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ABSTRACT
BLOCK TRANSFORM CODING OF PRESAMPLE FILTERED DATA
Thomas A. Shull

0ld Dominion University, 1984
Director: Dr. Joha W. Stoughton

This dissertation addresses the application of non—adaptive trans-
form coding for bit rate reduction of presampled filtered data. Trans-
form coding is examined as an alternative to conventional pulse code
modulation (PCM) for multi-source, fixed rate data acquisition systenms.
Typical bandlimiting presample filters introduce redundancy into the
sequence of data samples. Linear transformation of successive N-length
blocks of the data sequence and subsequent binary coding of the
resulting components is shown to lead to reduced average bit rate for
the same less distortion as PCM.

Four Butterworth filters, two corresponding to eight bit PCM
systems, and two corresponding to ten bit PCM systems, are considered.
The orthonormal transforms (bases) examined are a f£ilter derived
Karhunen-Loueve, a discrete cosine, and a discrete Legendre transform.
A reference for the previous use of the discrete Legendre basis for
transform coding is not known.

Transformation is modeled as.a bank of basis dependent FIR filters
for analysis. Thus, transform coding is interpreted in terms of
gspectral energy capture. The magnitude squared transfer function of

the presample filter is assumed to define the worst case spectral
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envelope or power spectral density of the sampled filter output. This
is incorporated into the model to establish an upper bound on the
average component energy for the various bases. The bases are compared
analytically ﬁsing a bit rate reduction bound, adapted from Zelinski and
Noll, and energy packing considerations. The analysis indicates that
bit rate reduction is possible and that large block lengths are not
required.

The transform coding strategy for N = 16 is implemented on
simulated and real data. Bit rate reduction on the order of 25 percent
establishes merit for the traunsform coding strategy. Additionally,
transform coding is observed to result in less distortion than PCM for

signals having intervals of reduced spectral activity.
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CHAPTER ONE

INTRODUCTION

This dissertation addresses the application of non-adaptive, real-
time transform coding of data that has been bandlimited by presample
filtering. This type of data is common to multi-source, fixed rate
sampled data acquisition instrumentation systems. These systems histor-
ically use conventional pulse code modulation (PCM) for data represen-—
tation. The presample filter is included to satisfy the sampling
theorem [l]. The assertion is that the filter imposes redundancy on the
sequence of data samples. Hence appropriate treatment of the redundancy
is expected to lead to bit rate reduction compared to the independent
sample coding of PCM. This research examines block transform coding as
a viable strategy to effgct bit rate reduction. The focus is on the
comparative performance of a class of orthonormal bases (transforms)
with respect to a representative family of filters. The bases con-
sidered are a Karhunen-Loueve basis derived from the filter character-
istic, the discrete cosine basis, and a basis of discrete Legendre
polynomials. The discrete Legendre basis has received little or no
attention for transform coding. Bit rate reduction conditioned solely
on presample filter imposed.redundancy is a new application for trans-
form coding. It is hoped that this work will lead to the incorporation
of transform coding into future data acquisition systems.

There has been widespread use of sampled data acquisition systems

over the past several decades. One area where it is quite common is
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aerospace research where data are simultaneously gathered from many
sources in real time for storage or transmission over a fixed rate
channel. One of the most commonly used systems is the classical PCM
system depicted in Figure 1.1 in which each analog source is sampled,
quantized, then binary coded. The encoded samples from each source are
then multiplexed with those of other sources for final disposition.

The figure also shows a presample low-pass filter, a system compo-
nent that is almost always included in order to meet the bandlimited
restriction imposed by the sampling theorem; These filters are non-~
ideal, i.e. have finite roll~off, and the sampling frequency is
generally many times the filter cutoff (3 dB) frequency, typically twice
the frequency at which the filter response falls below some predeter-~
mined relative distortion level; The rationale behind this is that any
spectral component present beyond half the sampling frequency would be
below the distortion level and indiscernable from quantizing noise.

As a result of presample filtering, the sampled source is known to
have buillt—-in redundancy in that the samples are not independent. That
is, they are each related in some fashion to previous samples. This can
be seen by recalling that the output of a real (causal) linear, time
invariant filter can be written as

®
x(t) = [ h(1) s(t - 1) d= (1.1)
0
the convolution of the input and the impulse response of the filter.
?he existence of redundancy suggests the possiblity of data compression

over the independent sample encoding of PCM.
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" Frequently, in the data acquisition applications being considered,
the transmission channel bit rate or available storage is‘limitedﬁ This
leads, through system design- trade-offs, to limitations on the sample
rate (source bandwidth), and number of sources that can be accommodated
by a system. If by preprocessing (transformation) of the samples from a
filtered source the sample sequence could be represented by fewer bits,
more sources could be accommodated within the same communication channel
or alternately the filter cutoff frequency and sample rate of a given
source could be increased.

Some techniques that are currently employed for source redundancy
removal are linear predictive coding or differential PCM (DPCM), delta
modulation, and transform coding. Netravali and Limb [2] give a review
of these and several other techniques as applied to image data com-
pression. Transform coding is addressed in this work. This technique
involves treating successive blocks of the input sequence as vectors,
and then performing a linear basis transformation to produce a new
vector with less redundancy between components. The components of the
new vector are then quantized and encoded more efficiently than the
input samples. At the receiver the representation of the original
sequence of source samples is reconstructed using the inverse trans—
formatioﬁ- This has been termed block quantization by Huang and
Schultheiss [3] or basis restricted transform coding by Pearl [4].

This system is depicted in Figure 1.2.

Transform coding as applied to data compression has been considered
by many authors over the past several decades. The work is tradition-
ally related to the coantext of the signal. Huang and Schultheiss [3],

Pearl {4], Davisson [S5], Segall [6], and Yip and Rao [7] have considered
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the general problem of transform coding of stationary Gaussian vector
sources. Campanella and Robinson [8], Guner and Granger [9], and
many others have considered the application of transform coding to
speech compression. Transform coding, both one-dimensional and two-
dimensional, as applied to images has been reported by Netravali and
Limb [2], Tasto and Wintz [10}, Habibi and Wintz [11], and Kekre and
Solanki [12], and many others. Application to video transmission has
also been reported [13, 14]. However, little or no research on pre-
gsample filter created redundancy has been found.

As will be shown, the redundancy removal manifests itself in the
redistribution of the source energy among the transformed components
resulting in the use of a different number of binary bits (word length)
for each component. If enough of the input energy is contained in a
reduced number of components of the resulting vector then some com~
ponents need not be retained or transmitted at all. Thus the energy
redistribution may result in fewer total binary bits per block or fewer
average binary bits per input sample to represent the sequence of trans—
form components with the same mean square distortion as required of the
original sequence representation (PCM).

In most practical telemetry data systems the quantizer is a single
device, called an A-to~D converter (often shared by many sources), which
has as output a natural binary representation of ghe uniformly spaced
quantization level to be assigned to the analog input sample. Thus it
is a combination of quantizer and binary coder. The transform coding
system will require an input quantizer. The transformation is assumed
to be a digital process with the output components quantized by appro-

priate truncation. Digital processing hardware and A-to-D converters
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have improved to the point where real-time transformation prior to
transmission or storage is realistic as a practical strategy for bit
rate reduction.

The binary coded output of either system could be further encoded
using, for example, a Huffman [15] code if the probability of occurrence
of the quantizing levels are available or at the expense of additional
buffering and processing. Haralick and Shanmugam [16] consider linear
predictive coding of the tramsform components for speech applications
and Tasto and Wintz [10] consider Huffman coding of image data. Binary
representation of quantizer levels with no further encoding is to be
considered in this dissertation work since this is common to telemetry
systems.

Adaptive techniques which attempt to track changes in signal
éharacteristics have been considered by Zelinski and Noll [17],
Netravali and Limb [2], Tasto and Wintz [10}, and Ekamb#ram and Kwatra
[13] to name a few. These techniques involve variable bit assignment,
variable basis selection or wvariable subspace (component) selection.
These techniques require additional "side information” to be stored or
provided to the receiver. Adaptive techniques are not considered in
this work.

Many transforms or bases have been considerad for data compression
purposes. These include the Karhunen-Loueve [18] basis used by many
authors, the discrete cosine [19, 20] and other trigonometric trans-
forms [12], the Walsh-Hadamard transform [21, 22], the discrete Fourier
transform [9], the slant and Haar transform [23], generalized discrete
transforms [7, 24,], and a discrete linear basis having integer compo-

nents [16]. These various bases have received attention due to some
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special properties which are useful to a particular signal class or
application.

The transform bases that are to be considered in this work are the
Karhﬁnen—Loueve bases derived from the presample filter transfer
functions, the discrete cosine basis, and a basis of discrete Legendre
polynomials. The Karhunen-Loueve basis is known to be optimum for
stationary, zero mean sources. Thus it is the prime candidate for this
application. The discrete cosine basis has been shown by many authors
to match the Karhunen-Loueve performance for certain other applications
and is thus also included. Transformation using the discrete Legendre
basis is equivalent to least mean square curve fitting to polynomials of

the form
P(t) = ag + ajt + apt? +..uk at® . (1.2)

Polynomials receive widespread use for interpolation and curve fitting
of sampled telemetry data. Thus this basis is also considered to be
worthy of consideration in this study. A reference for its previous use
in transform coding has not been found.

In this dissertation the application of transform coding to sampled
data sequences which are the output of a low—pass filter with known
transfer function is addressed. Only fixed a-priori basis selectiop and
coefficient bit allocation are considered. The ability to achieve bit
rate reduction over PCM while maintaining the same or less distortion is
demonstrated. This is achieved without the burden of excessive computa-
tion load. Expressions for basis comparison and bit allocation using
the presample filter characteristic are presented. Processing of signal

plus noise is addressed for analysis of input digitizer effects. The
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potential of transform coding to provide less distortion than PCM for
signals with intervals of low activity, particularly for the DL basis,
is also demonstrated.

In Chapter Two transform coding is modeled for the purpose of
analysis, and bases mentioned above are definmed and quantization and bit
allocation are examined. In Chapter Three results of analysis are pre-
sented for comparison between the bases under consideration. In Chapter
Four results of simulated transform coding on both simulated and real
data are presented. Conclusion and a discussion of areas of future work

are given in Chapter Five.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER TWO

TRANSFORM CODING AND BASIS

2.0 Introduction

In this chapter the technique of transform coding of sequences is
presented and modeled in a way that is suitable for the telemetry
application analysis, and the three transforms (bases) under comnsidera-
tion are defined. In transform coding successive N-length segments of
the input are treated as vectors in N-dimensional Euclidean signal
space. Each vector is transformed or projected, onto a M~dimensional,
M < N, subspace spanned by a set of orthonormal basis. The resulting
set of components or basis coefficients is quantized and coded in place
of the N original components or input samples. At the recelver the
original sequence is reconstructed using the inverse transformatiomn.
Distortion is treated as the mean square error between the input
sequence and the reconstructed sequence.

For M < N the resulting vector represents the input with least mean
square error. The‘least mean square criteriom has practical signifi-
cance since it can be interpreted in the terms of average energy in a
finite sequence. This energy interpretation is used throughout this
work.

