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INTRODUCTION

Since the early 1800s, Chesapeake Bay and its trib-
utaries have experienced a decrease in water quality
characterized by decreased overall diversity of dia -
tom species, increased occurrences of anoxic events,
increased rates of sedimentation (Cooper & Brush
1991, 1993, Kemp et al. 2005), and a shift from ben-
thic to pelagic production. The latter has been associ-
ated with an increase in the ratio of centric to pen-
nate diatoms and a decrease in water clarity (Cooper
& Brush 1993). Over the last 20 yr, sections of the
lower Chesapeake Bay and its tributaries have expe-
rienced a decrease in phytoplankton diversity and an

increase in the abundance of potentially harmful
algal taxa (Dauer et al. 2005, Marshall et al. 2005).
Algal blooms occur seasonally in Chesapeake Bay
and its tributaries, and many of the bloom-forming
taxa are potentially harmful or toxin-producing spe-
cies (Marshall et al. 2005, 2009). Since 2007, major
blooms of the harmful dinoflagellate Cochlo di ni um
polykrikoides have occurred annually during sum-
mer in the lower Chesapeake Bay and its tributaries
(Mulholland et al. 2009, Morse et al. 2011, 2013).

Worldwide, algal blooms appear to be increasing in
frequency because of cultural eutrophication (Paerl
1988, Smayda 1990, Pinckney et al. 2001). Eutrophi-
cation from nutrient over-enrichment, usually attrib-
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ABSTRACT: To better understand nutrient dynamics and factors that promote the initiation of
algal blooms, the Lafayette River, a tidal subestuary of Chesapeake Bay that experiences seasonal
algal blooms, was sampled daily for a period of 54 d in the fall of 2005. Three phytoplankton
blooms (chl a concentrations exceeding twice the average of monthly measurements from 2000 to
2009) occurred during this period: a mixed bloom of Akashiwo sanguinea and Gymnodinium sp.,
a mono specific Skeletonema costatum bloom, and a monospecific Gymnodinium sp. bloom. Over
the sampling period, nutrient concentrations increased following precipitation events and were
elevated between bloom periods but low during blooms. All measured forms of nitrogen (N) were
positively correlated with dinoflagellate abundance with a lag time of 3 to 5 d, suggesting a pos-
sible triggering effect, although not by any single form of N. Concentrations of NO2

− reached
10 µM between September and October, indicative of incomplete nitrification. Over a 24 h period,
nutrient concentrations and chl a biomass varied by an order of magnitude (0.1 to 1 µM N and 4.5
to 45 µg chl a l−1, respectively) and were strongly linked to the tidal phase. In the highly eutrophic
Lafayette River, when nutrient concentrations are high, phytoplankton blooms appear to be con-
trolled by spring-neap tidal modulation and wind-driven mixing; however, picoplankton abun-
dance does not appear to be linked to the spring-neap tidal cycle.
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uted to nitrogen (N) and/or phosphorus (P), is often
implicated as a causative factor in the formation of
both harmful and ecosystem-disruptive algal blooms
(EDABs) (Anderson et al. 2002, 2008, Sunda et al.
2006, Heisler et al. 2008). Blooms have also been
linked to perturbations in the ratios at which inor-
ganic nutrients are input relative to the Redfield ratio
(N:P of 16:1) (Hodgkiss & Ho 1997). Elevated ratios of
dissolved organic carbon (DOC) to dissolved organic
nitrogen (DON) (DOC:DON) (Heil et al. 2001, Lomas
et al. 2001, Anderson et al. 2002) have also been
implicated in bloom formation, while elevated N:sil-
ica (Si) or P:Si ratios are thought to select for dinofla-
gellates over diatoms (Smayda 1990, 1997). In con-
trast, the development of many EDABs has also been
linked to prolonged periods of lower than normal
nutrient concentrations (Gobler et al. 2005, Sunda et
al. 2006). This may be because of a positive feedback
scenario, where a noxious or otherwise unpalatable
EDAB species experiences decreased grazing pres-
sure, and thus nutrient recycling and availability are
reduced to competing taxa, thereby prolonging
bloom duration (Sunda et al. 2006). While it is certain
that nutrients play a major role in the formation of
algal blooms, no single nutrient or combination of
nutrients has emerged as a causative factor for the
formation of blooms, and the environmental condi-
tions promoting bloom development are still poorly
understood (Anderson et al. 2002).

Because algal blooms are seldom visible until cell
numbers exceed 106 cells l−1, blooms in the natural
environment are usually sampled only after the
bloom is already well established, nutrients have
been drawn down by the bloom organism, and com-
peting taxa are absent. Rarely are the conditions
leading up to or promoting bloom formation captured
in sampling programs because the temporal resolu-
tion of sampling is insufficient. Consequently, most
reports characterize fully mature or even senescent
blooms; thus, factors promoting blooms remain
largely unknown.

In coastal and estuarine environments, physical
forcing from tides and estuarine circulation play a
major role in the distribution and patchiness of
phyto plankton populations (Cloern et al. 1985, 1989).
Tidal forcing, estuarine circulation, and the behavior
of many bloom-forming organisms (e.g. vertical mi -
gra tion) all contribute to temporal and spatial patchi-
ness of blooms. Tidal transport and advection tend to
‘smear’ phytoplankton patches horizontally along
estuarine gradients (Lucas et al. 1999). Further, phys-
ical boundaries within an estuary can interrupt and
deflect density and wind-driven flows, often result-

ing in the formation of complex eddy circulation
(Geyer & Signell 1992, Shen et al. 1999). The impor-
tance of tidal transport processes on estuarine phyto-
plankton populations is highlighted in continuous
chl a monitoring programs and timeseries re cords,
where chl a concentrations vary in conjunction with
the tidal stage, and the chl a maximum often occurs
at a particular stage of the tidal cycle (Mallin et al.
1999, Li & Smayda 2001). The transient and ephe -
meral nature of these processes, which occur on tidal
and subtidal timescales, are rarely captured in fixed-
station monitoring programs in which samples are
collected weekly to monthly (Dustan & Pinckney
1989, Trigueros & Orive 2000). Consequently, most
monitoring programs are temporally and spatially
insufficient to capture blooms and their progression
from initiation to senescence, and small-scale, high-
frequency targeted studies on bloom initiation are
required to gain a better understanding of the pro-
cesses involved in the formation of algal blooms.

