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ABSTRACT 

CHARACTERIZATION AND OPTIMIZATION OF A PROPELLER TEST STAND  

Colin Bruce Leighton Benjamin 

Old Dominion University, 2019 

Director: Dr. Drew Landman 

 

In recent history, there has been a  rapid rise in the use of drones, and they are expanding in popularity each 

year. The widespread use and future capabilities of these unmanned aerial vehicles (UAVs) will call for increased 

study and classification of propellers to maximize their performance. As a result, it is necessary to have continuity in 

the development, maximization, and optimization of propeller test stand’s capability to collect accurate and precise 

measurements. It is of significant advantage to have the capability of accurately characterizing a propeller based on 

its thrust and torque. In this study, a propeller test stand was improved with specifically designed features in order to 

obtain a system with high repeatability and defined prediction bounds. 

The improvements to the propeller test stand were confirmed at Old Dominion University (ODU) Low-

Speed Wind Tunnel using a Design of Experiments (DOE) approach in order to observe the accuracy, repeatability 

of measurements, and required a mathematical model for aerodynamic characterization. 12x8, 14x12, and 17x12 

APC Thin Electric propellers were chosen for comparisons to published data. In addition to these propellers, further 

experimentation was done on two aluminum fabricated propellers created at ODU, one of a conventional design and 

the other of a new design with swept blades. The performance data of these propellers were obtained with an 

emphasis being taken on detailed performance comparisons. Results obtained revealed information that warrants 

further experimentation with swept designed propellers versus straight blade propellers for application to UAVs. 

The results of this research showed significant improvement in the propeller test stand and its ability to repeat data 

with high accuracy and precision in order to predict a propeller’s efficiency.  
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CHAPTER 1- INTRODUCTION 

With the rapid rate at which drone technology is continually increasing and the need for more efficient 

propeller designs, it is imperative to have a consistent performance test capability as characteristics of propellers 

change to meet unique challenges for today’s UAVs. This thesis focuses on characterizing and optimizing the 

accuracy and precision of a propeller test stand. 

1.1 THE ORIGINAL ODU PROPELLER TEST STAND 

 The test stand shown in Figure 1 was designed and built by an undergraduate senior design team and was 

then used as a part of an M.S. thesis for Brian Duvall. His test stand consisted of a 3D printed nacelle that was 

manufactured at ODU. Due to the length of this nacelle, it was printed in six sections [1]. The nacelle was created in 

two halves, with three sections glued together in order to create each half. This design allowed for easy access to the 

components inside. The cutaway of the propeller test stand below (Figure 1) shows half of the printed nacelle and 

also the internal components that were integrated into his final developed design. This test stand incorporated an 

ATI six-axis load cell which was subsequently replaced by the ODU 15 x 15 propeller balance. While the test stand 

itself performed well, several necessary refinements were identified for the test stand integration. These new features 

and the quantification of uncertainty associated with the improved test capability are the subjects of this study. The 

original test stand is shown in Figure 1.  

 

Figure 1- Original propeller test stand [1] 
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1.2 THE ODU 15 x 15 BALANCE 

 The ODU 15 x 15 propeller balance was designed and built as an M.S. thesis for Nicholas Sadowski [2]. 

The balance was calibrated and integrated into an existing propeller test stand that previously used a commercial six-

axis load cell. The ODU 15 x 15 balance (load cell) measures loads generated by the propeller which is driven by a 

brushless motor. These loads generate strains which are in turn read by strain gauges arranged in Wheatstone 

bridges [2]. This load cell is designed to read 15 lb thrust and 15 in-lb torque. The load cell separates the thrust and 

torque measurement sections as shown in Figure 2. The original load cell used two of its six available axes in the 

collection of data. 

 

Figure 2- ODU 15 X 15 Balance [2] 

1.3 INTEGRATION OF THE ODU 15 x 15 

The ODU 15 x 15 balance was integrated into the updated test stand and installed in such a way to work 

with the other existing components. Such components include a brushless motor, proximity sensor, cooling plenum, 

and an internal nacelle thermocouple. The motor and proximity sensor was mounted to the forward section of the 

balance while the cooling plenum and thermocouple were mounted to one half of the nacelle. Direct wiring of 

electrical connections to the motor and proximity sensor bridged the metric gap of the balance as they had 

previously with the ATI load cell. The balance was mounted to a rigid strut that was then bolted to the base of the 

wind tunnel. 
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In order to capture the RPM of the motor, an inductive proximity sensor was chosen. This sensor produces 

a pulse when a metallic object comes within a close distance of the sensor. During the operation of the wind tunnel it 

was necessary to collect tunnel conditions to include; barometric pressure, test section temperature, and dynamic 

pressure.  

The ODU wind tunnel is a closed return design. The test stand is mounted within the high-speed test 

section of the tunnel. All these devices were integrated into a data acquisition board and monitored using LabVIEW 

software. This enables the user to have full manual control of the motor speed, tunnel velocity control, and a way to 

monitor these inputs while capturing thrust and torque data from the load cell. 

1.4 SHORTCOMINGS OF THE EXISTING DESIGN  

 The previous test stand had several features that could be improved upon in order to collect more accurate 

and consistent data. The previous nacelle was 3D printed in six parts, and due to its required large cross-section, 

there was a concern with aerodynamic blockage. During experimentation, it was also noticed that the RPM sensor 

would sometimes miscount the revolutions at higher RPM. This caused inconsistent RPM settings which reduces the 

accuracy and repeatability of the performance coefficient data. Another concern was the mechanical hysteresis 

caused by connecting the RPM sensor and motor across the metric gap of the load cell. The motor would also 

generate excessive heat that would then flow across the load cell which in turn affected the accuracy of the measured 

data. Lastly, it lacked a way to monitor the operating temperature within the nacelle and a way to maintain a 

constant wind tunnel velocity during testing. 

1.5 OBJECTIVES  

Advances were made in designing an improved test stand to address previous issues that led to improved 

accuracy and precision of measurements. The major issues include: 

•  the need for a nacelle with lower aerodynamic blockage  

• reduction of excessive heat produced by the motor during operation  

• reliable temperature monitoring  

• more consistent  RPM measurements obtained from the proximity sensor 



  4 

• a way to set and maintain the wind tunnel’s velocity at a specific value to obtain the required 

advance ratios. 

• reduction of mechanical hysteresis due to wires connecting the RPM sensor and motor to a power 

source across the metric gap 

 Finally, a general test methodology will be developed using statistical engineering principles. There is a 

need for a test design which provides regression models with confidence and prediction intervals for the 

performance coefficients. Using the test protocol, three different size props will be evaluated and compared to 

published results in the literature. The data obtained should be analyzed, modeled, and plotted with CP vs. J, CT vs. J, 

CQ vs. J and Efficiency vs. J. The new test stand and protocol are necessary for a comparison study with a new 

swept blade, low-noise propeller design. The 12 x 8, 14 x 12, and 17 x 12 APC Thin Electric propellers to be tested 

are shown in Figure 3. Also shown in Figures 4 and 5 are the 16 in straight and 16 in swept-blade propellers which 

will be used for the comparison study. 

 

Figure 3 – 12 x 8, 14 x 12, and 17 x 12 APC Thin Electric propellers respectively 
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Figure 4 – 16 in straight blade propeller inside ODU LSWT 

 

Figure 5 – 16 in swept-blade propeller inside ODU LSWT 
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CHAPTER 2 – BACKGROUND: PROPELLER PERFORMANCE CHARACTERIZATION 

2.1 AERODYNAMIC PERFORMANCE CHARACTERIZATION 

 In defining a propeller’s aerodynamic performance characteristics, a set of non-dimensional 

coefficients are used for characterization. Having these non-dimensional parameters simplifies plotting 

experimental results and making direct comparisons. The most common non-dimensional performance 

characteristics are efficiency, thrust, torque, and power which are obtained over a specified range of 

advance ratios. These non-dimensional parameters are calculated according to the following equations. 

The coefficient of torque is given by; 

𝐶𝑄 =
𝑄

𝜌𝑛2𝐷5              (1) 

The coefficient of thrust is given by;    

𝐶𝑇 =
𝑇

𝜌𝑛2𝐷4                 (2) 

 The power is given by; 
                 𝑃 = 2𝜋𝑛𝑄                                                                                       (3) 

 
 The coefficient of power is given by; 

                                                                                             𝐶𝑃 =
𝑃

𝜌𝑛3𝐷5                                                                                        (4) 

 The advance ratio is given by; 

  𝐽 =
𝑉

𝑛𝐷
                (5)  

 Finally, the efficiency is given by; 

 𝜂 = 𝐽
𝐶𝑇

𝐶𝑃
                                                                             (6) 

 Normally the three performance coefficients and the propeller efficiency are plotted against the 

advance ratio for a range of RPM values [3]. Some typical performance plots for small propellers can be 

seen in Figure 6 through 8. These results were obtained from a M.S. thesis by John Brandt under the 

supervision of Dr. Michael Selig. The results shown are from an APC 12 x 8, 14 x 12, and 17 x 12 

propeller [4]. These are the propellers that were tested within this thesis for the comparison to literature. 
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Figure 6- Typical plot of efficiency vs. advance ratio [4] 

 
Figure 7- Typical plot of the coefficient of thrust vs. advance ratio [4]                 
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Figure 8- Typical plot of the coefficient of power vs. advance ratio [4] 

2.2 REYNOLDS NUMBER CONSIDERATIONS 

The application of small propellers is typically for small UAVs, and these vehicles typically operate with 

propellers at low Reynolds numbers. The range is anywhere from 50,000 to 100,000 based on the propeller chord at 

the 75% propeller-blade station [4]. To quantify test data at these conditions, tests were performed in the ODU low-

speed wind tunnel. In order to examine the Reynolds number effects, the range of RPM tested was between 2,500 to 

5,000 RPM depending on the diameter and thrust the propeller was capable of producing. Typically, a propeller’s 

performance increases with higher Reynolds number. Based on the data collected in Selig’s experiments this 

observation becomes apparent as seen in Figure 6. The results from the APC Thin Electric 14 x 12 propeller showed 

that as the RPM of the propeller increases so does the efficiency. The observations made in this thesis correlate with 

this trend. 
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CHAPTER 3 – LITERATURE REVIEW 

3.1 SMALL PROPELLER TEST STAND AND BALANCE DESIGNS. 

The use of small propeller test stands has become more popular over the past few years [3]. There are many 

different configurations for the devices; however, choosing one that is easily removed from the ODU low-speed 

wind tunnel is most attractive since it is used for many other testing apparatuses as well. Compact internal strain-

gage balances are used extensively to measure the aerodynamic loads on a test article during an aircraft model wind 

tunnel test [5]. Figure 9 shows a typical six-component aircraft model internal balance design from NASA Langley 

Research Center. The axial section design concept with t-strap and measurement beam, visible in the photograph, 

was used in the ODU 15 x 15 thrust component design. The torque measurement cage design follows the NASA 

LaRC concept as well. The ODU 15 x 15 is capable of measuring loads of 15 lbs. thrust, and 15 in-lbs. of torque [2]. 

This balance (load cell) was explicitly designed for a range of expected loads from small propellers.  

 

Figure 9- A Representative Six-Component NASA LaRC Wind Tunnel Balance  

It is common to see test stands that are designed with a rigid strut and linkage to a sensitive thrust force 

measurement load cell [6]. The motor is mounted directly to a torque measurement load cell. This setup is popular 

because of its simplicity, and it has been shown reliable and sensitive. The design minimizes vibrations which 

negatively influence data, and they are more straightforward compared to other options available. Figure 10 shows 

Selig’s setup used to measure thrust and torque [6]. The test rig is mounted to the top of the ceiling in the wind 

tunnel. The thrust measurement mechanism is a simple T-shaped structure that pivots about two flexural pivots and 
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is constrained by a load cell that sits outside of the tunnel [4]. There is a fairing to ensure that the freestream flow 

does not produce drag force on the beam located within the tunnel. 

 

Figure 10- Selig’s test apparatus without an aerodynamic fairing 

One significant advantage of this test rig is its mechanical advantage, its capability to adjust the linkages 

allowing the load cell to be loaded at the best level. This design becomes very attractive when measuring 

uncertainties of thrust measurements. The setup is; however, time-consuming to adjust, and it is not inherently 

portable which makes it unsuitable to be used in the ODU wind tunnel. 

3.2 CALIBRATION 

 The internal balance is a measurement device. Calibrating any measurement device involves applying 

known values of the inputs to the device while recording the resulting sensor output(s) [5]. The calibration of the 

ODU 15 x 15 load cell was done using the calibration set-up shown in Figure 8. The set-up includes a power supply, 

junction box, weight platens, test stand, arms and a voltage data acquisition system [2]. This rig allows for a known 

static force to be applied to the balance while recording the voltage outputs of the balance [2]. 
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Figure 11- Calibration Set-up [2] 
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3.3 TEMPERATURE EFFECTS 

 Most internal balances are temperature compensated [5]. However, some balance designs show sensitivity 

to temperature gradients. With this in mind, an effort should always be made to minimize temperature gradients 

across the internal balance during testing within a wind tunnel. Due to the complication of both use and calibration, 

a temperature difference between the metric and non-metric part is typically not characterized during a balance 

calibration [5]. In this thesis, all efforts were made to minimize temperature effects during wind tunnel testing, and a 

thermocouple was integrated within the test stand to monitor the internal temperature of the nacelle constantly. 

Cooling air is supplied to the nacelle to combat the heat generated by the electric motor. 
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CHAPTER 4 – PROBLEM STATEMENT 

In this study, improvements were made to a previous propeller test stand. Various issues drove the 

development of the new design and the new features that were integrated. When operating in the proximity of a 

nacelle, the performance of a propeller could significantly be affected. A need for a low-blockage nacelle was 

necessary in order to preserve the efficiency of the propellers being tested for comparison studies. A blockage ratio 

is created between the propeller diameter and the diameter of the nacelle. This affects the efficiency of the propeller 

and causes a shift in the advance ratio at which peak efficiency occurs [7]. From the previous test stand, zero-shifts 

were identified from the mechanical hysteresis due to the wires bridging the metric gap. Due to the effects of 

temperature on the load cell, it is necessary to put forth the best effort to keep a constant temperature over the 

surface of the load cell. With this in mind, an effort was made to create a chamber that isolated the motor from the 

load cell using bulkheads. In addition to the bulkheads, an air-cooling manifold was attached to one half of the 

nacelle which had a vinyl tube connected to it in order to continually supply compressed air across the motor during 

operation. Integrated with this was an internal thermocouple which monitors the nacelle temperature where the 

motor is mounted. Since repeatability of data is one of the main concerns, a need to address setting constant motor 

RPM was necessary. From the previous test stand the RPM was observed to fluctuate during the collection of data, 

so it was necessary to improve upon setting more stable RPM values. This called for a new method to read the RPM. 

A metallic head was machined from a single piece of steel and was then attached to the motor shaft using set screws. 

Since vibration is always of concern, care was taken to make the part symmetrical and balanced. Also, a rubber 

mount was placed between the bottom plate of the test stand and the base of the wind tunnel to minimize the 

vibration within the test stand during operation. 

Additional improvements were made to an existing LabVIEW code for data acquisition during testing. 