Transformation results in redistribution of the input energy
(dynamic range) among the componeuts and can lead to data compression in
two forms. First, it can lead to the use of fewer total binary digits

for coding of the sequence of components than is required for the

10
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original sequence of input samples. Secondly, if the resulting error of
subspace (M < N) representation can be tolerated, the N samples can be
replaced by M components, further reducing the average bit rate per
input sample. The comparative performance between bases is then related
to the energy redistribution.

In Section 2.1, transform coding is defined in terms of Hilbert
signal space projection and the concept of energy capture is introduced.
Some useful Hilbert space properties are given. The concept of compo-
nent sequences and energy distribution or input energy capture for
transformation of successive segments of the input sequence are intro-
duced in Section 2.2. In Section 2.3 transformation is modeled by a
bank of finite impulse response (FIR) filters for the purpose of coeffi-
cient energy prediction. This also provides a model for development of
insight into the transform coding strategy. The presample filter is
brought into the analysis in this section after making appropriate
assumptions related to the application being addressed. The three bases
under consideration are then defined. The well known Karhunen—Loueve
transform basis, which is known to provide the theoretical optimum
subspace energy capture and bit rate for stationary processes is pre-
sented in Section 2.4. The way in which an a-priori approximation is
generated for this study is then presented. The discrete cosine basis,
common to transform coding, and the discrete Legendre basis for which no
reference pertaining to transform coding has been found are defined in
Section 2.5. Finally, in Section 2.6 reconstruction error and known
results on bit allocation are examined. This results in a measure for

the analytical comparison of basis. Section 2.7 is a chapter summary.
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2.1 Seqqence Representation by Orthogonal Transformation
Let an ordered segment or block of N successive samples from
a source sequence x*(p), p ¢ [0, P - 1] be denoted =x=(n),
ne [0, N-1]. Now considér approximating x(n) by a sequence
denoted x(n), n e [0, N -bl] which is a linear combination of a subset
of N 1linearly independent reference sequences {um(n), me [L,N], n¢e

[0, N - 1]}. Then =Xx(n) can be written as

M
o) = ) au (n), ne [0, N-1] . (2.1.1)
mm
m=1
The a, are called the coefficients of the approximation. The
criterion for the approximation is the minimization of the squared

error defined by

N N
B = ei(n) = Y [x(@) - %(a)]? . (2.1.2)
n=1 n=1

Once the a; are determined they can be used to represent the input in
a least mean square sense relative to the set {uy}. If M= N the
{am} can be found such that the error is equal to zero. If M < N and
the resulting error can be tolerated, the set {aj} can be used in lieu
of the input segment =x(n). The approximation §(n) is obtained using
equation (2.1.1).

Approximation using the minimum squared error criterion is math-
matically tractable and has a practical significance since expressions
of the form of equation (2.1.2) can be interpreted as the energy in a

" finite sequence. Thus the set of coefficients {am} can be said to
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represent x(n) with the minimum error energy relative to the given set
of reference sequences.

The above equations can be written in vector matrix form by
equating the sequences to vectors in N-dimensional Euclidean signal

space. Letting *T indicate the transpose of a vector, define

[2(0),%(1),...,x(N = 11T, (2.1.3a)

[k
i

[%(0),%(1), .0, %(N - 1)]T , (2.1.3b)

%2
]

and

u = [0€0), u (1),ee, u @ - DY, m=1,2,...,8 (2.1.3¢)

as the input, approximating, and reference vectors respectively. Since
the u are linearly independent, they constitute a basis for the

signal space of x. Equation (2.1.1) can now be written as
. M
F= ) a uw =1U"a (2.1.4)

where U = [21’ Ugyeee, EM]T and is an M x N matrix
as= (al, dgy eevs aM)T is the coefficient vector. The vector i
is contained in the M-dimensional subspace, denoted subspace W, spanned

by {gm, m e [l,M]}. Equation (2.1.2) can be rewritten in vector form as

2 _ _ T
E (gx, gx> = e . e (2.1.5)

where ex = x - x is the error vector and <*> denotes the vector inner

product.
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The coefficient vector which minimizes equation (2.1.5) is found by
taking the vector derivative of E2 with respect to a, setting the

result to zero and solving for a as

0E - & f1x - 87 - £)] - llx - %) (e - 0%a)]

=-§; [5'x +2up 2+ 2'0 Ua]

2Ux + 2UUT§ =0 . (2.1.56)

This leads to the vector form of what is commonly called the "normal

equations” given by

w'a = Ux - (2.1.7)
Since {gm} is a linearly independent set, wT is nonsingular and
TY ux = ox - (2.1.8)

The maxtix O is said to perform a linear transformation from x to a.
If M =N this same equation gives the a that results in zero approx-
imation error, e.g. X = X.

Sequence representation can be interpreted in terms of Hilbert
signal space [26, 27] by recalling that the inner product defines a norm
denoted Ixll, as

2 vl
Ix1° = <x,x> = ] x°(n) - (2.1.9)
n=0
With this interpretation, all pertinent Hilbert space analysis can be
utilized. The norm is an abstraction of the length of a vector. In

the signal space interpretation, g is the vector contained in the
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subspace, W, spanned by the basis set {Em} for which the error vector
has minimum norm (length). The coefficient vector can be found using
the projection theorem which states that the norm of Sx is minimum if
and only if gx is orthogonal to g, where two vectors are orthogonal

if and only if
<e,x> =0 . (2.1.10)

This is denoted symbolically as gxlg. Use of this theorem leads to
the same "normal equations” given above in equation (2.1.6). In Hilbert
space terminology, x is the projection of x onto W.

As a property of orthogonal projection,

2

~.2
Exil® = Ixt

2

<
+ e | (2.1.11)

which is the N-dimensional equivalent to the Pythagorean theorem. With
the vectors representing sequences, it is apparent from the definition
of 0zl that this can be interpreted to mean that the energy in the
approximating sequence x(n) equals the Fnergy of the input sequence
x(n) minus the energy of the error sequence e,(n). Thus as an alter-
nate interpretation, X(n) can be said to have captured the maximum
amount of input energy for the given reference (basis) set {gm}.

Thus far the only restriction that has been placed on the reference
set {gm} has been linear indepeﬁdence, i.e. that they form a basis for
the signal space of x. It is well known that the solution to the
normal equations is greatly simplified if the basis set is orthonormal;

that is, if the basis has the property

<4, 8> =8 , k m=1,2,..0N (2.1.12)

km’
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km

Kronecker delta. An orthogonal basis can always be generated from any

where ¢ has been used to denote orthonormal basis and § is the

given basis set by the Gram—-Schmidt procedure [27]. For an orthonormal
basis set, {¢m, me [1, M]} and corresponding M-dimensional subspace

W, the approximation vector indicated by equation (2.1.4) is given by
%=0g (2.1.13)

with @ = [g,, 92,...,9M]T and g = [ay, 0y,+en,a,]" the coefficient
vector for the orthonormal basis. For an orthonormal basis &l® = I,
where I denotes identity matrix, and the normal equations (2.1.7)

reduce to
a=&x (2.1.14)

and no matrix inversion is required. & is saild to perform an
orthogonal transformation from X to a. Furthermore, the coefficients

can be found separately from
x =<b, © . (2.1.15)

An important consequence of {gm} being an orthonormal basis is that
(. )? = 1at? - (2.1.16)

When M < N, the set {gm, m=M+ 1,...,N} is said to span the

orthogonal compliment subspace W' and the error vector

N
e = ] ab (2.1.17)
X p=Myr OO
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is the projection of x onto the subspace W'. Again for an ortho-

normal basis,

2 _ % 2
te 1% = ] (a)p® = na® . (2.1.18)
m=M+1

Combining equaticns (2.1.9), (2.1.11), (2.1.16), and (2.1.18),

N M
Y @2 = 1m2 = ¥ (a)?, (2.1.19)
n=1 m=1 »
N N
2 =g 1’ = ) (a?, (2.1.20)
n=1 X n=M+1
and
N N
) x2(n) = n§u2 = ¥ (am)2 . (2.1.21)
n=1 m=1

Or the sum of squares of the coefficients for an orthonormal basis is

equal to the energy in the respective N-length sequences.

The above interpretation is equally valid for complex sequences and

vectors where orthogonality is defined by
<x,y> =0 (2.1.22)

where ZT denotes complex conjugate. In this case & is called a
. +1T -
unitary transformation and @(@ ) = I.

Finally, consider the input as the sum of two sequences
x*(p) = y*(p) + z*(p) . (2.1.23)

Letting x = x(n) , y = y(n), and 2z = z(n) represent corresponding

segments of x*(p), vy*(p), and =z*(p), respectively, leads to
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x=y+tz. (2.1.24)

Projection is a linear operator; thus the projection of x is the sum

of the projections of y and z. Or

+ (2.1.25)

M
1}
(=43
IN?

and

= - 2. L
"8 te, (2.1.26)

Note that the triangle inequality holds within a Hilbert subspace so

that
112 < (1gn + 12n)? (2.1.27)

and

te1? < (te_t + te_1)* . (2.1.28)
=x =y =z

Equality holds if §J|z and gylgz, respectively.
However note that every vector contained in W is orthogonal to

every vector contained in W' and thus

e,y and Eyl§ . (2.1.29)

2.2 Energy Distribution and Energy Capture

So far only a single N-length segment of the 1nput sample
sequence x*(p) has been considered. For telemetry applications the
coefficients are to be generated for successive N-length segments of an
entire P-length input sequence. Let x(n), k ¢ [0,K - 1], K= P/

an integer, represent the kth gsegment of x*(p), so that
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% (N) = x*(kN + n) . (2.2.1)

For an input sequence of length P the average energy for the entire

sequence, denoted ;2, is

- p-1 , 1 Kol N-1 5
= = x¢(p)1° == ¥ § [x@] . (2.2.2)
P o=l P oo s K

Now when the input is successively transformed using a fixed set of N
orthonormal basis vectors it can be thought of as generating a set of N
coefficient sequences mm(k) where am(k) is the uth coefficient for
the kth segment. Substituting equation (2.1.21) into equation (2.2.2)
gives

k-1 N

kzo Zl [ (k)] (2.2.3)
=0 np=

LR
!
-

or, rearranging the summations,

L, N Kl )
x= ) 1 [ @] . (2.2.4)
=1 k=0

Distributing P between the summations, the average input eunergy can be

written in terms of the average coefficient energy as

N . K-l N

-2 _ 1 1 2_1 %7 =2

== 7 =7 [e()]" =% @ (2.2.5)
Vo1 Frs0 P ¥opm1 ®

where Ei denotes the average energy of the o (k) sequence. Thus the
input energy has been redistributed among the coefficients or a portion

of the input energy has been captured by each coefficient sequence.
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For a subspace representation the input is approximated by x*(p)
formed from the concatenation of the approximating N-length sequences
ik(n) obtained from the ay(k). The average energy for the sequence
x*(p) represents the total portion of input energy captured by the
successive approximations. For an orthonormal transformation this

energy is given as in equation (2.2.4) by

-1 . M R-1
) IX*(p)]2=%; D) [am(k)]2 , (2.2.6)
=0 m=1 k=0

or in terms of average coefficient energy as

. (2.2.7)

ERY

1
2
[ 1<4
)

Likewise, the average error energy is
N
1 -2
[e*(p)]?':-ﬁ T - (2.2.8)

The ratio of the energy in the X*(p) sequence to the energy in
the x*(p) sequence provides a measure of the total energy capture for
the subspace representation. This ratio 1Is called the energy packing
efficiency (EPE) after Kitajima [22] and later Yip and Rao [7] who
considered the ratio of coefficient variances for stationmary processes.
The EPE in terms of the orthonormal basis coefficients is given using

equations (2.2.5) and (2.2.6) as
M
/N § Ei
EPE = m? . (2.2.9)
1/% &

%
m=1
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A plot of Ei versus M for a source sequence can be viewed as a
discrete energy distribution. The EPE as a function of M can be
viewed as a discrete cumulative energy distribution. The Ei can be
used as a measufe of the energy of a coefficient sequence for bit

allocation and subspace determination.

