of written communication skills through writing of technical reports, and development of 
teamwork skills. These outcomes are closely related to ABET-EAC Criterion 3, a-k student 
learning outcomes [17], specifically outcome a - an ability to apply knowledge of mathematics, 
science and engineering, outcome g - an ability to communicate effectively, and outcome k - an 
ability to use the techniques, skills, and modern engineering tools necessary for engineering 
practice.  

 



 

Practical Experience 

This paper reports student experience with one-dimensional cutting stock problem using two very 
different manufacturing applications. The Facility 1 cuts different sizes of parts from a rail stock 
to manufacture rail frogs.  The Facility 2 cuts different sizes and cross sections of cylindrical parts 
to manufacture different products.  While students did not get an actual metal cutting experience 
in this project, they observed cutting operations at both facilities.    

The Mathematical Model 

Figure 1 shows the simplest version of the classic one-dimensional cutting stock model using m 
cuts and n patterns. Input variable Di represents the known demand for each cut size I (1 to m). 
Input matrix aij (m x n) represents number of cut size of type i that can be obtained from pattern j.   
Output variable Xj represents the number of stocks that should be cut according to pattern j (1 to 
n).  

Minimize �Xj

n

J=1

 

� aij ∗ Xj ≥  Di   ∀ i = 1, … , m
n

j=1

 

Xj ∈ integer ∀ j = 1, … , n 
[a] is a non − negative matrix 

                                    Figure 1. One-Dimensional Cutting Stock Model  

The model in Figure 1 is linear with integer decision variables (X’s).   The objective function 
expresses the obvious fact that minimizing the total number of stocks used is analogous to 
minimizing the total waste which is not shown in the model.  The constraint set ensures that 
demand is met for each cut size. This model can be written out manually for small problem 
dimensions and submitted to the optimizer software LINGO [19], but this quickly becomes 
impossible as the problem dimensions grow.  A MATLAB code was utilized to prepare the input 
file for LINGO.      

Facility 1 

This facility produces railroad frogs.   Frog is made of rails having the same cross-section as those 
used in the track. 

“The frog is a device by means of which the rail at the turnout curve crosses the rail of the 
main track. Frog is a junction, but not a switch for changing tracks on rails.  Frogs are 
manufactured by bending, drilling, grinding of rails various lengths and then connecting 
several of rails by welding and/or bolting together into a final product [18].”   

Figure 2 shows a picture of an actual frog in use. 



 

Figure 2.  A Railroad Frog 

Figure 3 shows inventory of 40‘ and 80‘ rail stocks at Facility 1 in Pueblo, CO.  This paper only 
considers 80‘ rails to avoid significant modelling complications. 

 

Figure 3.   40‘ and 80‘ Rail Stocks at the Facility 1 

At about $16/ft., steel rail is expensive and minimizing remnant will result in lower frog 
manufacturing cost.   Table 1 below shows 24 common cuts needed by Facility 1.  A typical frog 
contains two or more of the cuts shown in Table 1. 

        Table 1.  Twenty-Four Common Rail Cuts Used in Frog Manufacturing in Facility 1 

16' 6 9/32" 54' 7" 38' 3" 36' 6 5/8" 32' 4" 49' 7" 

29' 10 ½” 63' 1" 54' 10" 25' 1" 30' 2" 63' 2" 

30' 6" 16' 6" 26' 0" 15' 0" 24' 0" 51' 4" 

62' 0" 35' 0" 59' 6" 39' 7" 46' 10" 45' 5" 

 

Figure 4 shows cutting of an 80' long rail to yield the desired cut lengths. 



 

Figure 4.  A Rail Being Cut into Required Lengths for Use in Frog Manufacturing 

Sample Problem 1. 

29' 10 ½" (A), 36' 6 5/8" (B), 38' 3" (C), 54' 7" (D) are four (m =4) rail cut lengths at Facility 1 
needed to construct (drilling holes of several sizes, bending, and intensive welding are the three 
main operations) frogs.  The plant buys 80' long steel rails from a steel mill.  The projected demand 
level for each cut length are as follows:  A: 38, B: 61, C: 54, D: 89.  It is assumed that the sawing 
off operation results in a loss of 0.40" of length.  Table 2 shows all 7 (n) possible and feasible 
patterns that yield the number of cuts of each type.  Of course, many other possible patterns are 
not feasible and therefore are not considered. Any pattern that results in a remnant that equals or 
exceeds the smallest cut size is unfeasible.    

