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Abstract

Before biomarkers can be used in clinical trials or patients’ management, the laboratory assays 

that measure their levels have to go through development and analytical validation. One of the 

most critical performance metrics for validation of any assay is related to the minimum amount 

of values that can be detected and any value below this limit is referred to as below the limit 

of detection (LOD). Most of the existing approaches that model such biomarkers, restricted 

by LOD, are parametric in nature. These parametric models, however, heavily depend on the 

distributional assumptions, and can result in loss of precision under the model or the distributional 

misspecifications. Using an example from a prostate cancer clinical trial, we show how a critical 

relationship between serum androgen biomarker and a prognostic factor of overall survival is 

completely missed by the widely used parametric Tobit model. Motivated by this example, we 

implement a semiparametric approach, through a pseudo-value technique, that effectively captures 

the important relationship between the LOD restricted serum androgen and the prognostic factor. 

Our simulations show that the pseudo-value based semiparametric model outperforms a commonly 

used parametric model for modeling below LOD biomarkers by having lower mean square errors 

of estimation.

Keywords

Censored Regression; Limit of Detection; Pseudo-value; Semiparametric Model; Serum Androgen

1. Introduction

Biomarkers are known to play an important role in the disease progression in several 

diseases, such as oncology and cardiology and as such they have been extensively used 

in drug development1,2. Before biomarkers can be used in patient management or a 

clinical trial, laboratory assays measuring their levels need to undergo analytical validation. 

Occasionally values of the markers are so low that they are not detected by the measuring 

instruments or assays3. These observations are known as below the limit of detection (LOD) 
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or non-detects4,5. A large proportion of non-detects for a biomarker in a study would cause 

serious effects, irrespective if the biomarker is the main outcome or a covariate. Single 

or multiple detection limits can occur depending on whether the biomarker data contain 

measurements from one or multiple laboratories. Multiple detection limits can also occur 

in disease studies when scientists analyze a combination of multiple biomarkers and these 

biomarkers differ in their detection limits. Deleting observations below the LOD can lead 

to underpowered inference or biased results and thus it is critical to implement appropriate 

methods to optimally utilize the values below the LOD.

A common approach is to replace the values below the LOD by a either the LOD or 

LOD/2.6,7 This strategy, however, introduces artificial skewness to the data that may 

lead to a biased inference. Alternative approaches have been suggested4,8,9 to obtain 

summary measures of variable having observations below the LOD. However, most of 

these approaches involve imputations under strong distributional assumptions which has 

been known to perform poorly in case of mis-specified models with large proportions 

of non-detects10. Moreover, calculating only the summary measures of biomarkers below 

the LOD is not sufficient to ascertain its importance in clinical studies. It is critical to 

establish a direct relationship of such a biomarker with some explanatory variables in 

a disease process. Model- based approaches are widely used in establishing such direct 

associations. The Tobit model11,12 is the one of the earliest and most popular model-based 

approach for observations below LOD as evident from its wide use in various fields of 

medicine and epidemiology13,14,15,16. It uses a likelihood-based approach for estimating 

model parameters under a normality assumption. There have been recent advancements 

to such model-based approaches by varying the underlying distributional assumptions, 

e.g., mixtures of normal and skew-normal distributions17,18,19 and skewed t-distributions20. 

These parametric approaches are heavily dependent on the knowledge of the underlying 

distribution, and thus the estimates obtained from them may lead to highly unstable and 

biased results if the underlying true distribution of the biomarker data deviates from the 

distributional assumption of the model. This is especially the case when there is a large 

proportion of non-detects. One such scenario is discussed through a motivating example of 

a prostate cancer clinical trial, where a widely used parametric model fails to identify an 

important relationship between a serum androgen and a prognostic factor of prostate cancer 

survival.

The motivation behind this article is to develop a modeling approach, for biomarkers 

restricted to LODs, which is robust to the choice of the underlying distribution of the 

biomarker while producing accurate inference on the biomarker. Moreover, most of the 

existing parametric models, based on likelihood approaches, were developed mainly to 

address single lower LOD scenarios without any known optimal way to tackle situations 

where multiple LODs can occur in the same data. However, such multiple LODs can 

co-exist if the same biomarker is measured in different laboratories in different batches or 

if multiple biomarkers, with varying detection limits, are combined to obtain a classifier. 

In this article, we propose a semiparametric approach of modeling biomarkers subjected to 

LOD through a pseudo-value approach which is distribution-free and can uniformly handle 

single as well multiple LODs is the same data. The pseudo-values have been previously 

implemented in regression of complex quantities in time-to-event analysis21,22,23,24,25; 
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however, we extend this approach in modeling biomarkers below LOD for the first time. 

We implement a semiparametric inference procedure for the biomarkers below the LOD 

by enabling a pseudo-value based estimation through a generalized estimating equation 

framework. Then, the resulting inference becomes robust, free from any rigid distributional 

assumptions, while being efficient as well. This is demonstrated through the several 

simulations where our proposed method has lower errors of estimation compared to a 

popular parametric model. Moreover, in our motivating example from a prostate cancer 

clinical trial, our proposed semiparametric method outperformed the widely used parametric 

method by identifying a significant association between the LOD restricted serum androgen 

biomarker and an important prognostic factor of overall survival. Although our method 

is based on the concept of pseudo-values, its implementation in modeling biomarker data 

below the LOD is a novel application which leads to a useful semi-parametric alternative to 

the standard parametric approaches.

