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ABSTRACT 

APPLICATION OF QUEUING THEORY AND PROCEDURE TIME ESTIMATION 

IN A LOCAL HEALTHCARE SYSTEM 

Galina Tsoy 
Old Dominion University, 2004 

Director: Dr.Ghaith Rabadi 

People in the United States pay more for their basic healthcare needs than do 

people in any other nation in the world. When we consider that the United States is the 

wealthiest nation in the world, controlling the majority of the world's resources, it seems 

only reasonable to ask: Why should it be this way? 

In an effort to address this problem, this thesis examines two possible methods of 

improving health care efficiency in hospitals. The thesis is thus in two parts: the first part 

examines resource allocation in medical units using Queuing Theory, and the second part 

examines a more accurate estimation of surgical procedure times. In the first part, a 

queuing model provides performance measures based on the historical interarrival and 

service times of a medical unit. The queuing model demonstrates the trade-off between 

the utilization (system's perspective) and patient waiting time in the queue (customer's 

perspective). Also, it shows some insights as to the average of patients spent in the 

system and in the queue, the average time a patient spends in the system, and the 

probability of the system being empty. The queuing model will enable hospital managers 

to see the effect of arrival rate, service rate, and number of beds to estimate the main 



performance measures of assessing the benefits of providing extra beds to minimize 

patient waiting time when demand increases. 

The second part provides a better estimate of surgical procedure times based on a 

lognormal distribution. Efficient estimation of surgical procedures times will reduce the 

costs incurred in inaccurate estimation of its time and consequently the costs associated 

with surgical operating rooms. 

These two proposed methodological approaches will hopefully point the way 

toward further research aimed at bringing about concrete improvements in U.S. hospital 

performance. 
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CHAPTER I 

I. INTRODUCTION 

Hospitals are the single largest source of healthcare costs in the United States, and 

despite widespread concern there appears to be no end in sight to rising costs. With an 

aging population of "baby-boomers" and the nation's growing number of uninsured, the 

system is facing a crisis of serious proportion. Calls for government regulation along 

with growing market competition have put increasing pressure on hospitals to achieve 

better performance at the lowest possible cost. Patients, as they continue to evolve into 

customers, are requesting shorter waits in hospitals, quicker turnaround of results, and 

better quality of care. For years, hospitals have been exploring ways to improve their 

margins and their patients' satisfaction. As other service industries do, healthcare 

organizations shall satisfy patient demands for better service while simultaneously 

controlling the costs of resources. However, despite these efforts patients still wait long 

hours in hospitals to receive very costly service. 

A big part of the waiting problem is supply of adequate number of hospital beds. 

Green and Nguyen (2001) showed that patient waiting time is strongly related to 

inadequate bed resources. To allocate bed resources, hospital managers generally 

employ a simple approach to determine bed capacity, an approach which is based on 

target occupancy level. Hospital bed occupancy is defined as the ratio of occupied beds 

The journal model used in this thesis is American Psychological Association 



to the total number of beds. The most frequently employed target level is 85 % 

(Green, 2002). 

The original goal of target occupancy level was to control the number of hospital 

beds to minimize the cost. The target occupancy level was developed in 1970s at the 

federal government level as a response to elevating hospital costs, and was based on 

estimates of"acceptable" delays (McClure 1976). There are several problems with 

reported occupancy level. First, internal data for calculations typically include certified 

beds and beds "in service" while reported occupancy is based on only certified or 

2 

licensed beds. Second, published occupancy levels typically are based on the average 

"midnight census" which measures the lowest occupancy level of the day. Finally, 

reported occupancy levels are yearly averages, and therefore do not reflect the seasonality 

and variability between weekdays and weekends. For all these problems, published 

occupancy levels are not reliable measures for determining the bed utilization (Green, 

2002). Therefore, the approach of calculating bed resources based on target occupancy 

level leads to the false results and thus to rising cost of healthcare service. 

To decrease the rising cost of healthcare, health managers call for a reduction in 

bed capacity. However, by doing this, managers create long patient waiting times. From 

the system perspective, performance of a system is measured by the system throughput 

and resource utilization (bed utilization). From the customer perspective, performance of 

a system is based on the server response time (minimum waiting time). To satisfy these 

conflicting goals, managers need to consider many factors, including costs, the 

probability of turning patients away, waits for emergency patients, backups for 

transferred patients from other departments, and patient dissatisfaction. The insight on 



some of the mentioned factors can be provided by queuing theory. Queuing models 

provide useful information for designing and evaluating the performance of queuing 

systems. They involve trade-offs between server utilization and waiting time/delays, 

which the target occupancy level lacks to provide. 

Many mathematical methods and stochastic approaches have been studied. 
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There are two main categories: 1. Analytic models which include a stochastic process that 

describes the flow of patients and utilization ofresources, 2. Simulation models which 

include hypothetical and empirical data to imitate the hospital system. With respect to 

the healthcare industry, a wide variety of analytic and simulated queuing models (Gross 

and Harris, 1998) are available to help healthcare managers evaluate queuing theory. 

Some of the early work was presented by Bailey (1952) and Welch (1964) in modeling 

appointment systems in outpatient facilities. Gupta et al ( 1971) used the basic multiple­

server queuing model for staffing hospital care units in inpatient settings. Bennett and 

Worthington (1998) discussed the organizational challenges found in the implementation 

of queuing models in an outpatient clinic. 

Some queuing model attempts have been made to suit a variety of different types 

of care units, such as obstetric services, operating rooms, trauma centers, cardiac care 

units, geriatric units, and emergency departments. In each case, queuing theory is used to 

determine the appropriate allocation ofresources. For example, Milliken et al. (1972) 

used a queuing model to predict room utilization. Taylor ( 1969) and Tucker et al. (1999) 

used queuing theory in operating rooms. Dexter and Macario (2001) determined the 

optimal number of beds and occupancy of a unit to minimize staffing costs in obstetrics 

units. Green and Nguyen (2001) examined data to estimate bed availability in intensive 



4 

care units and obstetrics. Litvak et al. (2004) validated a queuing model in busy intensive 

care units (ICU). 

The growing body of using queuing theory is evidence of the increasing 

recognition of the relevance and value of Queuing Theory in addressing the problems 

currently faced by the healthcare industry. However, compared with many other 

organizations, hospitals are still reluctant and have been slow in adopting queuing theory 

as a means to improve their performance. Even when proposed queuing models are 

relevant and reliable, the results are not always used and applications are scattered. 

Therefore, in order to test and observe the applicability of queuing theory in hospitals, 

this thesis will focus on validation and credibility of a queuing model in the medical units 

of Sentara Leigh Hospital, in Norfolk, Virginia. Customarily, patients who have been 

diagnosed with cardiac disease are referred to these medical units. The results from the 

queuing model will show some insights as to bed capacity and bed utilization, waiting 

time, the average of patients for the unit being studied. 