2.3 Finite Impulse Response (FIR) Filter Bank Model

In Section 2.2 the idea of energy capture was introduced and equa-
tions were developed involving the energy ip the coefficient sequence
resulting from orthonormal transformation or projection of successive
segments of an input sequence. To be able to assess the merit of trans-
form coding of presample filtered data and make an a-priori subspace
selection and bit allocation, a means of estimating the coefficient
energy 1is needed. This has been done for some applications, parti-
cularly speech data compression based on statistics and models derived
from knowledge of the source generation mechanism. Some authors have
used test cases of typical sources to generate estimates of the coeffi-
cient energy or variance. 1In all cases some knowledge, assumed or
generated, of the signal source for specific applications 1is required.
The knowledge that is available for the application considered here
is that the source has been acted upon by a low-pass presample filter
with known transfer function. In this section the presample filter
transfer function is agssumed to provide a worst case spectral envelope
(power spectral density) for the signal to be sampled and transformed.
Transformation using an orthonormal basis is modeled in the form of an

FIR filter bank. Expressions to determine the maximum coefficient
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energy that would result from transformation of segments of sampled
filter output are then derived from the use of Parseval's theorem.
Recall the inner product equation (2.1.15) for the determination of

a basis coefficient for the kth input segment
am(k) = <gm, §k> , (2.3.1)

or in terms of the sequence segment and reference sequence

N=1
a (k) = y ¢ (m)x (n) . (2.3.2)

n=0

This equation has the form of a discrete finite convolution. Define a

new sequence hp(n) as
hy(n) = ¢m(N -n), =n=0,1,...,N-1; (2.3.3)

that is, this new sequence is equal to the reverse order reference
(basis) sequence. Recalling that xk(n) represents the nth point in

the kth segment of input x*(p), or that
Z(n) = x*(kN + n) , (2.3.4)

equation (2.3.2) can be rewritten as

N-1
¢ (k) = § h (N -1-n) x*(kN + n) (2.3.5)
m n=0 m
or
N-1
@ (k) = § h(n) x*[(k + )N - 1 ~n] . (2.3.6)
m = &
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Then o (k) can be considered as samples of an output sequence a;(p),
that results from an FIR filter with impulse response hm(n) acting
upon the input sequence x*(p). The model is shown in Figure 2.1l. This
FIR filter bank model is equivalent to a running generalized spectral
waveform analyzer [27, 30, 31].

The average transformation coefficient energy is equal to the
average energy of the sampled sequence am(k). However, it is assumed
that the average energy of the sequence aX(p) is equal to that of the
sampled sequence. If a*(p) 1is assumed to be zero before and after the
interval of consideration, that is, for p ¢ [0, P], the energy in the
a;(p) sequence is given by Parseval's theorem as

p=1

I [ax(e]
p=0

2 _1

T . 2
5= / |Am(er)| dw (2.3.7)
n

where Am(ejw) is the discrete Fouriler transform (z-transform evaluated
on the unit circle) of the sequence «¥(p). The error introduced by
this assumption is small for intervals much larger than the impulse
durations of the filters involved. It is known from discrete linear

system theory that
Am(eJ‘”) = nm(eJ“’) x* (eI (2.3.8)

where Hm(er) is the Fourier transform of the impulse sequence h; (n)
and X*(ejw) is the Fourier transform of the sampled low-pass presample
filter output =x*(p). So equation (2.3.7) can be written as

p-1

T .2 .2
20 (a2 = 5= [ [H (3] |xred] dw (2.3.9)
p= -
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2
The magnitude squared a —filter transfer function IHm(er)[

can be
viewed as a spectral representation of the way in which the energy in
the input sequence is captured by coefficient Gt This same sort of
energy capture or redistribution is encountered when using the discrete
Fourier transform (basis) for spectral estimation. In that case it is
generally undesirable and is called spectral energy leakage.

Assuming bandlimited sampling of the presample filter output, which

is the function of the filter, the discrete Fourier transform of the

sequence x*(p) derived from uniform sample =x(t) is
jw W
X¥%(e”) = xA(TJ (2.3.10)

vhere T is the sampling interval and XA(Q) ig the Fourier transform

of the analog signal =x(t). From linear system theory we know
xA(g) = FA(Q) SA(Q) (2.3.11)

where FA(Q) is the presample filter transfer function and SA(Q) is
the Fourier transform of the filter input s(t). Thus the magnitude

squared transform of the coefficient sequence can be written as
o 2 . 2 0 2 ‘0 2
lagCe™ | = [0 (e ] [Fx(e?™)]| [s'(e?)] - (2.3.12)

Here S'(ejw) is not the Fourier transform of a sequence derived from
sampling the filter input s(t), but represents the effect of S(Q] on
the presample filter output [28].

It can be seen from equation (2.3.12) that the energy in the coef-
ficient sequence a*(p) 1is a function of the a,~filter (basis
sequence), the presample filter transform function, and the filter input

s{t). The input is in general not known, thus presenting a dilemma.
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A practical PCM déta system is expected to accommodate any real, finite
signal that may be input to the presample filter as long as thelfilter
input dynamic range is not exceeded. The specificatidn of the presample
filter is typically based on the assumption that the filter provides a
(bandlimiting) spectral envelope for all signals. In keeping with this
idea, it is assumed that the worst case (maximum energy) filter output
is generated by a white unoise input (wideband compared to the filter
bandwidth). That is [X*(eju5]2 = KIF(eju5l2 where « is a scale
factor represents the worst case spectrum or poser spectral density of
the filter output. Making this assumption, the cascade of the presample
filter and the a-filter provide a spectral envelope for deteramining the

maximum energy of a coefficient sequence. Then the expression

- ¢ 1 F 2 .2

o = 5= [ [FID| |5 (e?D] do (2.3.13)
-

represents a bound on the maximum average energy for the op Sequence.

An expression of this same form results from assuming the input x*(p)

is a stationary random process with -%[F(ej“5[2 taken to be the power

spectral density. Equation (2.3.13) then gives the variance of the FIR

coefficient filter output process [1].

The FIR filter bank model and equations involving spectral inter-
pretation provide insight into transform coding. Additional knowledge
about the data source s(t) 1is often in the form of spectral content or
transfer function. Appropriate adjustment in equation (2.3.13) can be

made to provide better estimates. Some judgment is still appropriate.
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Since the a, are being generated for an orthonormal basis,

equation (2.2.r) leads to

1 - 1 N 1 T jw 2 o0 2
ﬁ'z o = ﬁ.mzl 5= In |2 (e .)| |F(e”™) | dw
_ T .2
=32 = é_n_ [ FEY] dw (2.3.14)
-7

« 2
for any magnitude squared function |F(ed¥)| . So, the expression

1 " jw ZF jw 2d
0 g™ e
Np_ = T - 5 (2.3.15)
%E Iﬂ IF(e?)] dw

represents a normalized bound on the maximum average energy of coeffi-
cient ay. This expression for Np, 1is assumed to be representative of
the energy distribution for the basis. It can be seen by examination of
equations (2.3.13) and (2.3.15) that the expected maximum energy in

coefficient o, would be

@ = Np 2 (2.3.16)
when §2, given by

-2 1 ,F .2
X =5 j1r |F(e)| dw , (2.3.17)

represents the. filter output signal energy. This is to be used to
provide an a-priori method to estimate the maximum coefficient energy
relative to the input energy for the purpose of bit allocation and basis

comparison.
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Note that for white, zero-mean noise with variance (energy) gz as
2
input to the q—~filter bank, Ix(ejw)l = 02 a constant. Since
N-1 T .02
I nim) = 3=/ [H (3] du=1 (2.3.18)
n=0 T m

for orthonormal basis, equation (2.3.13) reduces to

indicating white noise distributes equally among the coefficients.

2.4 Karhunen-Loueve (KL) Basis

It is well known that for a zero mean vector source x with N x N
covariance matrix Ry, the Karhunen-Loueve basis is optimum in the
sense that when M < N transform coefficients ére used to represent the
input vector, the expected value of the mean square error is minimum for
all choices of M. It is also known that the KL provides the minimum
bit rate as is to be shown in Section 2.6. The KL bases are the
normalized eilgenvectors of the covariance matrix Ryx* That is, they

are solutions to the equation

R 6 =A ¢, me[L,N] . (2.4.1)

where Qm represents the eigenvector associated with the eigenvalue
hm. When a matrix & 1s used to perform a linear tramnsformation from
the source vector x 1into the coefficient vector ¢, the covariance

matrix of a is given by [27]

Ryy =®R__O . (2.4.2)
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If & represents the N x N matrix of KL basis vectors

3 = [le 92,"': QN] ’ (2'4'3)
then

R = diag[xm] (2.4.4)

so that & diagonalizes the covariance matrix Raa' Thus the KL basis
is said to completely decorrelate the coefficients. Note that the
variance (average energy) of the coefficient is equal to the eigenvalue.
If the eigenvectors are arranged in order of decreasing eigenvalues,

Km > Xm+

vectors associated with the first M eigenvalues. In statistics,

1° the choice for optimum M < N representation are the eigen-

representation of a vector source by the eigenvectors of the covariance
is called expansion by principzl components [13].

If the presample filter output were a zero—mean stationary source,
the segments could be treated as a vector source‘and the covariance
matrix could be formed using the autocorrelation sequence. The KL basis
generated from this matrix would then be the optimum basis for sequence

representation. The EPE would be given by
EPE = ——— . (2.4.5)

In practice the KL basis is commonly generated from an estimate of
the covariance matrix. Typically the entries are obtained from esti-
mates of the source autocovariance sequence. If this is done for each
sequence to be transformed (adaptively), it requires considerable compu-
tation prior to actual transformation and coding. If it is done

a-priori, thus generating a fixed basis, the actual performance of the
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KL basis becomes a function of the estimation process and changes as the
actual source statistics change.

In this dissertation a covariance matrix is generated from the
autocorrelation sequence that results from taking the inverse FFT of the
magnitude squared presample filter transfer function ]F*(ejm)lz. The
eigenvectors of this watrix are used as the KL basis for the sampled,
filtered source. If the presample filtered source is the result 6f a
zero mean, white filter input, this KL transform is optimum and is
sufficient to demonstrate that data compression is achievable for filter
induced redundancy. This fixed, filter dependent KL basis is then used
for comparison with two fixed, nonfilter dependent polynomial bases.