The rest of the article is organized as follows. We describe the pseudo-value based 

semiparametric modeling of observations below the LOD in Section 2. In Section 3, 

we conduct several simulations to investigate the performance of the proposed approach 

compared to a standard parametric approach. In Section 4, we revisit our motivating 

example of a prostate cancer data analysis, along with another real-life example of serum 

cotinine analysis from the NHANES data, and we discuss the overall results and their 

implications in Section 5.

2. Method

2.1 Construction of pseudo-values

Our method is based on a two steps approach. In the first step of our semiparametric model 

is to create the pseudo-values. Suppose Xi is the observed biomarker value (in original 

or a log-transformed scale) of ith unit in the sample and Zi is the vector of explanatory 

variables or covariates corresponding to the ith unit in a set of n i.i.d observations. Let 

E(Xi) = θ be the marginal mean and θi = E(Xi|Zi) be the conditional expectation given the 

covariates. Suppose θ̂ is an estimator of marginal mean θ and θ̂−i is the “leave-one-out” 

estimator of θ obtained from the remaining data after deleting the ith observation. Note that, 

all the Xis may not be complete, since there are biomarker measurements below the LOD 

which are not accurately recorded. For example, if the true biomarker value (Xj*) of the 

jth unit is below LOD, then the recorded biomarker value for the jth unit is Xj = LOD > 

Xj*. This means that observations below a LOD are essentially left-censored. This feature 

of the data has to be taken into account while computing the marginal estimator θ̂ and 

the subsequent “leave-one-out” estimators θ̂−i, i = 1,2,…, n. Therefore, to account for the 

left-censored biomarker values below the LOD, we employ a nonparametric Kaplan-Meier26 

based estimator of mean response for obtaining θ̂ and θ̂−i, i = 1, 2, …, n. Then, for a data with 

n observations, the biomarker pseudo-value corresponding to the ith observation is defined 

as

θi = nθ − (n − 1)θ−i, i = 1, 2, …, n
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Note that, the pseudo-values are obtained for all the n observations irrespective of whether 

the biomarker value is below the LOD, i.e. left-censored, or not. Here, the pseudo-value 

for the unit i measures the contribution of the unit i on the overall mean estimate of the 

biomarker variable. Therefore, the pseudo-value θ̂i can be regarded as an estimate of θi = 

E(Xi|Zi), the conditional mean given the covariates.

2.2 Semiparametric modeling using the pseudo-values

In the second step, we use the pseudo-values instead of the observed biomarker values, as 

the response variables for modeling the biomarkers given the covariates. We formulate the 

relationship between θi and Zi through a generalized linear model of the form

g(θi) = βTZi, i = 1, 2, …, n .

Here, β is the coefficient vector and g(.) is a suitable link function. For modeling the 

biomarkers, we choose identity link as a choice for g(.), although other choices, e.g. log-link 

for count data, are also possible. With the pseudo-values θ̂i (i = 1,2, …, n) being treated as 

the observed values of the mean response θi and Zis as explanatory variables, we estimate 

the coefficient β through a generalized estimating equation (GEE) given below.

U(β) = ∑
i = 1

n
Ui(β) = ∑

i = 1

n ∂
∂β g−1(βTZi)V i−1 θi − g−1(βTZi) = 0 .

Here, Vi is a working variance for θ̂i. The variance estimates of β̂ is obtained through the 

standard sandwich estimator as follows:

S = I(β )−1var(U(β))I(β )−1

where I(β) = ∑i = 1
n ∂

∂β g−1(βT Zi) V i−1 ∂
∂β g−1(βTZi) , var(U(β)) = ∑i = 1

n Ui(β )Ui(β )T .

The use of the generalized estimating equation27 and the sandwich variance estimator, 

makes the pseudo-value model robust to model and distributional misspecifications.

The large-sample properties of pseudo-value based regression methods in various settings 

have been examined in Overgaard et al.28, Overgaard et al.29, Graw et al.30 among others. 

In particular, Overgaard et al.28 showed that, under a general framework with independent 

censoring and certain regularity conditions, the estimated regression coefficients from the 

pseudo-value method are consistent and asymptotically normally distributed. The reader is 

referred to in Overgaard et al.28 for more details on the regularity conditions.

3. Simulation Studies

3.1 Simulation Settings

Simulation setting 1: Single lower limit of detection—Let Xi be the ith observation 

for the variable of interest and Zi be the vector of explanatory variables or covariates 
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corresponding to the ith observation in a set of n i.i.d observations. We use models for 

E(log(X)) via the identity link. The outcomes are generated using the following model:

log(Xi) = β0 + β1ZGi + β2ZBi + ϵi , i = 1, 2, …, n

where β0 = 0, ZG is a continuous covariate with samples drawn from N(0, 0.5), and ZB is 

a binary covariate with samples drawn from Bernoulli distribution with success probability 

of 0.4. Here, Zi = (ZGi,ZBi). The errors are generated from one of the two following two 

distributions:

i. Extreme-valued distribution such that exp(ϵ) follows a Weibull distribution with 

shape parameter 0.3 and scale parameter 3, to generate a skewed distribution

ii. Normal distribution with mean 0 and variance 4 to generate a symmetric 

distribution.