Table 2. Feasible Cutting Pattern for the Sample Problem 1. 

Patterns/Cuts 29.91'  
A 

36.59'  
B 

38.28'  
C 

54.61'  
D 

Remnant 

1 2 0 0 0 20.18' 
2 1 1 0 0 13.50' 
3 1 0 1 0 11.81' 
4 0 2 0 0 6.82' 
5 0 1 1 0 5.13' 
6 0 0 2 0 3.44' 
7 0 0 0 1 25.39' 

 

The 7 x 4 input matrix (n x m) above is transposed and entered as 4 x 7 (m x n) aij matrix in Figure 
5. Figure 5 shows the LINGO version of the model.  As this is a small problem, the model in Figure 
5 can be manually entered into LINGO, but manual entry quickly becomes cumbersome and highly 
error prone as the problem size grows.  This project utilized a MATLAB code to automate two 
major steps: 1) Determine all feasible patterns as shown in Table 2 and 2) Prepare a LINGO input 
file as shown in Figure 5. Hence, students received a very detailed experience in operations 
research as an application in manufacturing.  They also improved their programming skills. 



MIN=(X1 + X2 + X3 + X4 + X5 + X6 + X7);  

2*X1 + 1*X2 + 1*X3 + 0*X4 + 0*X5 + 0*X6 + 0*X7 >38;  

0*X1 + 1*X2 + 0*X3 + 2*X4 + 1*X5 + 0*X6 + 0*X7 >61;  

0*X1 + 0*X2 + 1*X3 + 0*X4 + 1*X5 + 2*X6 + 0*X7 >54;  

0*X1 + 0*X2 + 0*X3 + 0*X4 + 0*X5 + 0*X6 + 1*X7 >89;  

@GIN (X1); @GIN (X2);@GIN (X3);@GIN (X4);@GIN (X5);  

@GIN (X6);@GIN (X7);  

END 

Figure 5. LINGO Input File for Sample Problem 1. 

 
LINGO solution is as follows: X1 = 19, X4 = 4, X5 = 54, X7 = 89 and the sum is 166.  So, 166 80' 
long rails are needed to meet the demand with minimum waste or remnant.  The solution took 
just 0.05 seconds. The rails are to be cut according to patterns 1, 4, 5, and 7 in the quantities 
shown above.  Note that pattern 6 with the smallest remnant was not chosen.  Demands for each 
of the four sizes are met as follows: 
 
Number of 29.91' long cuts =  19 x 2 + 4 x 0 + 54 x 0 + 89 x 0 = 38 

Number of 36.59' long cuts =   19 x 0 + 4 x 2 + 54 x 1 + 89 x 0 = 62 (1 extra) 

Number of 38.28' long cuts =   19 x 0 + 4 x 0 + 54 x 1 + 89 x 0 = 54 

Number of 54.61' long cuts =   19 x 0 + 4 x 0 + 54 x 0 + 89 x 1 = 89 

166 rails are 166 x 80 = 13280 feet.  The amount of actual use is 29.91 x 38 + 36.59 x 62 + 38.28 
x 54 + 54.61 x 89 = 10333'. The unused amount is 13280 – 10333 = 2947' or 22.2%.   The amount 
remnant can also be calculated by multiplying the remnant for each combination with the number 
of rails cut according to that combination:  20.18 x 19 + 6.82 + 4 + 5.13 x 54 + 25.39 x 89 = 2948'.  
This order with only four cut sizes results in a large amount of remnant, but large remnants shown 
in Table 2 (20.18' and 25.39') are sufficiently long for two smaller common frog sizes (16' 6 9/32” 
and 15' 0") shown in Table 1.  While very small remnants are either scraped or returned to the steel 
mill for re-melting, long remnants are certainly saved for future use.  The one-dimensional cutting 
stock problem solution does not consider leftover, but only usable rails. 

Sample Problem 2.   

This scenario involves 11 of the cuts shown in Table 1.  Figure 6 shows the cut lengths used and 
the input process before the execution of the MATLAB code. 

Table 3 shows solution cuts that generate the required lengths using an 80' rail. 