CHAPTER II 

II. LITERATURE REVIEW 

This literature review consists of three parts. Part 1 "The history of queuing 

theory" primarily based on Fundamentals of Queuing Theory (Gross and Hanis, 1998), 

Queuing Methods (Hall, 1991 ), and Management Science (Taylor III, 2002). Part 2 

describes queuing theory applications in healthcare industry. Part 3 provides a summary 

of the chapter. 

HISTORY OF QUEUING HISTORY 
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The history of queues goes back to primitive life; an early queue was described in 

the Bible. Despite the fact that queue existed for centuries, queuing theory is quite 

modem. Only in the beginning of twentieth century queuing theory was developed by 

Danish mathematician and statistician Agner Krarup Erlang who determined the number 

of switches and minimum waiting time to place a call. He published in 1909 his 

pioneering paper "The theory of probabilities and telephone conversations" on the study 

of congestion of telephone traffics. Particularly notable was Erlang's argument for the 

input of telephone calls to obey the Poisson law. Using this rationale in his most 

significant paper, "Solution of some problems in theory of probabilities of significance in 

automatic telephone exchanges", Erlang also assumed here that service times are 

exponential. Much of his work that followed during the period to the Second World War 

in 1940 was related to the design of automatic telephone exchanges. Among other 



contributions, Erlang studied queuing in the M/M/1/ oo system and loss model M/M/m/0 

applying "birth-and-death" representations. After a few years, British Post Office 

established Erlang's formula as the basis for calculations circuit facilities. 

6 

Although the first use of the term "queuing theory" did not occur until 1951, in an 

article by David G. Kendall that appeared in The Journal of the Royal Statistics, there 

were many early pioneers of queuing theory whose work has been summarized (Saaty 

1961). Some of those pioneers are O'Dell (1920), Fry (1928), Molina (1927), 

Kolmogorov (1931), Khinchin (1932), and Crommelin (1932). Inspired by Erlang's 

work on queuing, Pollaczek (in the 1930s through the 1960s) developed the formula for a 

single channel with Poisson arrivals and arbitrary service time which is called the 

Pollaczek-Khintchine formula. He also studied the constant service time for ordered 

queue discipline and for allocation by subqueues in front of each server. Pollaczek 

developed a formula the general service time with general arrivals and multiple channels 

(G/G/c). 

The considerable growth of Queuing Studies appeared with the finding of 

Operation Research in the late 1940s and early 1950s. The first textbook was written by 

Morse in 1958 called "Queues, Inventories, and Maintenance". In 1961, another book 

was written by Saaty "Elements of Queuing Theory with Applications, and in 1976, 

"Queuing Systems" was completed by Kleinrock. To day more than 100 books have been 

published on Queuing Theory. 

Over the last 40 years, research on Queuing Theory has progressed significantly. 

Journals such as Operation Research, Naval Research Logistics Quarterly, European 

Journal of Operational Research and Management Science often include contributions 



on this subject. Now Journals of Applied Probability, Advances in Applied Probability, 

and Queueing Systems: Theory and Applications, Stochastic Models, and Probability in 

the Engineering and Information Sciences are specifically oriented journals to queuing 

theory. 
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There are many real life applications of queuing theory in industries such as 

telecommunications, banking, copy business, airlines, and police (Brigandi et al. 1994; 

Brusco, Jacobs, Bongiorno, et al. 1995; Brigham 1955, and Taylor and Huxley 1989). 

Unlike optimization theory where the objective function needs to be minimized or 

maximized subject to constraints, queuing theory is mostly a mathematical descriptive 

theory. It formulates, interprets and predicts performance measures to better understand a 

queuing system. It provides an insight into the cost of a system and customers delays, 

waits, and their satisfaction in terms of response time. 

QUEUING THEORY IN THE HEALTHCARE INDUSTRY 

Weiss and McClain (1986) described the process by which patients are discharged 

from acute care units. Sometimes patients wait in acute units for extended services and 

occupy the beds not for medical reasons. The collected data of seven hospitals in New-

y ork State was used to validate the proposed queuing model. An MIGi oo model where M 

denotes Poisson arrivals, G denotes a general service time, and oo is infinite number of 

servers was applied. The problem with this model is that it is only applicable to one acute 

facility and one extended facility. The advantage is simplicity of the model and that the 

decision maker may have a greater control over the decision variables for one hospital 

rather for all facilities in a region. Based on this model, census distributions can be 



estimated which will predict the average of patients from acute care and the maximum 

expected impact of patients on census predictions for the entire hospital. Then hospital 

administrators can evaluate a cost/benefit using quality-of-care measures. Also, the 

distributions of the time patients spent waiting for extended care can be predicted. 
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Worthington (1987) applied an M/G/S model. In this model, arrivals occur at 

random at a rate Aq, service rate is general and independent from any probability 

distribution, and S is number of servers. The model assumed that arrivals are random at a 

rate that decreases linearly with waiting list size. The author considered eight examples: 

the present system, a waiting list without feedback, increasing the number of beds, 

decreasing mean service time, combining two equal lists, combining two unequally 

resourced lists, introducing feedback earlier, and finally, combining two differently 

managed lists. Statistical evidence suggested that observed process during an 18-month 

period is adequately described by the model. 

Siddharthan et al. (1996) investigated the increasing patient waiting time costs 

and proposed an economic solution to deal with this problem at a public and non-profit 

hospital. The data was provided by a large acute facility in Dade County, Florida for 

three months in the fall 1989. The patients were classified by two classes: emergency and 

non-emergency care. Non-emergency patients who can get a service in other facilities 

than in emergencies impose a burden to a hospital by creating a longer waiting line and 

time. Emergency patients are prioritized over non-emergency patients and prioritizing 

includes preemption or suspending a service for non-emergency patients. Among non­

emergency patients, the service was on a first come, first in basis. The authors have 
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proved that using a priority queuing model reduces the waiting times for both emergency 

and planned patients in emergency care. 

El-Darzi et al. (1998) proposed a simulation and flow model to assess the effect of 

blockage, occupancy, and emptiness on patient flow in geriatric inpatient department. 

They considered the model as a queuing system where interarrival rate was exponential 

(the arrivals of the next patient was independent from the previous), the service time 

followed exponential distribution, and the queuing discipline was First in First out 

(FIFO). The patients arrive at the acute compartment if beds are available, if not, they are 

rejected. Queue 1 is created when no beds are available in rehabilitation compartment for 

the patients arriving from acute stay. Those patients occupy beds in the acute 

compartment. Queue 2 is created similarly when patients from rehabilitation 

compartment are needed to be transferred to long-stay compartments. The number of 

beds for each compartment was determined from the simulation results. The results from 

the flow and the simulation model proved that they were viable tools to determine bed 

occupancy in a geriatric department. 