To better understand the timescales of variability in
phytoplankton populations and conditions promoting
algal blooms, we sampled the Lafayette River, a shal-
low, eutrophic subtributary of the lower Chesapeake
Bay where algal blooms regularly occur, at a fixed
station on a daily basis at the same phase of the tidal
cycle for a period of 54 d in fall of 2005, a period
when blooms routinely occur (Fig. 1). Ambient dis-
solved inorganic nitrogen (DIN) concentrations in the
Lafayette River are often >10 µM, and the concen -
tration of dissolved in organic phosphorus (DIP) is
 typically above 1 µM. Between 2000 and 2009, the
Chesa peake Bay mon i toring program station LFB01
in the Lafayette River had an average DIN concentra-
tion of 5.8 µM (SD = 8.8 µM), and the average DIP
concentration at this station was 0.74 µM (SD =
0.84 µM) (Chesapeake Bay Program 2009, www.
chesapeakebay. net/  data_waterquality.aspx). The
La fa yette River has a water residence time of 1 to
4 mo, depending on the amount of rain in a given
year (White 1972) or event-scale processes such as
nor’easters and tropical storms, which may modulate
the residence time (Paerl et al. 2006). The combina-
tion of a long residence time and high nutrient loads
favors the growth of dinoflagellates (Margalef 1978,
Sellner et al. 2001), making this an ideal location to
observe algal bloom dynamics.

The goal of this study was to identify factors pro-
moting the initiation of algal blooms and to relate
changes in phytoplankton community structure with
nutrient concentrations on short timescales charac-
teristic of developing blooms. Sampling on a daily
basis allowed for higher temporal resolution of
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phytoplankton populations, nutrient dynamics, and
physical forcing than most monitoring programs
afford.

METHODS

24 h tidal phase sampling

To understand how algal abundance and nutrient
dynamics are controlled by tidal forcing, we sampled
a tidal subestuary of the lower Chesapeake Bay, the
Lafayette River (Fig. 1; Center for Coastal Physical

Oceanography, CCPO), on an hourly basis for a
period of 24 h. A Hydrolab DataSonde 4a water qual-
ity multiprobe was used to measure conductivity and
water temperature at each sampling time. Water was
collected, beginning on July 18, 2005, at 06:00 h local
time, in an acid-cleaned carboy. In the lab, water was
withdrawn and filtered onto Whatman GF/F glass
fiber filters for chl a analysis. Nutrient samples were
collected after filtration through 0.2 µm Supor filters.
Nutrient and chl a samples were immediately frozen
and stored in a freezer until analysis. Tidal height
data were obtained from the NOAA Physical
Oceanography Real-Time System (PORTS) station at
Sewell’s Point in the Elizabeth River (Fig. 1). The dis-
tance between the sampling site in the Lafayette
River and the NOAA Sewell’s Point tide gauge is
<12 km, and on average, tidal height predictions for
the Lafayette River lag those for Sewell’s Point by
approximately 20 min. Since data were collected on
an hourly basis, the time of measured low water at
Sewell’s Point and low salinity in the Lafayette River
are offset by approximately 1 h.

Daily tidal phase sampling

Based on the results from the hourly sampling,
daily sampling of surface water from the Lafayette
River was timed to coincide with the highest ob -
served algal biomass, which was at the incoming tide
approximately 2 h after the low tide in the Lafayette
River. Samples were only collected during daylight
hours. When the flood tide occurred at night, the
sampling interval was extended approximately 12 h
to coincide with the subsequent flood tide during
daylight; this happened on August 22 and September
2 and 7. Prior to water sampling, dissolved oxygen,
salinity, and water temperature were measured in
situ using a Hydrolab DataSonde 4a water quality
multiprobe. Because of the arrangement of the sen-
sors on the sonde, all parameters were measured at
the bottom of the water column. The average depth
of the water during the sampling period was 1 m.
Water samples were collected from the surface using
an acid-cleaned bucket, placed into a 20 l acid-
cleaned polycarbonate carboy, and transported to the
laboratory <3 km away.

Sample handling and analyses

Once at the laboratory, water samples were kept
well mixed by adding a magnetic stir bar to the car-
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Fig. 1. Study area, showing sampling sites on the Lafayette
River at the Center for Coastal Physical Oceanography
(CCPO), Norfolk International Airport (KORF), NOAA Physi-
cal Oceanography Real-Time System (PORTS) station at
Sewell’s Point, NOAA PORTS station at S. Craney Island,
and Virginia Department of Environmental Quality water 

quality station LFB01
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boys and gently stirring their contents. Samples for
nutrient analyses were immediately filtered through
a 0.2 µm Pall sterile microculture capsule using a
peristaltic pump. The filtrate was placed into acid-
cleaned bottles and stored frozen until analysis. NO3

−

+ NO2
−, NO2

−, urea, PO4
−3, and silicate (SiO4

4–) were
measured using an Astoria Pacific nutrient autoana-
lyzer according to manufacturer specifications and
consistent with the colorimetric techniques outlined
by Parsons et al. (1984). Ammonium (NH4

+) concen-
trations were measured by the phenolhypo chlorite
method of Solorzano (1969). Total  dissolved nitrogen
(TDN) and total dissolved phosphorus (TDP) were
analyzed at Old Dominion University’s Water Quality
Laboratory, following the standard procedures and
protocol outlined for the Chesapeake Bay water
quality monitoring program (http://archive. chesa -
peakebay.net/pubs/quality_assurance/doc-EPA903-
R-96-006.pdf). DON was calculated as the difference
between TDN and DIN. Dissolved organic phospho-
rus (DOP) was calculated as the difference between
TDP and DIP. Nutrient concentrations that were be -
low the detection limit were assigned values of the
detection limit for statistical purposes.

Whole water samples (500 ml) were preserved with
Utermohl’s modified Lugol’s solution for enumeration
of microplankton and nanoplankton and with 1%
glutaraldehyde (final concentration) for enumeration
of picoplankton. Phytoplankton were quantified
microscopically as described by Marshall & Nesius
(1996), and autotrophic picoplankton (0.2 to 2 µM)
were enumerated via epifluorescent microscopy fol-
lowing filtration onto polycarbonate Nuclepore filters
with a pore size of 0.2 µm (Affronti & Marshall 1994,
Marshall & Nesius 1996). Chl a samples were col-
lected onto glass fiber filters (Whatman GF/F) and
stored frozen until analysis using the non-acidifica-
tion fluorometric technique of Welschmeyer (1994)
within 3 wk of collection. Phytoplankton blooms are
hereafter defined as when the cell abundance of a
single taxon exceeded 0.5 × 106 cells l−1 for a period
of 3 d or longer and/or daily chl a concentrations ex -
ceeded 44 µg l−1, twice the average chl a concentra-
tion for the nearby Chesapeake Bay monitoring pro-
gram station LFB01 (Fig. 1) from 2000 to 2009 (Morse
et al. 2011).