 



 

Figure 6. Input Screen of the MATLAB Code for Sample Problem 2 

We l come to Th e Stock Cu t Ca l culator Program 

I np u t Stock Lengt h : 80 

Pl ease inp u t cu t l e ngth s. (i t will take an unlimi ted 
Inp u t cu t Length (Inp u t 0 to Termi nate ) : 1 6 .58 
Inp u t c u t Length (Inp u t 0 to Terminate ) : 54.59 
I npu t cu t Len gth (I npu t 0 to Termi nate ) : 38 . 25 
Inp u t cu t Length (Inp u t 0 to Terminate ) : 36 . 56 
Inp u t cu t Length (Inp u t 0 to Terminate ) : 63 . 09 
Inp u t cu t Length (Inp u t 0 to Te rminate ) : 54. 8 4 
Inp u t c u t Len gth (Inp u t 0 to Te rmi nate ) : 30 . 17 
Inp u t cu t Length (Inp u t 0 to Terminate ) : 24 

Inp u t cu t Length (Inp u t 0 to Termi nate ) : 49.59 

Inp u t cu t Length (Inp u t 0 to Terminate ) : 59.50 
I npu t c u t Len gth (I npu t 0 to Termi nate ) : 63 . 17 
Inp u t cu t Length (Inp u t 0 to Terminate ) : 0 

Cu ts h av e been sorted in ascen ding order 
Cu t 1=1 6 . 58 

Cu t2=24 

Cu t3=3 0 . 17 

Cut4=36 . 56 

Cu t5=3 8 . 25 

Cu t6=49 . 59 

Cu t 7=5 4 . 59 

Cu t 8=54 . 8 4 

Cu t9 =59 . 5 

Cu t 10=63 . 09 

Cu t 11=63 . 17 

Demand amount for cu t 1 (1 6.58 uni ts ) : 81 

Demand amount for cu t 2 (24 uni ts ) : 22 

Demand amount for cu t 3 (3 0 . 17 units ) : 1 4 

Demand amount for c u t 4 (36 .5 6 units ) : 2 1 

Demand amount for cu t 5 (3 8 . 25 uni ts ) : 17 

Demand amount for cu t 6 (49 . 59 uni ts ) : 22 

Demand amount for c u t 7 (5"l . 59 units ) : 2"l 

Demand amount for cu t 8 (54 . 8 4 units ) : 17 

Deman d amo un t for cu t 9 (59 . 5 units ) : 11 

Deman d amount for cu t 10 (63 . 09 uni ts ) : 11 

Deman d amount for cu t 11 (63 . 17 uni ts ) : 18 

amount ) 



Table 3. Solution Cut Patterns for Sample Problem 2  
Pattern/ 

Cuts 

16.58′ 

 

24′ 30.17′ 36.56′ 38.25′ 49.59′ 54.59′ 54.84′ 59.50′ 63.09′ 63.17′ Remnant 

  (feet) 

2 3 1 0 0 0 0 0 0 0 0 0 6.26 

12 1 0 0 0 0 0 1 0 0 0 0 8.83 

13 1 0 0 0 0 0 0 1 0 0 0 8.58 

15 1 0 0 0 0 0 0 0 0 1 0 0.33 

16 1 0 0 0 0 0 0 0 0 0 1 0.25 

19 0 1 0 0 0 1 0 0 0 0 0 6.41 

21 0 1 0 0 0 0 0 1 0 0 0 1.16 

24 0 0 1 0 0 1 0 0 0 0 0 0.24 

25 0 0 0 2 0 0 0 0 0 0 0 6.88 

26 0 0 0 1 1 0 0 0 0 0 0 5.19 

 

The LINGO output for Sample Problem 2 is as follows:  126 rails (objective value) are to be cut 
in the quantities shown for patterns 2 (4 rails), 12 (24 rails), 13 (6 rails), 14 (11 rails), 15 (11 rails), 
16 (18 rails), 19 (8 rails), 21 (11 rails), 24 (14 rails), 25 (2 rails), and 26 (17 rails).   Again, some 
patterns with small remnant values (9 and 10 for example) were not chosen. The yield analysis 
shows a utilization of level of 92.25% of the total length of 10080 feet provided by 126 80 ft. rails.  

Facility 2 
This facility, located in Norfolk, VA, machines metal couplers along with many other metal 
products.  The couplers are used to connect various bodies to transfer motion or provide a pull.  
An aluminum 6061 stock with a diameter of 3" and variable length is used. A set of manufacturing 
operations used to produce these couplers is described elsewhere13.  Figure 7 shows three common 
couplers. 