We choose two different sample sizes (n), 60 and 300, to evaluate the performances of the 

proposed method under small and large sample size scenarios. We consider two choices 

for the lower limit of detection: the tenth percentile or the twenty-fifth percentile. This 

means that the lowest 10% or the lowest 25% of the sample biomarker values are set as 

observations below the LOD.

We apply the semiparametric pseudo-value (PV) model for estimating the regression 

coefficients. In addition, we use the parametric Tobit regression approach for left-censored 

outcome to investigate the comparative performance of the PV model. We used the Tobit 

regression approach because it is one of the most popular parametric models for analyzing 

LOD restricted responses and has been found out to be the most powerful by Wiegend 

et al.14 in certain scenarios among a set of popular parametric models which included 

imputation based models, Bernoulli-Gaussian mixture models17,31, and nonparametric 

Buckley-James estimator based regression models32. The Tobit model is based on the 

assumption that the response variables are normality distributed. For a Tobit Model, if the 

true biomarker value of the jth unit is Xj* and the recorded biomarker value for the jth 

unit is Xj, then Xj =
Xj* if Xj* > LOD
LOD otℎerwise

 and Xj is modeled using log(Xj) = βT Zj + ϵj 

under the assumption that the error terms ϵjs are normally distributed. Then, the regression 

coefficient vector β is estimated through a maximum likelihood estimation approach using 

the probability density function and the cumulative distribution function of a standard 

normal distribution. We have used the censReg package33 in the R software (version 3.6.3) 

for estimating the MLE of β from Tobit models in our analyses.

Based on 1,000 Monte-Carlo simulations runs, we compare the two different methods by 

their average bias, average estimated model-based (theoretical) standard deviation (SD), 

average mean squared error (MSE), and average estimated 95% coverage probabilities. 

Moreover, we also compute the empirical SD of the estimators for both the methods based 

on the Monte-Carlo runs and compare them with the respective theoretical SD of the 

estimators for investigating the accuracy of the theoretical variance estimators.
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Simulation setting 2: Multiple limits of detection—This simulation setting is similar 

to simulation setting 1, except that the total set of observations (n) is divided into three 

subsets (subsamples of equal size) and are treated as three independent sets of samples 

with different limits of detection. In each of the three subsamples, the lowest quartile of 

observed outcomes is set as the lower limit of detection for that subsample. This simulation 

setting mimics the scenario where the same biomarker is being evaluated using different 

measuring instruments (or assays) leading to different limits of detections. Under this 

simulation setting, we consider three different LOD with an overall percentage of below 

LOD observations as either of 10% or 25% in the full sample of size n.

We apply the semiparametric PV model for estimating the regression parameters. The 

application of the Tobit model, however, is limited in this setting since the standard Tobit 

model has been developed to model data having only one lower LOD. Since this setting 

has multiple LODs to be handled in the same analysis, we fit separate likelihood based 

Tobit models for each of the three sets of data which have different lower LODs and 

pool the estimates from these three models to obtain a final weighted estimate where the 

weights are based on the sample sizes of the three datasets. The average bias, theoretical 

SD, empirical SD, MSE and 95% coverage probabilities are calculated based on 1000 

Monte-Carlo simulation runs.

3.2 Results of the Simulations

Table 1 presents the results for the extreme-value distributed outcomes having single 

detection limit. We observe that between the two methods, the PV model has the lowest 

MSE in estimating β1 and β2. Although the bias of estimation for the Tobit model is 

lower between the two methods, it produces highly unstable estimates with large standard 

deviations resulting in very high MSE. We also note that the bias of both the methods 

increase with larger proportion of observations below the LOD. On the other hand, the MSE 

decrease with the increased sample size. The estimated coverage probabilities for the Tobit 

model are close to the target coverage probability of 0.95 in almost all cases. Despite the fact 

the PV method has relatively larger bias, the estimated coverage of the PV model is close to 

that of the Tobit model as well as the target coverage probability of 0.95 in the majority of 

scenarios with extreme-value distributed outcomes.

Table 2 displays the results for the normally distributed outcomes having a single lower 

LOD. The Tobit model, has lower bias than the PV method but high SD leading to the higher 

MSE. Overall, the PV method has lower MSE than the Tobit model despite being a bit more 

biased. With the exception in few scenarios, the estimated coverage probabilities of both the 

PV and the Tobit models are close to the target coverage of 0.95. In few scenarios, the Tobit 

model slightly overshoots the target coverage, and the PV method has a coverage lower than 

the target.

We also provide figures in the supplement that describes the results of some extreme 

scenarios of very high proportion of outcomes below the LOD or a very large sample size. 

We observe for very large sample size of 1200, the PV model has lower MSE than the 

Tobit model for extreme-value distributed responses while the Tobit model’s MSE tends 

to be lower in the normally distributed outcomes (Supplementary Figures 1 and 2). The 
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MSE of both methods, however, tend to decrease with increased sample sizes. In addition, 

we observe that the MSE of the PV model is lower than the MSE of the Tobit model 

in the majority of the scenarios under a very high rate of 60% outcomes below LOD 

(Supplementary Figures 3 and 4). This superiority of the semiparametric PV model as 

measured by MSE, holds good for such high proportion of below-LOD outcomes even when 

the underlying normality assumption of the parametric Tobit model in satisfied.