Correlation and statistical analyses

Phytoplankton taxonomic abundance (as phyla)
was compared to nutrient concentrations by calculat-
ing the cross-correlation function using The Math-

Works MATLAB software, which follows the cross-
correlation function equation given by Box et al.
(2008). Because phytoplankton growth rates are on
the order of days, a time lag in the response of phyto-
plankton abundance to nutrient loading events was
expected. Therefore, we compared nutrient concen-
trations with phytoplankton abundance at 1 d inter-
vals ranging from 7 d previous through 7 d forward in
time. Additionally, to explore the effect of autocorre-
lation among nutrients, the autocorrelation function
of each nutrient compound was plotted for a 7 d
period. The 95% CI was calculated by the program
using 2 SDs of either the cross-correlation function or
the autocorrelation function.

Meteorological and supplementary data

Atmospheric pressure and tidal height data were
obtained from the NOAA PORTS station at Sewell’s
Point (Fig. 1, Sewell’s Point), and wind speed data
were obtained from the NOAA PORTS Craney Island
station near the mouth of the Lafayette River (Fig. 1, S.
Craney Island). Precipitation data were obtained from
Norfolk International Airport (Fig. 1, KORF). Surface
nutrient and chl a data for the Virginia Department of
Environmental Quality (VADEQ) Lafayette River sta-
tion LFB01 (approximately 1 km upriver from the
CCPO sampling site) from 2000 to 2009 were ob -
tained from the Chesapeake Bay Program’s data hub
(http://chesapeakebay.net/data/ downloads/ cbp_ water
_  quality_database_1984_ present).

RESULTS

Hourly nutrient and chl a variability

Nutrient and chl a concentrations were measured
hourly over a 24 h period from July 18 to 19, 2005, in
the Lafayette River to determine the effect of tides on
these water quality parameters. There was no precip-
itation during the sampling period, and the Lafayette
River has no freshwater tributaries or inputs other
than runoff from precipitation. The Lafayette River
experiences semidiurnal tides, and the concentra-
tions of both chl a and nutrients appear to have semi-
diurnal maxima and minima linked to the tidal phase
(Fig. 2).

Over the 24 h sampling period, NO3
− + NO2

− con-
centrations in the Lafayette River varied by an order
of magnitude, chl a varied by a factor of 8, and
this variability appeared to be tidally controlled
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(Fig. 2a,b). Chl a concentrations were highest ap -
proximately 2 to 3 h after low tide (Fig. 2a,b). Nutri-
ent concentrations were highest at maximum flood
tide, when chl a concentrations were low. The salin-
ity measured in the Lafayette River lagged behind
tidal height observations for Sewell’s Point by ap -
proximately 1 h (Fig. 2b). Based on the chl a variabil-
ity observed over the tidal cycle, we elected to collect
samples for our 54 d daily study (August 15 to Octo-
ber 8, 2005) approximately 2 h after the predicted
low tide in the Lafayette River, when chl a, and thus
phytoplankton biomass, was highest.

Phytoplankton abundance

Between August 15 and October 8, 2005, 3 major
blooms occurred in the Lafayette River (Fig. 3a). The
first bloom, a mixed-species dinoflagellate bloom
dominated by Akashiwo sanguinea (3.2 × 106 cells l−1,
>88.4% total abundance), was already in pro gress at
the start of the daily sampling period on August 15,
2005. However, on August 16, an unidentified Gym -
no dinium sp. was the dominant species (0.5 × 106

cells l−1), comprising 48 and 42% of the total phyto-
plankton abundance on August 16 and 17, respec-
tively (Fig. 3a). At this time, concentrations of dis-
solved urea, NH4

+, NO3
−, and NO2

− were at or near

their limits of analytical detection (Fig. 3b). Subse-
quently, dinoflagellate abundance decreased until
populations were <14 000 cells l−1 by August 18, 2005.
At this time, dissolved N concentrations in creased,
and NO2

− and NH4
+ concentrations reached 7.2 and

10.4 µM, respectively, by August 24 (Fig. 3a,b). Dia -
toms and cryptophytes comprised 86% of the phyto-
plankton at this time, but total phytoplankton abun-
dance was still <1.0 × 106 cells l−1.

The second bloom occurred be tween August 28
and September 3, 2005. Beginning about August 25
and between August 27 and September 3, the rela-
tive abundance of diatoms and cryptophytes in -
creased, and the greatest total phytoplankton abun-
dance observed during the study period occurred on
September 1, at 1.2 × 107 cells l−1 (Fig. 3a). Diatoms
were the dominant taxa on August 28 and 31 and
September 1, while cryptophytes were dominant on
August 29 to 30 (Fig. 3c). Between August 31 and
September 3, Skeletonema costatum was the domi-
nant phytoplankter enumerated in our samples
(Fig. 3a,c). Diatoms comprised 96.9% of the total
phytoplankton abundance on August 31, with 9.2 ×
106 diatom cells l−1, and increased to 10.7 × 106 dia -
tom cells l−1 on September 1, when they comprised
89.7% of the phytoplankton population (Fig. 3a,c).
Dia toms remained abundant through  September 5.
As diatoms and cryptophytes increased in abun-
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Fig. 2. (a) Hourly chl a (µg l−1) and
NO3

− + NO2
− (NOx, µM) measured

in the Lafayette River at the Cen-
ter for Coastal Physical Oceanog-
raphy (CCPO); NO3

− and NO2
−

displayed similar concentrations
and trends between time points
and, thus, are reported as NOx for
clarity. (b) Hourly tidal height (m
above mean lower low water,
MLLW) measured at Sewell’s
Point in the Elizabeth River and
salinity measured in the Lafayette
River at CCPO. All measurements 

made on July 18 to 19, 2005
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dance, dissolved N concentrations
became de pleted, and NO2

− or NH4
+

were the dominant forms of dissolved
N in the system (Fig. 3b).