The length 16 KL basis resulting from a six-pole Butterworth
magnitude squared spectrum to be presented in Chapter Three is shown in
Figure 2.2. Note that the generated basis vectors have a smooth shape
and can easlly be ordered by sequencing or zero crossing. Note also
that they are symmetric. The associated eigenvalues (expected coeffi-
cient energy) are given in Table 2.1. Note that they decrease mono-
tonically with the sequency of the basis. Figure 2.2 also shows the
spectral transfer functions for the FIR a-filters of this basis. These |
curves were obtained by performing a 256-point FFT on the basis gener-
ated h (n) impulse response (with zero fill). It is not surprising
that the main lobe of the transfer function increases with the number éf
zero crossings. It can been seen from these figures that the optimum

o2 . 2
basis and associated |Hp(ed¥)| generated by |[F*(ed¥)| are
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Figure 2.2(a). KL, Basis, ¢,(n), m = 1,...,8.
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Figure 2.2(b). KL, Basis, ¢m(n). m=9,...,16.
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TABLE 2.1 EIGENVALUES OF KLy, N = 16

m |  VALUE
1 .9998

2 .9962

3 .9641

4 | .816l

5 | .4948

6 .1911

7| .527E-1
8 .127E-1
9 .304E-2
10 | .764E-3
11 .204E-3
12 | .581E-4
13 .173E-4
14 | .532E-5
15 | .161E-5
16 .460E-6
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spectrally selective. Considering the equation for the expected coeffi-

cient variance of eigenvalue given by

M = 2% I: TR RTINS (2.4.6)
this property is understandable and is anticipated to be characteristic
of monotonically decreasing filter (power spectral demsity) functionms.
Note that the KL does not have a constant basis. Thus, if the process
(sequence) under consideration has a mean or average value, it con-
tributes (projects onto) more than one coefficient, predominately the

o2
first and third according to the |H (ed¥)| curves. This should be

kept in mind if using the KL basis for nonzero mean sources.

2.5 Deterministic Polynomial Bases
2.5.1. Discrete Cosine (DC) Basis

The discrete cosine basis reported by Ahmed, Natarajan, and Rao
[19] 1is suboptimal in that it is a fixed basis, and a function of N
only. The DC basis has been shown to approach the performance of the
KL basis for low order Markov processes [19, 20] and to experimentally
approach the KL basis performance for speech {17, 20] and imagery

[2, 29] applications. It is defined as

¢°(n) ='—]'-‘; n=0,..-,N"1
) N (2.5.1)
2n + 1) nn
q>m(n) = .\/%- cos S_E-I‘T—)—-—-; n=0,.0e,N=1

m#0
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Ahmed and Rao show that the coefficients can be computed using a
2N-point FFT. This makes the DC transform computationally efficient,
particularly for large values of N. They also show that the DC basis
vectors are a form of discrete Chebychev polynomial. Figure 2.3 shows
the N = 16 cosine bésis and associated FIR q-filter functions ordered
by sequency in the same manner as the KL basis. Note that they also
have a smooth shape with spectrally selective IHm(ejw)lz similar to
the KL. Thus it is anticipated that it will have comparable per-
formance. The DC basis is used frequently in practice as an altermative
to the KL basis. It is included in this work for evaluation in the

application to presample filtered data.
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" 2.5.2 Discrete Legendre (DL) Basis
The alternate deterministic basis that is of interest for this work
is the discrete Legendre basis. It is formed from the orthonormaliza-
tion of the basis of discrete ordinary polynomials um(n) = n® over
the interval =n e [O,N - 1]. This basis is considered because of the
use of ordinary polynomials for the fitting and interpolation of real
(telemetry) data with "low-pass” characteristic. As téported by

Peterson [25], a set of discrete orthogonal polynomials Pm(xn) can be

recursively generated from

N-1 (2.5.2a)
P(x)=x - ) x /N,
2" n oo O
and
P (X)) = (xn - Am) P (x)=-BP  (x) (2.5.2b)
where
N-1 2
A= ] xP(x )W , (2.5.2¢)
n=0
B, = wm/wm__1 R (2.5.24)
and
N-1
2 2
W, = n§0 P(x) = IR _I° . (2.5.2e)
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By letting x_=n, n=0,..., N=1 and scaling each polynomial so

n

generated to produce unit norm, the orthonormal basis
T
{8, = [6,€0),+0, 0 (8 - D]} (2.5.3)
where
¢, (n) = Pm(n)/wm (2.5.4)

is generated. This same basis can be generated by the Gram—Schmidt

procedure [26] on the ordered polynomial basis
o .
um(n) =n, n=0,..., N~ 1. (2.5.5)

Hence the name discrete Legendre basis [27].

Figure 2.4 shows the DL basis for N = 16 and associated
IHm(ej“’)l2 ordered according to sequency. Again note the similarity
to the KL basis.

Since both the DC and DL bases resemble the KL, it is anticipated
that representation of a filtered white sequence by either the DC or DL

would have reasonable performance compared to that of the optimal KL.
Note however, that the DC and DL have a constant (dc) basis which would

capture any offset in the filter output.
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2.6 Coefficlent Quantizing and Bit Allocation

The selection of basis relative to the energy capture for subspace
representation (sample reduction) is only one data compression aspect of
transform coding. For telemetry applications where data is to be trans-—
mitted over a fixed rate channel, the coefficient used to represent the
input must be quantized and encoded before transmission as do the
samples in PCM. The strategy considered here is to quantize and encode
the coefficients individually. This is called basis restricted trans-
form coding after Pearl [4], or block quantization after Huang and
Schultheiss [3] who were among the first to consider the use of block
transformation for bit rate reduction. It is called simply transform
coding in this dissertation. Even if all the coefficients are generated
for transmission, energy redistribution resulting from transformation
prior to quantization and coding can lead to a reduction in the total
number of bits required to trausmit the source sequence with the same
specified mean square distortion as PCM. Since the focus of the appli-
cation addressed here is to use transform coding in lieu of conventional
PCM telemetry, the work presented in this dissertation is limited to the
consideration of uniform quantizers common to practical telemetry
systems. The coefficlents, once quantized, are to be natural binary
coded using a fixed number of bits (word length) per coefficient, but
varying lengths over the set of coefficlents. The purpose of the
analysis to follow 1s to generate guidelines for the a-priori selectiomn
of quantization or distortion levels to be used for each coefficient,

and determination of coefficient bit allocation.
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Consider the generation and quantization of all N coefficients
(full space representation) for each segment. The segment index k
used in Sections 2.2 and 2.3 is implied but will not be used in the
remainder of this dissertation unless needed for clarificationm.
Quantizing a coefficient vector a of the transformation input vector

x produces a new coefficient vector

= E + gQ . (2-6-1)

IR

This introduces error in the recomnstructed input at the receiver in the

form of an additive error vector EQ' The reconstructed vector is
4 T T
X=2dag+ & = x+e, o (2.6.2)
Broat g mxte

The squared error (distortion) in g due to quantizing i1s then given by

Ix - 12 = nanz . (2.6.3)

For an orthonormal basis, the quantizing error energy can be written as
2
L L D, (2.6.4)

where a5 ; represents the components of g and Dy = aé n s used
b4

to simplify the notation. As in Section 2.2 when the entire input

sequence x*(p) 1is considered, the average error, denoted Eg, due to
quantizing is
N N
-2 _1 -2 1 =
= [ —_Jp—— 2-6-5
° = § y %o " § D, ( )
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It has been shown in Section 2.2 that transformation leads to the
distribution of input energy among the coefficient sequences. In
general, the average energies Ei of the coefficients are not the same.
Thus the optimum quantization may involve different quantization levels
(distortion ﬁm) and a different number of levels for each coefficient.
In order to examine this, let the number of levels used for coefficient ™
'am be expressed as 2Bm. Then By Trepresents the (noninteger) number
of bits required to represent the coefficient. As suggested by Zelinski
and Noll [17], B, can be written as a function of the average coeffi-
cient energy Ei and the average coefficient quantization distortion

D as
n

- 1 =2 =
B =6 tx 1og2(am/nm) (2.6.6)

where ém reflects the performance of practical quantizers and, in
general, is a function of the distribution or crest factor of the
coefficient sequence. Note that 6m = 0 gives the Shannon rate
.distortion limit, in terms of information bits, for a discrete Gaussian
source with Gaussian distortion. It also gives the expression used for
selecting the number of bits for uniform quantizing of uniform sources
{27]. Following the logic of Zelinski and Noll, the coefficient distri-
butions or crest factors are assumed to be equal for each coefficient so
that &y, 1is replaced by a constant, demoted §&pg» for each coefficient
quantizer and the fact that B should be anvinteger for binary coding

1s overlooked. The distortion contributed by coefficient op 1is then

given, using equation (2.6.6), by

D =2 T, Tm 2 (2.6.7)
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The problem then is to select Bm s0 as to minimize the average
distortion subject to the constraint of fixed total bit allocation.

The method of Lagrange multipliers can be used to minimize the total

N N
- 1 - .
average distortion D =% y D, , subject to y B =NB,, 2
m=1 m=1
constant, by setting
N N
d |1 2
= |z D +8( L B -NB )
me N o=l O (mFl m TC
8mn 9 —2B
--1222 Mam2+p=0 (2.6.8)
m
for m=1,...,N. It follows that
260n =2B_ _
2 2 - wp/2 1n 2 (2.6.9)

a constant for each m. So the optimum quantizing level and correspond-

ing bit assignment are those for which ﬁm = a constant for all m.

13‘I‘C’
This result was first derived by Huang and Schultheiss [3] for Gaussian
sources and has been used by many authors since. Note that this result
also holds for any subset of M coefficients as long as the constraint
and averages are imposed on the subset. When this condition 1s imposed

it leads to an expression for B in terms of the geometric mean of the

coefficient energies,

/N
=5 + g |2/ 1 2 (2.6.10)
m ¢ 2 %82 % o : o
n=1
1 §
where Bpo = N ¥ B 1s the average bit rate per coefficient. It is
m=1
interesting to note that Zelinski and Noll show that the geometric mean,

and hence the bit rate for stationary sources, is minimized by the KL
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transform. This was also derived by Huang and Schultheiss. Thus
near-optimal bit rate can be expected when employing a basis similiar
to the KL.

For PCM, which can be considered the identity transform, the
average distorgion can be obtained from equation (2.6.6), with Em
replaced by ;2, as

5. - g PCGH , RCH 22 (2.6.11)
where Bpmy 1s the PCM bit rate per sample. Again following Zelinski
and Noll, the same quantization mechanism is assumed for both the coef-
ficients sequence and the input sequence (PCM), that is, it is assumed
that the crest factor is not appreciably altered by transformation.