Tucker et al. ( 1999) used queuing theory to determine whether a trauma center 

needs an additional OR room during the night time period. The objective was to provide 

necessary service while minimizing patient waiting time. The single-phase, single-server 

(M/M/1) basic formula from queuing theory was applied. The probability of two or more 

patients needing the operating room at the same time will reflect the possibility of 

needing a back up night shift. Then, simulation was developed and its results were 

compared to the queuing model to validate the results from the queuing model. The data 

included one-year operating room cases. It turned out that the probability of two or more 



cases needing the OR at the same time is 0.1 %; therefore trauma operating rooms at 

nighttime did not need a backup team. 

Kim et al. (1999) provided a study of queuing theory and simulation models with 

actual data from intensive care unit (ICU) facility in Hong Kong over six-month period. 

The ICU received patients from four different sources: ward; accidents and emergency; 

Operation Theatre (OT)-emergency; and Operation Theater (OT)- elective. There was 

only one queue for all different sources. The arrival rate and service rate was proven to be 

Poisson and exponential except for elective surgery. The Chi-square goodness-of-fit did 

not support the exponential assumptions for OT - electives because patients usually come 

from scheduled appointments. Even though for OT - electives, the service time did not 

follow the exponential distribution, it was still assumed that the service rate is 

exponential; however, in the calculations, the actual variance rate calculated from the 

data was used. A simulation model was used to validate the results of the queuing theory. 

Together, the analytical ( queuing) model and simulation provided the same results and 

some insights into managerial aspects ofICU's operations. 

Gorunescu et al. (2002) integrated queuing theory with compartmental models of 

flow to show how arrivals, length of stay, and number of beds influence bed occupancy, 

emptiness and tum away in geriatric departments in a London teaching hospital of 

geriatric medicine. Also the authors showed how availability of unstaffed beds influences 

the tum way and cost. An M/PH/c/N queuing model was used, where M denotes Poisson 

arrivals, PH denotes phase-type service distribution, and c is the number of beds, and N is 

the maximum capacity of the system. The service distribution is considered as a mixture 

where the components of the mixture are characterized by the phase of discharge ( acute, 
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rehabilitative, long stay) from the system. Five scenarios were tested for the queuing 

model: 1. changing the arrival rate, 2. changing length of stay, 3. changing the bed 

allocation, 4. adding a five or ten bedded waiting rooms, 5. costing the policy. These 

modeled scenarios showed the effect of arrivals, service rates, number of beds, and extra 

beds on probability of rejection. Using the queueing model, the authors provided the 

methodology that enables decision makers to estimate main characteristics of access to 

inpatient beds and assess the benefits of providing extra beds to minimize tum away 

when demand increases. Further work is needed to evaluate this methodology in a real 

life situation. 

Green (2002) used queuing theory to estimate bed unavailability in ICU and 

obstetrics units. The analysis was based on 1997 data for obstetrics and intensive care 

units for New-York state hospitals and it illustrated how the target occupancy levels may 

be misleading and potentially dangerous. She argued hospital occupancy needs to be 

determined by queuing rather than by target occupancy level. A standard M/M/s queuing 

model (Gross and Harris 1985) was utilized to determine different performance measures, 

specifically the waiting time/delay in queue for service to show the disadvantage of using 

target occupancy level. The delay from acute and obstetric units was measured from the 

time a bed was requested to the time at which a bed was available. Then it was compared 

with probability of delay from the queuing model. The queuing model provided better 

results than target occupancy level. Also, the queuing model gave more factors affecting 

the trade off between utilization and the number of beds. From the model, for a given 

occupancy level, delays increase as number of beds decreases. 
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Litvak (2004) sought to validate the utility of queuing theory in an intensive care 

unit (ICU). They examined an 18-bed unit of an urban children hospital in the medical­

surgical ICU during a 2-year period. An M/M/c/s model was applied where the arrival 

time is Poisson, service time is exponential, and there is c number of servers and s 

number of spaces in the system. The queuing discipline is first-come, first-served 

(FCFS). The observed monthly arrival rates, available beds, and stay time, monthly 

utilizations and rejection probabilities were determined applying a formula for M/M/c/s 

and compared with observed tum-away rates and utilizations. The results suggested that 

queuing theory provides very accurate information to predict tum-away rates and 

represents a simple and reasonable approach. 

SUMMARY 

Based on the literature review of the work that has been done in obstetrics units, 

operating rooms, trauma centers, geriatric, and intensive care units, queuing theory is 

shown to be valid approach for estimating bed capacity, bed occupancy, and waiting 

time. This thesis uses queuing theory in medical units of Sentara Leigh Hospital, in 

Norfolk, Virginia. Customarily, patients who have been diagnosed with cardiac disease 

are referred to these medical units. The queuing model will provide the insights to see 

the trade-off between utilization (system perspective) and patient waiting time (customer 

perspective). An M/M/c model where the arrival time is Poisson, service time is 

exponential and independent from other arrivals, and there is c number of beds will be 

applied here. 



CHAPTER III 

III. QUEUING MODEL 

Different types of Queuing models: 

The simplest form of queuing system is the single server with a single waiting line or 

queue. A store can have one server ( e.g. cashier) and consequently one waiting line or 

queue. Another form of queuing models is the multiple-server model where several 

independent servers in parallel serve a single waiting line. These two types are the most 

common in queuing systems. 
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Among these two general categories (Hall, 1991 ), there are models that consider the 

following aspects: 

• Balking: when customers estimate how long they may have to wait for a service 

and leave immediately 

• Reneging: when customers do not join the line but leave later 

• Jockeying: when customers move between the lines. 

Balking, reneging, and jockeying are the most difficult aspects of a queuing system to 

measure because it is hard to record customers in the system: will a customer return back 

or never, if he/she returns and when will it be. In this thesis, these aspects are not 

captured since they do not directly apply here. 



QUEUING CHARACTERISTICS 

A queuing system must have the following characteristics: 

1. Customer. A customer is a person who waits for a service: shoppers, patients, 

bank customers, etc. The arrival process of customers can be in person or in 

groups, at a constant rate or in a pattern, predictable or random. In addition, 

different customers may arrive at different times of the day. 
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2. Servers. A server is a person or resource of serving a customer: doctors, bank 

tellers, beds, etc. The service time of a server can be constant or varied; dependent 

on the type of customer; predicted in advance; and dependent on the server or the 

time of the day. In addition, service time is dependent whether identical or 

different tasks are performed; and what the rules are for moving customers from 

server to another. 