After September 5, the relative
abundance of filamentous cyanobac-
teria increased (Fig. 3c), although the
total cell number was much lower than
that observed during the diatom bloom
(Fig. 3a). At the same time, on Septem-
ber 6, dissolved N concentrations in -
creased and remained >5.0 µmol l−1

for the duration of the study (Fig. 3b).
The third bloom occurred between

September 25 and 28, 2005. Begin-
ning September 20, dinoflagellate rel-
ative abundance increased, and dino-
flagellates comprised 72.9% of the
phytoplankton community by Sep-
tember 25, with an unidentified Gym -
no dinium sp. reaching an abundance
of 1.4 × 106 cells l−1 and dominating
the assemblage (Fig. 3a,c). On Sep-
tember 28, the abundance of Gym no -
dinium sp. reached 2.0 × 106 cells l−1,
while cryptophyte abundance was at
or near its lowest level during the
54 d study.

Picoplankton abundance was great-
est in late August, with a maximum
abundance of 2.8 × 109 cells l−1 on Au-
gust 21 (Fig. 4a). Pico plankton abun-
dance generally declined throughout
the study period, with the minimum
abundance occurring on October 6, at
8.0 × 108 cells l−1 (Fig. 4a); however,
brief fluctuations in picoplankton
abundance (lasting 2 to 4 d) oc curred
at approximately weekly timescales
throughout the study period (Fig. 4a).

Nutrient concentrations

DIN (NO2
−, NO3

−, and NH4
+) and

urea concentrations were at or near
the limits of detection at the start of the
study, between August 15 and 18
(Fig. 3b), when dinoflagellate abun-
dance was high (Fig. 3a). NO2

− con-
centrations increased after Au gust 20,
reaching nearly 7 µmol l−1 on August
25. NH4

+ concentrations also in creased,
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Fig. 3. (a) Stacked daily abundance of cyanobacteria and phytoplankton taxa
(× 106 cells l−1) measured in the Lafayette River at the Center for Coastal
 Physical Oceanography (CCPO). (b) Stacked concentrations of dissolved inor-
ganic nitrogen species (NO3

−, NO2
−, ammonium [NH4

+]) and urea (µM meas-
ured at CCPO). (c) Relative taxonomic abundance of plankton expressed as 
a daily percent of the total cell count (legend is the same as in [a]). 

Dates given as mm/dd in 2005
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but then both NO2
− and NH4

+ were drawn down as
phytoplankton biomass increased be tween August
24 and September 3 (Fig. 3a,b). Beginning Septem-
ber 5, NO2

− concentrations increased from near the
detection limit (0.02 µmol l−1) to 10 µmol l−1 by the
end of the study period (Fig. 3b).

NO3
− concentrations were generally low relative to

other forms of N, typically <2 µmol l−1 and <2% of
TDN until September 14 (Figs. 3b & 4b). In mid-Sep-
tember, NO3

− concentrations increased, reaching a
maximum of 9 µmol l−1 by October 8, and NO3

− rep-
resented a substantial fraction of the DIN pool (up to
30%) during the latter third of the study period
(Fig. 3b). NO3

− concentrations were lower during the
September dinoflagellate bloom, when cyanobacter-
ial abundance was also high (Fig. 3a,c).

Concentrations of NH4
+ ranged from below the

detection limit (<0.02 µmol l−1) to >10 µmol l−1 and
were highly variable over the course of the 54 d
study. The highest NH4

+ concentrations were ob -
served be tween bloom periods, while large de -
creases in NH4

+ concentrations oc curred during peri-
ods when phytoplankton cell abundance increased
(Fig. 3a,b). NH4

+ concentrations were highest prior to
the diatom bloom at the end of August (10.4 µmol l−1

on August 24) and prior to and after the September
dinoflagellate bloom (10.1 µmol l−1 on September 21
to 22 and 11.6 µmol l−1 on October 8). NH4

+ concen-
trations were near or below the detection limit on
August 31 during the diatom bloom and during the
dinoflagellate blooms on August 15 to 16 and Sep-
tember 28.

Urea concentrations were low throughout the sam-
pling period, with a maximum concentration of
1 µmol l−1 on September 23 (Fig. 3b). Urea concentra-
tions comprised only a small portion of the TDN pool
at any given time (generally <1% of TDN, but always

<2.5% of TDN). SiO4
4− concentrations were high,

ranging from 30 to 70 µmol l−1 throughout the study
period (data not shown), and the ratio of dissolved
SiO4

4− to DIN was always >1. SiO4
4− concentrations

de creased from 80 µmol l−1 to 60 µmol l−1 as a diatom
bloom formed in late August but were never de -
pleted (data not shown).

DIP concentrations were also relatively high
throughout the study period, ranging from 0.5 to
3.5 µmol l−1, well above the limit of analytical detec-
tion (Fig. 4b). At the onset of the study in mid-
August, DIP concentrations were higher (maximum
of 3.4 µmol l−1) but decreased by nearly a factor of 2
following the diatom bloom in late August and
remained lower for the remainder of the study period
(average 1.6 ± 0.6 µmol l−1) (Figs. 3a & 4b).

DON concentrations did not change much over
the 54 d study period (average 24.9 ± 2.6 µmol l−1),
with one exception; DON concentrations were lower
during the dinoflagellate bloom from September 25
to 28, and the lowest concentration was observed on
September 27 (13.9 µmol l−1) (Figs. 3a & 4b). DOP
concentrations were lower (maximum of 1.0 µmol
l−1) than DIP concentrations and were often below
the limit of analytical detection (Fig. 4b). Because
the DOP concentrations were so low and the vari-
ance was so great, patterns in DOP concentrations
relative to phytoplankton abundance could not be
elucidated.

Meteorological and physical  controls 
on  estuarine variability

Between August 6 and 12, prior to the start of the
daily sampling, 11.5 cm of precipitation was meas-
ured at KORF (data not shown). Precipitation oc -

Fig. 4. (a) Picoplankton abundance
(× 109 cells l−1; left y-axis) and total
microplankton and nanoplankton
abundance (× 106 cells l−1; right y-
axis). (b) Dissolved organic nitrogen
(DON, µM N; left y-axis) and dis-
solved inorganic phosphorus (DIP, µM
P) and dissolved organic phosphorus
(DOP, µM P); right y-axis. DOP con-
centrations below detection limit
(0.027 µM) were assigned values of
the detection limit for statistical pur-
poses. Dates given as mm/dd in 2005
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curred on August 15 and 16 (1.1 cm) after a dinofla-
gellate bloom had formed in the Lafayette River
(Figs. 3a & 5a), on August 23 (2.5 cm) and 28 (3.1 cm),
between September 16 and 20 (6.8 cm), and be tween
October 6 and 8 (8.0 cm) (Fig. 5a). Nutrient concen-
trations in creased following rainfall events, ex cept
on August 15 (Figs. 3b & 5a).