Then GPCM = §,.., and the expression for the average transform coding

TC
bit rate to give the same distortion as PCM is obtained by setting
equation (2.6.7) equal to equation (2.6.11) and solving for Bpc-

This gives

1/N
B..=B_ |-+ log, % ?132 = + AB.  (2.6.12)
¢ = Ppou|” 7 1982 % Bpcy * 4B.  (2.6.
With appropriate redefinition of terms the equations here can be seen to
be the same as those of Campanella and Robinson [8]. Since the

equations above are derived without requiring integer values for B

further coding, such as Huffman coding, would have to be employed to
attain the reduction of (2.6.12). Actual integer bit allocation

involves some trial and error and consideration of the assumption

5111 =6TC = 6PCM°
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Equation (2.6.12) provides a useful analytical measure in the form

of a rate improvement bound given by

- 1/N
AB = - % log, §2/< 1 32> (2.6.13)

m=1 b

for the comparison of bases. This is equivalent to the ratio of total

information (minimum bit rate) in N independent identically distri-,

N
buted sources given by X %-1og2 Ei where PCM 1s treated as N
n=1

sources with average energy ;2. Equation (2.3.16) can be used to write
this in terms of the normalized estimate of average coefficient energy

Npm as

1/N ‘
1 N
AB = - = log,IN| TI »p . (2.6.14)
2 2 m
m=1 B
This equation 1s used in Chapter Three for basis comparison.
As a guide in actual bit assignment, the value of Bps £from equa-

tion (2.6.12) can be substituted into equation (2.6.10) to give

1 - -
Bm = BPCM -5 1og2 (x /am) . (2.6.15)

Equation (2.6.15) can also be written in terms of Pp as
B =B, +%lo (Np ) (2.6.16)
m PCM 2 89\ NPy

Note that this equation simply provides the appropriate adjustment in
bit ‘allocation for two sources of different energles in order to main-
tain equal quantization distortion. This is essentially a dynamic range
ad justment to accommodate the same quantization level. This equation is

used in Chapter Four for generation of actual integer bit allocation.
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Bit_élloﬁation itself can lead to the discarding of coefficients.
Equatioﬁ.(2.6.16) can produce negative B 1indicating zero bits should
be used, or the coefficient «; should be discarded. When coefficients
are a-priori discarded for any reason, the average quantizing distortion

present in the recomstructed input is

B! =£)§B +-1-1§ 2 (2.6.17)
cF L PetN L %

where oy, m e [M + 1, N], represents the set of discarded coeffi-

cients. This 1s less than 5T if the energy of a coefficient is less

C
than the desired distortiom, i.e. Ei < BTC'
This effect can be written in vector notation by writing the

reconstructed vector as

E=f+Q+e (2.6.18)
where

§ = q;gb’ %,m - 0, «, discarded (2.6.19)

& ° @T_a, @ = 0, @, retained (2.6.20)
and

i=dg o =0, a, discarded. (2.6.21)

The tilde is used to indicate that é and g are contained in the same
subspace W spanned by the basis corresponding to the retained coeffi-
cients. The error vector e is equivalent to the approximation error

presented in Section 2.1 with respect to discarded components.
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The error Q due to quantization of the retained (for whatever reason)
coefficients is in addition to the error due to subspace representation.

The combined error is

x-x= EQ =Q+ & ° (2.6.22)
Since §[ex ’
2 ~ 2 2
F—1 * .2
"EQH qQu- + ﬂgxﬂ (2.6.23)

which leads to an expression for the average reconstruction error emergy

as

=Q +e (2.6.24)

where Q represents the average error due to quantizing the retained
coefficients and Ei represents the average error due to discarded
coefficients. Equation (2.6.24) can be seen to be equivalent to equa-
tion (2.6.17) and can be used to make error tradeoffs regarding the

combined effects of subspace representation and quantizing.

2.7 Summary
The technique of transform coding is described and the way in which

the method can produce bit rate reduction 1Is presented. Transform
coding is defined in terms of orthogonal transformation or projection

in a Hilbert signal space. Useful properties of orthogonal transforma-
ltion are presented for later use. The concept of energy distribution

or energy capture by a transform coefficient sequence resulting from
successive block transformation is introduced. Energy packing

efficiency is defined. 1In order to provide insight into transform
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coding, it is modeled in terms of a bank of finite impulse response
filters equivalent to a generalized running waveform analyzer. The
concept of spectral energy.capture is thus introduced. The presample
filter is incorporated into the analysis by assuming it defines the
worst case spectral envelope (power spectral demsity) of the filter
output and thus coding of a white filter input is taken to be the task
of the transform coder. Parseval's relation is used to provide an
expression for the estimate of the worst case coefficient energy. The
three bases for consideration are presented. They are a filter derived
Karhunen-Loueve (XL) basis, which is assumed to be optimum for the
filtered source, the discrete cosine basis and the discrete Legendre
basis. Both the discrete cosine and Legendre bases are seen to have
properties similar to the XKL and are auticipated to have comparable
performance. Optimum coefficient quantizing and bit allocation are
examined following the logic of Zelinski and Noll [17] with the result
that each coefficient is to be quantized using the same quantization
level that would be used for PCM. The bit allocation then becomes an
adjustment of dynamic range. A theoretical bound for bit rate
improvement is presented. This is only attainable by the use of
something other than natural binary coding. Reconstruction error is
shown to be the sum of coefficient quantizing error and error due to

subspace representation.
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CHAPTER THREE

ANALYTICAL COMPARISON

3.0 Introduction

In this chapter the amalytical comparison of the three bases
define@ in Chapter Two is examined for the application to presample
filtered random data. The rationale commonly used for filter specifi-
cation for sampied data systems is discussed and the four filter
magnitude squared transfer functions (MSF) used in the analysis are
given in Section 3.1. The MSF's are used in the equations developed in
Chapter Two and the resulting expected coefficient energy distribution
and analytical bit rate improvement are presented in Sections 3.2 and
3.3, respectively. Section 3.4 introduces another view of the spectral
energy capture of transform coding with a comparison for the bases
under comnsideration in this dissertation. The chapter is summarized

in Section 3.5.

3.1 Presample Filter

| For sampled data (PCM) applications, analog filters are often used
to bandlimit continuous signals prior to sampling. The filter output 1is
then sampled uniformly at a rate of 1/T samples per second where T
is the sample interval. Filters whose magnitude squared frequency
response IF(Q)IZ, denoted MSF, is monotonically decreasing beyond the

cutoff frequency and remains below some specified relative attenuation

57
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level 1, beyond QS/Z = /T, the Nyquist or folding frequency, are
consistant with practice. The level commonly used is 7 = Z-Z(B—l)
where B is the number of bits to be used for the natural binary (PCM)
sample representation. The rationale for doing this is that spectral
components of the filter output beyond the folding frequency resulting
from full-scale filter inputs would be below the quantizing level and
indiscernable from quantizing noise. This Iin effect normalizes the
filter to the quantizing level and gives the highest cutoff to sample
rate ratlo possible for the filter order. This is often what is meant
in practical systems by "bandlimited" signal. Note that if the filter
MSF as described here is the sampled signal PSD and if 1n 1s the
quantizing level for a uniform quantizer, then n2/12 is the quantizing
distortion and the transform coefficient expected energy (variance) is
always greater than the quantization distortion. This can be seen from

2 2
& =-:1,_—j 73| |8 (e?)]  aw

> = o f IH(ej“’)| do =12 > n2/12 . (3.1.1)

Thus no coefficilent should be discarded as having less expected energy
than the quéntization distortion, and full space representation is
needed for direct PCM replacement.

There are several well-known classes of analog filters that are
used for telemetry applications. The commonly used Butterworth filter
has been selected for use in this study. This filter class has maxi-

mally flat amplitude response in the pass band and monotonically
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decreasing response beyond the cutoff frequency. The MSF as a function
of radian frequency Q = 2nf 1is given by

1

2
IF(Q)I P, S
1+ (Q/szc)?‘"

(3.1.2)
where v 1s the number of poles or filter order and Qc represents the
radian cutoff frequency. The filter design trade-offs for sampled data
applications involve the filter complexity, represented by the number of
poles, the cutoff frequency (sometimes considered the highest frequency
of interest), the sample rate, and the distortion level 1. These
quantities can be related by

=2v
|Fea_/2)|* = <Q—S—) = (3-1:3)
s 2Q

which is used to specify the filters for this study. Plots of log (MSF)
for the four filters used, designated filters Fl through F4, are shown
in Figure 3.1 normalized to the sampling frequency. Filters Fl and F2
are based on actual filters used in two different aerospace telemetry
systems. The other two are related to these through equation (3.1.3) by
changing the number of poles and requiring the same value of 1n (same
PCM word length). Since the coding is being done on the samples of the
filter output, the transfer functions shown are actually plots of

2
]F*(ejm)l where

ety = | T Ry 2= g 3104
= T+ 3l (3:.1.4)

r=-—o

is the MSF of a sequence derived from sampling a continuous waveform

with Fourier transform F(Q) ([1].
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3.2 Energy Distribution and Energy Capture

One primary aspect of this research is the investigation of the way
in which the presample filter MSF effects the energy distributiom or
subspace energy capture performance of the DL and DC bases compared to
the KL basis for the filter. The spectral selectivity properties of the
basis under consideration have already been illustrated in Chapter Two.
The way in which these propérties combine with the filter MSF to result
in energy redistribution can be examined by consideration of the normal-
ized estimate of the maximum coefficient energy defined in Section 2.3
as Npm;Z. Recall from the definition that this represents the expected
coefficlent energy or variance when the presample filter is assumed to
have a zero mean, white (wideband) input. The values Npm§2 have
been calculated using equations (2.3.15) and (2.3.17) with « = 1.
Log(Npm;Z) is plotted against M for each filter and two different
values of N in Figures 3.2 and 3.3. Also included on the plots are
the relative input (PCM sample) energy ;2. This 1s to illustrate the
redistribution of energy. Note that NmeZ is monotonically decreasing
in all cases. As stated in Chapter Two, this is anticipated because of
the monotonic nature of the filter MSF and the spectral selectivity of
IHm(ejw)lz. In fact, it has been reported [5, 8] that for a statiomary
process the' KL and DC basis coefficient energies approach the power
spectral density as N goes to infinity. This does not appear to be
the case for the DL basis as the values of Npm§2 appear to be diverg-
ing from the KL basis as N increases for both low- and high-order
coefficlents. The DC and KL bases track closely for low-order, high-
energy coefficients. However, the DC tends to diverge from the KL as m

approaches N, particularly for the two filters, F3 and F4, that have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



g \

- 0 -0L \A\g\

©

j O&-DC \\\A N
—4 o - KL \\\A\\\ \\\c

A\\\A
-5 ! | | ] | | | | | | | | | | |
1 16

Figure 3.2(a).

Normalized Coefficient Energy Distribution,
N = 16, Filter Fl.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65



Figure 3.2(b).

O-DL

O -DcC
O - KL
S R PR T

N = 16, Filter F2.

Normalized Coefficient Energy Distribution,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66



&
— O-oL
s O-DC
.
A~ KL
_6 —
-7 I R
1

Figure 3.2(ec).
N =

Normalized Coefficient Energy Distribution,
16, Filter F3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67



68

of—t=t=m_
_.'] L
_..2 L
~3
T\;\
%
&
z 4
I
W
S O
2
_6 b
-7 L4

-
0_

AN

DL s\ %
DC \A \D

KL

Figure 3.2(4).