 

Figure 7.  Three Common Couplers (10", 9", and 8" long) 



Figure 8 shows stocks of various lengths (12′ to 30′) and diameters (2″ to 6″) used in Facility 2. 

 

Figure 8.  Stocks at Facility 2. 

Sample Problem 3.  

This set of one-dimensional cutting-stock problems with associated optimal solutions describes 
two cases (A and B) which are detailed in the Appendix. Here, round stock is cut to required sizes 
for machining of couplers.   

Assessment of Students’ Knowledge and Attitudes 

Students’ Knowledge Assessment.  

Apart from taking a regular test, students competed against experienced foremen in class. It is very 
important to note that students with no prior manufacturing experience applying their operational 
research skills were able to match or outperform experienced foremen’s manual solutions. When 
compared to the manual solutions obtained by foremen in two settings, student teams with no prior 
experience were able to match the manual solution of the foremen in small problems and improve 
the manual solution by up to 30% in large problems. 

Students’ Attitudes Assessment.  

There were three educational metrics used for assessing students’ attitudes: informal student 
interviews, anonymous exit interviews, and the end of semester course evaluations. 

Informal student interviews were conducted after the visits to the manufacturing companies 
involved in this project. Students in each course were required to visit a production facility to 
witness the real need for the project. The faculty teaching the course organized the visits. The 
students were able to hear directly from the engineers in charge of these operations how important 



this project was for them. After the visits, all students were excited and appreciative of the material 
they were learning.    

Anonymous exit survey taken on the last day of classes indicate that a majority (70%) of the 
students felt this project was a very good learning experience.   Some students had difficulty with 
programming and this caused some anxiety to those students who were not sufficiently proficient.  
Finally, here are some of student testimonials from the end of semester course evaluations. 

“This project gave us an opportunity to see what it is like to apply operations research to 
manufacture a product.” 

"This project introduced challenging concepts for all students: programming and 
mathematical modelling to solve a real manufacturing problem."  

“The field trip was great. I can see and believe this was a real problem that my team can 
solve.” 

“This project was a good choice for a semester team work. To give us experience that is 
based off of real life situations is a great thing to do.” 

“It is good to know programming and mathematical modelling are really useful.” 

“I felt empowered when my solution beat the foreman’s paper and pencil solution by 12%” 

Again, based on the testimonials, students showed increased enthusiasm towards manufacturing 
and increased self-efficacy and pride in their professional (programming and engineering) skills. 

 
Conclusions and Recommendations 
 
Students learned and applied their programming and operational research skills to real 
manufacturing problems using modern engineering tools like MatLab and LINGO. They visited 
two manufacturing facilities that dealt with the one-dimensional cutting stock problem on the daily 
basis. The students were able to match or outperform experienced foremen’s manual solutions. 
This project provided a real manufacturing problem solving experience using programming and 
mathematical modelling. Students were able to realize the importance of optimization in 
manufacturing-related activities. 
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APPENDIX : ILLUSTRATION CUTTING STOCK OPTIMIZATION MODEL USE IN 
MULTI-SIZE COUPLER MANUFACTURING at Facility 2 

The cases described below are based on a 12 foot (144 inches) long aluminum 6061 stock with a 
3” diameter.   The diameter value is not a factor in the optimization process.  

CASE A: The management has accepted an order for four of its popular sizes of 10”, 20”, 30” and 
40” in quantities of 65, 20, 11, and 8. A sample of feasible patterns shown in Table A.1 below.  
There are 47 unique and feasible patterns.  To be feasible, each pattern’s remnant must be less than 
the shortest cut size. 

Table A.1.   Feasible Patterns of Cuts for Case A 

Pattern No. 10" 20" 30" 40" Remnant (inches) 
1 14 0 0 0 4 
2 12 1 0 0 4 
3 11 0 1 0 4 
. . . . . . 

21 4 2 2 0 4 
22 4 1 0 2 4 
.. . . . . . 
28 2 6 0 0 4 
29 2 4 0 1 4 
. . . . . . 

38 1 1 1 2 4 
39 1 0 3 1 4 
40 0 7 0 0 4 
41 0 5 0 1 4 
. . . . . . 