To summarize all the results from simulating setting 1, we note that the PV model 

outperforms the parametric Tobit model in terms of the MSE, especially for small sample 

sizes when the distributional assumptions of the parametric models are not met. Even in 

settings where the distributional assumptions of parametric models are met, the performance 

of the PV method is at least as good as the parametric model.

Tables 3 and 4 present the results for the bias, SD, MSE and coverage of the methods 

discussed in simulation setting 2 (multiple detection limits) for extreme-value and normally 

distributed outcomes, respectively. We note that the bias of the estimators from both the 

semiparametric PV model and the modified Tobit model, explained in Section 3.1, increase 

with a larger proportion of observations below LOD, while the MSE values decrease as 

sample size increases. The PV method has consistently lower MSE than the Tobit model for 

all the simulation scenarios considered in the setting 2. Moreover, for non-normal responses, 

the Tobit model can lead to unstable estimation results which is evident from the highly 

inflated MSE in estimating β2 (Table 3). This is mainly due to the inaccurate variance 

estimation of the Tobit model as reflected by the large difference between the theoretical 

and the empirical SD of the Tobit model estimates for β2 (Table 3). The estimated coverage 

probabilities of both models are close to the target coverage probability. While the Tobit 

model, due to its large variance estimate, has a wider coverage than the PV model in 

the majority of the cases, there exists some small sample size scenarios where the PV 

model’s estimated coverage exceeds that of the Tobit model (Table 3 and 4). Overall, the 

semiparametric PV model is much more robust compared to the parametric Tobit model in 

modeling biomarkers restricted by multiple LODs.

4. Data Analysis

4.1 Serum Androgens Analysis from Prostate Cancer Clinical Trial

We analyze a prostate cancer trial from CALGB 90401 (Alliance) study34 to demonstrate 

the usefulness of our proposed semiparametric method in modeling clinical biomarkers 

subjected to LOD. This study is a randomized phase III clinical trial involving 1050 patients 

with metastatic castration-resistant prostate cancer where the patients were distributed 

between two treatment arms (presence or absence of Bevacizumab). Among the laboratory 

variables, measurements on three types of serum androgens were recorded: testosterone (T), 

androstenedione (A), and dehydroepiandrosterone (D). Serum androgens are known to play 

important roles in prostate cancer progression35. An important goal here is to study the 

impact of age on baseline serum biomarker levels in prostate cancer patients. In addition, we 

also investigate association between race and the biomarker levels. Similarly, association of 

serum levels post-treatment with age, race, and treatment arm can also be investigated.
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We apply the semiparametric PV model for each of the serum androgens. Age and race 

are considered as covariates for modeling each of the serum androgens separately. Age is 

modeled as a continuous variable while race (modeled as white or non-white) is a binary 

variable. In post-treatment analysis treatment group is also included as a binary covariate. 

The lower limits of detection vary between the three serum androgens depending on their 

units of measurement, and the resulting proportion of observations below the lower detection 

limits also differ between the three.

The LOD for T was 1 unit, while that for A and D were 5 units and 20 units respectively. 

At baseline, the percentage of patients with T, A, and D values that are below the LOD are 

39%, 18% and 57%, respectively. The median T at baseline using all the samples was 1 

unit, while the median T ignoring the observations below the LOD was 3 units. The baseline 

median of A using all the samples was 13.5 units while the median ignoring the below LOD 

samples was 17 units. For T, the baseline median using all the samples was less than 20 units 

and the median ignoring the below LOD values was 51 units. At 6-weeks post treatment, 

the percentage of patients with T, A, and D values below the LOD are 78%, 35% and 80%, 

respectively.

We use the logarithmic values of each serum measurement for modeling. We fit separate 

models at baseline and 6-weeks. We estimate the regression coefficients, and their sandwich 

variance estimates in each of the serum androgen PV models, and obtain the z-statistic and 

the corresponding p-value from each of the estimated coefficients. We also apply the Tobit 

model for each serum androgen and obtain the estimated coefficients and the corresponding 

p-values.

Table 5 shows the results from modeling of the three serum androgens at baseline using 

both the semiparametric PV approach and the Tobit model. We observe that age is negatively 

associated with the three serums androgens implying that serum levels tend to decrease 

as age increases. For T and D, the negative association with age was highly significant 

regardless of the method used. For A regression, the PV model infers marginal significance 

for association of A with age (p-value=0.08), while the Tobit model does not show evidence 

of association between A and age (p-value= 0.147). This is an interesting result since the 

PV model finds an important association between serum androgens and age which the Tobit 

model could not due a much larger variance estimate.

In Table 6, we present the results for the regression analyses at 6-weeks post-treatment. 

The proportions of patients with serum observations below the LOD (non-detects) have 

drastically increased at 6-week time compared to the baseline and this could be explained 

due to the treatment. Despite the high proportions of observations below the LOD, the 

PV model is still able to identify significant negative association between age and T 

(p-value=0.030), while the Tobit model fails to identify any association between T and 

age (p-value=0.134). These findings of association by the PV model are further supported 

by other clinical studies that have reported age to be associated with declines in serum 

androgens36,37. This highlights a scenario where the semiparametric PV model can capture a 

significant association that is missed by the parametric Tobit model in two separate models 
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(baseline and post-treatment). Statistically significant association is observed between A and 

treatment arm using both the PV model and the Tobit model.