3. Queuing Discipline. The queuing discipline specifies the order in which 

customers are served. Customers can be served on a first-in, first-out (FIFO) basis 

(most common), or on a last -come, first-served (LCFS) basis, or a last-in, first -

out (LIFO). Also, queuing can be random when parts/customers are selected 

randomly, or prearranged when customers arrive according to prearranged 

scheduled appointments, or processed alphabetically according to customers' last 

names, such as school registration or at job interviews. Other disciplines exist 

including those with priorities. 
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MEASURES OF PERFORMANCE 

Customer Measures of Performance 

Customer measures of performance in most cases are waiting time in the queue and cost 

associated with this waiting time. Evidently, a customer wants to spend less time in the 

queue and in the system. There is a cost associated with the waiting time, which could be 

for some customers more costly than others. In addition to quantitative measures, 

qualitative measures are important to the customers such as the waiting environment, 

whether the customers are informed about their waiting time, whether they can sit, and 

whether the room is crowded. 

Server Measures of Performance 

The server measure of performance is the cost of providing service, which is reflected in 

utilization and service time. A short service time is an indication of more efficiency. The 

utilization of a server is the percentage of time the server is busy. From a server 

perspective, a longer queue length is more costly since more space is required to 

accommodate more customers. 

KENDALL NOTATION 

Kendall notation named after the statistician Kendall (1953) is a shorthand notation to 

identification and description of the systems. 

Kendall notation has the form A/Blc/Klm/Z where 

A is the interarrival time distribution, 

B is the service time distribution, 

c is the number of servers, 



K is the largest possible number of customers in the queue (i.e. queue size) 

m is the number of customers in the source, 

Z is the method by which the queue is serviced (i.e. queue discipline). 
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In most common real-world systems, this notation can be shortened to AIB/c, where K 

and m are assumed to be infinite, and Z is assumed to be first-in, first-out. Common 

symbols representing time distributions for A and B include D for deterministic ( or 

constant) time distribution; M (Markovian) for exponential time distribution, which 

corresponds with random arrivals; G for general service time distribution; GI for general 

independent interarrival time distribution, and Ek fork-Erlang. 

Examples of queuing systems include 

• M/M/c denotes a multiple-server queue with an exponential interarrival 

distribution (M), with exponential service time (M), and c servers 

• M/G/1 denotes a single server queue with general service time distribution (G) 

and exponential interarrivals (M) 

• D/G/c denotes a multiple server queue with deterministic (constant) interarrival 

and general service rate. 

DEFINITIONS 

Here, healthcare terminology will be used. 

Discharge time is the time the patient leaves the system. 

Departure time from queue is the time the patient leaves the queue to be served. 

Time in queue is the departure time from queue minus the arrival time. 



17 

Time in system is the discharge time minus the arrival time or time in queue plus service 

time. 

The arrival process 

This subsection consists of the description of arrival rate definition, Poisson arrival 

pattern and interarrival times. 

Arrival Rate Definition 

An arrival at unit i is recorded when a patient is referred to unit i by a doctor. The arrival 

rate (A) is the frequency at which customers (patients) arrive at a waiting line according 

to a probability distribution. This rate can be estimated from historical data derived from 

studying the system. Although arrivals can be described by any probability distribution, 

the arrival rate is often defined by a Poisson distribution. 

Poisson arrival distribution 

Here are some important characteristics of the Poisson distribution: 

1. Poisson distribution is a discrete distribution where the random variable is limited 

to a set of distinct non-negative values. 

2. Expected value (E) and variance (V) are the same and equal At (tis the time units 

of the next arrival). 

3. The probability of the next arrival or probability of no arrival during the next t 

units of time is equal e-J..t_ 



Interarrival times of Poisson process 

When the arrival times follow a Poisson distribution, it is known that the interarrival time 

follows the exponential distribution (Hall, 1991 ). 

Characteristics of the exponential distribution: 

The exponential distribution is continuous and defined over the set of non­

negative real numbers. 

The expected value (E) or mean is equal to l/11, 

The variance (V) is equal l/11,2. 

The service time 

The service time(µ) denotes the length of time that a patient physically spends in a 

system while being served. The recording of the service time thus starts at the time of 

physical transfer to unit i. The service rate is the average number of patients who can be 

served during a time period. Like arrival times, service times need to be defined by a 

probability distribution. Although service times can be described by any probability 

distribution, they are often defined by an exponential distribution. The mean service 

time per bed can be shown as an exponential expression with its mean 1/ µ and the 

variance 1/ µ2. The service and the arrival times must have compatible units of 

measurement. 
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DATA COLLECTION 

Data was collected over the thirty three days by Sentara Leigh Hospital. The historical 

data was available for at least sixth month period but it did not capture the time we were 

interested in. For example, the queuing time in many cases was combined with service 

times. For that purpose, the data collected was the maximum days we could obtain from 

Sentara Leigh Hospital. Over the thirty three days, 307 points was collected which was 

reasonable for validation of the queuing model. 

M/M/cMODEL 

Our analysis is based on an M/M/c queuing model to estimate different performance 

measures. Three important elements for the queuing model must be detennined: the 

average admissions/day arrival rate (A), the service rate(µ), and number of beds (c). The 

Queuing discipline is First-In, First-Out (FIFO). Based on the historical data of Sentara 

Leigh Hospital over thirty-three days, the interarrival rate is occurred according 

exponential distribution and the service rate has an exponential process as well. The 

number of beds (servers) can be varied to determine the trade-off between utilization and 

patient waiting time. 

Performance measures of a system: 

The probability that there are no customers in the system (Taylor III, 2002) is 

Po= [n=c-l__!__(A)n]+_!_(A)c( cµ ) 
n~O n! µ c! µ cµ-A 

1 
3.1 



The average number of customers in the system is 

L= Aµ(J..,!µf Po+i 
(c-1).(cµ-J..,) 2 µ 

The average time a customer spends in the system is 
L 

W=-
J.., 

The average number of customers in the queue is 

The average time a customer spends in the queue waiting to be served is 

Wq =W-_!_= Lq 
µ A 

Th ·1· . )., e utl 1zat1on = -
cµ 

Our estimated arrival rate, service rate, and number of beds are based on Sentara's 

historical data. Every 24 hours, on the average 9.3 patients arrive to the hospital. The 

average service time is 87.36 hours. 

Arrival rate (A) 9.3/24 = 0.38 patient/hour 

Service rate (1/µ) 1/87.36 = 0.0115 1/hour 

Number of servers (c) 41 beds 

Substituting these values in equations 3.1 to 3.5, we get the following: 

20 

3.2 

3.3 

3.4 

3.5 



21 

The probability of no patients in the system is 

1 
Po= =---------~------------- = 0.00 % 

[

41
=

4
l-l 1 (0.3875)

41
] 1 (0.3875)c( 41 *0.0115 ) 

n~O 41! 0.0115 + 41! 0.0115 41 * 0.0115 -0.3875,-1, 

The average number of customers in the system is 

L = 0.3875 * 0.0115(0.3875 /0.0115)
41 

0.00 + 0.3875 = 34_65 
(41- 1).(41 * 0.0115-0.3875)2 0.0115 

The average time a customer spends in the system is 

L 
W = - = 34.65 I 0.3875 = 89.41 

/4 

The average number of customers in the queue is 

Lg= L - i = 34.65 -
0

•
3875 

= 0.8 
µ 0.0115 

The average time a customer spends in the queue waiting to be served is 

Wq = W - _!_= Lq = 0.795 / 0.3875 = 2.05 
µ A 

J 0.3875 
The utilization= - = ---- = 0.83 or 83 %. 

cµ 41 * 0.0115 

A summary is provided in a Table 1. 
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Table 1 Performance measures of the queuing model. 