Normalized Coefficient Energy Distribution,
N = 16, Filter F4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



oo
—+—-4—+—0-—¢-—¢-—¢—y&D‘a—o‘—’-‘—Q—b—¢—4-—v——¢—+—+—¢—+—¢—-¢—#—1-—&—4-—4-
N
-1 \&\ BN
E\D
o
\D
By
RN
\2\ c]\D
-3 \A:p\ \D
A\g\o\\j
— \A 0\
‘i\lx \A\O\
5 A
z ~4
I}
NE
1+
S—— D - DL
v _5—
o -
9 O-DC
O - KL
‘—6—
e/ N T 1 O O O A O
1
m

Figure 3.3(a). Normalized Coefficient Energy Distributionm,

N = 32, Filter Fl.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

) SE=ETET ~0-8s

—-#—+—#—-t—#——+-—’-—4—¢—+—9—¢§§ig>m:v—+—+—¢—¢—+—+—+—4-—0—¢g?—¢-—+—-+—+
D\
| N
-1 = \Q\&\ \h\
N
A
-2 \ﬁ\ \D
N, AN
A\.<> ]
\b\o \b
\A\C\ \b
=3 N O \b
AN
— 8. o, \
N \h \~<> q\
> \A \O\D
S N\ \\
2 a9
M N \§
NE \ 3\
IS n
= o -l "
s -DC ' R
J % \
A - KL \
-6
7ottt bttt r ey ettt
1 32

Figure 3.3(b). Normalized Coefficient Energy Distribution,
N = 32, Filter F2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

of==tpg
- — —6i¥‘j\m—+—o—+—+—o—o—o—t—t-4—¢ ————— +—¢—¢—-¢—#z?-—b—w~—+—»—+
-1k \E\
: g
X\ \D\
-2 |
%Ny
N N\
-3 4 <>\D\
\, &
N L
1 \ Q.
QF _4_ — A\A \eig\o
z N NGO
il A R o
~E A 8O
) \A\ . O\O
e - A \O
s O 2- g!(-i S \D\E‘\ \O\o
| \A\ D\g \,~
AN - KL A\A\ \D\\/\
Ba D\Q\
-6 TAa g
/% T U O O O O
1 32
m

Figure 3.3(c).
N = 32, Filter F3.

Normalized Coefficient Energy Distribution,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-2
-3
?
(>4
5
zZ ""4'
1
NE
s
° -5
o
-~
)
-7

Figure 3.3(4d).

0 g—@~n~‘é’__u_m

g.\u\ 22

_._,_._.__,_*_,_*_,\._,\t(._,_*_*_,_+_._._‘_*_¢_‘_*_,_,_,_‘_h..

AR

Ao \
AN \
-
A ~N
0.
N R
\A §8\0
L \A \\O\
\A E\ o\o
AN a N
N AN 0,
Na a \<>
O-bL N\, \D\ \
B O-DC M u\j°\
'y
A - KL . \ %
B \A fu
a
\AD
~a
[ O O O T O Ot
32
m

Normalized Coefficient Energy Distribution,
N = 32, Filter F4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72



73

the greater attenuation. The DC high—order coefficient energies exceed
even those of the DL for these filters. This means that for these
filters, discarding of coefficients for m close to N eliminates more
energy for the DC than the DL basis. Note that the energies in these
coefficients for either basis are several orders of magnitude below the
first few coefficients so the choice of basis and subspace dimension
depend on the relative energy capture that is acceptable, that is, on
whether the goal 1is say 90 percent capture or 99.9 percent capture.
This is a subjective criterion and will only be addressed for compar-
ison. Figure 3.4, included for illustration, is the Npm;2 distribu-
tion of the four N = 32 KL bases applied to F3. This illustrates that
what is best for one filter may not be the best for another.

Total subspace energy capture is reflected in the EPE defined in
Section 2.2. It can be seen by examination of the definition of EPE

by equation (2.2.9) and of Pp 1in equation (2.3.16) that

M
EPE= ) p . (3.2.1)
m

n=1
Tables 3.1 and 3.2 give the EPE and 1-EPE values versus m
corresponding to the Npm§2 curves already given. These tables
illustrate the comparative energy packing performance for the bases.
They particularly accent the low-order, high-energy coefficients. Note
that the KL packing efficiency 1is the best, as expected. However, note

that the other bases generally exhibit the same packing performance.
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Recall that this capture is relative to input energy level and is
not a fixed distortion as is quantization. Thus, for low-energy inputs
(or intervals of input), the distortion due to subspace representation
is going to be reduced relative to, and possibly less than, that due to
quantization. Also recall that the energy distribution and capture
reflected in the plots and tables are indicative of the expected maximum
for wideband (white) filter inputs. If the actual signal is not wide-
band the distribution of coefficient energies iIs altered according to
the spectral content. Thus, actual subspace capture as a percent of
total energy is greatly effected by the true spectral content of the

signal source.

3.3 Full Space Rate Reduction
The goal of transform coding for telemetry applications is bit rate

reduction. As shown in Section 2.6, bit rate reduction is possible even
when all the coefficients are retained. The theoretical bound as a
measure of the bit rate improvement, denoted AB, has been presented in
Section 2.6. Curves of AB versus N for the bases and filters under
consideration are shown in Figure 3.5 for comparison. WNote the improve-
ment with Increasing N, a manifestation of the spread in Em. This
improvement is not linear and asymptotically approaches a limit. The
equation for the value ABmax' also included in the figure, to which the
KL and DC approach in the limit is taken from Davisson [5]. The equa-
tion is based on the knowledge that the KL and DC energy distribution
approach the power spectral density as N + » . It also assumes that

. the coding distortion is less than the signal energy. This is con-

sistent with the assumption used in the presample filter specification.
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The equation for AB .. 1s

1 1 Juou 1 2
ABmax =3 {n -2--log2 IF*(e )l dw
1 T ‘o 2
-5 log [ |Fx(e?)| dw - (3.3.1)
-7

The first term represents the rate limit for infinite length block
coding (N +» =) or the limit for totally utilizing the redundancy as
described by the power spectral density. The second term is the rate
limit for single sample encoding (PCM). Equal distortion for both
techniques 1s implied. Note that the limit relates to the spectral
shape, that is, the amount of redundancy in the signal.

It appears that the DL does unot approach this limit. This is
consistent with the observation in Section 3.3 that the DL does not
approach the power spectral density. For filters F3 and F4 and low
values of N, the DL more closely represents the KL. In all cases the
DL flattens out and the DC continues to improve. Thus, values of N
greatef than about 32 would not be expected to produce any improvement
for the DL. For the DC and KL the increase in improvement must be

traded off against Increased computational load.
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3.4 Composite Spectral Energy Capture

As shown in Section 2.3, the magnitude squared FIR transfer
function ]Hm(ej“)|2 represents the way in which spectral energy is
captured by a transform coefficient. When M coefficients are to be
used to represent an input sequence x*(p), equation (2.2.7) represents
the total energy capture for the subspace representation and can be

rewritten using equation (2.3.14) to give

T M 2 . 2
=—;n f % Y IHm(ejw)I |x*(ed)| dw . (3.4.1)
-t m=1

The composite magnitude squared function given by

. N .2
ced) =} [E (e?] (3.4.2)
m=M+1

is then used to indicate the way in which spectral energy is captured by
the subspace representation. Likewise, the complimentary composite

magnitude squared function

. N .2
C'(ed®y = ¥ |nm(e3“’)| (3.4.3)
m=M+1

represents the extent to which input spectral energy contributes to the

error for a subspace representation. Note that for orthonormal basis

C'(ejm) =] - C(ejw) R (3.4.4)
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Plots of C(ejm) and Log C'(ejm) for N = 16 and several values of
M are given in Figures 3.5 and 3.6, respectively for the ©DC, DL and
two KL bases. The KL basis designated KLI' is derived from the 4-pole
Butterworth filter Fl spectrum and KL; 1s the same as that of Section
2.4 derived from the 6-pole Butterworth filter F4 spectrum. The selec-
tion of the basis, and the subspace dimensions M for a particular
application depends on the way in which the composite spectrum combines
with the input (presample filter) spectrum as indicated in equa-

tion (3.1.1). If the KL spectrum is taken to be optimum, then the poly-
nomial basis, whose composite spectrum more closely resembles that of
the KL for the presample filter, would be expected to provide the better
total energy capture of the two. It may be more informative to examine
the complimentary composite spectrum C'(ejw). Recall that this is
indicative of the energy that is discarded by subspace reduction. Note
the tails of C'(ejm). Those of the DI basis are smaller than those of
the DC basis and are more like those of the KL basis. This suggests
that for monotonically decreasing input spectra, elimination of coeffi-
clents of high sequency basis vectors tends to remove less “pass band”
energy for the KL and DL basis. Thus the spectral composition of the
energy, as well as the total energy loss, provides useful insight in
comparing the energy capture properties of candidate transforms. With
this in mind the user of the data may be willing to accept the total
energy loss to achieve further bit rate reduction knowing that energy in

the "pass band” 1s being captured.
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Figure 3.6(a). Composite Magnitude Squared Function, N = 16,
M=1, 4, 8, 10, 12, 14, DL Basis.
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Figure 3.6(c). Composite Magnitude Squared Function, N = 16,
M=1, 4, 8, 10, 12, 14, KL, Basis.
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Figure 3.7(a). Log Complimentary Magnitude Squared Functionm,
' N=16, M=1, 4, 8, 10, 12, 14, DL Basis.
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Figure 3.7(b). Log Complimentary Magnitude Squared Functionm,
N=16, M=1, 4, 8, 10, 12, 14, DC Basis.
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3.5 8ignal Plus Noise (Input Digitizer)
Consider the case of presample filtered signal y*(p) plus
additive zero mean, white noise 2z*(p) with variance oi. Then the

input to the transformation is
x*(p) = y*(p) + 2*(p) , ‘ (3.5.1)
or in vector notation, the input for a segment of input is

x=y+z. (3.5.2)

As stated in Section 2.1, transformation 1s a linear process so the

resulting coefficient vector for x 1is

= + . .
HTHTE (3.5.3)

where gy and @, are the coefficient vectors for y and =z,

respectively. Now if o is quantized, the resulting coefficient

vector is
@ =a +a + 3.5.4
& =g *to to ( )
where gQ represents the quantizing error. The resulting reconstruc—

tion error 1is

—A= - TA = T T 305.
yJ-X¥=y-¢ g =% g +3 g (3.5.5)
and the error energy in the segment is
a2 2
ly - xi llgz.z + gQﬂ . (3.5.6)

Thus, additive noise at the output of the presample filter is present in

the reconstruction. The same is true, of course, for PCM.
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Recall that as stated in Section 2.3, white noise 1Is expected to
contribute equally to the coefficients of an orthonormal transformation.
Thus, when a coefficient 1s discarded, the input noise energy captured
by the discarded coefficient is eliminated also. This in turn reduces
the expected input noise contribution to the reconstruction. This means
that if additive noise is known to be present and °§ is greater than
Em, o should be discarded. This is a form of scalar Weiner filter-
ing. The use of orthonormal transforms specifically for this purpose is
fully discussed, and additional references a?e given in the text by
Ahmed and Rao [23].

The source of additive imput noise of interest here is the input
digitizer (ADC) that 1is part of a discrete transform coding system.

This generally is considered to be a white, uniform additive noise
gsource with variance Q2/12 [27), where Q represents the step size or
quantization level. The Input digitizer can then be expected to con-
tribute error equally to the coefficients and be present in the recon-
struction. In order to prevent the input digitizer from contributing
significantly to the actual recoastruction error and invalidating the
analytical analysis, the quantization level (distortion) must be made

appreciably smaller than that of the coefficient quantization level.

3.6 Summary

In this chapter the three bases are compared analytically using
equations from Chapter Two. First, presample filters are discussed
and four filters are selected for use in the analysis. Two are taken
from actual telemetry systems and the remaining two are derived from

the first two based on equal attenuatlon at the folding frequency.
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Curves of the calculated coefficient energy are presénted and discussed.
It is shown that the expected coefficlent energy for a random process
approaches the power spectral density for the DC and KL basis. This
does not appear to be true for the DL. The EPE for the bases is also
given for N =16 and N = 32 which shows the comparative energy
packing performance. The concept of spectral capture is discussed once
more with the introduction of the composite magnitude squared function.
This is shown for the basis for N = 16 for comparison and to provide
insight into spectral energy capture. The "low pass” nature of the DL
is pointed out. Finally, the coding of signal plus noise is discussed
and the need to have input digitizer quantizing level less than the
coefficient quantizer level is established.