The wind was predominantly from the northeast
during 4 periods: Au gust 24 to 25, September 5 to 16,
 September 24, and September 29 (Fig. 6a), during
which times the chl a concentration generally de -
creased (Fig. 6b), often resulting in the end of a
bloom. As the remnants of Hurricane Katrina (down-
graded to a tropical storm) passed to the west of the
region beginning August 30, the wind speed in -
creased and the direction shifted from the south to
the southwest as the atmospheric pressure decreased
to <1005 mbar on August 31 (Figs. 5a & 6a). This
period of high wind coincided with a decrease in the

abundance of cryptophytes and an increase the
abundance of diatoms; a bloom of Skeletonema
costa tum followed the August 30 to 31 wind event
(Figs. 3a,c & 6a). There was a prolonged period of
high winds beginning Sep tember 3 as a high-
pressure system moved through the region following
the remnants of Hurricane Katrina (Figs. 5a & 6a),
and this corresponded to the demise of the diatom
bloom (Fig. 6b). The high winds blew predominantly
from the northeast during this period (Fig. 6a) and
resulted in a positive tidal residual at Sewell’s Point
in the Elizabeth River (Fig. 5c). This positive tidal
residual also coincided with an increase in salinity in
the Lafayette River after September 5 (Fig. 5b). In
addition, the water temperature in the Lafayette
River cooled by 4°C during this event (Fig. 5b).

The winds increased again from September 10 to
12 as another high-pressure system passed through
the region, and the winds were again predominantly

Fig. 5. (a) Atmospheric pressure
(Atm P, mbar) recorded at
Sewell’s Point and daily precipi-
tation (cm) measured at Norfolk
International Airport. (b) Salinity
and temperature (°C) measured
at the Center for Coastal Physical
Oceanography. (c) Tidal range
(m) and tidal residual (measured;
predicted height, m) recorded at
Sewell’s Point. Dates given as
mm/dd in 2005. Breaks in the
data of (b) are due to the unavail-
abillity of the sonde on these days

Fig. 6. (a) 3 h mean wind vector
velocity (m s−1) measured at
Craney Island. (b) Chl a (µg l−1)
and dissolved inorganic nitrogen
concentration (DIN, µM N; left y-
axis) measured at the Center for
Coastal Physical Oceanography
and daily precipitation (cm; right
y-axis) measured at Norfolk Inter-
national Airport. Dates given as 

mm/dd in 2005
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from the northeast (Figs. 5a & 6a). A third high-wind
event occurred as the effects from Hurricane Ophelia
passed over the Outer Banks of North Carolina and
moved off the coast of Virginia from September 14 to
16 (Figs. 5a & 6a). Although below hurricane
strength, this storm system was associated with sub-
stantial precipitation between September 16 and 20
(Fig. 5a). The predominantly northeasterly winds
associated with this system again resulted in a posi-
tive tidal residual in the Elizabeth River at Sewell’s
Point (Figs. 5c & 6a) as well as increased salinity and
water temperature in the Lafayette River (Fig. 5b).
Water temperature and salinity in the Lafayette River
decreased abruptly on September 20 (Fig. 5b) as the
remnants of Hurricane Ophelia passed by the region,
resulting in >3 cm of precipitation (Fig. 5a). Two
more high-wind events occurred in late September
and one occurred in October, but the duration of the
high winds was short and the direction from which
they came was not constant for >24 h (Fig. 6a); how-
ever, the dinoflagellate bloom in September ended as
the winds increased in intensity from the northeast
on September 29.

Spring-neap tidal modulation ap peared to affect
nanoplankton and microplankton abundance more
than picoplankton abundance (Figs. 4a & 5c). Total
phytoplankton (nanoplankton plus microplankton)
abundance was higher during neap tides and lowest
during spring tides. The dinoflagellate blooms in
August and September, the diatom bloom in August,
and the high cyanobacterial abundance in Septem-
ber all occurred during neap tides (Figs. 3a & 5c).
Both the maximum and minimum pico plankton
abundances occurred during spring tides. Picoplank-
ton abundance was not as strongly controlled by the
tidal cycle, and their abundance appeared to cycle on
a 7 to 9 d basis regardless of the tidal phase (Figs. 4a
& 5c).

DISCUSSION

Near-monospecific algal blooms are now common
occurrences in Chesapeake Bay and its tidal tributar-
ies, as well as other highly eutrophic estuarine sys-
tems worldwide. However, despite decades of
research, our understanding of the controls on bloom
formation are poorly understood because the condi-
tions ante cedent to bloom formation are seldom char-
acterized with the necessary temporal resolution;
most nutrient monitoring programs sample too infre-
quently (weekly to monthly), and ad hoc bloom sam-
pling is largely focused on blooms only after they

have formed. In addition, chl a and nutrient concen-
trations can vary by an order of magnitude over diur-
nal time scales, and phytoplankton abundance is
often strongly linked to the tidal phase (Fig. 2). To
capture changing environmental conditions as
blooms initiate, develop, and dissipate, we sampled
the Lafa yette River on a daily basis during late sum-
mer, when blooms are common, at the same portion
of the tidal cycle for a period of 54 d in 2005. During
this time, there were 2 dinoflagellate blooms and 1
diatom bloom. Sampling on a daily basis allowed for
detailed observations regarding the sequence of
events leading up to blooms as well as comparisons
of phytoplankton abundance, ambient nutrient con-
centrations, and physical forcing (wind, precipita-
tion, and spring-neap modulation of the tidal cycle)
on timescales relevant to phytoplankton growth and
bloom formation.