Average server utilization 83 % 

Average number of customers in the queue (L9) 0.8 patient 

Average number of customers in the system (L) 34.65 patient 

Average waiting time in the queue (W 9) 2:03 hour/patient 

Average time in the system (W) 89:24 hour/patient 



23 

CHAPTERN 

IV. RESULTS AND DISCUSSION 

During the recorded thirty three day period, 307 patients were admitted to the 

medical units of Sentara Leigh Hospital in Norfolk, Virginia. Before using an M/Mc 

queuing model, the interarrival times and service times were extracted from the historical 

data to see if they occurred according to an exponential distribution. The distribution 

fitting was preformed by Arena (simulation software). The graphical representation of 

the interarrival and service times: 

Figure 1 Histogram of interarrival times. 

Histogram of interanivals 
35 ,-------- - --------------------~ -------

[ 31 

30 

25 23 

;;,,--. 
'-I 20 = Q) 

16 = O" 
Q) 15 1-, 12 ~ 

10 9 
T 

I 

,n 6 

5: 

[L, □,~ 2 
0 0 □ 0 t ,- ----i-- -I 

0:00 1 :18 2:37 3:56 5:15 6:34 7:53 9:12 10:31 11:50 More 

Time(h:m) 



Figure 2 Histogram of service times. 
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For distribution fittings, two tests were conducted: Kolmogorov-Smirnov (K-S) 

and Chi-Square. K-S test tries to determine if two datasets differ significantly. The chi­

square test is used to test if a sample of data came from a population with a specific 

distribution. The K-S and Chi-Square tests for both interarrival times and service times 

did not reject the null hypothesis with the confidence level of 95 percent. The hull 

hypothesis (Ho) states that the dist1ibution 1 is equal to the distribution 2. The alternative 

hypothesis (H1) states that distribution 1 is different from the distribution 2. A p-value 

ofinterarrivals for the K-S test was more than 0.15, and for the Chi-square was 0.664. A 

p-value of service times for he K-S test was 0.01, for Chi-square was 0.05. In both cases, 

the p value was large and therefore we could not reject Ho. Thus, we conclude that an 

exponential distribution is a good fit for the data. 



After performing the tests for interarrivals and service times, a queuing model 

validation was conducted. 

Queuing model validation 

25 

The queuing model was validated by comparing its results with the Sentara Leigh 

Hospital's s historical data. This was important to be done before conducting any 

experiments or analysis on the queuing model. The actual bed utilization, the actual 

average waiting time in the queue and in the system were compared to the model's 

results. 

Table 2 shows a summary of the performance measures based on the historical data. 

Table 2 Performance measures of actual (historical data). 

Average server utilization 

Average waiting time in the queue (W q) 

Average time in the system (W) 

85 % 

2:24 hour/patient 

89:45 hour/patient 

Comparing these with the model's output in Table 1, the difference is small and 

we can conclude that the queuing model is valid. 

Relationship between the bed utilization and patient waiting time 

To show the relationship between the utilization and patient waiting time, three 

scenarios were tested for our queuing model: 1. changing the arrival rate, 2. changing 

service time, 3. changing the number of beds. 
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Results from the three scenarios: 

1. Changing the arrival rate from 7 to 11 patients/24h. Since the actual arrival rate is 

9.3 patients/24h, we performed a sensitivity analysis varying arrival rate from 7 to 

11 patients/24h. Table 3 and 4 show the performance measures only for those 

values. The performance measures for the other arrivals are in Appendix A. 

When the arrival time increases, all performance measures increase. The 

utilization increases linearly (Fig.5), while the average number of patients and 

average time spent in the system and in the queue increase exponentially at some 

point (Fig.3, 4). From the Fig. 3 and 4, it can be seen that the arrival rate 10 

patients/24h is the critical point for the system. When the arrival time is 11 

patients/24h, the average number of patients and the average time spent in the 

system and in the queue increases exponentially. 

Table 3 Performance measures when arrival rate is 11 patients/24h. 

Average server utilization 97.7 % 

Average number of customers in the queue(Lq) 34.6 patients 

Average number of customers in the system(L) 74.64 patients 

Average waiting time in the queue(W q) 75:29 hour/patient 

Average time in the system(W) 162:51 hour/patient 
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Table 4 Performance measures when arrival rate is 7 patients/24h. 

Average server utilization 0.62 % 

Average number of customers in the queue(Lq) 0.01 patients 

Average number of customers in the system{L) 25.49 patients 

Average waiting time in the queue(Wq) 0:01 hour/patient 

Average time in the system(W) 87:22 hour/patient 

Figure 3 Average number of patients in the system (L) and in the queue (Lq) when arrival 

time increases. 

I~ 80 
I 

70 
I 

I= r----~--
·~ ! ·.i: 60 

I 

I in +- --·-- -~--- ~ -
I C.. I 

I '- I 
I 0 50 

---------------------------. 
74.64 I 

-- 1 

I 

.. 
~ 

.,Q 40 e = 34.60 • 
= 30 
~ 
blJ 
in 20 +-.. 
~ I > 
in 10 L 

I 0.01 
0 +- 0.06 0.46 

7.0 8.0 9.0 10.0 
anival rate (patients/24h) 

11.0 :-+-L 
1 

: ! 
,-.-Lq. 

-- l_ , 



28 

Figure 4 Average time in the system (W) and in the queue (Wq) when number of patients 

mcreases. 
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2. Changing the service time from 2.5 days to 4.3 days/patient. The actual service 

time is 3.64 days/patient. Table 5 and 6 show the performance measures only for 

those values. The performance measures for the other days are in Appendix A. 

When the service time increases, all performance measures increase. The 

utilization increases linearly (Fig.8), while the average number of patients and 

average time spent in the system and in the queue increase exponentially at some 

point (Fig 6, 7). From Fig. 6 and 7, it can be seen that the service rate 4 

days/patient is the critical point for the system. When the service time is 4.3 

days/patient, the average number of patients and the average time spent in the 

system and in the queue increases exponentially. 

Table 5 Performance measures when service time is 4.3 days/patient. 

Average server utilization 97.54 % 

Average number of customers in the queue (Lq) 32.52 patients 

Average number of customers in the system (L) 72.51 patients 

Average waiting time in the queue (W q) 83:54 hour/patient 

Average time in the system (W) 187 :06 hour/patient 

Table 6 Performance measures when service time is 2.5 days/patient. 