4.2 Serum Cotinine Analysis from NHANES study

Serum Cotinine is a metabolite that can be used as a marker for both active smoking and 

passive smoking. In this section, we analyze the NHANES 2003-2004 data to investigate 

the effect of age and gender on the serum cotinine levels after adjusting for the smoking 

habits of the respondents. The data set included 1901 individuals who had information on 

their age, sex, smoking habits, and their serum cotinine levels were measured. From the 

data, we observed that 16% of the serum cotinine values were below the LOD. In order 

to assess the relationship of age and sex with serum cotinine, we fit censored regression 

models with serum cotinine levels as responses, and age, sex, and smoking habit (yes/no) as 

the covariates. We use our proposed semiparametric model as well as the parametric Tobit 

model for this analysis (Table 7). It is clear that age has positive significant association with 

the cotinine levels, while females have lower cotinine levels compared to males (Table 7). 

These association results are agreed upon by both the PV model and the Tobit model with 

different, but significant, p-values.

5. Discussion

This article is motivated by the necessity to develop a modeling approach for analyzing 

biomarkers with observations below the LOD that remains robust to misspecifications in 

model assumptions. To achieve this goal, we implement a semiparametric model based on 

pseudo-values which is free from distributional assumptions. To the best of our knowledge, 

we are the first to implement the pseudo-value (PV) approach for modeling biomarkers 

below the detection limit. Through our motivating prostate cancer clinical trial example, 

we emphasize the utility of our proposed semiparametric PV model approach in identifying 

important association between a LOD-restricted serum androgen biomarker and prognostic 

factor when the standard parametric Tobit model fails. Moreover, through simulation studies 

we show that our method produces lower MSE than the standard parametric regression 

model when the underlying distributional assumptions are violated. Even in simulated 

data where the distributional assumptions of the standard parametric models are met, the 

performance of our semiparametric model is competitive to that of the parametric models. 

In multi-center trials, often biomarkers are measured at institutional laboratories and LODs 

can differ between these resources. Unlike the standard Tobit model which fits separate 

likelihoods for different LODs resulting in multiple estimates of the same parameter of 

biomarker association, the semiparametric PV method can be easily applied to multiple 

lower detection limits to fit a single model on the same biomarker due to the different 

sources. Through the prostate cancer trial data, we show that, even in presence of high 

percentages of non-detects in serum androgens, our semiparametric method can identify 

signification biomarker associations.

Returning to our motivational example in prostate cancer, it has been reported that serum 

androgen levels have strong association with age of the patients36,37. In the 6-week post

treatment analysis, the serum androgen levels decline to great extents from the baseline 
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levels, due to the treatment effect, leading to the higher proportions of observations below 

the LOD than the baseline. Even in such a scenario, the semiparametric PV model is 

still able to identify significant negative association between age and T (p-value=0.030), 

while the Tobit model fails to identify any association between T and age (p-value=0.134). 

This raises the possibility of substantial loss of power of the parametric model due to the 

departure from the underlying assumptions and highlights the robustness of the PV model.

In summary, the semiparametric model based on pseudo-values is easy to use and 

implement. Our semiparametric PV model does not require distributional assumptions, it 

is robust to model misspecification than the standard parametric models. The pseudo-values 

are based on the leave-one-out jackknife technique. A typical pseudo-value for a unit 

measures the contribution of the unit on the overall mean of the response variable even 

if that unit has a censored response, i.e., a value below LOD. Hence, in the presence 

of multiple LODs in the same data, the PV model incorporates more information on 

the impact of the below LOD samples on the overall summary statistic, compared to an 

ad-hoc substitution approach that merely replaces all the observations below LOD by an 

artificial value, e.g., LOD/2. Investigators are encouraged to use this approach whenever 

they encounter single or multiple observations below the LOD. The use of biomarkers will 

continue to be an important area of research not only in diagnosing patients but will be also 

used in treating patients with disease.

We have focused in this article on the modeling of biomarkers as responses. For the serum 

androgen data, including baseline serum androgen as a covariate in modeling post-treatment 

serum level will lead to a more complicated modeling scenario where both response and 

one of the covariates are restricted to an LOD. As a future research, we plan to examine 

this complex modeling scenario and aim to develop methods for addressing it. We will also 

consider modelling the changes of serum levels from baseline to 6-weeks as many patients 

have serum levels recorded as below LOD at both time points.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement

This research was supported in part by National Institutes of Health Grants R21 CA195424-01 and 
R01 CA256157-01; United States Army Medical Research, Grant/Award Numbers: W81XWH-15-1-0467, 
W81XWH-18-1-0278; and the Prostate Cancer Foundation

References

1. Henry NL, Hayes DF. Cancer biomarkers. Molecular Oncology 2012;6: 140–146. [PubMed: 
22356776] 

2. Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nature Reviews 
Drug Discovery 2003;2: 566–580. [PubMed: 12838269] 

3. MacDougall D, Crummett WB.. Guidelines for data acquisition and data quality evaluation in 
environmental chemistry. Analytical Chemistry 1980;52: 2242–2249.