Nutrient dynamics and climatological controls on
the formation of blooms

Nutrient loading because of precipitation and asso-
ciated runoff and subsequent water column stratifi-
cation play a key role in stimulating the formation of
Cochlodinium polykrikoides blooms in the Lafayette
River (Morse et al. 2011). Similarly, during the pres-
ent study, precipitation and associated increases in
ambient nutrient concentrations preceded the diatom
and dinoflagellate blooms in late August and Sep-
tember, respectively (Figs. 3a,b & 5a). Despite peri-
ods of intense rainfall prior to the start of this study,
ambient nutrient concentrations were depleted at the
start of this study, likely because the nutrient
demand of a mixed bloom of Akashiwo sanguinea
and Gymnodinium sp. already in progress was re -
moving nutrients as quickly as they were supplied.
A. sanguinea and Gymnodinium sp. are bloom-
 forming dinoflagellates typical during the summer
months in Chesapeake Bay and its tributaries (Mar-
shall 1995, Marshall et al. 2005). Subsequent to this
bloom, large increases in DIN concentrations were
observed after rainfall events, and increases in
phytoplankton biomass were generally associated
with decreases in DIN. Following precipitation on
August 22 to 23, nutrient concentrations increased by
a factor of 5, and a diatom bloom dominated by Ske -
le to nema costatum formed during a neap tide period
(Figs. 3a & 5a), rapidly drawing down dissolved N
concentrations to the limit of detection (Fig. 3b). The
relatively high wind speed at this time (Fig. 6a) may
have contributed to the formation of a diatom rather
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than a dinoflagellate bloom since dinoflagellates typ-
ically thrive when wind-driven mixing and turbu-
lence are low (Margalef 1978, Sellner et al. 2001,
Smayda & Reynolds 2001). Rain events associated
with high nutrient inputs accompanied a frontal sys-
tem associated with Hurricane Ophelia in mid-Sep-
tember. After this system passed, nutrient concentra-
tions were high, the wind velocity decreased, and a
dinoflagellate bloom ensued, likely because of high
nutrient concentrations and decreased turbulence
(Margalef 1978, Sellner et al. 2001, Cloern & Dufford
2005). While nutrients were not depleted during this
dinoflagellate bloom, the concentrations of both DIN
and DON were reduced during the bloom, consistent
with previous observations that many dinoflagellates
are able to use organic nutrients (Graneli et al. 1999,
Burkholder et al. 2008) to supplement their nutrition.

Subsequent to the diatom bloom at the end of Au -
gust and the dinoflagellate bloom in September,
there were numerous high-wind (but low- preci pi -
tation) events, and this resulted in low phytoplank-
ton abundance, higher cyanobacterial abundance
(Figs. 3a & 5a), and the accumulation of NH4

+ and
NO2

− (Fig. 3b), likely because of N regeneration as
bloom organisms settled and decayed, as well as
incomplete nitrification, a process common during
this time of the year (McCarthy et al. 1977, 1984, Hor-
rigan et al. 1990). It is likely that regenerated nutri-
ents were also contributed from benthic fluxes as
high winds allow mixing of surface and bottom water
and sediment resuspension in these shallow-water
systems (Horrigan et al. 1990, Rizzo 1990). In Sep-
tember and early October, prior to and following the
September dinoflagellate bloom, NO3

− also accumu-
lated in the water column, likely because of nitrifica-
tion. At these times, cyanobacterial abundances were
high relative to other phytoplankton taxa and
picoplankton abundance was also higher at these
times (Figs. 4a & 5a). Cyanobacteria are important
components of most phytoplankton communities and
thrive under stratified conditions common in the
summer, where they can take advantage of regener-
ated nutrient compounds (Paerl et al. 2006). Regener-
ated N is thought to fuel the bulk of primary produc-
tion during summer months when new inputs of N
are limited to stochastic events. Many dinoflagellate
mixotrophs can also graze on picocyanobacteria
including Synechococcus (Jeong et al. 2005, Burk-
holder et al. 2008), a common component of the
cyanobacterial community in Chesapeake Bay (Mar-
shall & Nesius 1996, Chen et al. 2006), and pico -
plankton abundance was lowest during the Septem-
ber dinoflagellate bloom.

The Redfield ratio of carbon, N, and P nutrient ele-
ments in the environment has long been used to infer
which nutrient is in shortest supply. Selection for or
against diatoms has been associated with the supply
of SiO4

4– relative to other nutrient elements (e.g. Si:N
and/or Si:P ratios) (Conley & Malone 1992, Smayda
1997). Justic et al. (1995) combined stoichiometric
and absolute concentration criteria to assess the
potential nutritional limitation of phytoplankton and
defined N limitation as DIN:P <10, Si:DIN >1, and
total DIN <1 µM. Similarly, P limitation was defined
as DIN:P >22, Si:P >22, and P <0.1 µM (Justic et al.
1995). During the present study period, the DIN:DIP
ratio was <10 prior to September 15, indicative of
potential N limitation, but DIN concentrations were
only depleted (<1 µM) during the first 2 blooms in
August. After August 31, neither DIN nor DIP was
depleted, and therefore it is unlikely that phyto-
plankton were limited by N or P during the remain-
der of the study (Justic et al. 1995). Similarly, through-
out the duration of the study, the Si:DIN ratio was
always >1, the Si:DIP ratio was always >16, and the
minimum concentration of Si was 28.4 µM, suggest-
ing that SiO4

4– concentrations were never limiting to
diatom growth (Conley & Malone 1992, Justic et al.
1995).

Estuarine environments are often N-limited sys-
tems (Howarth 2008); however, in contrast to our ob -
servations that Si and P were unlikely to limit pro-
ductivity during our sampling period, monthly data
from VADEQ’s monitoring station in the Lafayette
River (LFB01) (Fig. 1) suggest that P might regulate
productivity, at least seasonally. Between the years
2000 and 2009, chl a and DIN concentrations at
LFB01 showed some seasonality, with higher concen-
trations during spring and fall (Fig. 7a,c). In contrast,
PO4

3− concentrations were highest between August
and October in all years (Fig. 7b). While DIN and DIP
concentrations were positively correlated (Pearson
moment correlation, t-test, p < 0.05) at this station,
chl a concentrations were positively correlated only
with DIP (Pearson moment correlation, t-test, p <
0.001) and not DIN concentrations. It is important to
remember that the VADEQ data are collected at a
monthly interval and bi-weekly during the summer
months; thus, the time interval is not particularly rel-
evant to the life cycle of bloom organisms.