As pointed out in Section 3.1 coefficients are not anticipated to
be discarded from quantization distortion (bit allocation) comsidera-

tions given the filter specification. Thus, subspace representation for

all three bases depends on the relative energy and possibly on the
spectral energy capture that is acceptable, and becomes a subjective
type of consideration that 1iIs to be left up to the data user. The
information and analysis given in this dissertation are included for

comparison and establish spectral capture as an area of future work.
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CHAPTER FOUR

EMPIRICAL RESULTS

4.0 Introduction

In this chapter the results of simulated transform coding of both
simulated and real, laboratory gathered data sequences are presented.
The basis length of N = 16 has been selected as a practical compromise
between computational efficiency (speed) and bit rate reduction perfor-
mance for real-time telemetry applications. As indicated by the curves
in Section 3.3, the potential for bit rate reduction increases non-
linearly with N for the transforms being considered. The DL transform
is seen to reach its apparent limit much sooner than either the DC or KL
transforms. Thus large N would be a disadvantage for the DL. Trans-
mission channel errors are not being addressed in this research;
however, it is apparent that transmigsion bit errors affect the entire
block (but only the block) containing the coefficient in error. So this
becomes a consideration for keeping the block length small. Tasto and
Wintz [10] reported on channel error effects for image transform coding.

Section 4.1 presents a description of the transformation simula-

tion. Section 4.2 describes the generation of simulated and laboratory
data sequences. Section 4.3 presents the energy distribution for
simulated and laboratory genérated data that are obtained by inputing
white noise into two presample filters. The bit allocation (coefficient
word length) for the filters used in this research are presented in

Section 4.4. Also the empirical results and observations for transform

102
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coding of data sequences obtained by sampling filtered random noise,

accelerometer, and selected sinusoid signals. Section 4.5 summarizes

the chapter.

4.1 Transform Coding Simulation

Transform coding is simulated on a CDC-6600, 60 bit computer using
single precision floating point arithmetic. The effect of finite word
length arithmetic has been left for future studies. Subroutines
generate the transformation matrix & for each of the three bases.
Once & 1s generated, transform coding is implemented as outlined in
Figure 4.1. Input data =x*(p) 1s read one point at a time to form
the N-length input vectors 5&' Running sums of x*(p) and (x*(p))2
are kept. Each input vector is transformed using the applicable & to

obtain

4 = @gk . (4.1.1)

Running sums of am(k) and (am(k))2 are kept. Each component of %
is then uniformly quantized by rounding to the nearest multiple of Q,

where Q 1is the quantizing level that would be used for PCM encoding.

This is done as

-
&, = {_m;_ _;_ *Q, o <0 (4.1.2)

where r*] denotes largest integer less than *. The quantization error

in ap is obtained as

aQ’m = am = ‘&ln (4-103)
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Figure 4.1. Transform Coding Simulation
Flow Diagram.
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and running sums of aq,n(k) and (aQ m(k))2 are kept. The recon-
3

structed signal vector is then formed as
s _ =T 4.1.4
X =2 g - (4.1.4)
The reconstruction error is obtained as

(4.1.5)

1>

e . =xX-

=Q
and running sums of the point by point error ea(p) and error squared
(ea(p))2 are kept. When the last input value is processed, simple
averages are found by dividing all running totals by the number of input

points, P. All pertinent data are then printed.

4.2 Input Sequence Generation
4.2.1 Simulated Data Generation

Simulated data are generated on the same CDC-6600 computer. The
presample filter is simulated by a digital filter implemented as a par-

allel combination of second order (even number of poles) sections. The

digital transfer function is obtained by performing an impulse invariant
design {1] derived from the analog filter specification using twice the
sample rate. A normally distributed sequence 1ig generated using a
random number gemerator subroutine that has been thoroughly tested. The
sequence 1is applied to the filter and the data sequence for input to the
transform order are formed by taking every other filter output. This
method is used because the digital filter transfer function resulting

from impulse invariant design is given by

N

F(ejwy =

=

N 3 ‘l—.D- —-E - , . .
Z Fpigtgr (4.2.1)
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With the simulation (design) based on twice the final sampling rate, the
simulated filter transfer function provides close approximation to the
analog filter with the resulting data sequence having the desired power

spectral density.

4,2.2 Laboratory Data

In order to evaluate the transform coding strategy on real data, a
system was built using presample filters and sample rates which have
been used in actual telemetry data systems. Laboratory generated data
are used since actual telemetry flight data have been PCM encoded and
thus already contains quantizing noise with the same distortion level
(variance) as the desired transform coder output. Figure 4.2 is a block
diagram of the laboratory system. Signals are input to both filters
simultaneously from one of three sources, either a Hewlett Packard
HP=-3722A noise generator, a Tektronix FG501 function generator, or a
quartz accelerometer. The noise genérator is based on a filtered pseudo
random sequence of infinite length. The filter bandwidth is set to
1.5 kilohertz. The function generator is used to produce sinusoids.
The accelerometer is mounted on a thin metal container which 1s excited
by hand. The filters, labeled according to the transfer function desig-
nation used in this dissertation, are four pole (Fl) and six pole (F4)
Butterwopth filter with cutoff frequencies as shown. The filter d.c.
gains are equal. Data from each filtered source are gathered at a rate
of 500 samples\per second. A 12 bit analog to digital converter is
used. The coding is to be compared to eight and ten bit PCM so a 12 bit

digitizer is considered sufficient and indicative of a real application.
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The ADC full-scale range is + 5 volts. The two's-complement binary ADC
output is placed directly on magnetic tape. The random noise and
accelerometer sequences from filter Fl that are used for the data
presented in this chapter are shown in Figures 4.3 and 4.4, respec-
tively. Table 4.1 provides a summary of the sequence mean and maximum

mean square values for the signals processed.

4.3 Energy Distribution for Random Data

Table 4.2 gives the coefficient average energy normalized to the
input average energy (mean square value) for the simulated and labora-
tory generated noise sequences. Also included are the calculated
normalized energies given by Npm. These data are for 128, length 16
transformed blocks for a total of 2048 input data points. The energy
distribution indicates that enérgy is distributed among the transform
coefficients as predicted by the analysis models and simulation. There
is some distribution variation due in part to the slight d.c. offset in
the data which is captured by or projects onto the E% term of the DL
and DC bases and onto the E% and E% terms of the KL basis as
expected from the ]Hm(eju5[2 curves in Chapter Two. This causes a
proportionate shift in the other coefficient energies. Other causes are
random variation and the quality of the white noise filter input.
However, the monotonically decreasing trend is consistent with the
theoretical models and thus empirically supports the block transform

strategy.
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4.4 Bit Allocation and Coding Results
Equation (2.6.17) is used to aid in the evaluation of coefficient

word length allocation. The actual integer allocation is made as

1
B, = (;PCM + E'IOgZ(Npm) + 0.5] +1, m=1

and (4.4.1)
- 1
By BPCM +3 1og2(Npm) +0.25|+1, m>1.

This serves to provide some margin of error for coefficlent excur—
sions. The first coefficient (m = 1) has been given an extra margin to
accommodate d.c. offset and low frequency drift. This conservative
allocation reduces the bit rate improvement but guards against coeffi-
cient quantization saturation. The resulting assignments are given in
Table 4.3. Filters F2 and F3 are included for illustration. The
resulting rate reduction over PCM is shown in Table 4.4. This relative
performance is consistent with the curves of theoretical improvement
shown in Chapter Three. The KL affords\the greatest improvement in all
cases as expected. The DL provides more improvement than the DC for
filters F3 and F4 which have more attenuation (greater variation in
energies) than Fl and F2.

Transform coding has been performed on 2048 point sequences of the
signals described in Section 4.2. The coefficients have been checked
for saturation and none has been found. The resulting reconstruction
average distortion (mean square error) are given in Table 4.5. Note
that in all cases except one, the distortion for transform coding was

better than the theoretical PCM distortion given by Q2/12 t27].
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TABLE 4.4 BIT RATE IMPROVEMENT
BITS PER SAMPLE (BPS) AND PERCENT

FILTER F1l FILTER F2
BPS % BPS %
DL 1.19 15 .56 7
DC 1.38 17 1.06 13
KL 1.75 22 1.31 16
(a) EIGHT BIT PCM
FILTER F3 FILTER F4
BPS % BPS %
DL 2,88 29 1.75 17
DC 2.31 23 1.44 14
KL 3.31 33 2.44 24
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This is a result of self-imposed dimension reduction due to the capture
of most of the energy in the low-order coefficilents. As a result, the
high~order coefficients often have zero values assigned by the quanti-
zation. For the purpose of reconstruction, this is equivalent to block
by block discarding the coefficient. Thus, as expressed by equation
(2.6.17) the reconstruction error contribution of these coefficients
tends to be more like the coefficiené energy than the expected quantiz-
ing distortion. This 1s particularly evident in the 10 Hz sinusoid.
Note that the DL basis results in less average distortion than either
the DC or KL bases for the reduced bandwidth (10 Hz) signal. This is a
manifestation of the composite spectral capture property discussed in
Section 3.4. The effect is illustrated in detail in Table 4.6 which
gives the average coefficlent energies and associated quantization
distortion for the DL transform of the 10 Hz sinusoid compared .to the
random noise signal for filter Fl. Note that for the 10 Hz sinusoid the
quantization distortion is equal to the coefficient energy for m > 5.
These coefficients all were assigned the value zero by the quantizer.
For the signals examined here a priori subspace reduction by dis-
carding the last two coefficients would not have been a severe penalty
even from a total energy loss standpoint. This is illustrated by
Table 4.7 which gives the resulting distortion for eliminating the last
two coefficientsvprior to reconstruction. From the bit allocation given
in Table 4.3 the additional bit savings can be obtained. Note that for

filter F4, the DL and KL both result in less distortion than the DC.
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This 1is consistent with the coefficient energy distribution curves of
Chapter Three and again a manifestation of spectral capture. For the
last three signals listed, the DL and KL continue to result in less
distortion than expected from PCM. Again this is because the energy in
the discarded coefficients is less than the quantizing error Q2/12.
This is consistent with the composite spectral capture expected for the
basis for reduced bandwidth signals.

Since & 1is orthogonal, so is @T. Then EQ’ the error vector in
the reconstruction (see Chapter Two), is an orthonormal transformation
of gQ, the coefficient quantizing error vector. The vector EQ can be

thought of as a segment from a zero mean, while uniform source with

variance D = Q2/12 the mean square quantizing distortion.

¢ = Ppen

Then error eQ,n at a point of the reconstructed vector g is given by

e,n = <9n, gQ> (4.4.2)

where Qn is an orthonormal vector equal to the nth row of @T.
Following the analysis at the end of Section 2.3 the expected error
(variance) of eq,n is Q2/12. This agrees with the results of
Section 2.6. Since the error is formed by a welghted sum (inner
product) the distribution is going to become more normal by virtue of
the central 1limit theorem {32].