Average server utilization 56.71 % 

Average number of customers in the queue (Lq) 0.00 patients 

Average number of customers in the system (L) 23.25 patients 

Average waiting time in the queue (W q) 0:00 hour/patient 

Average time in the system (W) - in hours 60:00 hour/patient 



Figure 6 Average number of patients in the system and queue when service time 

mcreases. 
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Figure 7 Average number of patients in the system and queue when service time 

mcreases. 
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Figure 8 Utilization when service time increases. 
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3. Changing the number of beds from 34 to 48 beds. In a table 8, the highlighted 

numbers are the values of the performance measures of the queuing model which 

correspond to the actual number of beds in the medical units of Sentara Leigh 

Hospital. When the number of beds decreases, the utilization increases (Fig.9). 

The average number of patients in the queue and in the system is increasing 

exponentially. The average waiting time in the queue and in the system is 

increasing exponentially (Fig.l 0, 11 ). Here, it can bee seen that there is a trade-off 

between the utilization and the patient waiting time. By increasing the number of 

beds, the utilization decreases linearly while the waiting time increases 

exponentially. The critical point here is 35 beds (Fig. I 0, 11 ). 
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Table 7 Performance measures when the number of beds decreases. 

Average Average Average Average waiting 
W(in Number ofU .

1
. . . . 

beds ti 1zat10n patients m patients in waiting time time in system 
days) 

Queue (L) system (L) in Q (Wq) (W) in hours 

48 70.53 0.0 33.9 0:05 87:26 3.64 

47 72.03 0.1 33.9 0:08 87:30 3.65 

46 73.59 0.1 33.9 0:13 87.35 3.65 

45 75.23 0.1 34.0 0:21 87:42 3.65 

44 76.94 0.2 34.1 0:33 87:54 3.66 

43 78.73 0.3 34.2 0:51 88:13 3.68 

42 80.60 0.5 34.4 1 :19 88:41 3.70 

41 83 0.8 34.6 2:03 89:24 3.73 

40 84.63 1.2 35.1 3:11 90:33 3.77 

39 86.80 1.9 35.8 5:01 92:23 3.85 

38 89.08 3.1 37.0 8:06 95:28 3.98 

37 91.49 5.3 39.2 13:42 101 :04 4.21 

36 94.03 9.9 43.7 25:27 112:49 4.70 

35 96.72 23.1 57.0 59:37 146:59 6.12 

34 99.56 221.8 255.7 572:28 659:49 27.49 
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Figure 9 Utilization when number of beds decreases. 
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Figure 10 Average number of patients in the system (L) and in the queue (Lq) when 

number of beds increases. 
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Figure 11 Average time in system and in queue when number of beds decreases. 
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Conclusion 

Even though healthcare in the United States is very costly and hospitals have a 

tremendous problem with waiting patient time, they are still reluctant to use queueing 

theory to resolve their waiting problem by efficient bed resource allocation using queuing 

theory. This part of the thesis uses queueing theory in medical units of Sentara Leigh 

Hospital, in Norfolk, Virginia. The queuing model provided the insights to see the trade­

off between utilization (system perspective) and patient waiting time (customer 

perspective). Created different scenarios will enable hospital managers to see the effect 

of arrival rate, service rate, and number of beds to estimate the main performance 



measures of assessing the benefits of providing extra beds to minimize patient waiting 

time when demand increases. 

Future research 

1. The queuing model results were based on only 33 days. More data is needed to 

validate the queuing model. 

2. Estimate arrival and service time by considering seasonality. If there is 
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seasonality related to hospital's admissions, then hospital managers from the 

queuing model will see how to reflect on this seasonality since the number of beds 

and utilization will change. 

3. Simulation. Develop a simulation model will be beneficial to further validate our 

model and to conduct experiments that cannot be handled by queuing models. 
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CHAPTER V 

V. ESTIMATING PROCEDURE TIME 

The second part of this thesis examines a method of estimating procedure times in 

surgical operating rooms. This part consists of four sections: Section One provides an 

introduction; Section Two reviews the literature; Section Three provides a methodology; 

and, finally, Section Four provides the results, conclusion, and recommendations for 

future research. 

INTRODUCTION 

Surgical operating rooms are one of the most costly functional areas in hospitals 

(Epstein, 1995, Redelmeier and Fuchs, 1993, American Hospital Association, 1994). One 

of the reasons for such high costs is inefficient scheduling. In their work, Litvak et al. 

(2000) provided evidence that scheduling in practice is often inefficient. A number of 

different approaches have been applied to the problem of scheduling surgical cases, such 

as mathematical programming, computer-based simulation, and algorithm evaluation 

(Dexter et al, 1999); optimization techniques (Blake et al., 2002, Blake and Donald, 

2002); rule-based heuristic approaches (Dexter and Macario, 2002); and statistical 

decision theory (Dexter and Traub, 2000). 



But before hospital managers spend time on improving scheduling in their 

hospitals, they need to look at the root cause of the problem, which requires finding a 

better way to estimate surgical procedure times. If surgical procedure times are 
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inaccurate, then consequently scheduling will be inefficient. Hospital senior managers 

and administrators can reduce costs incurred in inefficient scheduling by better estimating 

surgical cases (procedures). Inaccurate estimation of procedure time increases costs 

when overestimation results in unused operating rooms, and underestimation results in 

overtime and cancellation of procedures. Indeed, such inaccuracy leads not only to 

increasing costs but also to the dissatisfaction of patients, surgeons, and operating room 

staff. While in theory it is simple enough to claim that more accurate methods of 

estimating procedure times are necessary, in practice efficient surgical scheduling can be 

complicated by a variety of problems. It can be complicated by several factors including 

the variability factor inherent in the duration of surgical procedures, or by a particular 

doctor and his/her experience, as well as by particular procedures and patient types. 

Determining an appropriate statistical model for surgical procedure times is very 

important for several reasons. First, it is important in order to identify the particular 

surgeons and procedures that contribute the most to variability. An appropriate model 

will identify atypically slow or fast-working surgeons, or certain outliers that can be 

scheduled separately. Second, it is important in order to estimate surgical procedure 

times based in a statistical distribution. The most appropriate statistical model and its 

accurate parameters are crucial to scheduling. Relying on standard distribution models in 

cases where another distribution would be more appropriate can lead to false statistical 

results and therefore, to inefficient scheduling. 
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LITERATURE REVIEW 

Hospital managers and administrators have been interested in efficient modeling 

of surgical procedures for at least 40 years. Rossiter and Reynolds (1963) showed that 

waiting times appear as lognormal distribution. Zhou and Dexter (1998) estimated the 

prediction bounds for the duration of the next surgical cases based on the assumption that 

lognormal distribution indeed fit the data. Strum et al. (2000) showed that the 

appropriate statistical distribution for surgical procedure times is lognormal. 