During operation, it was challenging to maintain a steady tunnel velocity to achieve a set value for the advance ratio, 

so the code was upgraded in order to maintain closed loop velocity control which allows the user to set the desired 

velocity to be maintained by the tunnel. This improvement dramatically improved the ability to repeat a specific 

advance ratio. Sometimes residual forces would remain on the load cell after a test was performed and these forces 

had to be tarred before initializing another test. In the previous code, the user would have to go within the block 

diagram portion of LabVIEW to zero out the values of thrust and torque before the next test run. This was a tedious 
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task and the need for a more convenient way to achieve this was necessary. The code was therefore improved to 

allow the user to quickly add tare values by the simple adjustment of a knob on the front panel of the LabVIEW 

software. 
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CHAPTER 5 – TEST STAND DESIGN AND DEVELOPMENT 

5.1 DESIGN AND MANUFACTURE OF THE NACELLE BY A VACUUM BAGGING PROCESS 

The nacelle used in the development of this test stand was modeled initially in Autodesk Inventor. A close-

fitting pseudo-elliptical geometry was obtained using the spline control vertex tool in the software. A drawing 

shown in Appendix C.4 gives the x and y coordinates of the nacelle’s geometry. Figure 12 shows a CAD model of 

the test stand and its interior components. The new nacelle is shown in green. The technique employed to 

manufacture the final product was a process called vacuum bagging. Vacuum bagging is a technique employed to 

create mechanical pressure on composite laminates during the cure cycle [8]. The completed nacelle was 

manufactured at ODU in two halves to provide ease of access to the internal components of the test stand when 

necessary. The two halves of the nacelle were created using a CNC machined tooling-foam plug (Figure 13) created 

at ODU’s machine shop which served as the mold for the fiberglass nacelle in the design process. West System 105 

Epoxy Resin and West System 206 slow hardener was used with 24 oz. fiberglass cloth in order to mold the final 

nacelle. 

 

Figure 12- Propeller test stand CAD model  
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Figure 13 – Machined plug used for vacuum bagging of the nacelle 

 

A vacuum bagging system was created using a Zeny 1 stage vacuum pump. A bleed valve was installed to 

the vent of the pump which was used to adjust the amount of vacuum pressure that was applied to the system. A 

hose ran from the suction side of the pump to a catch tank which is used to protect the pump in case excess resin 

gets pulled from the bagging system during operation. A vacuum gauge installed on the catch tank provided a means 

to measure the vacuum which is placed on the system and also helped to determine if a leak was present during 

operation. A second hose which had a vacuum shut off valve was also installed to the catch tank, and this suction 

line was placed in the plastic bag which housed the part. The machined plug was covered with a breather cloth, peel 

ply, fiberglass cloth with epoxy resin mixed with a hardener before it was placed in the bag. Figure 14 shows the 

complete vacuum bagging system during operation. The part remained under a vacuum pressure of approximately 

25 -27in Hg for 12 hours. The part then remained in the bag for an additional 12 hours to cure completely. Upon 

completion, the cured part was then removed from the bag and cleaned and trimmed. This process was then repeated 

for the other half of the nacelle. Final finishing involved fixing all minor defects by sanding and adding additional 

layers of fiberglass to the interior where necessary. The nacelle was then painted with several layers of sanding 

primer followed by sanding and then finally painted and coated with a transparent layer to preserve the final finish.  
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Figure 14 – Vacuum bagging equipment set-up 

 

The completed product can be seen in Figure 15, with the nacelle installed and mounted to the test stand in 

ODU’s low-speed wind tunnel. The nacelle is mounted to an existing rigid strut with a symmetrical airfoil shape 

which is welded to a base steel plate. The base plate was placed on top of a rubber base in order to reduce vibration 

effects to the test stand during operation. The test stand was securely bolted to the base of the wind tunnel test 

section. Figure 16 shows a cross-sectional view of the nacelle mounted in the test section with the interior 

components assembled. In order to mount the nacelle to the test stand two aluminum bulkheads were machined and 

mounted to the aft and midsection of the nacelle. 

 

Figure 15 – Nacelle mounted to Test Stand in the wind tunnel 
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Figure 16 – Cross-sectional view of the propeller test stand 

5.2 COPPER BRIDGE DESIGN FOR MOTOR AND RPM SENSOR POWER INPUT OVER METRIC 

GAP 

There was a previous issue which affected the accuracy of data when connecting the electrical wires from 

the motor and proximity sensor across the load cell. The load cell has the capability of detecting relatively small 

forces and the tension across the wires would influence the torsional and thrust forces which are being measured by 

the load cell. To solve this problem a copper spring was designed to serve as a bridge for the connections of all 

electrical wires across the load cell. Figure 17 shows a CAD model of the copper spring design. 

 

Figure 17 - Inventor model for copper spring design  
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In order to safely design the copper spring, the current carrying capacity of copper had to be determined, 

and calculations were done to ensure the cross-sectional area of each copper spring was sufficient enough to carry 

50 Amps of current safely [9]. Knowing the cross-sectional area of each spring and using the current load rating a 

safe area was determined and used in the design of each copper spring [10] 

 

Figure 18- Current ratings of PVC-insulated copper single and multicore wiring cables [9]. 

Figure 18 was used in order to determine the safe cross-sectional area required for the copper springs. From 

the table provided a safe cross-sectional area of 0.0082 in2 was required to pass 52 amps safely. To maintain 

symmetry, two identical sets of three springs were used on opposite sides of the balance. 

As seen in Figure 17, 3D printed parts were used to assemble the copper springs, and they also served as insulation 

between each spring to prevent an electrical short. A Finite Element Model was employed to define the geometry of 

the copper springs in order to minimize forces imparted by the springs. Previous results from the design of the ODU 

15 x 15 balance gave the maximum displacement in the X, Y, Z component. With this displacement, the appropriate 
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size of the copper springs was chosen to minimize the force of resistance. Figure 19 shows the Autodesk Inventor 

FEA results for balance displacement [2]. 

 

 

 

Figure 19- FEA on ODU 15 x 15 balance showing maximum displacement measured in X, Y, Z-component [2] 

Figures 20 through 22 show the results obtained when applying forces to the copper spring in order to 

match the maximum displacement obtained from the FEA on the loadcell. A force of 0.003 lbf, 0.007 lbf, and 0.009 

lbf was applied in the Fz, Fy, and Fx plane respectively. These forces were applied to one end of the copper spring 

while keeping the other end of the spring constrained. The results obtained verified that the thickness of the copper 

springs would result in negligible, repeatable additional forces. 
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Figure 20- FEA on copper spring in the X-Displacement 

 

Figure 21- FEA on copper spring in the Y-Displacement 

 

Figure 22- FEA on copper spring in the Z-Displacement 

5.3 3D PRINTED AIR COOLING MANIFOLD 

Cooling of the motor is necessary during testing in order to protect the motor and prevent it from shutting 

off during operation due to excessive heat. In order to solve this problem, a cooling plenum was designed and 3D 

printed and mounted to one half of the nacelle. Compressed air was piped to the cooling plenum through a vinyl 
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tubing as shown in Figure 23. A chamber was created in the nacelle to house the motor in order to minimize the heat 

flowing over the load cell. The excessive heat could affect measurements due to the expansion of the metal during 

data collection. The air flowing over the motor provided a means to cool the motor through convection. The other 

half of the nacelle had an exit hole where the hot air would escape the nacelle. A thermocouple was placed inside the 

nacelle in order to monitor the temperature during operation. 

 

Figure 23- Cooling plenum attached to one half of the nacelle 

5.4 RPM COUNTER DESIGN 

In the previous test stand, the RPM counter used gave unstable values during operation. It was challenging 

to set the same RPM for different tests because of fluctuating values. The original design had two screw heads that 

were designed to be opposite from each other in order to minimize the vibration during operation. The steel hub was 

attached to the shaft of the motor using two set screws. Since the proximity sensor recorded two pulses per 

revolution due to the design of the metallic head, the RPM obtained had to be divided by two in order to obtain the 

actual RPM value. Figure 24 shows the previous design of the rotating screw head used with the proximity sensor. 

 

Figure 24 – Proximity Sensor installation [1] 
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A new counter was machined from a single steel block as shown in Figure 25. This new design showed more stable 

values of RPM during operations which led to improved repeatability of results. The reason the original design gave 

inconsistent RPM could be that the geometry was such that at a higher RPM the time the screw head spent near the 

sensor was too short in duration due to a slot in the screw head. It is remotely possible that there may have been 

screws backing out during operation causing asymmetry, leading to excessive vibrations during operation. Also 

since an inductive proximity sensor was used, there could be a possibility that the material composition of the screw 

head affected the pulse generation. Whatever the reason, pulses were not being reliably generated for each 

revolution of the rotating screw head. 

 

Figure 25 – New RPM counter head with the inductive proximity sensor 

 

5.5 LabVIEW SOFTWARE INTEGRATION 

LabVIEW (Laboratory Virtual Instrument Engineering Workbench), is a graphical programming language 

that utilizes icons instead of lines of text to create specific applications ideal for instrumentation input/output tasks 

and control. The codes used by LabVIEW are called Virtual Instruments (VIs) which are either created by the user 

or obtained from credible sources such as National Instruments. In this project, LabVIEW was used for data 

acquisition, signal processing, and hardware control while operating the low-speed wind tunnel. Figure 26 shows the 

LabVIEW front panel used for propeller data collection, test stand controls, and the wind tunnel controls. The front 

panel allowed for setting tunnel speed and motor RPM, hence advance ratio, while enabling real-time visuals for 

thrust, torque, input current, and input voltage. While operating the wind tunnel, there are constant fluctuations of 

the motor’s RPM and the advance ratio. However, the front panel allows for the monitoring of these fluctuations to 

Proximity Sensor 

Rotating Metallic Head 
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start data collection after the system stabilizes. Also employed is a VI for monitoring the test section and motor 

section temperature. The LabVIEW software also allowed for the input of the propeller's diameter which is being 

tested and used in calculations for the performance coefficients. 

 

Figure 26 – LabVIEW front panel 

 

Figure 27 – LabVIEW rear panel of load cell input and formula node showing calculations of coefficients 

LABVIEW BACK PANEL OF LOAD CELL INPUT AND FORMULA NODE SHOWING 

CALCULATIONS OF COEFFICIENTS 
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The rear panel is the section where the code is developed using block diagrams. Figure 27 shows 

improvements made to a current block diagram which held the formula nodes to calculate the coefficients used in 

characterizing the tested propellers. Additionally, modifications done in the rear panel allowed for the ability to 

quickly adjust the tare values for thrust and torque which sometimes have residual values throughout the 

experimentation, this improvement allowed for the more accurate and consistent collection of data. The propeller 

test code calls on a NI- data acquisition (DAQ) board (PCI-6221) which is connected to the computer through a PCI 

card slot. Integrating the DAQ device with the PCI-6221 allowed the user to sample analog voltages from the 

balance and for motor voltage and current measurement, and also used the counter for the RPM signal. The 

electronic speed controller is integrated with the Mini Maestro which allows the user to control the motor controller 

ESC and hence speed via LabVIEW. Coefficient calculations are performed, samples averaged then conveniently 

written to a text file location selected by the user. Improvements were made to a previous LabVIEW code in order to 

obtain a closed loop velocity control of the wind tunnel. Velocity is computed using the dynamic pressure, and test 

section temperature and atmospheric pressure. The tunnel speed is adjusted through an analog voltage out using a 

PID controller, a built-in function in LabView. The wind tunnel fan speed is set through the variable frequency 

drive, proportional to the commanded analog voltage. This allows the user to set a precise velocity of the tunnel 

through the LabVIEW front panel while automatically maintaining that speed through the duration of the data 

collection. The previous code was modified in order to achieve this. The LabView code is shown in Appendix A and 

A.1. 

5.6 TESTING PROCEDURE 

 Before the beginning of testing, the compressed air to the nacelle was turned on to ensure sufficient cooling 

of the motor. The propeller to be tested was installed on the motor shaft, and the tunnel was checked to ensure it was 

clear of any obstructions. After the test section was closed the power to the motor was then powered on. With the 

tunnel controls powered on, the LabVIEW software was started and the appropriate propeller diameter being tested 

was entered to be used in the calculations. Figure 28 shows the location where the propeller test stand is mounted 

(model location). This is the high-speed test section of the ODU low-speed wind tunnel. The user then designates 

the name and location of the test data file. Before the motor was turned on, all residual values of thrust and torque 

were zeroed out using the tare control knobs on the front panel. After those initial steps were completed the user 
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then entered the desired speed of the motor using the slider on the front panel. The tunnel was turned on, and the 

tunnel velocity was set and maintained using the closed loop feature from the front panel. Once the tunnel has 

stabilized, the user then turns on the take data button which triggers the software to collect a user-designated number 

of  samples (45 shown). Each sample takes about one second to obtain. After the completion of the data collection, 

data is retrieved from the file location designated by the user. 

 

Figure 28 - ODU Low-Speed Wind Tunnel Diagram (Dimension in Feet/Inches) 
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CHAPTER 6 – RIGOROUS TEST DESIGN USING STATISTICAL ENGINEERING 

 A statistical engineering methodology was followed using the principles of Design of Experiments (DOE) 

and Response Surface Methods (RSM). A completely randomized run order was chosen, one of the guiding 

principles for DOE. Other principles include replication of data and blocking which deals with nuisance factors [11]. 

The basic building blocks of DOE are factorial designs, where all possible combinations of factor levels are tested. 

DOE was first seen in agriculture starting around 1918 where Sir Ronald A. Fisher and his co-workers made a 

profound impact on agricultural science using factorial designs and ANOVA [12]. In a designed experiment the 

engineer makes deliberate or purposeful changes in the controllable variables of the system or process, observes the 

resulting system output data, and then makes an inference or decision about which variables are responsible for the 

observed changes in output performance [13]. 

 The experiment design chosen for this experiment was a factorial multilevel design which is also known as 

a general factorial. In this thesis, two factors were chosen one for RPM and the other for the advance ratio. Five 

levels were chosen for the advance ratio in order to cover the design space, support up to quartic models, and 

provide adequate power with a good prediction variance distribution. RPM levels were chosen as either one, two or 

three levels depending on the objective of the experiment, comparison or characterization. The design was replicated 

with one block per replicate in order to isolate any run to run variability. The regression model representation of the 

general factorial experiment with main effects, two-factor interactions, and pure quadratics can be seen in equation 

7.  Here x1 represents advance ratio and x2 RPM. Higher order terms up to fourth order in advance ratio are 

supported. 

                𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽11𝑥11
2 +  𝜀                                      (7) 

In the equation above y is the response, β are the fitted regression coefficients, x represents the independent 

variables, and 𝜀 is the random error term. A general factorial design is shown in Table 1 for the APC 12 x 8 

propeller. There are two factors involved in the design, RPM and J. The RPM contains three levels while J contains 

five levels. The design was assigned one replicate, it contained 30 runs with one block per replicate in order to 

account for nuisance factors. The experiment was then carried out in the random run order generated by Design 

Expert.  
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Table 1- General Factorial Design for APC Thin Electric 12 x 8 Propeller.  

 Figure 29 indicates the design space created for the model and shows the actual achievable values of factor 

combination.   

Std Run

Factor 1

A:RPM

Factor 2 

B:J

29 1 5000 0.65

23 2 5000 0.38

27 3 6000 0.51

18 4 6000 0.10

10 5 4000 0.51

13 6 4000 0.65

20 7 5000 0.24

16 8 4000 0.10

7 9 4000 0.38

8 10 5000 0.38

15 11 6000 0.65

3 12 6000 0.10

28 13 4000 0.65

1 14 4000 0.10

21 15 6000 0.24

6 16 6000 0.24

9 17 6000 0.38

25 18 4000 0.51

17 19 5000 0.10

30 20 6000 0.65

5 21 5000 0.24

22 22 4000 0.38

11 23 5000 0.51

19 24 4000 0.24

24 25 6000 0.38

26 26 5000 0.51

4 27 4000 0.24

14 28 5000 0.65

12 29 6000 0.51

2 30 5000 0.10

31 31 4500 0.55

32 32 5500 0.30

33 33 4500 0.30

34 34 5500 0.55
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Figure 29 – RPM vs. Advance Ratio (J) for APC 12 x 8  

 A response surface is the regression model predictions in response to changes in the factors. The response 

surface is shown (figure 30) for the efficiency of one propeller used in this study. It can be used to show the 

optimum and minimum efficiency with the corresponding RPM value. 