To illustrate the form of the reconstruction error, Figures 4.5
and 4.6 are included. Figure 4.5(a) shows the PCM (identity transform)
reconstruction error for the first 32 blocks (512 points) of filter
Fl output for white noise input (Fig. 4.3). Figure 4.5(b) shows the

DL transform coding reconstruction error for the same sequence.
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Note that the PCM error appears to be uniform and bounded by Q/2

(0.02) as expected. The error from DL transform coding exceeds 0.02 and
appears to be more normal as anticipated. This is reptesentative of all
three transforms. TFigures 4.6(a) and 4.6(b) show the PCM and DL trans—
form coding errors for ‘the first 32 blocks of the filter Fl output for
the accelerometer input (Fig. 4.4). Note the effect of subspace capture
due to self-induced coefficient elimination (i.e., reduced distortion)
for intervals of low-spectral content, particularly the interval between

points 385 and 480.

4.5 Summary

In this chapter the results of transform coding simulated on a
CDC-6600 computer are reported. The coding has been applied to
simulated and laboratory generated data sequences. The actual integer
coefficient bit allocation equations are given with the resulting
assignments for the four filters being considered. The results of
applying the transform coding strategy to 2048 point data sequences are
presented. Tabulated results show that input energy is distributed
among the coefficients as expected and that the recomnstruction error for
the transform coding i1s equal to or less than that expected for PCM.
The effect of self-imposed subspace restriction as a result of spectral
energy capture is discussed and illﬁstrated. Example sequences illus-
trating the form of the reconstruction error are given. All the results

are consistent with the analysis of Cﬁapter Three.
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CHAPTER FIVE

CONCLUSION

This dissertation addressed the application of nonadaptive trans-—
form coding to presample filtered telemetry data for the purpose of bit
rate reduction over conventional PCM. Three bases were considered:

a filter derived Karhunen-Loueve (KL) basis, a basis of discrete cosines
(DC) which are also discrete Chebychev polynomials, and a basis of
discrete Legendre (DL) polynomials which have received little or no
attention for transform coding. The transform coding strategy resulted
in bit rate reduction on the order of 25 percent for block lengths of

N = 16, Additionally, transform coding waé shown to reduce the quanti-
zation distortion in the reconstructed signal when the signal has
intervals of low activity (reduced spectral content). The potential for
further rate reduction by a-priori elimination of coefficients was also
explored. It was found that the additional bit rate improvement is
conditioned on the signal (spectral) energy capture within some accept-
able limits. Thus the lmprovement is a subjective consideration that
should be treated in future study.

A family of Butterworth.filters was used in this study. Two of the
filters were taken from actual telemetry systems. The two additiomal
filters included for comparison were derived from the first two by
changing the filter order and requiring the same attenuation at the

folding frequency. Analytical tasis comparisons were presented for all
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four filters. Real data output from the first two filters was used for
empirical study.

Transform coding leads to bit rate reduction because the input
energy is redistributed among the coefficients of the transformationm,
thus enabling fewer bits to be used to code the coefficient sequences
in lieu of the input sequence. In order to analytically determine the
bound on energy redistribution, successive transformation was modeled
as the output sampling of a bank of finite impulse respomse filters
whose impulse response is equal to the reverse-order basis sequence.
Parseval's relation could then be used to provide an expression for the
coefficient sequence energy. The resulting expression involved the
product of the basis filter magnitude squared transfer function (MSF)
and the presample filter output sequence magnitude squared transfer
function or power spectral demgity. In this way the coacept of spectral
energy capture of a coefficient was intrcduced. This provides insight
into the mechanism for energy redistributiom.

It is known that the KL basis is optimum in the sense of energy
packing (redistribution) and, hence, bit rate reduction for stationary
sources. It was assumed that the presample filter magnitude squared
transfer function provides the spectral envelope or power spectral
density of the worst case (most robust) filter output. The KL basis
derived from the filter function was then agssumed to be optimum for this
application and sufficient to aemonstrate bit rate reduction.

The suboptimal deterministic DC, Figure 2.3, and DL, Figure 2.4,
bases were defined. They were observed to have similar basis shapes
and frequency selective coefficient filter MSF's to that of the filter

dependent KL, Figure 2.2. The use of a deterministic (not a function of
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the filter) basis has practical significance for process storage
reduction. For instance, several filters can be managed using a single
processor.

Analytical comparison of energy distribution, Figures 3.2 and 3.3,
and energy packing, Tables 3.1 and 3.2, for ‘N=16 and N = 32 were
made betweeﬁ the three bases. The KL was observed to have the most
efficient packing as expected. The energy distribution was seen to
approximate the shape of the filter magnitude squared function for all
three bases. Thus all three bases were observed to have a large per-
centage of the energy packed into the low-order coefficients. The
DL, however, appeared to be diverging slightly from the KL with increas-
ing N. The KL and DL are known to approach the power spectral demnsity
as N » ». This is a manifestation of the spectral selectivity
properties of the basis and suggests that spectral selectivity is a
necessary property for transform coding.

Coefficient quantizing and bit allocation, with the requirement
to have the same distortion as PCM, were examined using procedures

_similar to those of Zelinski and Noll [17]. This led to the result
that each coefficient should be quantized using the same quantization
level that would have been used for PCM. Bit allocation then becomes
an adjustment in dynamic range in each coefficiént. This led to a
theoretical bound for full space bit rate reduction in terms of the
geometric mean of coefficient energies. Comparative plots of the bound
for N = 8 through 32 were given 1in Figure 3.5. The KL was again
observed to be the best of the three bases. The DL and DC were seen to
approximate the KL. The fact that the KL and DC approach the PSD as

N > » leads to an expression for the asymptote for full space transform

.
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coding. The KL and DC were observed to approach this limit at a non-—
linear rate that quickly led to diminishing returns for increasing N.
This indicates that the increased computational load for large N may
not be justified for the filter functions considered. This 1is encourag-
ing for real time telemetry applications. The DL was observed to
approach a lesser asymptote and apparently reach its limit much soomer
than either the KL or DC basis. This 1s consistent with the observation
that the energy distribution does not approach the PSD as N » = for
the DL basis. However, for the two filters with greater attenuation
(variation in dynamic range) the curves ind;cate the DL to be superior
to the DC for low values of N. Thus, for applications using filters
corresponding to low distortion, say 10 to 12 bits, the DL is suggested.

Further comparison based on the concept of spectral capture was
addressed by the introduction of a composite magnitude squared function.
This represents the combined spectral capture for a subset of coeffi-
cients (the spectral equivalent to energy packing). It was noted that
the low-frequency capture properties of the DL basis exceeded both the
KL and DC bases. It is suggested that subspace representation is an
area that may be viewed from spectral capture for future research and
that the DL basis may have desirable properties.

Transform coding of filter output plus noise was addressed for the
purpose of assessing input digitizer effects. It was shown that white
input noise distributes equally among the coefficients and shows up as
an additive error in the reconstruction distortiom. Thus the input
digitizer (quantization) level should be kept smaller than the coeffi-
cient quantization level. Future analysis is to address the tradeoffs.

The diagnostic properties of the DL and other transforms for the
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detection of input noise 1s also an area for future comsideratiomn. It
was also shown that the discarding of coefficients potentially reduces
the input noise contribution to reconstruction error. This is a form of
scalar Weiner filtering as discussed in Ahmed and Rao [23]. This is
another area where the DL properties may prove beneficial.

Transform coding for block length N = 16 with conservative
integer bit allocation as given in Table 4.3 was applied to simulated
and laboratory generated data sequences. For all inputs processed the
coefficients were checked for saturation and none was found. The KL
provided 22 percent rate reduction for the 8 bit PCM filter F1 and
24 percent rate reduction for the 10 bit PCM filter F4. The DC and DL
were slightly less for both filters (see Table 4.4). For filter F4 the
DL afforded more reduction (1; percent compared to 14 percent) than the
DC as the analytical curves suggested. The results for both simulated
and generated white noise input as given in Table 4.2 supported the
analysis in terms of predicted emergy distribution.

The use of transform coding was shown to effect the form of the
reconstruction error in two ways. First, the error distribution func-
tion tends go a normal distribution instead of uniform as in the PCM
case. This is illustrated in Figure 4.5. Secoundly, for signals with
intervals of low activity (low spectral energy content) the reconstruc-
tion error can be less than that for PCM. This can be seen for the
accelerometer data reconstruction error in Figure 4.6 and from the mean
square distortion given in Table 4.5 for the accelerometer and sinusoid
signals. This latter property is by virtue of self-imposed subspace
restriction resulting from the assignment of the value zero to high

order coefficients which are less than one~half the quantization level.
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The experimental evidence in Table 4.5 supports the suggestion that the
DL basis has superior performance from this respect.

The filters considered here were specified with maximum bandwidth
relative to the filter order, quantizing distortion, and sample
frequency. This is typical for telemetry applications. For other types
of filters, possibly very over-sampled applications, transform coding
and particularly the use of the DL basis may provide even more savings.

Other areas of research directly related to the application of
telemetry are the effect of finite arithmetic on the transformation and
the development of a "fast™ DL transform, although large values of N
are not seen to be demanded for the filters here.

It was observed for transform coding of real data that a lot of
leading zero bits are transmitted. Thus the investigation into adaptive
coding for applications which are not limited to fixed tramsmission bit
rate is suggested.

Another area of application for future research is the comsidera-
tion of "pass band” spectral capture and "perceptual” coding, that is,
the allocation of more bits (less distortion) to the coefficients that
capture energy in‘the spectral band of interest. This is an application

where the DL basis properties appear to have promise.
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APPENDIX

A.1 Evaluation of Integrals
Some of the equations presented in Chapter Two and Chapter Three

require the evaluation of integrals of the form
2
L 1 oce®]
= [ lee®]| aw (A.1.1)
-T
where the integrand involves either F(ejw) or Hm(ejm). These

integrals are evaluated by the common technique of approximating the

continuous finite integral by a finite sum of the form

L-1 . 21k lz
1oy G(eJ T>| , L =256. (A.1.2)
L k=0

It is found that increasing L makes no appreciable difference for the
smooth functions in this work.

The g~filter impulse respomses hm(n) defined in Chapter Two are

k
finite length sequences. Thus the terms Hm<ej %ﬂ. ) are obtained by

performing a 256 point FFT on h; (n) with trailing zeroes added. This

. |2
is the same method used to generate the le(er)\ curves shown in

Chapter Two for N = 16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



s 27
k
The terms F(eJ L ) are obtained by first obtaining a digital
filter transfer functiom, F(z), based on the analog filter specifica-

tion, using the impulse invariant design technique [1]. Then the

s 27
k
resulting transfer function is evaluated at z = eJ I « The resulting
response is given by
3 @ w 2
J = — __Tr. . ol o
Fel) = | F(Fi+sm i) (A.1.3)

m=e

This is the same as the Fourier transform of a sequence derived by
uniform sampling of an analog waveform with Fourier transform F,(Q).
This metho. is selected since the coding is performed on the sequence of
filter output samples.

With this approximation, the normalized maximum coefficient energy

is given by
L-1 ( ; 211:R> 3 21'ck_>i2
—Zo Fle 'Hm<e L
Np = — . (A.1.4)
) m 1-1 . Hk\ 2
2 Flel T /
=0

Other integrals are evaluated in an equivalent fashion.
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