4. Helsel DR. Less than obvious-statistical treatment of data below the detection limit. Environmental 
Science & Technology 1990;24:1766–1774.

Dutta and Halabi Page 10

Pharm Stat. Author manuscript; available in PMC 2021 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. The Clinical 
Biochemist Reviews 2008;29:S49. [PubMed: 18852857] 

6. Hornung RW, Reed LD. Estimation of average concentration in the presence of nondetectable 
values. Applied Occupational and Environmental Hygiene 1990;5:46–51.

7. Helsel DR. Nondetects and data analysis. Statistics for censored environmental data. Wiley
Interscience, New York; 2005.

8. Schisterman EF, Vexler A, Whitcomb BW, Liu A. The limitations due to exposure detection limits 
for regression models. American Journal of Epidemiology 2006;163:374–383. [PubMed: 16394206] 

9. Gillespie BW, Chen Q, Reichert H, Franzblau A, et al. Estimating population distributions when 
some data are below a limit of detection by using a reverse Kaplan-Meier estimator. Epidemiology 
2010;21:S64–S70. [PubMed: 20386104] 

10. Arunajadai SG, Rauh VA. Handling covariates subject to limits of detection in regression. 
Environmental and Ecological Statistics 2012;19:369–391.

11. Tobin J Estimation of relationships for limited dependent variables. Econometrica 1958;26:24–36.

12. Uh HW, Hartgers FC, Yazdanbakhsh M, Houwing-Duistermaat JJ. Evaluation of regression 
methods when immunological measurements are constrained by detection limits. BMC 
Immunology 2008;9:1–10. [PubMed: 18211710] 

13. Tellez-Plaza M, Navas-Acien A, Crainiceanu C, Guallar E. A Tobit Model to Address the 
Instrumental Limit of Detection in the Study of Blood Cadmium and Peripheral Arterial Disease in 
US Adults. Epidemiology 2009;20:S187.

14. Wiegand RE, Rose CE, Karon JM. Comparison of models for analyzing two-group, cross-sectional 
data with a Gaussian outcome subject to a detection limit. Statistical Methods in Medical Research 
2016;25: 2733–2749. [PubMed: 24803511] 

15. Wang W, Griswold ME. Natural interpretations in Tobit regression models using marginal 
estimation methods. Statistical Methods in Medical Research 2017;26:2622–2632. [PubMed: 
26329751] 

16. Soret P, Avalos M, Wittkop L, Commenges D, et al. Lasso regularization for left-censored 
Gaussian outcome and high-dimensional predictors. BMC Medical Research Methodology 
2018;18:159. [PubMed: 30514234] 

17. Moulton LH, Halsey NA. A mixture model with detection limits for regression analyses of 
antibody response to vaccine. Biometrics 1995;51:570–1578.

18. Mattos TDB., Garay AM, Lachos VH. Likelihood-based inference for censored linear regression 
models with scale mixtures of skew-normal distributions. Journal of Applied Statistics 2018;45: 
2039–2066.

19. Zeller CB, Cabral CRB, Lachos VH, Benites L. Finite mixture of regression models for censored 
databased on scale mixtures of normal distributions. Advances in Data Analysis and Classification 
2019;13:89–116.

20. Kim S, Chen Z, Perkins NJ, Schisterman EF, et al. A Model-Based Approach to Detection 
Limits in Studying Environmental Exposures and Human Fecundity. Statistics in Biosciences 
2019;11:524–547. [PubMed: 33072224] 

21. Andersen PK, Klein JP, Rosthøj S. Generalised linear models for correlated pseudo-observations, 
with applications to multi-state models. Biometrika 2003;90:15–27.

22. Andrei AC, Murray S. Regression Models for the Mean of the Quality-of-Life-Adjusted Restricted 
Survival Time Using Pseudo-Observations. Biometrics 2007;63:398–404. [PubMed: 17688492] 

23. Overgaard M, Andersen PK, Parner ET. Regression analysis of censored data using pseudo
observations: An update. The Stata Journal 2015;15:809–821.

24. Ahn KW, Logan BR. Pseudo-value approach for conditional quantile residual lifetime analysis for 
clustered survival and competing risks data with applications to bone marrow transplant data. The 
Annals of Applied Statistics 2016;10:618–637. [PubMed: 29081872] 

25. Dutta S, Datta S, Datta S. Temporal prediction of future state occupation in a multistate model 
from high-dimensional baseline covariates via pseudo-value regression. Journal of Statistical 
Computation and Simulation 2017;87:1363–1378. [PubMed: 29217870] 

26. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. Journal of the 
American Statistical Association 1958;53:457–481.

Dutta and Halabi Page 11

Pharm Stat. Author manuscript; available in PMC 2021 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 
1986;73, 13–22.

28. Overgaard M, Parner ET, Pedersen J. Asymptotic theory of generalized estimating equations based 
on jack-knife pseudo-observations. The Annals of Statistics 2017;45:1988–2015.

29. Overgaard M, Parner ET, Pedersen J. Pseudo-observations under covariate-dependent censoring. 
Journal of Statistical Planning and Inference 2019;202:112–122.