 

Figure 30- Efficiency Response Surface for APC Thin Electric 14 x 12 propeller 
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6.1 PROPELLER CHARACTERIZATION EXPERIMENT DESIGN AND ANALYSIS DETAILS 

 The randomized run order shown in Table 2 represents the design used to carry out the experimentation for 

the 16 in straight blade aluminum propeller. This design has RPM at two levels and J at 5 levels with four responses 

CT, CQ, CP and  observed. The design has one replicate and contains a total of 20 runs with one block assigned per 

replicate. Run number 14 was omitted from the model because it was an outlier in efforts to help improve the model 

fit. Runs 21 through 24, shown in bold, are the confirmation points which are not used in the analysis but are used to 

determine the prediction capability of the model.  

 

Table 2- Actual Design for 16 in Straight Blade Aluminum Propeller 

Std Block Run

Factor 1

A:RPM

Factor 2 

B:J

Response 1

Ct

Respone 2

Cq

Response 3 

Cp

Response 4

Eff

3 Block 1 1 3525.38 0.38501 0.0704193 0.00656729 0.0412635 0.657046

9 Block 1 2 3505.84 0.654431 0.0240268 0.00353754 0.022227 0.70756

6 Block 1 3 4987.48 0.477265 0.0536914 0.00555987 0.0349337 0.733553

1 Block 1 4 3503.51 0.291125 0.0800913 0.0068329 0.0429324 0.543105

4 Block 1 5 4995.23 0.372223 0.0692766 0.00626408 0.0393584 0.65518

2 Block 1 6 4989.96 0.290956 0.0789659 0.00655105 0.0411614 0.558182

10 Block 1 7 5022.3 0.649454 0.0224966 0.00327229 0.0205604 0.710616

8 Block 1 8 4983.65 0.568606 0.0382852 0.00453451 0.0284912 0.764074

5 Block 1 9 3535.31 0.468186 0.0575459 0.00606033 0.0380782 0.707623

7 Block 1 10 3524.2 0.563031 0.0414764 0.00505748 0.0317771 0.735024

16 Block 2 11 4985.8 0.465834 0.055791 0.00563531 0.0354077 0.734015

12 Block 2 12 4977.65 0.292897 0.079116 0.00647637 0.0406922 0.569468

14 Block 2 13 4983.19 0.378157 0.068644 0.00619834 0.0389453 0.666542

19 Block 2 14 3512.34 0.656023 0.0220159 0.00349505 0.02196 0.657818

18 Block 2 15 4991.23 0.557028 0.040456 0.00468992 0.0294676 0.764768

13 Block 2 16 3486.53 0.386689 0.0686656 0.00646451 0.0406177 0.653723

17 Block 2 17 3496.93 0.556568 0.0424263 0.00511614 0.0321456 0.734664

15 Block 2 18 3495.95 0.466193 0.0571979 0.00600142 0.0377081 0.707185

20 Block 2 19 5002.31 0.65264 0.0221637 0.00321264 0.0201856 0.716632

11 Block 2 20 3499.23 0.286217 0.0804335 0.00672554 0.0422578 0.544795

21 Block 1 21 3770.06 0.328429 0.0775221 0.0064142 0.0403017 0.631766

22 Block 1 22 4766.91 0.599512 0.0328134 0.0040416 0.0253939 0.774782

23 Block 1 23 3760.25 0.609365 0.03285 0.0040966 0.0257398 0.77776

24 Block 1 24 4751.28 0.344779 0.0731286 0.0063167 0.039689 0.635279
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 Figures 31 through 34 show the normal probability plots for CT, CQ, CP, and η. The plots were used in the 

validation of the normality assumption. All the residuals lie along a straight line passing the “fat pencil” test except 

for one outlier for run number 14 in the efficiency plot. Even though there was one outlier, every other residual was 

normally distributed, and the normality assumption was validated. The outlier could have been caused by many 

factors to include increased operating temperature or residual torque and thrust forces being present on the balance 

during that run. 

 

Figure 31- Normal Probability Plot of CT for 16 in Straight Blade Aluminum Propeller 
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Figure 32- Normal Probability Plot of CQ for 16 in Straight Blade Aluminum Propeller 

 

Figure 33- Normal Probability Plot of CP for 16 in Straight Blade Aluminum Propeller 
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Figure 34- Normal Probability Plot of η for 16 in Straight Blade Aluminum Propeller 

 The following plots (Figures 35 through 38) shows the residual versus predicted analysis which is used to 

validate the constant variance assumption. No coning nor barreling shape was observed, and all residuals are 

bounded within the normal limits. The constant variance assumption is therefore satisfied.  

 

Figure 35- Residuals vs. Predicted Plots of CT for 16 in Straight Blade Aluminum Propeller 
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Figure 36- Residuals vs. Predicted Plots of CQ for 16 in Straight Blade Aluminum Propeller 

 

Figure 37- Residuals vs. Predicted Plots of CP for 16 in Straight Blade Aluminum Propeller 
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Figure 38- Residuals vs. Predicted Plots of η for 16 in Straight Blade Aluminum Propeller 

 Figures 39 through 42 show the Residual vs. Run plots of CT, CQ, CP and . These plots were used to 

identify the independence of the responses with time. The plots show a random oscillation around the zero line with 

no trends. This validates the independence assumption. The independence assumption is tested to discover if any 

time-dependent trends exist. Thermal shifts are a good example of a violation.  

 

Figure 39- Residuals vs. Run Plots of CT for 16 in Straight Blade Aluminum Propeller 
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Figure 40- Residuals vs. Run Plots of CQ for 16 in Straight Blade Aluminum Propeller 

 

Figure 41- Residuals vs. Run Plots of CP for 16 in Straight Blade Aluminum Propeller 
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Figure 42- Residuals vs. Run Plots of Efficiency for 16 in Straight Blade Aluminum Propeller 

 The ANOVA for the Reduced Quadratic models is shown in Table 3 through 6. The ANOVA was used to 

determine the significant terms in the model. All terms in the model were significant at 𝛼 = 0.05 significance level 

which indicates a confidence of 95%. A p-value of less than 0.05 will yield a significant term. Here J is the most 

significant term in the model which is as expected from first principles. There were 14 degrees of freedom available 

to account for error within the model, well above recommended minimums. 

Source Sum of Squares df Mean Square F-value p-value   

Block 0.0001 1 0.0001        

Model 0.0071 3 0.0024  10657.12  < 0.0001 significant 

A-RPM 0.0000 1 0.0000  66.32  < 0.0001   

B-J 0.0070 1 0.0070  31304.78  < 0.0001   

B² 
0.0001  1 0.0001  

  

289.53  < 0.0001   

Residual 
3.118E-06  14 2.227E-07        

Cor 

Total 
0.0072  18         

 

Table 3- ANOVA of response CT for 16 in Straight Blade Aluminum Propeller 
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Source 

Sum of 

Squares df 

Mean 

Square F-value p-value   

Block 1.70E-07 1 1.70E-07       

Model 2.4859E-05 6 4.14317E-06 4824.193 < 0.0001 significant 

A-RPM 3.34728E-07 1 3.34728E-07 389.74834 < 0.0001   

B-J 2.4223E-06 1 2.4223E-06 2820.4586 < 0.0001   

AB 6.11074E-09 1 6.11074E-09 7.1151775 0.0219   

B² 1.87522E-06 1 1.87522E-06 2183.4507 < 0.0001   

AB2 9.07939E-09 1 9.07939E-09 10.571791 0.0077156   

B3 1.48307E-08 1 1.48307E-08 17.268473 0.0016014   

Residual 9.45E-09 11 8.59E-10       

Cor 

Total 2.50388E-05 18         

 

Table 4- ANOVA of response CQ for 16 in Straight Blade Aluminum Propeller 

Source 

Sum of 

Squares df 

Mean 

Square F-value p-value   

Block 6.72E-06 1 6.72E-06       

Model 0.000981394 6 0.000163566 4824.4981 < 0.0001 significant 

A-RPM 1.32147E-05 1 1.32147E-05 389.77805 < 0.0001   

B-J 9.5629E-05 1 9.5629E-05 2820.6522 < 0.0001   

AB 2.41223E-07 1 2.41223E-07 7.1150516 0.0219   

B² 7.40305E-05 1 7.40305E-05 2183.5872 < 0.0001   

AB2 3.58456E-07 1 3.58456E-07 10.572937 0.0077156   

B3 5.8545E-07 1 5.8545E-07 17.268317 0.0016014   

Residual 3.73E-07 11 3.39E-08       

Cor 

Total 0.000988491 18         

 

Table 5- ANOVA of response CP for 16 in Straight Blade Aluminum Propeller 

Source 

Sum of 

Squares df Mean Square F-value p-value   

Block 5.17E-07 1 5.17E-07       

Model 0.0964  8 0.0121 1035.88  < 0.0001 significant 

A-RPM 0.0013  1 0.0013 115.64  < 0.0001   

B-J 0.0101  1 0.0101 869.59  < 0.0001   

AB 0.0001  1 0.0001 10.87  0.0093   

B² 0.0004  1 0.0004 33.77  0.0003   
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AB2 0.0002 1 0.0002 19.96  0.0016    

B3 0.0002 1 0.0002 17.91  0.0022    

AB3 0.0002 1 0.0002 14.58  0.0041    

B4 0.0001  1 0.0001 7.51  0.0228    

Residual 0.0001  9 0.0       

Cor 

Total 0.0965 18         

 

Table 6- ANOVA of response Efficiency for 16 in Straight Blade Aluminum Propeller 

 Table 7 shows the fit statistics that were used to examine the prediction capabilities and how well the 

model captures the data. An R2 value of one is desired, with the lowest R2 of 0.9996 observed this indicates that 

99.96% of the variability in the response is explained by the model. This also indicates that the quadratic model is an 

ideal solution for the results. The adjusted R2 value is used to compare the goodness-of-fit for regression models that 

contain differing numbers regression model terms, while predicted R2 is used to determine how well a regression 

model makes predictions. As seen below values obtained  show good model fit and prediction capability. The 

efficiency model has the lowest valued family of R2 statistics and while generally good, shows that a higher order 

model could improve the metrics. 

Response CT CQ CP η 

Std. Dev. 0.0005  2.931E-05 0.0001841 0.0034  

Mean 0.0553  0.0055136 0.0346427 0.6770  

R2 0.9996  0.9996201 0.9996201 0.9989  
Adjusted 

R2 0.9995  0.9994129 0.9994129 0.9980  
Predicted 

R2 0.9992  0.9981263 0.9981265 0.9942  
 

Table 7- Fit Statistics of CT, CQ, CP, and η for 16 in Straight Blade Aluminum Propeller 

 Table 8 shows the model term coefficients for each of the responses observed. This was obtained from DE 

and used in the final equation in terms of actual factors to plot all the regression models seen in chapter 7 of this 

thesis.  
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  CT CQ CP η 

Factor Coefficient Estimate 

Intercept +0.104182  0.005390129 0.033866586 -1.85299  

RPM -1.20055E-06  3.12E-07 1.96E-06 +0.000234  

J -0.026608  0.009209711 0.057870485 +17.92002  

RPM*J - -2.29E-06 -1.44E-05 -0.001712  

J2 -0.137840  -0.001992562 -0.012528016 -48.06756  
RPM * 

J2 - 2.22772E-06 
1.39975E-05 +0.004171  

J³ - -0.02216625 -0.139269557 +56.63169  
RPM * 

J³ - - - -0.003211  

J4 - - - -24.26531  
 

Table 8- Model term coefficients of CT, CQ, CP, and η for 16 in Straight Blade Aluminum Propeller 

Table 9 shows results from verification points used for run 24 to determine the prediction capability of the 

model. These points were chosen outside the design space, and they were not used in the analysis of the data or for 

model building. The results from all the verification points are included in Appendix J.3. Overall, the point 

prediction gave acceptable results and run 24 showed CQ, and CP falling slightly outside the prediction interval.   

Verification Run 

24 

Response 

Predicted  

Mean Observed 95% PI low 95% PI high 

CT 0.0729189 0.0731286 0.0718448 0.0739931 

CQ 0.00640219 0.0063167 0.0063312 0.00647319 

CP 0.0402262 0.039689 0.0397801 0.0406722 

η 0.627835 0.635279 0.618564 0.637106 

 

Table 9- Prediction Capability for 16 in Straight Blade Aluminum Propeller (run 24) 
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CHAPTER 7 – PROPELLER PERFORMANCE CHARACTERIZATION RESULTS AND DISCUSSION 

7.1 RESULTS 

Sections 7.1.1 through 7.2.4 show the analysis results for the 12 x 8, 14 x 12, 17 x 12, 16 in swept, and 16 

in straight blade propeller. Section 7.1.1 gives a detailed look for the 17 x 12, whereas the other props tested have 

detailed information in the Appendix. In order to validate the data collected throughout the experimentation, tests 

were necessary to compare to published results. Three APC Thin Electric propellers were tested and compared to the 

literature. Finally, a prototype swept and straight blade propeller were tested to help quantify uncertainty. The data 

collected on all propellers were tabulated and plotted with CT, CP, CQ, and η vs. J. The comparison plots are shown 

overlaying experimental data for CT, CQ, and η. It is more desirable to select propellers of 16 inches or larger 

diameter to produce thrust force within the design range of the balance. With the 12 x 8 propeller, the comparison 

RPM was not known, but this comparison was used to check the test stand initial performance. Based on the plots it 

can be seen that the test stand is performing correctly as the comparison data follows the experimental data trend. 

For all propellers tested the plotted regression model was obtained from the designed general factorial experiment. 

Model building and significance testing were performed using ANOVA and regression modeling from Design 

Expert. 

7.1.1 17 x 12 DETAILED RESULTS 

 As expected, the best comparison experiment was made using the 17 x 12 propeller. For clarity, details of 

the 17 x 12 analysis are included. The ODU 15 x 15 is best suited for the larger propellers of the ones tested. Since 

uncertainty values are based on a percentage of full-scale loads, loads highest in the allowable range give the most 

accurate results. Appendix D.2 shows the randomly generated run order of the test matrix created by DE that was 

used to carry out the experiment. The design had two factors; RPM and J, with RPM at three levels and J at five 

levels. The four responses CT, CQ, CP, and η were observed. The experiment was performed with two replicates, 

each in its own block for a total of 30 runs. The points shown in bold represent the verification points that were 

chosen outside the design space. These points were not used in the analysis of the data but for the prediction 

capability of the model. The following assumptions were verified: 

• Appendix G.2 shows the normal probability of the residuals for the four responses. The normality 

assumption is validated as all responses pass the “fat pencil” test.  
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• Appendix H.2 shows the Residual vs. Run plots for the responses observed. These plots were used to 

identify the independence of the responses with time. The random oscillation around the zero line with no 

trends validates the independence assumption.  

• Appendix I.2 shows the Residuals vs. Predicted plots which verifies the assumption of constant variance. 

There is no coning or barreling shape observed within the plots.  

 The prediction capability of this model was excellent. As seen in Appendix J.2 for runs 32, 33, and 34 all 

points fell within the predicted range. For run 31 only two points fell outside that range for CQ and CP however the 

difference between the predicted range and the observed was noticeably small with the highest difference being 

0.00141 for CP. This model showed the best prediction capability out of all the propellers used in the comparison 

study. 

 The ANOVA shown in Table 10 through 13 indicates that all the terms were significant except for the 

RPM in the efficiency table. The second order quadratic model was used in this analysis. However, a higher order 

model could have been chosen that would yield higher R2 values but would raise the VIF values above acceptable 

regions. The lowest R2 value observed in the fit statistics was 99.58%. This is close to the desired value of 100% 

which indicates that the model captures the data well. The model term coefficients for the responses shown in 

Appendix F.2 were used to obtain the regression models in section 7.1.3 of this thesis. 