Zhou and Dexter (1998) calculated the "upper prediction bound," which specified 

the duration of the next procedure time will be less or equal to a certain probability 

bound. They estimated the prediction bounds using two methods: First, by assuming 

procedure times are distribution free, and second, by assuming procedure times follow a 

lognormal distribution. Procedure times have two characteristics of a lognormal 

distribution: First, they have positive values, and second, only small number of procedure 

times may take longer than the average. The results from the study showed that 

prediction bounds could be accurately estimated assuming that procedure times are 

lognormal. 

Recently, Strum et al. (2000) indicated that surgical procedure times appear more 

as lognormal distribution rather than normal. The authors tested whether the distribution 

of surgical procedures times fit more closely lognormal or normal distribution by using 

different statistical methods. They analyzed total procedure time as the time from entry 

into the operating room until emergence from anesthesia, and surgical procedure time as 
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the time from the initial incision to closure of the surgical wound. They used case 

frequencies of five or more procedures, enough to fit the probability distribution. The 

data was subdivided into subgroups according to Current Procedural Terminology (CPT) 

in combination with anesthesia type, as opposed to CPT alone. The overall performance 

of the lognormal and normal distribution models was compared and the results showed 

that both surgical procedure times and total procedure times fit well with the lognormal 

model distribution. 

Later Strum et al. (2003) tested dual procedure surgeries performed in the same 

surgical session to determine if the lognormal distribution was superior to the normal 

distribution. The results showed that the lognormal models fit better than normal model. 

The authors suggested that it might be practical to estimate the next dual procedure by 

considering the duration of the longest procedure and the type of anesthesia. 

Most of the time hospital managers and senior administrators simply assume that 

surgical times are normally distributed, estimating surgical time by using mean and 

plus/minus standard deviations (Strum et al. 2000). This is precisely what we found in 

the case of Sentara Leigh Hospital's method of estimating procedure time. Case duration 

is estimated by taking the mean of a surgeon's historical data for the last 10 procedures 

and assuming that procedures follow a normal distribution. High and low values are 

dropped. Set up and preparation times are estimated according to the type of procedure. 

Then, the average of 8 procedures, plus setup and preparation types, is used to estimate 

the time needed to finish the procedures. 

Judging from the literature review, it can be concluded that presuming procedure 

time normally distributed can lead to false or erroneous results. Therefore, instead of 
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assuming that surgical procedure times follow the normal distribution and taking only the 

average of procedure times, a more appropriate statistical distribution is needed. In this 

part of this thesis, a more effective methodology to estimate surgical procedure times is 

proposed. 

PROPOSED METHODOLOGY 

3166 surgical procedures from Sentara hospital performed in the main operating 

room (MOR) during a 6-month period starting from March 2004 and ending August 2004 

were studied. The total time was defined as the time of entry into the operating room 

until the time of departing the operating room. The total procedure time was defined as 

the time when the procedure started until the time of completion. The data of procedure 

times was subdivided into homogeneous groups, according to particular surgeons 

performing a certain case. The reason for this is to identify surgeons that contribute the 

most to the difference between the actual and estimated procedure times, and what 

distribution they fit. 

The cases performed by each surgeon less than 8 times during those 6 months 

were omitted since the sample size will be too small to represent the population. To 

show that there was a significant difference between the estimation of procedure times 

and actual procedure times, a t test was performed. After the t test, only 642 cases were 

left, which are equal to 20.3 % of the total number of cases. Using Pareto's 80/20 Rule, it 

is not unusual that 20 percent of the reasons cause 80 percent of the problems. Managers 

know that 20 percent of the cases consume 80 percent of time and resources. From our 

results, it can be concluded that 20 percent of surgical procedures causes 80 percent of 



over- or underestimation of surgical cases. Thus, in our analysis, we studied the 20 

percent of procedures. 
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So as to inspect what distribution type the surgical procedures follow, the Input 

Analyzer in Arena simulation software was employed. As a result of this application, it 

appears that a total of 642 procedures were consistent with a lognormal distribution. The 

p values of lognormal distribution fitting are large and are presented in Appendix B. 

The lognormal distribution was chosen based on what has been cited in the 

literature review and its applicability to the problem. Lognormal distribution takes values 

from zero to infinity and is skewed to the right. Since the procedure times were 

consistent with lognormal distribution, instead of taking the mean of a normal 

distribution, the mode of a lognormal distribution was taken as an estimate for the 

procedure time. The mode was chosen as an estimate because it provides the 

measurements that occur most frequently in the data set. Since the mean is the average of 

a data set and can be influenced by extreme values, in this case we decided the mode is a 

better representative of central tendency than the mean. 

RESULTS 

The results and histograms presented in this section are only for two surgeons 

(Surgeon A and Surgeon B). The rest of the histograms pertaining to the other surgeons 

can be found in Appendix B. 

Surgeon A performed 20 procedures types CYCKUB over the sixth month period. 

Surgeon B performed 66 procedures types GEGASTB over the same sixth month period. 



Figure 12 Histogram for surgeon A, procedure type: CYCKUB. 
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Figure 13 Histogram for surgeon B, procedure type: GEGASTB. 
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From the histograms shown in Fig. I and 2, the most frequent surgical time was 

used as an estimate for the next procedure times. In the case of Surgeon A, the estimated 

time for subsequent procedures was forty minutes. The scheduled time of the current 

method was varied from thirty minutes to one hour and thirty minutes over sixth month 

period. In the case of Surgeon B, the estimated time for the subsequent procedures was 

one hour and five minutes. The scheduled time of the current method was one hour. 

In the following table, the "Current" column shows that the difference between 

the actual performed time and current scheduled time is 4:29 hours for Surgeon A and 

11 :06 for Surgeon B. The "Proposed" column shows that the difference between the 

actual performed time and proposed time (highest peak) is 3:07 for Surgeon A, and 10:00 

hours for Surgeon B. In the "Difference" column, the percentage numbers show that the 

proposed method is better than the current method by 30.48 % in the case of Surgeon A 

and by 9.91 % in the case of the Surgeon B. 

Table 8 Summary of the results for surgeon A and B. 