To explore these relationships further using data
collected at a relevant timescale to bloom formation
and because phytoplankton growth and bloom for-
mation often lag nutrient inputs by several days, we
calculated the time-lagged correlations between
nutrient species and algal abundance from our data
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in the Lafayette River. To explore the effect of auto-
correlation on nutrient concentrations (i.e. the serial
correlation of a variable over time), the autocorrela-
tion function of each nutrient compound was calcu-
lated for a 7 d period (Fig. 8a). All nutrient com-
pounds showed some degree of autocorrelation, but
NO3

− and PO4
− had the greatest amount, with posi-

tive autocorrelations exceeding the 95% CI from 1 to
5 d forward in time (Fig. 8a), suggesting either a rel-
atively steady source of these nutrients within the

system or a lower removal rate com-
pared to other nutrient compounds
(e.g. lower uptake rates). NH4

+ con-
centrations showed the least amount
of autocorrelation among measured
nutrient compounds (Fig. 8a), with
correlations exceeding the CI for 1 d
forward in time only, suggesting vari-
able concentrations of NH4

+ over time
and enhanced removal rates com-
pared to other nutrients, particularly
given the high concentrations of NH4

+

observed in mid- to late September.
To observe the effect of DIN con-

centrations on the abundance of dif-
ferent algal taxa, the cross-correla-
tion function was calculated for DIN
versus phytoplankton and cyanobac-
teria for 7 d in both forward and
reverse time (Fig. 8b). DIN concentra-
tions were strongly positively corre-
lated with cumulative precipitation
from 4 d in reverse time through 7 d
in forward time, suggesting that DIN
concentrations are tightly coupled to
precipitation totals (Fig. 8b). DIN was
negatively correlated with chl a con-
centrations at zero time lag and 1 to
2 d in reverse time and was positively
correlated with dinoflagellate abun-
dance from 3 to 7 d in forward time
(Fig. 8b). To explore this relationship
further, the cross-correlation function
of dinoflagellate abundance versus
nutrient compounds was plotted.
There was a strong positive correla-
tion (correlations exceeding the 95%
CI) between dinoflagellate abun-
dance and all N compounds from 2 to
7 d in reverse time (Fig. 8c). This sug-
gests that when N concentrations
increase, dinoflagellate abundance
increased 2 to 7 d later, and likewise

when N concentrations decrease, dinoflagellate
abundance de creased accordingly. It is important to
point out that correlation does not imply cause; how-
ever, because phytoplankton growth is dependent on
nutrients and an increase in biomass requires N
inputs, the increase in nutrient concentration likely
caused the increase in dinoflagellate abundance.

The positive correlations between dinoflagellate
abundance and all forms of measured N suggest that
no particular nutrient species was re quired for bloom
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Fig. 7. Virginia Department of Environmental Quality water quality data
showing (a) chl a (µg l−1), (b) PO4

3− (µM P), and (c) dissolved inorganic nitro-
gen (DIN, µM N), measured at station LFB01 between January 2000 and De-
cember 2009. Dates given as mo-yr. In (a), the value of the peak in August
2009 was >300 µg l–1 and was caused by a Cochlodinium polykrikoides bloom 

(see Morse et al. 2013)
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development but rather that the N concentra-
tion in general (NO3

−, NO2
−, NH4

+, urea, and
DON), regardless of N species, was important.
Dinoflagellates have been shown to be nutri-
tionally flexible (Anderson et al. 2002, Burk-
holder et al. 2008), and they ap pear to thrive in
eutrophic estuarine systems where there is vari-
ability in the form of N supplied.

While the positive-lagged correlation be -
tween N concentrations and dinoflagellate
abundance may be in di cative of growth stimu-
lation by N, the negative correlation between
PO4

3− and dinoflagellate abundance with little
to no lag may suggest that P is drawn down dur-
ing blooms to support cellular P demand and
growth but is not growth limiting. Consistent
with this observation, as dinoflagellate abun-
dance increased during the September Gymno-
dinium sp. bloom, PO4

+ concentrations de -
creased by the largest amount ob served during
the study period, but PO4

+ was never de pleted
(Figs. 3a & 4).

There was a strong positive correlation
between diatom abundance and PO4

+ concen-
trations from 3 to 5 d in reverse time and a
strong positive correlation with SiO4

4– concen-
trations from 2 to 3 d in reverse time (data not
shown). Additionally, there was a strong nega-
tive correlation between diatom abundance and
NO2

− and DIN concentrations 2 d in forward
time (data not shown). This suggests that dia tom
abundance increased in re sponse to increases in
PO4

+ and SiO4
4– concentrations, but when dia -

tom abundance decreased, the concentrations
of DIN and NO2

− in creased 2 d later, perhaps
because of nutrient recycling following the col-
lapse of the diatom bloom in early September.
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Fig. 8. (a) Autocorrelation function of nutrient com-
pounds measured at the Center for Coastal Physical
Oceanography (CCPO). (b) Cross-correlation func-
tion of dissolved inorganic nitrogen (DIN) versus en-
vironmental variables and phytoplankton taxa at
CCPO, (c) Cross- correlation function of dinoflagel-
late abundance versus nutrient compounds at CCPO.
A 7 d forward time lag is shown along the x-axis in
(a), with Day 0 being the present (i.e. no time lag),
and a 7 d forward and reverse time lag is shown
along the x-axis in (b) and (c). In all plots, the corre-
lation coefficient at each time lag is shown along the
y-axis, with the 95% CI for correlations shown as
dashed lines. DON: dissolved  organic nitrogen; DOP:
dissolved organic phosphorus, NH4

+: ammonium; 
SiO4

−4: silicate
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The high concentrations of NO2
− observed during

the present study and the importance of NO2
− to

bloom formation suggest that NO2
− may play a larger

role in estuarine environments than previously be -
lieved. The uptake of NO2

− is well documented in
oceanic environments, where it can be an important
source of N (Collos 1998, Lomas & Lipschultz 2006).
While McCarthy et al. (1977, 1984) re ported high
NO2

− concentrations (up to 10 µM) in Chesapeake
Bay and speculated that NO2

− was derived from
incomplete nitrification associated with destratifica-
tion and mixing of surface and bottom waters, the
abundance and utilization of this N source has not
been widely examined in most estuarine systems.
Concentrations of NO2

− were observed that were
consistent with those re ported for Chesapeake Bay
(McCarthy et al. 1977) and in the York River (L. Kill-
berg & D. Bronk unpubl. data). NO2

− can be formed
during incomplete nitrification and be released by
phytoplankton during NO3

− uptake and less com-
monly during incomplete denitrification (Zehr &
Ward 2002, Lomas & Lipschultz 2006). Because the
process of nitrification is carried out by 2 separate
groups of organisms, ammonium-oxidizing bacteria
(AOB) and/ or ammonium-oxidizing archaea (AOA)
and nitrite-oxidizing bacteria (NOB) (Zehr and Ward
2002, Ward et al. 2007), the process of nitrification
can become uncoupled, and NO2

− may accumulate in
the water column (McCarthy et al. 1984). AOB are
abundant throughout Chesapeake Bay, with the
highest diversity in the oligohaline upper bay region
(Ward et al. 2007). In the polyhaline portion of the
bay, AOA may be the dominant nitrifiers (Wuchter et
al. 2006, Ward et al. 2007). Based on the tight cou-
pling of NO2

− and NH4
+ concentrations, the low NO3

−

concentrations prior to mid-September (Fig. 3b), and
the presence of sufficient oxygen in the water col-
umn (data not shown), the accumulation of high NO2

−

concentrations in the present study was likely a
result of in complete nitrification. This may occur
when populations of AOB and NOB become de-cou-
pled over space and time.