 

Table 10- ANOVA of response CT for APC 17 x 12 propeller 

Source Sum of Squares df Mean Square F-value p-value

Block 0.0119 1 0.0119

Model 0.0136 4 0.0034 2544.19 < 0.0001 significant

A-RPM 0 1 0 15.83 0.0006

B-J 0.0009 1 0.0009 701.83 < 0.0001

AB 0 1 0 12 0.002

B² 0.0004 1 0.0004 324.26 < 0.0001

Residual 0 24 1.34E-06

Cor Total 0.0255 29
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Table 11- ANOVA of response CQ for APC 17 x 12 propeller 

 

Table 12- ANOVA of response CP for APC 17 x 12 propeller 

  

Table 13- ANOVA of response Efficiency for APC 17 x 12 propeller 

Source Sum of Squares df Mean Square F-value p-value

Block 0 1 0

Model 0.0001 4 0 1438.01 < 0.0001 significant

A-RPM 1.74E-07 1 1.74E-07 17.37 0.0003

B-J 7.13E-07 1 7.13E-07 71.18 < 0.0001

AB 2.87E-07 1 2.87E-07 28.59 < 0.0001

B² 0 1 0 1675.23 < 0.0001

Residual 2.41E-07 24 1.00E-08

Cor Total 0.0001 29

Source Sum of Squares df Mean Square F-value p-value

Block 0.0019 1 0.0019

Model 0.0023 4 0.0006 1438 < 0.0001 significant

A-RPM 6.87E-06 1 6.87E-06 17.37 0.0003

B-J 0 1 0 71.18 < 0.0001

AB 0 1 0 28.59 < 0.0001

B² 0.0007 1 0.0007 1675.23 < 0.0001

Residual 9.50E-06 24 3.96E-07

Cor Total 0.0042 29

Source Sum of Squares df Mean Square F-value p-value

Block 0.000148188 1 0.000148188

Model 0.267189273 8 0.033398659 985.056581 < 0.0001 significant

A-RPM 2.09768E-05 1 2.09768E-05 0.618687349 0.440756624

B-J 0.004380292 1 0.004380292 129.1918682 < 0.0001

AB 2.94928E-05 1 2.94928E-05 0.869857928 0.362118188

B² 0.000323286 1 0.000323286 9.534972758 0.005802167

AB² 1.01388E-05 1 1.01388E-05 0.299032057 0.590539654

B³ 0.00016946 1 0.00016946 4.998048133 0.036937889

AB³ 0.000194823 1 0.000194823 5.746089252 0.026409569

B
4

0.001973325 1 0.001973325 58.20103576 < 0.0001

Residual 0.000678106 20 3.39053E-05

Cor Total 0.268015568 29
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Figure 51 shows the fit statistics for the model. The model fits the data extremely well with the lowest observed R2 

value of 99.58%. 

Response CT CQ CP η 

Std. Dev. 0.001155287 0.0001001 0.000629 0.0058228 

Mean 0.056672769 0.0061018 0.0383384 0.651899 

R2 0.997647234 0.9958449 0.9958449 0.9974685 

Adjusted 

R2 0.997255106 0.9951524 0.9951524 0.9964559 

Predicted 

R2 0.996278735 0.9936427 0.9936427 0.9933127 

 

Table 14 - Fit Statistics for APC 17 x 12 Propeller  

The plots generated in Figures 43 through 46 were obtained from the data tables generated in Appendix 

B.2. The regression models were obtained from the model term coefficients in Appendix F.2.  

 

Figure 43- Coefficient of Thrust vs. Advance ratio regression model, raw data points, and comparison data Selig [6] 
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Figure 44- Coefficient of Torque vs. Advance ratio regression model and raw data 

 

Figure 45- Coefficient of Power vs. Advance ratio regression model, raw data points, and comparison data Selig [6] 
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Figure 46- Efficiency vs. Advance ratio regression model, raw data points, and comparison data Selig [6]  

7.1.2 APC THIN-ELECTRIC 12 X 8 PROPELLER 

 The 12 x 8 propeller was chosen as the lower bound for size and range of the torque and thrust values. The 

data table used to obtain Figures 47 through 50 are shown in Appendix B. The RPM of the comparison data is 

unknown however this was the first propeller tested and was used to validate the functionality of the system [14]. 

The plots obtained showed the expected general shape of CP, CT, CQ, and η. The comparison data shown on the raw 

data points trend closely with each other. The model term coefficients shown in Appendix F were used to create the 

regression models in the following plots. 
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Figure 47- Coefficient of Thrust vs. Advance ratio regression model, raw data points and comparison data [14] 

 

Figure 48- Coefficient of Torque vs. Advance ratio regression model, raw data points and comparison data [14] 
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Figure 49- Coefficient of Power vs. Advance ratio regression model and raw data 

 

Figure 50- Efficiency vs. Advance ratio ratio regression model, raw data points and comparison data [14] 
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7.1.3 APC THIN-ELECTRIC 14 x 12 PROPELLER 

 The plots generated in Figures 51 through 54 were obtained from the data tables generated in Appendix 

B.1. The regression models were obtained from the model term coefficients in Appendix F.1. Based on the results 

obtained, the comparison data was close to the actual experimental data points. The comparison data was obtained 

from Selig and Brandt [6]. A more detailed analysis will be carried out in sections 7.2.2 to determine if the 

comparison data falls within the confidence interval of the experimental data. 

 

Figure 51- Coefficient of Thrust vs. Advance ratio regression model, raw data points and comparison data Selig [6] 
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Figure 52- Coefficient of Torque vs. Advance ratio regression model and raw data  

 

 

Figure 53- Coefficient of Power vs. Advance ratio regression model, raw data points and comparison data Selig [6] 
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Figure 54- Efficiency vs. Advance ratio regression model, raw data points, and comparison data Selig [6] 

 

7.1.4 16 IN STRAIGHT AND SWEPT BLADE ALUMINIUM PROPELLER 

The plots generated in Figures 55 through 58 were obtained from the data tables generated in Appendix 

B.3. The regression models were obtained from the model term coefficients in Appendix F.3 for the swept blade 

propeller and Table 8 for the straight blade propeller.  
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Figure 55- Coefficient of Thrust vs. Advance ratio regression model 

 

 

Figure 56- Coefficient of Torque vs. Advance ratio regression model 
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Figure 57- Coefficient of Power vs. Advance ratio regression model 

 

 

 

Figure 58- Efficiency vs. Advance ratio regression model 
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7.2 UNCERTAINTY 

The high and low confidence intervals were obtained from Design-Expert and plotted for selected RPMs 

for CT, CQ, CP and η for comparison. The 95% confidence interval bands are shown for all RPMs selected, and the 

comparison data was plotted on the same graph in order to judge the accuracy and if there was any difference. While 

not a formal comparison, this study helps shed some light on expected uncertainties. The RPM used for comparison 

on the APC 12 x 8 is not known. This propeller was tested as the initial check of the system in order to obtain and 

ensure proper operations at low thrust and torque. The uncertainty percentage for efficiency was obtained from 

Selig’s data [4]. With the uncertainty known (0.595%) and using a coverage factor of 2, the +/- error bars were 

calculated and plotted on the efficiency plots below. 

7.2.1 APC THIN ELECTRIC 12 X 8 PROPELLER 

 

 

Figure 59- Coefficient of Thrust with 95% confidence interval band comparison data [14] 
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Figure 60- Coefficient of Torque with 95% confidence interval bands and comparison data [14] 

 

Figure 61- Efficiency with 95% confidence interval bands and comparison data [14] 
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7.2.2 APC THIN ELECTRIC 14 X 12 PROPELLER  

 

Figure 62- Coefficient of Thrust with 95% confidence interval bands and comparison data Selig [6] 

 

 

Figure 63- Coefficient of Power with 95% confidence interval bands and comparison data Selig [6] 
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Figure 64- Efficiency with 95% confidence interval bands and comparison data with error bars Selig [6]  

7.2.3 APC THIN ELECTRIC 17 X 12 

 

Figure 65- Coefficient of Thrust with 95% confidence interval bands and comparison data Selig [6] 
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Figure 66- Coefficient of Power with 95% confidence interval bands and comparison data Selig [6] 

 

Figure 67- Efficiency with 95% confidence interval bands and comparison data with error bars Selig [6]  
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7.2.4 16 IN STRAIGHT AND SWEPT BLADE ALUMINIUM PROPELLER  

 A straight and swept blade aluminum propeller were machined at ODU with the intent to investigate the 

effect blade geometry has on the acoustic levels produced by the propeller. However, before venturing into the 

acoustic analysis, it was necessary first to investigate how the blade geometry affects its aerodynamic performance. 

This led to a comparison experiment between the swept and straight blade propeller. Both propellers were tested at a 

low and high RPM. A similar comparison study was performed by Wiedemann and Benjamin as a DOE class 

project in November 2018 before all improvements were made to the propeller test stand. A comparison was made 

between that project and this current experimentation to see how well the results improved in precision. The CI for 

both experiments were compared to each other in this study. Figures 68 through 75 were used to compare the results 

obtained at 3500 RPM for the project and this thesis for the swept and straight blade propeller. The 95% CI bands 

are shown for each propeller. 

 

Figure 68- Coefficient of Thrust vs. Advance ratio for 16 in Straight Blade Propeller 
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Figure 69- Coefficient of Torque vs. Advance ratio for 16 in Straight Blade Propeller 

 

Figure 70- Coefficient of Power vs. Advance ratio for 16 in Straight Blade Propeller 
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Figure 71- Efficiency vs. Advance ratio for 16 in Straight Blade Propeller 

  

Figure 72- Coefficient of Thrust vs. Advance ratio for 16 in Swept Blade Propeller  
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Figure 73- Coefficient of Torque vs. Advance ratio for 16 in Swept Blade Propeller 

 

Figure 74- Coefficient of Power vs. Advance ratio for 16 in Swept Blade Propeller 
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Figure 75- Efficiency vs. Advance ratio for 16 in Swept Blade Propeller  

   The performance characteristics of the swept and straight blade propeller were compared to each other with 

the data obtained throughout this thesis. Figure 76 through 79 show the results with the 95% CI bands. 
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Figure 76- Coefficient of Thrust with 95% confidence interval bands 

 

Figure 77- Coefficient of Torque with 95% confidence interval bands 
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Figure 78- Coefficient of Power with 95% confidence interval bands 

 

Figure 79- Efficiency with 95% confidence interval bands  
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7.3 DISCUSSION 

 The focus of this study was to characterize the propeller test stand and optimize it for the best precision and 

accuracy. The three APC propellers tested were compared to literature. The initial test with the 12 x 8 prop verified 

the proper functionality of the system. In order to make an accurate comparison, error bars are shown for the 

efficiency plots for the 14 x 12 and 17 x 12 props (Figures 64 and 67 respectively), which showed how well the 

experimental data compared to literature. For the 17 x 12 plot, the bars overlapped with the experimental data CI 

indicating that there is no difference between the two. However, for the 14 x 12 plot, the error bars overlapped with 

the wrong experimental RPM data. Known issues with Reynolds number sensitivity may explain this. For the 

straight and swept blade props, a comparison was made in order to address how geometry affects the aerodynamic 

performance of the propellers (Figures 76 through 79). The data indicates that the geometry does not affect the 

aerodynamic performance and surprisingly the swept blade propeller showed slightly higher efficiency than the 

straight blade propeller. The comparison plots of the swept and straight blade propeller for this thesis and the DOE 

project from November 2018 (Figures 68 through 75) showed that the uncertainty in measurements has improved, 

comparing the CI between the two experiments gave these results. For the efficiency comparison, the project from 

November indicated that the test rig performed slightly better. However, all other comparisons made showed that the 

test rig performed better throughout this thesis. There was an outlier within the efficiency model that was removed 

in order to improve the results. However, this did not decrease the CI bands. This anomaly is an unexpected result 

and is subjected to further research. This improved the R2 value significantly, resulting in a better model. 

 The design test matrix shown in Appendix D, D.1, D.2, and D.3 contains the completely randomized run 

order for the 12 x 8, 14 x 12, 17 x 12, and the 16 in straight blade propeller tested in this thesis. A second order 

quadratic model was used in order to predict the final actual equation used to obtain each response. However, a 

quartic model was chosen for the 14 x 12, 17 x 12, 16 in swept, and 16 in straight propeller efficiency response since 

it yields higher R2 values.  

The verification points shown in bold of each test matrix were independent of the design point locations. 

These points were not used in the analysis however they were used to assess the prediction capability of the model. 

Appendix J through J.3 represents the confirmation points for the 12 x 8, 14 x 12, 17 x 12, and the 16 in straight-
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blade propeller. The values in red indicate the points that fell outside the acceptable PI range. The 17 x 12 propeller 

showed the best comparison data throughout this experiment. 

 Appendix E through E.2 shows the ANOVA tables which were used to determine the significant and 

insignificant model terms used for building the final response model. The fit statistics indicate how well the model 

fits and its prediction capabilities. An R2 value of one is desired, which means all of the variability in the response is 

explained by the model. Fit statistics obtained for the all tested propellers showed the lowest R2 value was 97.63% 

indicating that the chosen models fit the data extremely well.  

Response CT CQ CP η 

Std. Dev. 0.001577781 0.0001985 0.0012473 0.0209725 

Mean 0.070705638 0.0062749 0.0394266 0.5554472 

R2 0.997272171 0.9762577 0.9762575 0.987641 

Adjusted R2 0.996835719 0.9724589 0.9724587 0.9856636 

Predicted R2 0.996121602 0.9658892 0.965889 0.9802993 

 

Table 15- Fit Statistics for APC 12x8 Propeller Fit Statistics for APC 14x12 Propeller 

Response CT CQ CP η 

Std. Dev. 0.003693997 0.0003956 0.0024855 0.0133  

Mean 0.068910193 0.0069667 0.0437733 0.5993  

R2 0.990228289 0.9775895 0.9775895 0.9977  

Adjusted R2 0.989685416 0.974953 0.974953 0.9966  

Predicted R2 0.988544919 0.9700688 0.9700687 0.9938  
 

Table 16- Fit Statistics for APC 14x12 Propeller Fit Statistics for APC 14x12 Propeller 

Response CT CQ CP η 

Std. Dev. 0.0009  0.0001  0.0004  0.0109  

Mean 0.0551  0.0053  0.0336  0.6888  

R2 0.9984  0.9967  0.9967  0.9824  

Adjusted R2 0.9980  0.9960  0.9960  0.9770  

Predicted R2 0.9969  0.9938  0.9938  0.9613  
 

Table 17- Fit Statistics for 16 in Swept Blade Aluminum Propeller  
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The final equation in terms of actual factors are also shown in Appendix F through F.3. These equations 

were used in order to plot the regression models seen in the graphs. The graphs show  95% confidence interval 

bands used to compare the experimental data to literature. The comparison points did not all fall within these bands; 

however, they were reasonably close to the CI of the experimental data indicating high agreement with the data 

obtained. As expected the highest accuracy was observed with the APC 17x12 propeller because it can produce the 

desired thrust which is best suited to load the internal balance. This propeller showed a great prediction model and 

the comparison data agreed with the experimental data. Approximate confidence intervals were computed for the 

comparison data when possible which shows good agreement with the present data. 

Assumptions of error normality, independence, and constant variance were tested using  residual 

diagnostics. Appendix G through G.3 shows the normal probability plot for the 12 x 8, 14 x 12, 17 x 12 and the 16 

in swept-blade propeller. The “fat pencil” test was passed, which indicates a normal distribution of all residuals 

validating the normality assumption. Appendix I through I.3 shows the plots of residuals versus run order that was 

obtained for the 12 x 8, 14 x 12, 17 x 12, and the 16 in swept-blade propeller. These plots identify the independence 

of the responses from time. The plots showed a structureless form alternating across zero, which verified the 

independence assumption. 

 The final assumption to be verified was the constant variance. The plots shown in Appendix H through H.3 

of residuals versus predicted values shows no sign of coning or barreling and are bounded within the normal limits. 

This indicates that the constant variance assumption is valid.  