46 0 1 0 3 4 
47 0 0 2 2 4 

 

The same program uses the data in Table A.1 and outputs the LINGO optimization model shown 
in Figure A.1.  The 47 x 4 input matrix (n x m) above is transposed and entered as 4 x 47 (m x n) 
aij matrix in Figure A.1. 

 



MIN=(X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10 + X11 + X12 + X13 + X14 + 
X15 + X16 + X17 + X18 + X19 + X20 + X21 + X22 + X23 + X24 + X25 + X26 + X27 + X28 + 
X29 + X30 + X31 + X32 + X33 + X34 + X35 + X36 + X37 + X38 + X39 + X40 + X41 + X42 + 
X43 + X44 + X45 + X46 + X47); 

14*X1 + 12*X2 + 11*X3 + 10*X4 + 10*X5 + 9*X6 + 8*X7 + 8*X8 + 8*X9 + 7*X10 + 7*X11 
+ 6*X12 + 6*X13 + 6*X14 + 6*X15 + 5*X16 + 5*X17 + 5*X18 + 4*X19 + 4*X20 + 4*X21 + 
4*X22 + 4*X23 + 3*X24 + 3*X25 + 3*X26 + 3*X27 + 2*X28 + 2*X29 + 2*X30 + 2*X31 + 
2*X32 + 2*X33 + 2*X34 + 1*X35 + 1*X36 + 1*X37 + 1*X38 + 1*X39 + 0*X40 + 0*X41 + 
0*X42 + 0*X43 + 0*X44 + 0*X45 + 0*X46 + 0*X47 >65;  

0*X1 + 1*X2 + 0*X3 + 2*X4 + 0*X5 + 1*X6 + 3*X7 + 1*X8 + 0*X9 + 2*X10 + 0*X11 + 
4*X12 + 2*X13 + 1*X14 + 0*X15 + 3*X16 + 1*X17 + 0*X18 + 5*X19 + 3*X20 + 2*X21 + 
1*X22 + 0*X23 + 4*X24 + 2*X25 + 1*X26 + 0*X27 + 6*X28 + 4*X29 + 3*X30 + 2*X31 + 
1*X32 + 0*X33 + 0*X34 + 5*X35 + 3*X36 + 2*X37 + 1*X38 + 0*X39 + 7*X40 + 5*X41 + 
4*X42 + 3*X43 + 2*X44 + 1*X45 + 1*X46 + 0*X47 >20;  

0*X1 + 0*X2 + 1*X3 + 0*X4 + 0*X5 + 1*X6 + 0*X7 + 0*X8 + 2*X9 + 1*X10 + 1*X11 + 
0*X12 + 0*X13 + 2*X14 + 0*X15 + 1*X16 + 1*X17 + 3*X18 + 0*X19 + 0*X20 + 2*X21 + 
0*X22 + 2*X23 + 1*X24 + 1*X25 + 3*X26 + 1*X27 + 0*X28 + 0*X29 + 2*X30 + 0*X31 + 
2*X32 + 4*X33 + 0*X34 + 1*X35 + 1*X36 + 3*X37 + 1*X38 + 3*X39 + 0*X40 + 0*X41 + 
2*X42 + 0*X43 + 2*X44 + 4*X45 + 0*X46 + 2*X47 >11;  

0*X1 + 0*X2 + 0*X3 + 0*X4 + 1*X5 + 0*X6 + 0*X7 + 1*X8 + 0*X9 + 0*X10 + 1*X11 + 
0*X12 + 1*X13 + 0*X14 + 2*X15 + 0*X16 + 1*X17 + 0*X18 + 0*X19 + 1*X20 + 0*X21 + 
2*X22 + 1*X23 + 0*X24 + 1*X25 + 0*X26 + 2*X27 + 0*X28 + 1*X29 + 0*X30 + 2*X31 + 
1*X32 + 0*X33 + 3*X34 + 0*X35 + 1*X36 + 0*X37 + 2*X38 + 1*X39 + 0*X40 + 1*X41 + 
0*X42 + 2*X43 + 1*X44 + 0*X45 + 3*X46 + 2*X47 >8;  