30. Graw F, Gerds TA, Schumacher M. On pseudo-values for regression analysis in competing risks 
models. Lifetime Data Analysis 2009;15:241–255. [PubMed: 19051013] 

31. Moulton LH, Curriero FC, Barroso PF. Mixture models for quantitative HIV RNA data. Statistical 
Methods in Medical Research 2002;11:317–325. [PubMed: 12197299] 

32. Buckley J, James I. Linear regression with censored data. Biometrika 1979;66:429–436.

33. Henningsen A censReg: Censored Regression (Tobit) Models. 2020. R package version 0.5-32.

34. Kelly WK, Halabi S, Carducci M, George D, et al. Randomized, double-blind, placebo-controlled 
phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with 
metastatic castration-resistant prostate cancer: CALGB 90401. Journal of Clinical Oncology 
2012;30:1534–1540. [PubMed: 22454414] 

35. Huggins C, Hodges CV. Studies on prostatic cancer. Cancer Research 1941;1:293–297.

36. Vermeulen A. Androgens in the aging male. The Journal of Clinical Endocrinology and 
Metabolism 1991;73, 221–224. [PubMed: 1856256] 

37. Swerdloff RS, Wang C. Androgens and aging in men. Experimental Gerontology 1993;28:435–
446. [PubMed: 8224040] 

Dutta and Halabi Page 12

Pharm Stat. Author manuscript; available in PMC 2021 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dutta and Halabi Page 13

Table 1.

Simulation results based on 1000 Monte-Carlo runs with Weibull error distribution and single lower limit of 

detection (LOD)

n = 60

β 1 β 2

10% below LOD 25% below LOD 10% below LOD 25% below LOD

Bias Theoretical 
(Empirical) 

SD

MSE 
(coverage)

Bias Theoretial 
(Empirical) 

SD

MSE 
(coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(coverage)

PV 
model

−0.139 0.872 
(0.915)

1.643 
(0.926)

−0.271 0.698 
(0.746)

1.135 
(0.922)

−0.135 0.901 
(0.959)

1.763 
(0.936)

−0.262 0.727 
(0.778)

1.213 
(0.912)

Tobit 
model

−0.064 0.989 
(1.006)

2.018 
(0.936)

−0.108 0.923 
(0.954)

1.793 
(0.948)

−0.079 0.995 
(1.059)

2.135 
(0.942)

−0.098 0.926 
(0.986)

1.852 
(0.936)

n = 300

β 1 β 2

10% below LOD 25% below LOD 10% below LOD 25% below LOD

Bias Theoretical 
(Empirical) 

SD

MSE 
(coverage)

Bias Theoretial 
(Empirical) 

SD

MSE 
(coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(coverage)

PV 
model

−0.099 0.398 
(0.409)

0.336 
(0.944)

−0.241 0.312 
(0.324)

0.261 
(0.856)

−0.097 0.411 
(0.432)

0.366 
(0.926)

−0.245 0.325 
(0.330)

0.275 
(0.890)

Tobit 
model

−0.031 0.445 
(0.450)

0.402 
(0.952)

−0.050 0.410 
(0.420)

0.348 
(0.944)

−0.034 0.452 
(0.473)

0.430 
(0.940)

−0.068 0.416 
(0.419)

0.353 
(0.940)
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Table 2.

Simulation results based on 1000 Monte-Carlo runs with Normal Error distribution and single (LOD)

n = 60

β 1 β 2

10% below LOD 25% below LOD 10% below LOD 25% below LOD

Bias Theoretical 
(Empirical) 

SD

MSE 
(coverage)

Bias Theoretial 
(Empirical) 

SD

MSE 
(coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(coverage)

PV 
model

−0.165 0.921 
(0.996)

1.894 
(0.934)

−0.222 0.797 
(0.905)

1.528 
(0.904)

−0.092 0.947 
(1.095)

1.916 
(0.928)

−0.249 0.842 
(0.884)

1.564 
(0.926)

Tobit 
model

−0.060 1.044 
(1.000)

2.312 
(0.940)

0.050 1.067 
(1.197)

2.600 
(0.922)

0.008 1.051 
(1.104)

2.334 
(0.936)

−0.012 1.069 
(1.121)

2.414 
(0.934)

n=300

β 1 β 2

10% below LOD 25% below LOD 10% below LOD 25% below LOD

Bias Theoretical 
(Empirical) 

SD

MSE 
(coverage)

Bias Theoretial 
(Empirical) 

SD

MSE 
(coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(coverage)

PV 
model

−0.218 0.383 
(0.364)

0.330 
(0.892)

−0.293 0.353 
(0.336)

0.325 
(0.852)

−0.180 0.396 
(0.389)

0.342 
(0.920)

−0.262 0.367 
(0.356)

0.331 
(0.896)

Tobit 
model

−0.017 0.466 
(0.425)

0.400 
(0.960)

−0.017 0.478 
(0.444)

0.426 
(0.960)

0.015 0.474 
(0.450)

0.427 
(0.958)

0.013 0.484 
(0.463)

0.449 
(0.954)
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Table 3.