As a final check to see if the method developed is generally applicable over a broad range of advance 

ratios, a data set was obtained from another student that includes a complete performance range for the 16 in straight 

blade propeller.  Additional performance plots for this data are shown in Appendix K. By increasing the polynomial 

order to match the increased number of  levels for factor J, performance was well modeled.  Regression models 

obtained are given in Appendix L.  It should be noted that this data set was not randomized and hence no statistical 

testing was done. It did, however, showcase the methodology and looks promising going forward. 
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 CHAPTER 8 – CONCLUSION AND FUTURE WORK 

 A total of five propellers were tested in the ODU low-speed wind tunnel over an average of three different 

rotational speeds and a wide range of advance ratios in order to validate the improvements made to the propeller test 

stand. In each test, a completely randomized test matrix was generated, and a detailed statistical analysis was 

performed on the resulting data. The validation of all results on the three APC propellers was done by comparing 

them to previous literature, while a direct comparison was made between the swept and straight blade aluminum 

propeller. In addition, a comparison was made between measurements on the swept and straight blade props from a 

DOE project completed in November 2018 and this thesis in order the determine if the uncertainty of measurements 

were improved. From the data obtained it can be concluded that the improvements made to the propeller test stand 

increased the accuracy and precision of the measurements obtained during experimentation. Accuracy was gauged 

by a favorable comparison to the literature. The precision of measurements was improved and shown by decreased 

confidence interval widths in the recent aluminum propeller data versus that of November 2018. From first 

principles, it is known that as a propeller’s diameter and pitch increases so does the thrust and torque force it 

produces. Also,  when within the limits of the balance, the relative precision improves and it is a percentage of the 

full-scale balance range. 

The objectives of this thesis have been met, and the newly designed and upgraded features made to the 

propeller test stand showed improved performance, accuracy, and precision of the data collected. The system shows 

excellent repeatability of data with stable RPM and tunnel velocity settings. However, the results confirmed that a 

propeller which produces a low thrust value tends to have a high variation. The three APC propellers that were 

tested and compared to literature showed results with the comparison plots mainly falling within the confidence 

interval from the experimental data. This suggests good accuracy of the system and its ability to replicate previous 

data. Unfortunately, there is no real standard to compare for propeller performance. During the characterization of 

the two aluminum propellers, significant data was obtained with excellent repeatability. The system is capable of 

generating high-quality data suitable for research. This leaves room for the exploration of these types of designed 

propellers for UAVs. Interest in the acoustics of these propellers could be further explored since the swept geometry 

does not diminish the propeller's performance. For future comparisons, using larger propellers would be better in 

order to load the balance in a more desired range than the smaller propellers. Also obtaining acoustic data on the 

swept and straight propeller and comparing them to each other would be a useful exploration as minimal data set 
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exists on these propeller designs with acoustic characterization. Furthermore, it would be of interest to use DOE to 

characterize the uncertainties with the propeller test stand. 
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APPENDIX A 

LABVIEW BLOCK DIAGRAM OF OUTPUT FILE DOCUMENTATION 
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APPENDIX A.1 

LABVIEW BLOCK DIAGRAM OF RPM SIGNAL INPUT, CURRENT AND VOLTAGE 
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APPENDIX B 

RESULTS OF APC THIN ELECTRIC 12 x 8 PROPELLER 

Wind Tunnel Performance Results 

 

 

 

 

 

 

 

 

 

 

 

 

  

Velocity (m/s) Barometric 

Pressure (Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure (q)

Test Section 

Temperature (°C)

Coefficient of 

Thrust (Ct)

Coefficient of 

Torque (Cq)

Coefficient of 

Power (Cp)

Efficiency Advance 

Ratio (J)

Thrust (lbf) Torque (in-lbf) Current (I) Voltage (V) Thrust Tare Torque Tare RPM

7.61 101491.16 65.65 0.00233 24.96 2.50 21.0 0.1012 0.0065 0.0410 0.25 0.10 1.045 -0.808 2.97 20.85 -1.1807 -0.3639 3939.20

5.04 101474.00 66.48 0.00233 16.55 2.65 21.0 0.1011 0.0063 0.0395 0.26 0.10 1.043 -0.779 2.97 20.85 -1.1807 -0.4625 3988.62

13.03 101547.31 66.50 0.00233 42.74 13.12 21.0 0.0949 0.0070 0.0442 0.49 0.23 1.001 -0.890 3.14 20.85 -1.1807 -0.3639 3989.87

2.10 101502.09 66.53 0.00233 6.89 15.28 21.0 0.0926 0.0073 0.0459 0.50 0.25 0.953 -0.903 3.07 20.85 -1.1807 -0.1942 3991.65

2.04 101524.00 66.53 0.00233 6.69 34.78 21.0 0.0735 0.0066 0.0413 0.68 0.38 0.739 -0.793 2.90 20.85 -1.1807 -0.4625 3991.97

13.12 101506.20 66.61 0.00233 43.03 37.14 21.0 0.0747 0.0069 0.0431 0.67 0.39 0.782 -0.862 3.05 20.85 -1.1807 -0.3639 3996.49

10.27 101524.42 66.71 0.00233 33.68 63.34 21.0 0.0490 0.0054 0.0338 0.74 0.50 0.509 -0.670 2.59 20.85 -1.1807 -0.3639 4002.75

10.33 101547.09 66.80 0.00233 33.89 64.12 21.0 0.0480 0.0059 0.0370 0.66 0.51 0.500 -0.734 2.59 20.85 -1.1807 -0.4625 4007.87

7.86 101516.91 67.00 0.00233 25.79 102.02 21.0 0.0244 0.0040 0.0253 0.62 0.64 0.251 -0.498 1.94 20.85 -1.1807 -0.4625 4019.91

4.67 101504.62 67.25 0.00233 15.33 103.35 21.0 0.0236 0.0035 0.0220 0.69 0.65 0.244 -0.434 1.94 20.85 -1.1807 -0.3639 4034.95

APC Thin Electric 12x8 Propeller 4000 RPM

Velocity (m/s) Barometric 

Pressure (Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure (q)

Test Section 

Temperature (°C)

Coefficient of 

Thrust (Ct)

Coefficient of 

Torque (Cq)

Coefficient of 

Power (Cp)

Efficiency Advance 

Ratio (J)

Thrust (lbf) Torque (in-lbf) Current (I) Voltage (V) Thrust Tare Torque Tare RPM

16.61 101533.00 83.15 0.00233 54.49 4.30 21.0 0.1015 0.0067 0.0422 0.25 0.11 1.653 -1.313 5.10 20.85 -1.1807 -0.3639 4988.96

6.21 101531.69 83.45 0.00233 20.37 4.32 21.0 0.1022 0.0070 0.0440 0.25 0.11 1.662 -1.365 5.09 20.85 -1.1807 -0.1942 5007.04

9.78 101501.40 83.51 0.00233 32.09 22.16 21.0 0.0937 0.0071 0.0445 0.50 0.24 1.524 -1.383 5.28 20.85 -1.1807 -0.3639 5010.48

9.70 101529.02 83.51 0.00233 31.83 23.16 21.0 0.0926 0.0070 0.0441 0.51 0.24 1.504 -1.369 5.27 20.85 -1.1807 -0.4625 5010.64

2.68 101467.93 83.53 0.00233 8.80 56.56 21.0 0.0768 0.0073 0.0457 0.64 0.38 1.249 -1.420 5.27 20.85 -1.1807 -0.4625 5011.51

6.07 101520.47 83.53 0.00233 19.92 57.46 21.0 0.0771 0.0070 0.0441 0.67 0.38 1.253 -1.371 5.27 20.85 -1.1807 -0.4625 5011.60

2.68 101539.38 83.57 0.00233 8.78 98.00 21.0 0.0557 0.0065 0.0406 0.69 0.50 0.912 -1.269 4.66 20.85 -1.1807 -0.1215 5014.34

16.41 101476.53 83.57 0.00233 53.83 103.81 21.0 0.0526 0.0060 0.0374 0.72 0.52 0.859 -1.167 4.54 20.85 -1.1807 -0.3639 5014.47

13.15 101511.22 83.68 0.00233 43.13 161.68 21.0 0.0278 0.0042 0.0263 0.68 0.64 0.452 -0.818 3.40 20.85 -1.1807 -0.1942 5020.75

12.77 101463.78 83.81 0.00233 41.91 165.80 21.0 0.0246 0.0041 0.0256 0.63 0.66 0.397 -0.787 3.24 20.85 -1.1807 -0.4625 5028.58

APC Thin Electric 12x8 Propeller 5000 RPM

Velocity (m/s) Barometric 

Pressure (Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure (q)

Test Section 

Temperature (°C)

Coefficient of 

Thrust (Ct)

Coefficient of 

Torque (Cq)

Coefficient of 

Power (Cp)

Efficiency Advance 

Ratio (J)

Thrust (lbf) Torque (in-lbf) Current (I) Voltage (V) Thrust Tare Torque Tare RPM

2.97 101485.56 99.68 0.00233 9.73 5.29 21.0 0.1037 0.0070 0.0437 0.23 0.10 2.400 -1.931 8.11 20.85 -1.1807 -0.4625 5981.00

3.14 101534.42 99.69 0.00233 10.30 5.92 21.0 0.1032 0.0071 0.0449 0.24 0.10 2.392 -1.985 8.12 20.85 -1.1807 -0.4625 5981.60

7.12 101525.44 100.09 0.00233 23.35 30.43 21.0 0.0947 0.0074 0.0464 0.48 0.23 2.212 -2.069 8.54 20.85 -1.1807 -0.4625 6005.22

7.13 101532.00 100.10 0.00233 23.39 30.53 21.0 0.0945 0.0074 0.0464 0.48 0.23 2.208 -2.069 8.54 20.85 -1.1807 -0.4625 6006.19

11.49 101500.44 99.93 0.00233 37.71 79.35 21.0 0.0810 0.0075 0.0469 0.65 0.38 1.885 -2.086 8.56 20.85 -1.1807 -0.3639 5996.02

11.79 101512.84 99.94 0.00233 38.69 83.57 21.0 0.0790 0.0074 0.0467 0.66 0.39 1.840 -2.075 8.55 20.85 -1.1807 -0.3639 5996.50

15.47 101533.00 99.87 0.00233 50.75 143.77 21.0 0.0581 0.0066 0.0417 0.71 0.51 1.352 -1.850 7.64 20.85 -1.1807 -0.4625 5991.98

15.69 101476.00 99.99 0.00233 51.48 147.87 21.0 0.0576 0.0066 0.0417 0.71 0.51 1.342 -1.854 7.56 20.85 -1.1807 -0.1942 5999.38

19.72 101508.22 100.45 0.00233 64.69 233.58 21.0 0.0311 0.0046 0.0291 0.69 0.64 0.731 -1.307 5.73 20.85 -1.1807 -0.4625 6027.25

19.99 101533.56 100.33 0.00233 65.60 240.24 21.0 0.0305 0.0044 0.0278 0.72 0.65 0.716 -1.246 5.53 20.85 -1.1807 -0.3639 6020.03

APC Thin Electric 12x8 Propeller 6000 RPM
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APPENDIX B.1 

RESULTS OF APC THIN ELECTRIC 14 x 12 PROPELLER 

Wind Tunnel Performance Results 

 

 

 

 

  

Velocity 

(m/s)

Barometric 

Pressure (Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure 

(q)

Test Section 

Temperature 

(°C)

Coefficien

t of Thrust 

(Ct)

Coefficient of 

Torque (Cq)

Coefficient 

of Power (Cp)

Efficiency Advance 

Ratio (J)

Thrust 

(lbf)

Torque   

(in-lbf)

Current (I) Voltage (V) Thrust Tare Torque Tare RPM

13.26 100733.00 41.22 0.00232 43.51 105.02 20.5 0.0112 0.0019 0.0118 0.85 0.90462172 0.082 -0.192 0.94 20.85 -1.1807 -0.2905 2473.40

13.27 100713.00 41.25 0.00232 43.53 105.17 20.4 0.0117 0.0020 0.0127 0.81 0.90451106 0.085 -0.207 0.94 20.85 -1.1807 -0.2905 2475.24

4.42 100949.00 41.74 0.00232 14.49 11.68 20.3 0.1023 0.0084 0.0525 0.58 0.29759539 0.767 -0.877 2.25 20.85 -1.1807 -0.2905 2504.21

4.56 100948.00 41.75 0.00232 14.97 12.47 20.3 0.1022 0.0084 0.0528 0.59 0.30739441 0.767 -0.883 2.24 20.85 -1.1807 -0.2905 2505.13

7.51 100701.00 41.83 0.00232 24.63 33.64 20.6 0.0810 0.0087 0.0545 0.75 0.5047067 0.608 -0.912 2.24 20.85 -1.1807 -0.2905 2509.85

7.56 100988.00 41.84 0.00232 24.80 34.21 20.5 0.0804 0.0084 0.0528 0.77 0.50801219 0.606 -0.886 2.24 20.85 -1.1807 -0.2905 2510.55

1.43 100703.00 42.18 0.00232 4.69 1.22 20.4 0.1031 0.0088 0.0553 0.18 0.09524143 0.788 -0.941 2.32 20.85 -1.1807 -0.2905 2531.01

10.62 101019.00 42.23 0.00232 34.86 67.62 20.4 0.0411 0.0054 0.0337 0.86 0.70747392 0.316 -0.577 1.69 20.85 -1.1807 -0.2905 2533.90

1.42 100811.00 42.23 0.00232 4.66 1.21 20.3 0.1035 0.0086 0.0539 0.18 0.09463927 0.793 -0.922 2.32 20.85 -1.1807 -0.2905 2533.96

10.65 100746.00 42.25 0.00232 34.94 67.79 20.3 0.0415 0.0053 0.0335 0.88 0.70883704 0.318 -0.572 1.69 20.85 -1.1807 -0.2905 2535.05

APC Thin Electric 14x12 Propeller 2500 RPM

Velocity 

(m/s)

Barometric 

Pressure (Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure 

(q)

Test Section 

Temperature 

(°C)

Coefficien

t of Thrust 

(Ct)

Coefficient of 

Torque (Cq)

Coefficient 

of Power (Cp)

Efficiency Advance 

Ratio (J)

Thrust 

(lbf)

Torque   

(in-lbf)

Current (I) Voltage (V) Thrust Tare Torque Tare RPM

12.38 101010.00 49.51 0.00232 40.62 91.83 20.4 0.0423 0.0056 0.0352 0.84 0.70 0.446 -0.828 2.44 20.85 -1.1807 -0.2905 2970.60

1.70 100983.00 49.66 0.00232 5.57 1.73 20.4 0.1015 0.0085 0.0537 0.18 0.10 1.078 -1.269 3.36 20.85 -1.1807 -0.2905 2979.53

8.94 100701.00 49.67 0.00232 29.32 47.70 20.4 0.0824 0.0088 0.0551 0.76 0.51 0.872 -1.300 3.36 20.85 -1.1807 -0.2905 2980.02

8.95 101008.00 49.92 0.00233 29.36 47.98 20.3 0.0842 0.0087 0.0548 0.77 0.50 0.904 -1.310 3.48 20.85 -1.1807 -0.2905 2994.94

1.73 100764.00 50.09 0.00232 5.66 1.78 20.3 0.1035 0.0087 0.0549 0.18 0.10 1.116 -1.319 3.47 20.85 -1.1807 -0.2905 3005.57

5.56 100823.00 50.19 0.00232 18.24 18.47 20.4 0.1006 0.0086 0.0541 0.58 0.31 1.089 -1.306 3.45 20.85 -1.1807 -0.2905 3011.29

5.12 100830.00 50.28 0.00232 16.80 15.68 20.4 0.1027 0.0085 0.0536 0.55 0.29 1.116 -1.298 3.45 20.85 -1.1807 -0.2905 3016.76

16.33 100998.00 50.39 0.00232 53.57 159.70 20.4 0.0084 0.0018 0.0116 0.66 0.91 0.092 -0.283 1.30 20.85 -1.1807 -0.2905 3023.18

16.18 100751.00 50.49 0.00232 53.09 156.53 20.3 0.0100 0.0021 0.0129 0.70 0.90 0.110 -0.316 1.34 20.85 -1.1807 -0.2905 3029.60