#of 
Procedure 

proced Surgeon's name p value Current Proposed Difference 
type 

ures 

20 Surgeon A CYCKUB > 0.15 4:29 3:07 30.48% 

66 Surgeon B GEGASTB 0.05 11:06 10:00 9.91% 

A summary of the results for all studied surgeons is in Appendix B. 
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CONCLUSION 

Of all cases performed during the sixth month period, 20 percent contributed to 

the significant difference between the actual and scheduled time. Therefore, the current 

method of estimating procedure times based on the assumption that procedures occur 

according to a normal distribution is not effective. In this section of the thesis, a more 

effective methodology to estimate surgical procedure times has been proposed. Since an 

appropriate distribution is very important in estimating procedure times, the data was fit 

to determine which statistical distribution the procedures follow. It appeared that 

procedure times were consistent with a lognormal distribution. After creating the 

histograms for each surgeon performing a certain type of procedure, the highest peak 

value of lognormal distribution (mode) was chosen for estimating the next procedure 

times. The results of the 20 percent procedures from the proposed method in comparison 

with the current method clearly indicate that better results can be achieved with the 

former. The difference between the actual and proposed procedure time was less than 

that between the actual time and current scheduled time. The proposed methodology is 

efficient not only in estimating the next procedure time every time but also in estimating 

future procedure times over a six-month horizon at least. Extending the scheduling 

horizon will save time and money. Moreover, it may improve satisfaction rates among 

patients and hospital staff by establishing a framework capable of providing more 

realistic expectations for procedural and wait times. 



FUTURE RESEARCH 

We propose two avenues of future research based on the findings of this study. 

First, even though the t test showed a significant difference between the actual and 

scheduled time in 20 % of all cases, it will be necessary to examine the cases which did 

not show a significant difference to see which distribution they follow. The next 

procedure time needs to be estimated on the results of an appropriate distribution rather 

than on the erroneous assumption that the distribution procedures will always follow a 

normal distribution. 
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Second, the use of regression analysis can be employed to arrive at better estimates 

of procedure time. In order to accomplish that, one needs to identify the relevant factors 

that may contribute to delays in procedure time. For example, doctor's experience, 

patient age, equipment specification among others. To do this separate study, the 

necessary historical data must be launched. 
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APPENDIX A 

Performance measures when arrival rate 10 patients/24h. 

Average server utilization 88 % 

Average number of customers in the queue (Lq) 2.83 patients 

Average number of customers in the system (L) 39.22 patients 

Average waiting time in the queue (W q) 6:46 hour/patient 

Average time in the system (W) 94:07 hour/patient 

Performance measures when arrival rate 9 patients/24h. 

Average server utilization 79.9 % 

Average number of customers in the queue (Lq) 0.46 patients 

Average number of customers in the system (L) 33.22 patients 

Average waiting time in the queue (W q) 1:13 hour/patient 

Average time in the system (W) 88:35 hour/patient 

Performance measures when arrival rate 8 patients/24h. 

Average server utilization 71 % 

Average number of customers in the queue (Lq) 0.06 patients 

Average number of customers in the system (L) 29.18 patients 

Average waiting time in the queue (Wq) 0: 11 hour/patient 

Average time in the system (W) 87:32 hour/patient 
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Performance measures when service rate 3 days/patient. 

Average server utilization 68.05 % 

Average number of customers in the queue (Lq) 0.03 patients 

Average number of customers in the system (L) 27.93 patients 

Average waiting time in the queue (Wq) 0:04 hour/patient 

Average time in the system (W) 72:04 hour/patient 

Performance measures when service rate 3.5 days/patient. 

Average server utilization 79.39 % 

Average number of customers in the queue (Lq) 0.41 patients 

Average number of customers in the system (L) 32.96 patients 

Average waiting time in the queue (W q) 1 :03 hour/patient 

Average time in the system (W) 85:03 hour/patient 

Performance measures when service rate 4 days/patient. 

Average server utilization 90.73 % 

Average number of customers in the queue (Lq) 4.29 patients 

Average number of customers in the system (L) 41.29 patients 

Average waiting time in the queue (W q) 11 :04 hour/patient 

Average time in the system (W) 107 :04 hour/patient 
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APPENDIXB 

P values from lognormal distribution fitting. 

Number of 
Surgeon's name Procedure type P value 

procedures 

8 Surgeon L ORLUMLAM > 0.15 

8 Surgeon N ORARTKN > 0.15 

12 Surgeon 0 GELAPGAS > 0.15 

8 Surgeon P GEGASTB >0.15 

16 Surgeon A ORLUMLAF >0.15 

18 Surgeon B GYSACFX > 0.15 

10 Surgeon D PLBRERl > 0.15 

102 Surgeon C ORTOTKRP < 0.01 

34 Surgeon C ORARTKN < 0.01 

9 Surgeon C ORTOTKRV >0.15 

9 SurgeonR DEMANDOS >0.15 

10 Surgeon S PLBRERD > 0.15 

13 Surgeon T NEANTCVF >0.15 

10 Surgeon Y CYCKUB >0.15 

37 Surgeon Z ORTOTHRP 0.01 

8 Surgeon S ORLUMDEF 0.11 

10 Surgeon W ORANKFO > 0.15 

12 Surgeon V GYTAH >0.15 

17 Surgeon E GYEXPLAP > 0.15 

20 Surgeon F CYCKUB > 0.15 

104 Surgeon G GEGASTB < 0.01 

43 SurgeonK ORTOTHRP > 0.15 

23 Surgeon K ORROTCU 0.03 

27 Surgeon K ORARTKN 0.02 

8 SurgeonK ORTOTSRP > 0.15 

66 Surgeon M GEGASTB 0.05 
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Histogram for Surgeon A, procedure type: ORUMLAF. 
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Histogram for Surgeon B, procedure type: GYSACFX. 
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Histogram for Surgeon C, procedure type: ORTOTKRP. 

7 

>--. 
5 r 

g 4 
<1.) 
;::s 
c:::r 
~ 3 

µ;... 

2 

1 
I 
I 

6 

1 

0 
0 +-- ~--~-~ ~-~~-

1 :06 1: 19 1 :33 
Time (h:m) 

Histogram for Surgeon C, procedure type: ORARTKN. 
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Histogram for Surgeon K, procedure type: ORARTKN. 
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Histogram for Surgeon K, procedure type: GEGASTB. 
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Summary of the results for all surgeons. 

Number of 
Difference between 

procedures 
Surgeon's name Procedure type Current Proposed current and proposed 

method 

16 Surgeon A ORLUMLAF 7:35 7:37 0.44% 

18 Surgeon B GYSACFX 3:37 2:07 41.50% 

102 Surgeon C ORTOTKRP 3:20 0:31 10.00% 

34 Surgeon C ORARTKN 2:58 2:19 21.91% 

37 Surgeon D ORTOTHRP 8:47 5:53 33.02% 

17 Surgeon E GYEXPLAP 4:45 4:01 15.44% 

20 Surgeon A CYCKUB 4:29 3:07 30.48% 

104 SurgeonG GEGASTB 18:31 13:02 29.61% 

43 Surgeon K ORTOTHRP 11:02 10:31 4.68% 

23 Surgeon K ORROTCU 4:00 2:29 37.92% 

27 Surgeon K ORARTKN 3:29 2:49 19.14% 

66 Surgeon B GEGASTB 11 :06 10:00 9.91% 
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