@GIN (X1); @GIN (X2); @GIN (X3); @GIN (X4); @GIN (X5); @GIN (X6); @GIN 
(X7);@GIN (X8);@GIN (X9); @GIN (X10); @GIN (X11); @GIN (X12); @GIN (X13); @GIN 
(X14); @GIN (X15); @GIN (X16);@GIN (X17); @GIN (X18); @GIN (X19);@GIN (X20); 
@GIN (X21);@GIN (X22);@GIN (X23);@GIN (X24);@GIN (X25); @GIN (X26); @GIN 
(X27);@GIN (X28);@GIN (X29);@GIN (X30);@GIN (X31); @GIN (X32); @GIN (X33); 
@GIN (X34); @GIN (X35); @GIN (X36);@GIN (X37);@GIN (X38);@GIN (X39);@GIN 
(X40); @GIN (X41); @GIN (X42); @GIN (X43);@GIN (X44); @GIN (X45);@GIN 
(X46);@GIN (X47);  

END 

Figure A.1.  LINGO Optimization Model for Case A. 

 

LINGO software quickly finds the optimum solution shown in Figure A.2. 



 

Figure A.2.  Optimal Solution for Case A 

Table A.2 shows how the optimal output in Figure A.2 is interpreted for production planning and 
inventory purposes.  Patterns 10, 11, 13, and 16 are chosen in quantities of 5, 4, 1, and 3.  The 
shaded area is the number of coupler sizes obtained from each selected pattern.  A total of 13 
aluminum bars should be ordered or reserved to meet the demand.   It should be noted that the 
optimal solution results in excess number of parts for all sizes except the longest (40”) size. 

 

 

 

 

 

 

 

 



Table A.2. Detailed Expansion of the Optimal Solution for Case A. 

 Pattern No. Quantity  
 

10" 20" 30" 40" 

10 5 7 2 1 0 
11 4 7 0 1 1 
13 1 6 2 0 1 
36 3 1 3 1 1 
 Demand: 65 20 11 8 
 Actual : 72 21 12 8 

Total  Length: 720” 420” 360” 320” 
12' Bars    13 1872" Used: 1820" 

 

Total  Unused 52" 2.8%   
 

52” of total remnant is unavoidable because each pattern in Table A.1 above has a 4” remnant due 
to an unusual combination of cut lengths (10, 20, 30, 40 inches) and the bar stock (144”).  The 
optimal solution provides extra units of 10” (7), 20” (1), and 30” (1) sizes.  The extra units are still 
useful and are included as non-waste in calculation of used amount of 1820” from a maximum 
possible of 1872” (13 bars x 12 feet/bar x 12”/foot). 

The solution calls for using 13 bars of stock that will be cut according to quantities and patterns 
shown above.  Each highlighted row shows the number of cuts obtained from each selected 
pattern.  The solution achieves a material utilization of 97.2% or 2.8% waste.   This is an 
example of a small case where foreman was also table to achieve the same utilization using the 
same or an alternate optimal solution. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CASE B:  This case has 10 distinct cuts sizes and 11201 unique and feasible patterns. It took 980 
solver iterations and 4.78 seconds to solve.  

Table A.10. Optimal Solution for Case B 

Pattern 
No. 

Quantity 8" 9" 10" 15” 20" 21" 27.25" 30" 34.5" 40" 

3912 3 3 0 4 0 0 0 0 0 0 2 
4096 1 3 0 1 0 0 1 2 0 1 0 
6146 1 1 5 3 1 2 0 0 0 0 0 
7565 1 1 0 6 0 0 1 2 0 0 0 
10583 4 0 0 4 1 0 0 2 0 1 0 
10615 4 0 0 4 0 0 0 0 0 3 0 
10782 1 0 0 2 0 2 4 0 0 0 0 
11069 3 0 0 0 1 4 1 1 0 0 0 
11123 1 0 0 0 0 4 3 0 0 0 0 
11174 6 0 0 0 0 0 4 0 2 0 0 
11180 5 0 0 0 0 0 2 1 0 1 1 

 Demand 14 5 56 7 18 46 20 12 22 11 
 Actual: 14 5 56 8 20 46 20 12 22 11 

Total  Length: 
Used 
(in) 

112 45 560 120 400 966 545 360 759 440 

12' 
Bars: 

30 4320”  

Total  Unused: 13” 0.3% 
 

The solution calls for using 30 bars of stock that will be cut according to quantities and patterns 
shown above.  Each highlighted row shows the number of cuts obtained from each selected 
pattern.  The solution achieves a material utilization of 99.7% or 0.3% waste.   This is an 
example of a large case where foreman was not able to achieve a utilization greater than 88 % to 
90%. 
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