12.75 101001.00 50.53 0.00232 41.82 97.34 20.4 0.0428 0.0058 0.0363 0.84 0.71 0.471 -0.889 2.61 20.85 -1.1807 -0.2905 3031.86

APC Thin Electric 14x12 Propeller 3000 RPM

Velocity 

(m/s)

Barometric 

Pressure (Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure 

(q)

Test Section 

Temperature 

(°C)

Coefficien

t of Thrust 

(Ct)

Coefficient of 

Torque (Cq)

Coefficient 

of Power (Cp)

Efficiency Advance 

Ratio (J)

Thrust 

(lbf)

Torque   

(in-lbf)

Current (I) Voltage (V) Thrust Tare Torque Tare RPM

18.38 100988.00 57.91 0.00233 60.29 202.43 20.2 0.0125 0.0026 0.0161 0.69 0.89 0.181 -0.519 1.97 20.85 -1.1807 -0.2905 3474.41

10.25 101000.00 57.95 0.00232 33.63 62.94 20.4 0.0836 0.0088 0.0554 0.75 0.50 1.208 -1.785 4.95 20.85 -1.1807 -0.2905 3476.88

14.30 100813.00 57.96 0.00232 46.93 122.35 20.4 0.0460 0.0063 0.0393 0.81 0.69 0.665 -1.265 3.72 20.85 -1.1807 -0.2905 3477.61

10.36 100732.00 58.18 0.00232 33.99 64.09 20.5 0.0829 0.0088 0.0552 0.75 0.50 1.204 -1.788 4.98 20.85 -1.1807 -0.2905 3490.88

6.10 100993.00 58.45 0.00232 20.02 22.32 20.3 0.0994 0.0085 0.0533 0.55 0.29 1.462 -1.746 4.89 20.85 -1.1807 -0.2905 3507.16

14.39 100820.00 58.47 0.00232 47.22 123.86 20.4 0.0466 0.0064 0.0400 0.81 0.69 0.684 -1.309 3.82 20.85 -1.1807 -0.2905 3508.26

2.11 100945.00 58.72 0.00232 6.92 2.67 20.3 0.1084 0.0082 0.0514 0.21 0.10 1.609 -1.699 4.82 20.85 -1.1807 -0.2905 3522.95

2.10 100950.00 58.76 0.00232 6.87 2.63 20.3 0.1076 0.0082 0.0514 0.21 0.10 1.599 -1.702 4.80 20.85 -1.1807 -0.2905 3525.32

18.94 100727.00 58.96 0.00232 62.14 214.20 20.5 0.0111 0.0024 0.0151 0.66 0.90 0.165 -0.503 1.95 20.85 -1.1807 -0.2905 3537.54

6.11 100984.00 59.13 0.00233 20.06 22.41 20.2 0.1002 0.0085 0.0535 0.54 0.29 1.508 -1.795 5.05 20.85 -1.1807 -0.2905 3548.07

APC Thin Electric 14x12 Propeller 3500 RPM

Velocity 

(m/s)

Barometric 

Pressure (Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure 

(q)

Test Section 

Temperature 

(°C)

Coefficien

t of Thrust 

(Ct)

Coefficient of 

Torque (Cq)

Coefficient 

of Power (Cp)

Efficiency Advance 

Ratio (J)

Thrust 

(lbf)

Torque   

(in-lbf)

Current (I) Voltage (V) Thrust Tare Torque Tare RPM

3.13 101332.27 82.93 0.00233 10.28 5.89 21.0 0.1060 0.0087 0.0546 0.21 0.11 3.142 -3.603 10.64 20.86 -1.1807 -0.4625 4975.61

3.14 101319.24 83.09 0.00233 10.31 5.92 21.2 0.1055 0.0087 0.0546 0.21 0.11 3.138 -3.615 10.64 20.87 -1.1807 -0.4625 4985.25

8.88 101330.16 83.07 0.00232 29.14 47.24 21.4 0.0970 0.0090 0.0568 0.51 0.30 2.880 -3.757 10.64 20.87 -1.1807 -0.4625 4984.13

8.89 101324.91 83.02 0.00233 29.16 47.42 20.8 0.0973 0.0090 0.0568 0.52 0.30 2.893 -3.765 10.64 20.87 -1.1807 -0.4625 4981.18

14.93 101320.93 83.08 0.00232 48.97 133.46 21.3 0.0812 0.0094 0.0589 0.70 0.51 2.412 -3.902 10.64 20.87 -1.1807 -0.4625 4984.67

14.96 101327.56 82.81 0.00232 49.07 133.97 21.4 0.0809 0.0093 0.0586 0.70 0.51 2.389 -3.853 10.64 20.87 -1.1807 -0.4625 4968.71

20.81 101329.49 83.87 0.00232 68.29 259.33 21.6 0.0529 0.0078 0.0489 0.75 0.70 1.601 -3.298 10.64 20.86 -1.1807 -0.4625 5032.19

20.75 101315.11 83.19 0.00233 68.08 258.11 21.1 0.0514 0.0077 0.0484 0.75 0.70 1.533 -3.213 10.64 20.86 -1.1807 -0.4625 4991.19

26.62 101317.11 83.88 0.00232 87.33 424.40 21.3 0.0149 0.0038 0.0237 0.56 0.89 0.452 -1.597 5.64 20.86 -1.1807 -0.4625 5033.08

26.73 101328.49 83.95 0.00232 87.68 427.68 21.5 0.0146 0.0037 0.0231 0.57 0.90 0.443 -1.559 5.57 20.86 -1.1807 -0.4625 5037.01

APC Thin Electric 14x12 Propeller 5000 RPM
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APPENDIX B.2 

RESULTS OF APC THIN ELECTRIC 17 x 12 PROPELLER 

Wind Tunnel Performance Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Velocity 

(m/s)

Barometric 

Pressure 

(Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure 

(q)

Test Section 

Temperature 

(°C)

Coefficien

t of Thrust 

(Ct)

Coefficien

t of 

Torque 

(Cq)

Coefficien

t of Power 

(Cp)

Efficiency Advance 

Ratio (J)

Thrust 

(lbf)

Torque   

(in-lbf)

Current (I) Voltage (V) Thrust 

Tare

Torque 

Tare

RPM

10.01 102472.00 56.58 0.00235 32.83 60.63 21.5 0.0790 0.0076 0.0477 0.68 0.41 2.395 -3.912 10.31 20.85 -1.1807 -0.3088 3395.06

13.24 102417.36 56.61 0.00235 43.45 106.01 21.8 0.0594 0.0069 0.0433 0.74 0.54 1.798 -3.549 9.30 20.85 -1.1807 -0.3088 3396.83

13.06 102650.67 56.68 0.00235 42.84 103.39 21.5 0.0607 0.0070 0.0442 0.73 0.53 1.849 -3.643 9.47 20.85 -1.1807 -0.3088 3400.64

10.03 102765.09 56.72 0.00235 32.91 61.04 21.7 0.0795 0.0077 0.0483 0.67 0.41 2.427 -3.991 10.49 20.85 -1.1807 -0.3088 3403.28

6.61 102555.71 56.77 0.00235 21.67 26.44 21.6 0.0924 0.0075 0.0473 0.53 0.27 2.819 -3.906 10.31 20.85 -1.1807 -0.3088 3406.33

6.83 102389.98 56.79 0.00235 22.42 28.25 21.6 0.0913 0.0075 0.0472 0.54 0.28 2.782 -3.895 10.31 20.85 -1.1807 -0.3088 3407.48

16.46 102583.62 56.81 0.00235 54.01 164.16 21.7 0.0330 0.0049 0.0307 0.72 0.67 1.008 -2.540 6.57 20.85 -1.1807 -0.3088 3408.52

19.53 102487.31 56.94 0.00235 64.08 230.89 21.7 0.0107 0.0026 0.0161 0.53 0.79 0.328 -1.337 3.80 20.85 -1.1807 -0.3088 3416.12

19.90 102607.64 57.01 0.00235 65.28 239.86 21.7 0.0078 0.0023 0.0146 0.44 0.81 0.241 -1.213 3.44 20.85 -1.1807 -0.3088 3420.89

16.73 102513.60 57.02 0.00235 54.90 169.51 21.6 0.0317 0.0047 0.0294 0.73 0.68 0.974 -2.445 6.46 20.85 -1.1807 -0.3088 3421.30

APC Thin Electric 17x12 Propeller 3400 RPM

Velocity 

(m/s)

Barometric 

Pressure 

(Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure 

(q)

Test Section 

Temperature 

(°C)

Coefficien

t of Thrust 

(Ct)

Coefficien

t of 

Torque 

(Cq)

Coefficien

t of Power 

(Cp)

Efficiency Advance 

Ratio (J)

Thrust 

(lbf)

Torque   

(in-lbf)

Current (I) Voltage (V) Thrust 

Tare

Torque 

Tare

RPM

7.96 102385.20 66.28 0.00235 26.12 38.35 21.6 0.0923 0.0076 0.0477 0.54 0.28 3.833 -5.352 10.64 20.86 -1.1807 -0.3088 3976.55

11.78 102566.31 66.35 0.00235 38.64 83.99 21.7 0.0802 0.0077 0.0483 0.68 0.41 3.342 -5.445 10.64 20.86 -1.1807 -0.3088 3980.75

11.89 102478.84 66.48 0.00235 39.01 85.57 21.7 0.0797 0.0077 0.0482 0.68 0.41 3.333 -5.456 10.64 20.85 -1.1807 -0.3088 3989.07

8.13 102760.31 66.54 0.00235 26.66 40.07 21.7 0.0919 0.0077 0.0481 0.54 0.28 3.857 -5.463 10.64 20.85 -1.1807 -0.3088 3992.63

15.74 102760.00 66.68 0.00235 51.63 150.27 21.7 0.0614 0.0072 0.0450 0.75 0.55 2.590 -5.129 10.64 20.85 -1.1807 -0.3088 4000.84

19.61 102571.04 66.71 0.00235 64.34 232.91 21.7 0.0353 0.0051 0.0321 0.75 0.68 1.485 -3.657 10.64 20.85 -1.1807 -0.3088 4002.52

22.99 102446.98 66.85 0.00235 75.44 319.78 21.7 0.0126 0.0028 0.0178 0.56 0.80 0.533 -2.037 6.23 20.85 -1.1807 -0.3088 4011.01

19.05 102502.47 66.86 0.00235 62.51 219.76 21.6 0.0394 0.0055 0.0343 0.76 0.66 1.667 -3.923 10.64 20.85 -1.1807 -0.3088 4011.45

23.05 102624.40 66.94 0.00235 75.63 322.01 21.7 0.0125 0.0029 0.0180 0.55 0.80 0.531 -2.066 6.19 20.85 -1.1807 -0.3088 4016.20

15.77 102468.04 66.95 0.00235 51.73 150.54 21.5 0.0614 0.0071 0.0444 0.75 0.55 2.603 -5.095 10.64 20.85 -1.1807 -0.3088 4016.81

APC Thin Electric 17x12 Propeller 4000 RPM

Velocity 

(m/s)

Barometric 

Pressure 

(Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure 

(q)

Test Section 

Temperature 

(°C)

Coefficien

t of Thrust 

(Ct)

Coefficien

t of 

Torque 

Coefficien

t of Power 

(Cp)

Efficiency Advance 

Ratio (J)

Thrust 

(lbf)

Torque   

(in-lbf)

Current (I) Voltage (V) Thrust 

Tare

Torque 

Tare

RPM

8.98 102688.00 74.54 0.00235 29.48 48.96 21.6 0.0931 0.0077 0.0485 0.54 0.28 4.902 -6.904 10.64 20.86 -1.1807 -0.3088 4472.20

9.08 102412.78 74.56 0.00235 29.79 49.87 21.7 0.0925 0.0077 0.0482 0.54 0.28 4.862 -6.850 10.64 20.86 -1.1807 -0.3088 4473.38

21.60 102395.44 74.60 0.00235 70.85 281.90 21.8 0.0401 0.0056 0.0353 0.76 0.67 2.108 -5.018 10.64 20.85 -1.1807 -0.3088 4475.90

17.16 102536.04 74.60 0.00235 56.28 178.26 21.6 0.0649 0.0073 0.0460 0.75 0.53 3.419 -6.562 10.64 20.86 -1.1807 -0.3088 4476.13

13.16 102581.04 74.65 0.00235 43.16 104.87 21.6 0.0811 0.0078 0.0491 0.67 0.41 4.280 -7.008 10.64 20.86 -1.1807 -0.3088 4479.09

13.03 102457.33 74.65 0.00235 42.76 102.79 21.6 0.0815 0.0078 0.0488 0.68 0.40 4.296 -6.955 10.64 20.86 -1.1807 -0.3088 4479.28

17.47 102596.29 74.93 0.00235 57.32 184.88 21.8 0.0642 0.0074 0.0462 0.75 0.54 3.411 -6.643 10.64 20.86 -1.1807 -0.3088 4495.61

21.64 102679.73 74.99 0.00235 71.00 283.96 21.7 0.0409 0.0057 0.0359 0.76 0.67 2.181 -5.181 10.64 20.85 -1.1807 -0.3088 4499.68

26.11 102767.71 75.26 0.00235 85.67 413.48 21.9 0.0145 0.0031 0.0196 0.59 0.80 0.780 -2.851 9.23 20.85 -1.1807 -0.3088 4515.48

25.89 102438.78 75.28 0.00235 84.95 405.34 21.9 0.0150 0.0031 0.0197 0.60 0.80 0.802 -2.860 9.34 20.85 -1.1807 -0.3088 4516.60

APC Thin Electric 17x12 Propeller 4500 RPM
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APPENDIX B.3 

RESULTS OF 16 IN STRAIGHT BLADE ALUMINIUM PROPELLER  

Wind Tunnel Performance Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Velocity 

(m/s)

Barometric 

Pressure (Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure 

(q)

Test Section 

Temperature 

(°C)

Coefficien

t of Thrust 

(Ct)

Coefficien

t of 

Torque 

(Cq)

Coefficien

t of Power 

(Cp)

Efficiency Advance 

Ratio (J)

Thrust 

(lbf)

Torque    

(in-lbf)

Current (I) Voltage (V) Thrust 

Tare

Torque 

Tare

RPM

9.13 101665.09 58.11 0.00233 29.96 50.16 21.1 0.0687 0.0065 0.0406 0.65 0.39 1.710 2.576 6.72 20.86 -0.8711 -0.1568 3486.53

11.04 101641.89 58.27 0.00233 36.22 73.28 21.1 0.0572 0.0060 0.0377 0.71 0.47 1.432 2.404 6.26 20.86 -0.8711 -0.1568 3495.95

13.18 101661.36 58.28 0.00233 43.25 104.53 21.1 0.0424 0.0051 0.0321 0.73 0.56 1.063 2.051 5.38 20.86 -0.8711 -0.1568 3496.93

6.78 101638.22 58.32 0.00233 22.26 27.66 21.2 0.0804 0.0067 0.0423 0.54 0.29 2.017 2.698 7.12 20.86 -0.8711 -0.1568 3499.23

6.91 101655.42 58.39 0.00234 22.67 28.73 20.8 0.0801 0.0068 0.0429 0.54 0.29 2.016 2.752 7.13 20.86 -0.8711 -0.2147 3503.51

15.54 101655.33 58.43 0.00234 50.99 145.40 20.8 0.0240 0.0035 0.0222 0.71 0.65 0.606 1.427 3.82 20.86 -0.9245 -0.2905 3505.84

15.61 101646.22 58.54 0.00233 51.20 146.45 21.2 0.0220 0.0035 0.0220 0.66 0.66 0.556 1.413 3.81 20.86 -0.8711 -0.1568 3512.34

13.44 101631.20 58.74 0.00233 44.09 108.61 21.1 0.0415 0.0051 0.0318 0.74 0.56 1.055 2.058 5.44 20.86 -0.8711 -0.1568 3524.20