Physical controls on phytoplankton community
dynamics

Wind-driven mixing in shallow estuaries can both
inject nutrients from the benthos (Rizzo 1990) and
result in the demise (Morse et al. 2011) or dissipation
of algal biomass (Figs. 3a,b & 6a). Although the
Lafayette River is generally sheltered from the wind,
wind speed and direction may be important factors

controlling taxonomic dominance and bloom devel-
opment. For example, during a period of low and
variable winds (August 28 to 30), phytoplankton bio-
mass was high, and cryptophytes and diatoms were
both abundant (Figs. 3a,c & 6a). However, following
a period of high winds from the southwest (Fig. 6a),
diatom abundance increased while cryptophyte
abundance decreased drastically (Fig. 3a,c). The in -
crease in wind velocity likely mixed the entire water
column in the shallow Lafayette River, causing parti-
cle resuspension including diatoms, sediments, and
other passive particles and creating unfavorable con-
ditions for flagellates.

Following Hurricane Katrina, a high-pressure sys-
tem in the region resulted in an extended period of
high winds (>7 m s−1) from the northeast. This type of
atmospheric system forces oceanic water landward,
resulting in decreased riverine flushing, accumula-
tion of oceanic water in Chesapeake Bay, positive
tidal residuals at Sewell’s Point, and saltwater intru-
sion into the Lafayette River. Chesapeake Bay and its
tributaries are more vulnerable to northeasterly
winds because of the fetch over which they develop
and the north-south orientation of the bay mouth.
The combined wind-driven and tidal mixing caused
by this high-pressure system likely contributed to the
decreased algal biomass observed during this period
(Figs. 3a & 6a).

In contrast, winds from the southwest typically
result in enhanced riverine flushing and offshore
transport of water through the bay mouth. The
Lafayette River is sheltered from the southwesterly
winds by the landmass; thus, the effects of high wind
from this direction are reduced. Therefore, although
the winds were strong between August 30 and Sep-
tember 2, the winds were from the southwest and so
did not result in the same degree of mixing and tur-
bulence in the system, while allowing nutrient inputs
from mixing to stimulate diatom growth. Diatoms
characteristically thrive better in higher energy envi-
ronments than dinoflagellates (Margalef 1978,
Smayda & Reynolds 2001, Huisman et al. 2004). In
contrast, the high-pressure system that dominated
from September 4 through 9 resulted in northeasterly
winds that resulted in a large oceanic influence on
the lower Chesapeake Bay and its subtributaries, in -
cluding the Lafayette River. Salinity in the Lafayette
increased, there was a high positive tidal residual
during this period, phytoplankton abundance de -
creased, and DIP concentrations decreased despite
the lower algal biomass, suggesting increased tur-
bidity and particle-associated nutrient removal
(Froelich 1988).
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Timescales of variability important to
 phytoplankton

One of the problems associated with sampling
blooms is coping with estuarine variability on time -
scales ranging from minutes to months and biological
variability associated with the lifecycles and behav-
ior of phytoplankton cells and populations (Hubertz
& Cahoon 1999, Lucas et al. 2006, Glibert et al. 2008).
Within a 24 h period of fixed-station sampling, nutri-
ent concentrations and phytoplankton abundance
varied by an order of magnitude, and nutrient and
chl a concentrations were strongly linked to the tidal
cycle (Fig. 2), as had been ob served in this system
previously (M. R. Mulholland et al. unpubl.). Shallow
estuaries and coastal systems are highly dynamic
areas where a multitude of physical, chemical, and
biological factors concomitantly influence the distri-
bution, growth, and transport of the phytoplankton
community, which in turn modify the nutrient
regimes of the surrounding waters. This variability
makes it difficult to understand controls on blooms
using data collected during most long-term monitor-
ing programs that may sample systems only at
weekly to monthly intervals, a frequency insufficient
to capture ephemeral blooms. The tidal control of
biomass and nutrient concentrations in estuarine
environments has direct implications for interpreting
monitoring data that are not tidally resolved (Cloern
1991, Lucas et al. 1999). In addition, it is now known
that stochastic events are important for controlling
nutrient inputs during large parts of the year, and
these affect nutrient loading from the water- and air-
sheds as well as nutrient inputs from the benthos
(Paerl 1997).

When daily measurements of chl a concentrations
from the present study are compared to chl a concen-
trations measured monthly at LFB01 (Fig. 1), it is
apparent that short-term variability is missed in the
monthly sampling record. In addition, when chl a
concentrations are compared at the 2 sites (<1 km
apart) on the same date in August, a factor of 2 differ-
ence is observed between the sites, highlighting the
often patchy spatial distribution of chl a in these
tidally dominated systems. While the VADEQ chl a
monitoring record between 1999 and 2009 includes
periods of high chl a concentrations in the Lafayette
River, the magnitude of these peaks is far less than
those measured during targeted studies of blooms
(Mulholland et al. 2009, Morse et al. 2011). It is
important to remember that the Chesapeake Bay
monitoring program and associated sampling by
VADEQ was not and is not designed to capture the

dynamics of ephemeral blooms but rather was de -
signed as a statewide effort to understand long-term
changes in Chesapeake Bay phytoplankton commu-
nities. A wide suite of methods, including in situ
monitoring devices, remote sensing, and targeted
sampling at a high temporal frequency, can be used
to supplement long-term monitoring systems, such as
those in place in Chesapeake Bay, to fully capture
the dynamics associated with algal populations in
stochastic estuarine ecosystems. To this end, continu-
ous monitoring of nutrients and chl a provides a
much more exhaustive and complete view of estuar-
ine dynamics, but these data sets are still limited
(Glibert et al. 2008). In addition, most long-term mon-
itoring programs do not collect tidally resolved data.
Timing sampling to a specific portion of the tidal
cycle may help to resolve processes occurring at least
at tidal time scales. With the advent of technologies
such as in situ monitoring devices (e.g. Lucas et al.
2006) and in situ nutrient analyzers (e.g. Glibert et al.
2008), targeted sampling aimed at understanding
conditions promoting the initiation of blooms will
become easier. However, integrating the complex
coupled climatological, physical, and biological forc-
ings associated with blooms is likely to remain a chal-
lenge into the future.
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