Simulation results based on 1000 Monte-Carlo runs with Weibull Error distribution with multiple LOD

n = 60

β 1 β 2

10% below LOD 25% below LOD 10% below LOD 25% below LOD

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

PV 
model

−0.157 0.871 
(0.937)

1.688 
(0.942)

−0.213 0.788 
(0.856)

1.419 
(0.916)

−0.174 0.901 
(0.960)

1.776 
(0.922)

−0.216 0.818 
(0.868)

1.480 
(0.916)

Tobit 
model

−0.048 1.012 
(1.108)

2.283 
(0.926)

−0.086 0.949 
(1.034)

2.003 
(0.924)

−0.118 1.947 
(1.168)

455.2 
(0.928)

−0.162 3.647 
(1.115)

1257.2 
(0.928)

n = 300

β 1 β 2

10% below LOD 25% below LOD 10% below LOD 25% below LOD

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

PV 
model

−0.093 0.414 
(0.425)

0.363 
(0.938)

−0.193 0.354 
(0.360)

0.293 
(0.910)

−0.091 0.428 
(0.454)

0.398 
(0.930)

−0.189 0.368 
(0.391)

0.325 
(0.898)

Tobit 
model

−0.028 0.447 
(0.456)

0.409 
(0.950)

−0.061 0.415 
(0.427)

0.359 
(0.942)

−0.033 0.451 
(0.480)

0.435 
(0.944)

−0.070 0.417 
(0.447)

0.380 
(0.928)
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Table 4.

Simulation results based on 1000 Monte-Carlo runs with Normal Error distribution with multiple LOD

n = 60

β 1 β 2

10% below LOD 25% below LOD 10% below LOD 25% below LOD

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

PV 
model

−0.140 0.942 
(1.015)

1.964 
(0.934)

−0.226 0.875 
(0.948)

1.745 
(0.934)

−0.069 0.967 
(1.018)

1.985 
(0.936)

−0.159 0.904 
(0.969)

1.796 
(0.918)

Tobit 
model

−0.045 1.064 
(1.161)

2.507 
(0.924)

−0.045 1.093 
(1.197)

2.662 
(0.928)

0.002 1.042 
(1.153)

2.429 
(0.926)

−0.030 1.065 
(1.178)

2.543 
(0.922)

n = 300

β 1 β 2

10% below LOD 25% below LOD 10% below LOD 25% below LOD

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

Bias Theoretical 
(Empirical) 

SD

MSE 
(Coverage)

PV 
model

−0.207 0.388 
(0.372)

0.334 
(0.894)

−0.266 0.365 
(0.350)

0.328 
(0.872)

−0.168 0.401 
(0.393)

0.345 
(0.922)

−0.232 0.379 
(0.366)

0.333 
(0.912)

Tobit 
model

−0.014 0.468 
(0.437)

0.411 
(0.958)

−0.016 0.480 
(0.454)

0.438 
(0.956)

0.020 0.472 
(0.454)

0.430 
(0.956)

0.011 0.483 
(0.465)

0.450 
(0.948)
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Table 5.

Results from the semiparametric PV model and Tobit model analysis of serum androgens at baseline from the 

CALGB 90401 prostate cancer data

Covariates

Estimated regression coefficients

Testosterone model Androstenedione model Dehydroepiandrosterone model

PV model 
coefficient (p-

value)

Tobit model 
coefficient (p-

value)

PV model 
coefficient (p-

value)

Tobit model 
coefficient (p-

value)

PV model 
coefficient (p-

value)

Tobit model 
coefficient (p-

value)

Age −0.011 (0.004) −0.026 (0.004) −0.006 (0.080) −0.006 (0.147) −0.020 (<0.001) −0.044 (<0.001)

Race (White 
vs. others)

0.107 (0.280) 0.110 (0.636) −0.062 (0.488) −0.080 (0.476) 0.033 (0.636) 0.046 (0.777)
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Table 6.

Results from the semiparametric PV model and Tobit model analysis of serum androgens at 6-weeks post

treatment from the CALGB 90401 prostate cancer data

Covariates

Estimated regression coefficients

Testosterone model Androstenedione model Dehydroepiandrosterone model

PV model 
coefficient (p-

value)

Tobit model 
coefficient (p-

value)

PV model 
coefficient (p-

value)

Tobit model 
coefficient (p-

value)

PV model 
coefficient (p-

value)

Tobit model 
coefficient (p-

value)

Age −0.009 (0.030) −0.026 (0.134) −0.002 (0.568) 0.000 (0.999) −0.008 (0.001) −0.029 (0.001)

Race (White 
vs. others)

−0.124 (0.329) −0.324 (0.469) −0.058 (0.446) −0.087 (0.458) −0.122 (0.065) −0.635 (0.003)

Treatment Arm 0.080 (0.263) 0.438 (0.139) 0.101 (0.046) 0.177 (0.019) 0.055 (0.116) 0.434 (0.006)
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Table 7.

Results from the modeling of serum cotinine from NHANES 2003-04 study to determine the effects of age 

and gender on cotinine levels obtained after adjusting for smoking habits

Covariates Regression Coefficient (p-value)

PV model Tobit model

Age 0.134 (<0.0001) 0.147 (<0.0001)

Gender (Female against male) −0.418 (0.0003) −0.517 (0.0001)

Smoking status (Smoker against non-smoker) 2.104 (<0.0001) 2.348 (<0.0001)
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