9.19 101676.00 58.76 0.00234 30.16 50.90 20.8 0.0704 0.0066 0.0413 0.66 0.39 1.795 2.679 6.96 20.86 -0.9245 -0.2905 3525.38

11.21 101633.89 58.92 0.00233 36.78 75.58 21.1 0.0575 0.0061 0.0381 0.71 0.47 1.473 2.482 6.50 20.86 -0.8711 -0.1568 3535.31

16in Straight Blade Aluminum Propeller 3500 RPM

Velocity 

(m/s)

Barometric 

Pressure (Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure 

(q)

Test Section 

Temperature 

(°C)

Coefficien

t of Thrust 

(Ct)

Coefficien

t of 

Torque 

(Cq)

Coefficien

t of Power 

(Cp)

Efficiency Advance 

Ratio (J)

Thrust 

(lbf)

Torque    

(in-lbf)

Current (I) Voltage (V) Thrust 

Tare

Torque 

Tare

RPM

9.88 101631.11 82.96 0.00233 32.40 58.65 21.0 0.0791 0.0065 0.0407 0.57 0.29 4.016 5.260 10.64 20.87 -0.8711 -0.1568 4977.65

12.76 101639.00 83.05 0.00233 41.88 97.97 21.1 0.0686 0.0062 0.0389 0.67 0.38 3.492 5.045 10.64 20.86 -0.8711 -0.1568 4983.19

19.19 101635.93 83.06 0.00233 62.97 221.48 21.2 0.0383 0.0045 0.0285 0.76 0.57 1.947 3.690 10.64 20.86 -0.8711 -0.1568 4983.65

15.73 101627.00 83.10 0.00233 51.61 148.83 21.0 0.0558 0.0056 0.0354 0.73 0.47 2.841 4.591 10.64 20.86 -0.8711 -0.1568 4985.80

16.12 101661.20 83.12 0.00234 52.90 156.51 20.8 0.0537 0.0056 0.0349 0.73 0.48 2.739 4.538 10.64 20.87 -0.8711 -0.2147 4987.48

9.83 101635.00 83.17 0.00233 32.26 58.19 20.9 0.0790 0.0066 0.0412 0.56 0.29 4.030 5.349 10.64 20.87 -0.8711 -0.2147 4989.96

18.83 101661.00 83.19 0.00233 61.78 213.20 21.3 0.0405 0.0047 0.0295 0.76 0.56 2.064 3.828 10.64 20.86 -0.8711 -0.1568 4991.23

12.59 101640.42 83.25 0.00234 41.32 95.47 20.8 0.0693 0.0063 0.0394 0.66 0.37 3.544 5.128 10.64 20.87 -0.8711 -0.2147 4995.23

22.11 101621.00 83.37 0.00233 72.55 293.74 21.4 0.0222 0.0032 0.0202 0.72 0.65 1.135 2.632 9.41 20.86 -0.8711 -0.1568 5002.31

22.09 101643.00 83.70 0.00233 72.48 293.59 21.0 0.0225 0.0033 0.0206 0.71 0.65 1.163 2.706 9.67 20.86 -0.8711 -0.1568 5022.30

16in Straight Blade Aluminum Propeller 5000 RPM
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APPENDIX B.4 

RESULTS OF 16 IN SWEPT BLADE ALUMINIUM PROPELLER  

Wind Tunnel Performance Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Velocity 

(m/s)

Barometric 

Pressure (Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure 

(q)

Test Section 

Temperature 

(°C)

Coefficient 

of Thrust 

(Ct)

Coefficient 

of Torque 

(Cq)

Coefficient 

of Power 

(Cp)

Efficiency Advance 

Ratio (J)

Thrust 

(lbf)

Torque   

(in-lbf)

Current (I) Voltage (V) Thrust 

Tare

Torque 

Tare

RPM

9.05 101292.31 58.18 0.00232 29.69 49.02 21.5 0.0711 0.0062 0.0393 0.69 0.38 1.765 2.483 6.77 20.86 -0.8297 -0.0712 3490.65

15.54 101289.42 58.34 0.00232 50.97 144.46 21.5 0.0229 0.0036 0.0223 0.67 0.66 0.573 1.420 4.07 20.86 -0.8297 -0.0712 3500.22

13.43 101317.49 58.42 0.00232 44.07 108.04 21.4 0.0403 0.0049 0.0309 0.74 0.57 1.009 1.974 5.42 20.86 -0.8297 -0.0712 3504.95

9.07 101311.38 58.48 0.00232 29.74 49.21 21.4 0.0681 0.0063 0.0396 0.66 0.38 1.709 2.531 6.87 20.86 -0.8297 -0.0712 3508.63

15.66 101269.44 58.51 0.00232 51.36 146.62 21.6 0.0252 0.0034 0.0216 0.77 0.66 0.633 1.381 4.07 20.86 -0.8297 -0.0712 3510.65

11.18 101395.91 58.52 0.00233 36.67 74.89 21.3 0.0569 0.0058 0.0366 0.73 0.47 1.432 2.346 6.39 20.86 -0.8711 -0.0211 3511.30

6.97 101327.76 58.54 0.00232 22.88 29.12 21.4 0.0802 0.0063 0.0398 0.59 0.29 2.019 2.554 7.08 20.86 -0.8711 -0.0211 3512.43

6.83 101303.00 58.61 0.00232 22.40 27.90 21.5 0.0784 0.0065 0.0410 0.55 0.29 1.976 2.635 7.10 20.86 -0.8297 -0.0712 3516.67

11.24 101282.38 58.75 0.00232 36.88 75.61 21.5 0.0569 0.0058 0.0365 0.73 0.47 1.441 2.356 6.46 20.86 -0.7722 -0.0712 3524.88

13.32 101319.13 58.78 0.00232 43.70 106.20 21.6 0.0423 0.0050 0.0315 0.75 0.56 1.072 2.036 5.63 20.85 -0.7722 -0.0712 3526.84

16in Swept Blade Aluminum Propeller 3500 RPM

Velocity 

(m/s)

Barometric 

Pressure (Pa) 

RPS Density 

(slugs/ft3)

Velocity 

(ft/s)

Dynamic 

Pressure 

(q)

Test Section 

Temperature 

(°C)

Coefficient 

of Thrust 

(Ct)

Coefficient 

of Torque 

(Cq)

Coefficient 

of Power 

(Cp)

Efficiency Advance 

Ratio (J)

Thrust 

(lbf)

Torque   

(in-lbf)

Current (I) Voltage (V) Thrust 

Tare

Torque 

Tare

RPM

9.63 101275.27 82.95 0.00232 31.60 55.49 21.6 0.0785 0.0062 0.0388 0.58 0.29 3.961 4.984 10.64 20.86 -0.7722 -0.0712 4977.03

21.81 101398.82 83.22 0.00233 71.56 285.23 21.3 0.0233 0.0034 0.0212 0.71 0.64 1.189 2.755 9.99 20.86 -0.8711 -0.0211 4993.37

9.65 101390.40 83.30 0.00233 31.67 55.85 21.3 0.0785 0.0062 0.0389 0.58 0.29 4.006 5.052 10.64 20.87 -0.8711 -0.0211 4998.03

12.96 101327.24 83.32 0.00232 42.51 100.49 21.6 0.0665 0.0059 0.0372 0.68 0.38 3.389 4.828 10.64 20.86 -0.7722 -0.0712 4999.19

12.63 101372.76 83.36 0.00233 41.45 95.68 21.3 0.0683 0.0060 0.0376 0.68 0.37 3.486 4.893 10.64 20.87 -0.8711 -0.0211 5001.72

15.61 101302.67 83.42 0.00232 51.22 145.92 21.4 0.0558 0.0055 0.0345 0.75 0.46 2.851 4.485 10.64 20.86 -0.8297 -0.0712 5004.92

18.86 101271.80 83.50 0.00232 61.88 212.74 21.6 0.0393 0.0045 0.0283 0.77 0.56 2.008 3.690 10.64 20.86 -0.7722 -0.0712 5010.07

15.81 101289.29 83.55 0.00232 51.88 149.58 21.6 0.0551 0.0055 0.0343 0.75 0.47 2.821 4.471 10.64 20.86 -0.8297 -0.0712 5013.30

21.80 101317.87 83.68 0.00232 71.53 284.45 21.6 0.0241 0.0034 0.0214 0.72 0.64 1.236 2.803 10.25 20.86 -0.7722 -0.0712 5020.63

18.77 101322.38 83.70 0.00232 61.58 210.95 21.4 0.0402 0.0046 0.0287 0.77 0.55 2.070 3.764 10.64 20.86 -0.8711 -0.0211 5021.95

16in Swept Blade Aluminum Propeller 5000 RPM
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APPENDIX C 

TECHNICAL DRAWINGS FOR COPPER SPRINGS 
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APPENDIX C.1 

TECHNICAL DRAWING FOR AFT BULKHEADS NACELLE SUPPORT 
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APPENDIX C.2 

TECHNICAL DRAWINGS FOR FORWARD BULKHEADS NACELLE SUPPORT 
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APPENDIX C.3 

TECHNICAL DRAWING FOR RPM COUNTER 
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APPENDIX C.4 

NACELLE PLUG X AND Y COORDINATES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nacelle Geometry 

X Y 

0 0 

1 1.08 

2 1.5 

3 1.83 

4 2.13 

5 2.33 

6 2.42 

7 2.46 

8 2.42 

9 2.33 

10 2.21 

11 1.92 

12 1.42 

13 0.79 

14 0.33 

14.5 0 

y 

x 
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APPENDIX D 

ACTUAL DESIGN FOR APC THIN ELECTRIC 12 x 8 PROPELLER 

Std Run 

Factor 1 

A:RPM 

Factor 2  

B:J 

Response 1 

Ct 

Response 2 

Cq 

Response 3  

Cp 

Response 4 

Eff 

29 1 4988.96 0.655387 0.024627 0.004067 0.025554 0.631519 

23 2 5010.64 0.381137 0.076823 0.007278 0.045731 0.640315 

27 3 5991.98 0.508146 0.058148 0.006631 0.041666 0.709086 

18 4 5981.60 0.103326 0.103207 0.007139 0.044853 0.237847 

10 5 4007.87 0.507299 0.048038 0.005882 0.036955 0.659473 

13 6 3989.87 0.642788 0.024379 0.004027 0.025301 0.619228 

20 7 5007.04 0.244049 0.092615 0.007025 0.044138 0.514511 

16 8 3991.65 0.103510 0.101078 0.006292 0.039535 0.264915 

7 9 3939.20 0.380244 0.073547 0.006581 0.041346 0.676453 

8 10 5010.48 0.384244 0.077100 0.007026 0.044148 0.671080 

15 11 6027.25 0.643972 0.031085 0.004631 0.029096 0.688136 

3 12 5981.00 0.097628 0.103650 0.006950 0.043671 0.231753 

28 13 3996.49 0.646000 0.023605 0.003499 0.021988 0.692550 

1 14 3991.97 0.100516 0.101226 0.006523 0.040982 0.248401 

21 15 6006.19 0.233622 0.094503 0.007381 0.046378 0.476119 

6 16 6005.22 0.233282 0.094715 0.007381 0.046379 0.476459 

9 17 5996.50 0.387164 0.079041 0.007427 0.046668 0.655732 

25 18 4002.75 0.504922 0.049010 0.005378 0.033791 0.740388 

17 19 5014.34 0.105037 0.101480 0.006717 0.042201 0.252753 

30 20 6020.03 0.653800 0.030507 0.004425 0.027805 0.717366 

5 21 5011.60 0.238526 0.093692 0.007086 0.044526 0.501954 

22 22 4019.91 0.385001 0.074723 0.006863 0.043121 0.667242 

11 23 5020.75 0.515378 0.052604 0.005959 0.037442 0.724061 

19 24 4034.95 0.228008 0.094934 0.007032 0.044185 0.489968 

24 25 5996.02 0.377305 0.080969 0.007466 0.046911 0.651266 

26 26 5028.58 0.500078 0.055728 0.006462 0.040603 0.686417 

4 27 3988.62 0.248966 0.092572 0.007304 0.045894 0.502321 

14 28 5014.47 0.644086 0.027750 0.004188 0.026314 0.679233 

12 29 5999.38 0.514837 0.057593 0.006631 0.041664 0.711638 

2 30 5011.51 0.105329 0.102222 0.006995 0.043953 0.245229 

31 31 4500 0.55 0.044929 0.005317 0.033410 0.732487 

32 32 5500 0.30 0.087025 0.007516 0.047222 0.567525 

33 33 4500 0.30 0.087966 0.007149 0.044921 0.568048 

34 34 5500 0.55 0.046354 0.005696 0.035789 0.718694 
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APPENDIX D.1 

ACTUAL DESIGN FOR APC THIN ELECTRIC 14 X 12 PROPELLER 

Std Block Run 

Factor 1 

A:RPM 

Factor 2  

B:J 

Response 1 

Ct 

Response 2 

Cq 

Response 3  

Cp 

Response 4 

Eff 

7 Block 1 1 2509.8463 0.5047067 0.08101337 0.00868038 0.05454041 0.74975032 

8 Block 1 2 3005.5691 0.09692624 0.10345993 0.00873677 0.05489476 0.18269966 

16 Block 1 3 2473.3993 0.90462172 0.01119581 0.00188076 0.01181715 0.8458769 

28 Block 1 4 2533.9551 0.09463927 0.10346276 0.00858576 0.05394592 0.1815475 

15 Block 1 5 3537.5384 0.90335997 0.01106668 0.00240848 0.01513293 0.6603985 

24 Block 1 6 3507.1582 0.29365119 0.09937402 0.00847613 0.05325711 0.54794286 

13 Block 1 7 2535.0546 0.70883704 0.04147237 0.0053277 0.03347493 0.87851014 

25 Block 1 8 2531.0136 0.09524143 0.10313814 0.00880076 0.05529682 0.17765059 

29 Block 1 9 3029.605 0.90125403 0.01002132 0.00205996 0.0129431 0.69668849 

2 Block 1 10 2970.5973 0.70326459 0.04230485 0.00560501 0.03521734 0.84486457 

1 Block 1 11 2475.2442 0.90451106 0.01165795 0.00202775 0.0127407 0.81234026 

27 Block 1 12 3522.9532 0.10108445 0.10844968 0.00817803 0.05138405 0.21335061 

12 Block 1 13 3525.3216 0.10029147 0.10762725 0.00818243 0.0514117 0.2099643 

20 Block 1 14 2980.0177 0.50604863 0.0823801 0.00877067 0.05510774 0.75663081 

5 Block 1 15 2994.9356 0.50411191 0.08418897 0.00872184 0.05480094 0.77459597 

3 Block 1 16 3474.407 0.89252206 0.01253477 0.00256445 0.01611294 0.69322035 

4 Block 1 17 2504.2097 0.29759539 0.10230539 0.0083578 0.05251359 0.58002852 

19 Block 1 18 2505.1284 0.30739441 0.10217016 0.00840266 0.05279547 0.59499115 

18 Block 1 19 3476.8823 0.49747455 0.08358555 0.00882022 0.0554191 0.75033793 

6 Block 1 20 3477.608 0.69408578 0.0460434 0.00625766 0.03931802 0.8127705 

30 Block 1 21 3548.0699 0.29078772 0.10015299 0.00851474 0.05349968 0.54437873 

22 Block 1 22 2510.546 0.50801219 0.08042854 0.00840077 0.05278361 0.77408031 

17 Block 1 23 2979.5325 0.09619139 0.10153818 0.00854224 0.05367247 0.18197956 

14 Block 1 24 3031.8558 0.70942204 0.04281362 0.00577654 0.0362951 0.83670406 

9 Block 1 25 3508.257 0.69223843 0.04656562 0.00636353 0.03998324 0.80625133 

23 Block 1 26 3011.2877 0.3114328 0.10059499 0.00861817 0.05414953 0.57854463 

26 Block 1 27 3016.757 0.28638709 0.10272464 0.00853072 0.05360013 0.54895822 

21 Block 1 28 3490.8764 0.5007537 0.08289039 0.0087914 0.05523798 0.7514497 

11 Block 1 29 3023.1804 0.91131774 0.00841813 0.00184801 0.01161139 0.65557139 

10 Block 1 30 2533.9048 0.70747392 0.0411133 0.00536892 0.03373394 0.86238562 

31 Block 1 31 2759.275 0.7917677 0.0266475 0.0038556 0.02422554 0.87003581 

32 Block 1 32 3276.926 0.2014591 0.1041686 0.0082836 0.05204758 0.40323886 

33 Block 1 33 2747.818 0.1902425 0.1071764 0.0083946 0.05274502 0.38658067 

34 Block 1 34 3283.059 0.7895225 0.028014 0.0043399 0.02726827 0.81022974 

35 Block 2 35 4975.6076 0.1 0.1059879 0.00868276 0.05455539 0.20650916 

36 Block 2 36 4985.2477 0.1 0.10553205 0.00868385 0.05456226 0.20574712 
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37 Block 2 37 4984.1294 0.3 0.09695239 0.00903327 0.0567577 0.5136069 

38 Block 2 38 4981.1752 0.3 0.09731156 0.00904541 0.05683401 0.51555474 

39 Block 2 39 4984.6678 0.5 0.08117643 0.00937943 0.05893272 0.6959574 

40 Block 2 40 4968.7108 0.5 0.08092973 0.00932356 0.05858165 0.70166513 

41 Block 2 41 5032.186 0.7 0.05290298 0.00778445 0.04891116 0.75490317 

42 Block 2 42 4991.1858 0.7 0.05142171 0.00769861 0.04837181 0.74579051 

43 Block 2 43 5033.0828 0.9 0.01490666 0.00376581 0.02366129 0.56221063 

44 Block 2 44 5037.0091 0.9 0.01459345 0.00367193 0.02307141 0.56631223 

45 Block 1 45 4470.538 0.2 0.1019109 0.008702 0.05467608 0.37978187 

46 Block 1 46 4472.509 0.6 0.0692874 0.0089249 0.05607707 0.75026753 
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APPENDIX D.2 

ACTUAL DESIGN FOR APC THIN ELECTRIC 17 x 12 PROPELLER 

Std Block Run 

Factor 1 

A:RPM 

Factor 2  

B:J 

Response 1 

Ct 

Response 2 

Cq 

Response 3  

Cp 

Response 4 

Eff 

15 Block 1 1 4472.201 0.27916404 0.09307529 0.00771125 0.04845123 0.53627673 

4 Block 1 2 3395.056 0.4095587 0.0790461 0.0075958 0.04772584 0.67833968 

2 Block 1 3 3976.546 0.2782514 0.0923224 0.00758397 0.04765148 0.53909389 

8 Block 1 4 3980.754 0.4110752 0.0802145 0.00768843 0.04830783 0.6825863 

3 Block 1 5 4473.382 0.2820886 0.0925485 0.00767114 0.04819917 0.54164417 

12 Block 1 6 4475.905 0.6704577 0.0400987 0.00561537 0.03528238 0.76198006 

7 Block 1 7 3396.831 0.5417123 0.0593817 0.00689417 0.04331735 0.74260572 

14 Block 1 8 3989.0738 0.41422124 0.07974207 0.00767862 0.0482462 0.68462997 

13 Block 1 9 3400.6429 0.53350764 0.06071982 0.00703879 0.04422604 0.73246958 

9 Block 1 10 4476.1335 0.53256017 0.06489483 0.00732691 0.04603635 0.75070816 

10 Block 1 11 3403.2798 0.40949809 0.07954122 0.00769475 0.04834751 0.6737122 

6 Block 1 12 4479.0893 0.40813008 0.08110541 0.00781161 0.04908179 0.6744208 

11 Block 1 13 3992.6292 0.28282034 0.09186545 0.00765403 0.04809167 0.54024901 

5 Block 1 14 4000.8386 0.54657801 0.0614376 0.00715602 0.04496259 0.74684003 

1 Block 1 15 3406.3264 0.26949637 0.09238724 0.00752972 0.04731063 0.52626708 

24 Block 2 16 4479.2753 0.40429898 0.08149653 0.00776203 0.04877025 0.67581451 

25 Block 2 17 3407.478 0.27871174 0.09127678 0.00751685 0.04722979 0.53864182 

26 Block 2 18 4002.5184 0.68078041 0.03526176 0.00510674 0.03208657 0.74814683 

28 Block 2 19 3408.5198 0.67113214 0.03298704 0.0048911 0.03073169 0.72038319 

20 Block 2 20 4011.0141 0.79655874 0.01262581 0.00283721 0.01782673 0.5641639 

19 Block 2 21 3416.1233 0.79452594 0.01069118 0.00256498 0.01611626 0.52712018 

23 Block 2 22 4011.4467 0.65995382 0.03942001 0.00545712 0.03428809 0.75873192 

21 Block 2 23 4495.6128 0.54002436 0.06419416 0.00735431 0.04620852 0.75020958 

29 Block 2 24 4016.1958 0.79754628 0.01251923 0.00286388 0.01799428 0.55487132 

30 Block 2 25 4499.6828 0.66832161 0.04092792 0.00571918 0.03593467 0.76117945 

22 Block 2 26 3420.89 0.808225 0.00784632 0.0023184 0.0145669 0.460417 

18 Block 2 27 4515.4768 0.80354797 0.01452513 0.00312451 0.01963186 0.59452241 

27 Block 2 28 4516.5991 0.79662076 0.01497818 0.00314215 0.01974273 0.6043584 

16 Block 2 29 3421.3007 0.67959309 0.03166679 0.00467546 0.0293768 0.73259161 

17 Block 2 30 4016.8076 0.54548622 0.06138534 0.00706801 0.04440963 0.75399553 

31 Block 1 31 3646.217 0.7403373 0.0206243 0.0036758 0.02309542 0.661126 

32 Block 1 32 4244.536 0.3579762 0.0854475 0.0077113 0.04845171 0.63130973 

33 Block 1 33 3649.546 0.3390207 0.0863962 0.0076141 0.04784088 0.61223309 

34 Block 1 34 4241.403 0.7317606 0.0270095 0.0043682 0.02744645 0.72010039 
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APPENDIX D.3 

ACTUAL DESIGN FOR 16 IN SWEPT BLADE ALUMINIUM PROPELLER 

Std Block Run 

Factor 1 

A:RPM 

Factor 2  

B:J 

Response 1 

Ct 

Response 2 

Cq 

Response 3  

Cp 

Response 4 

Eff 

10 Block 1 1 4993.3721 0.64488799 0.02334795 0.003381 0.02124347 0.7087558 

5 Block 1 2 3511.2965 0.46994861 0.05687926 0.00582504 0.03659978 0.73038314 

2 Block 1 3 4998.0324 0.2851182 0.07853618 0.0061894 0.03888916 0.57579385 

4 Block 1 4 5001.7197 0.37293077 0.06825218 0.00598734 0.03761956 0.67662341 

8 Block 1 5 5021.955 0.55175438 0.04023203 0.00457285 0.02873206 0.7726117 

1 Block 1 6 3512.4273 0.29309095 0.08021191 0.00634145 0.03984452 0.59002859 

7 Block 1 7 3504.9483 0.56576646 0.04025088 0.00492387 0.0309376 0.73611971 

3 Block 1 8 3508.628 0.38144344 0.06805665 0.00629903 0.03957799 0.6559155 

6 Block 1 9 5004.9226 0.46049992 0.05580079 0.00548673 0.03447417 0.74537681 

9 Block 1 10 3500.2212 0.65531453 0.02292541 0.00355439 0.02233291 0.6729353 

16 Block 2 11 5013.2957 0.46565111 0.05507014 0.00545555 0.03427825 0.74811865 

11 Block 2 12 3516.6676 0.28662452 0.078382 0.00653109 0.04103604 0.54747805 

19 Block 2 13 3510.6527 0.65835496 0.02522135 0.00343702 0.02159545 0.76908582 

13 Block 2 14 3490.6461 0.382767 0.07105396 0.00624736 0.03925329 0.69287838 

20 Block 2 15 5020.63 0.64115407 0.02406336 0.00341028 0.02142739 0.72002539 

14 Block 2 16 4999.1858 0.38268459 0.06652171 0.0059229 0.03721465 0.68406851 

17 Block 2 17 3526.8391 0.55763978 0.0422932 0.00501889 0.0315346 0.74796993 

15 Block 2 18 3524.8793 0.47081558 0.05690098 0.00581502 0.03653685 0.73321753 

18 Block 2 19 5010.0717 0.55575761 0.03925639 0.00450958 0.02833452 0.77000601 

12 Block 2 20 4977.0313 0.28568972 0.07848571 0.00617121 0.03877486 0.5782777 

21 Block 1 21 3751.889 0.3260129 0.0777148 0.006395 0.04018084 0.63057042 

22 Block 1 22 4732.415 0.6023739 0.0311723 0.0039785 0.02499793 0.75130161 

23 Block 1 23 3724.354 0.6099048 0.0350078 0.0042891 0.02694915 0.79277458 

24 Block 1 24 4743.878 0.339312 0.0726606 0.0060828 0.03821926 0.64508678 
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APPENDIX E 

ANOVA FOR APC 12 x 8 PROPELLER (CT, CQ, CP, AND EFFICIENCY RESPECTIVELY) 

 

 

 

 

 

Source Sum of Squares df Mean Square F-value p-value

Model 0.0227 4 0.0057 1383.57 < 0.0001

A-RPM 0.0001 1 0.0001 34.79 < 0.0001 significant

B-J 0.0219 1 0.0219 5326.59 < 0.0001

AB 0 1 0 11.29 0.0025

B² 0.0009 1 0.0009 207.22 < 0.0001

Residual 0.0001 25 4.10E-06

Cor Total 0.0228 29

Source Sum of Squares df Mean Square F-value p-value

Model 0 4 0 212.06 < 0.0001

A-RPM 2.44E-06 1 2.44E-06 51.24 < 0.0001 significant

B-J 0 1 0 508.35 < 0.0001

AB 1.52E-07 1 1.52E-07 3.19 0.0861

B² 0 1 0 305.39 < 0.0001

Residual 1.19E-06 25 4.75E-08

Cor Total 0 29

Source Sum of Squares df Mean Square F-value p-value

Model 0.0016 4 0.0004 212.06 < 0.0001

A-RPM 0.0001 1 0.0001 51.24 < 0.0001 significant

B-J 0.001 1 0.001 508.35 < 0.0001

AB 5.99E-06 1 5.99E-06 3.19 0.0861

B² 0.0006 1 0.0006 305.38 < 0.0001

Residual 0 25 1.88E-06

Cor Total 0.0016 29

Source Sum of Squares df Mean Square F-value p-value

Model 0.8773 4 0.2193 441.57 < 0.0001

A-RPM 0 1 0 0.0515 0.8223 significant

B-J 0.6721 1 0.6721 1353.11 < 0.0001

AB 0.0026 1 0.0026 5.14 0.0322

B² 0.1945 1 0.1945 391.53 < 0.0001

Residual 0.0124 25 5.00E-04

Cor Total 0.8897 29
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APPENDIX E.1 

ANOVA FOR APC 14 x 12 PROPELLER (CT, CQ, CP, AND EFFICIENCY RESPECTIVELY) 

 

 

 

Source Sum of Squares df Mean Square F-value p-value

Model 0.0498 2 0.0249 1820.4 < 0.0001 significant

B-J 0.0464 1 0.0464 3391.99 < 0.0001

B² 0.0034 1 0.0034 250.58 < 0.0001

Residual 0.0005 37 0.00E+00

Cor Total 0.0503 39

Source Sum of Squares df Mean Square F-value p-value

Model 0.0002 4 0.0001 363.77 < 0.0001 significant

A-RPM 6.43E-06 1 6.43E-06 39.17 < 0.0001

B-J 0.0001 1 0.0001 873.84 < 0.0001

AB 3.01E-06 1 3.01E-06 18.35 0.0001

B² 0.0001 1 0.0001 385.89 < 0.0001

Residual 5.75E-06 35 1.64E-07

Cor Total 0.0002 39

Source Sum of Squares df Mean Square F-value p-value

Model 0.0094 4 0.0024 363.77 < 0.0001 significant

A-RPM 0.0003 1 0.0003 39.17 < 0.0001

B-J 0.0057 1 0.0057 873.84 < 0.0001

AB 0.0001 1 0.0001 18.35 0.0001

B² 0.0025 1 0.0025 385.89 < 0.0001

Residual 0.0002 35 6.48E-06

Cor Total 0.0097 39
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Source Sum of Squares df Mean Square F-value p-value

Model 2.034710594 13 0.1565162 886.761681 5.802E-31 significant

A-RPM 3.33527E-05 1 3.33527E-05 0.188964013 0.667367

B-J 0.072913629 1 0.072913629 413.1010899 1.753E-17

AB 0.000295551 1 0.000295551 1.674481647 0.2070363

A² 0.000922048 1 0.000922048 5.223975941 0.0306746

B² 0.009169924 1 0.009169924 51.95332572 1.18E-07

A²B 0.00055725 1 0.00055725 3.157166314 0.0872975

AB² 0.001101864 1 0.001101864 6.242747291 0.0191201

A³ 0.0010038 1 0.0010038 5.687154019 0.0246704

B³ 0.002260214 1 0.002260214 12.80551815 0.0013889

A²B² 0.00196082 1 0.00196082 11.10926744 0.0025854

A³B 0.000696508 1 0.000696508 3.946149094 0.0576137

AB³ 0.002239104 1 0.002239104 12.68591682 0.0014495

B
4

0.003426471 1 0.003426471 19.41308874 0.0001612

Residual 0.004589081 26 0.000176503

Cor Total 2.039299675 39
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APPENDIX E.2 

ANOVA FOR 16 IN SWEPT BLADE ALUMINIUM PROPELLER (CT, CQ, CP, AND EFFICIENCY 

RESPECTIVELY) 

Source 

Sum of 

Squares df 

Mean 

Square F-value p-value   

Block 0.0001  1 5.61E-05       

Model 0.0068  3 0.002265872 2873.3276 < 0.0001 significant 

A-RPM 0.0000  1 2.43397E-05 30.864937 < 0.0001   

B-J 0.0067  1 0.006668971 8456.8495 < 0.0001   

B² 0.0001  1 6.92956E-05 87.872947 < 0.0001   

Residual 0.0000  14 7.89E-07       

Cor 

Total 0.0069  18         

 

Source 

Sum of 

Squares df 

Mean 

Square F-value p-value   

Block 1.85E-07 1 1.85E-07       

Model 0.0000  3 6.296E-06  1421.71  < 0.0001 significant 

A-RPM 6.682E-07  1 6.682E-07  150.88  < 0.0001   

B-J 0.0000  1 0.0000  3866.32  < 0.0001   

B² 1.646E-06  1 1.646E-06  371.62  < 0.0001   

Residual 6.200E-08  14 4.428E-09        

Cor 

Total 0.0000  18         

 

Source 

Sum of 

Squares df 

Mean 

Square F-value p-value   

Block 7.29E-06 1 7.29E-06       

Model 0.000746394 3 0.0002  1421.70  < 0.0001 significant 

A-RPM 0.0000  1 0.0000  150.88  < 0.0001   

B-J 0.0007  1 0.0007  3866.30  < 0.0001   

B² 0.0001  1 0.0001  371.61  < 0.0001   

Residual 2.448E-06  14 1.748E-07        

Cor 

Total 0.0008  18         
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Source 

Sum of 

Squares df Mean Square F-value p-value   

Block 0.0001  1 0.0001        

Model 0.0857  4 0.0214  181.65  < 0.0001  significant 

A-RPM 0.0016  1 0.0016  13.98  0.0025    

B-J 0.0079  1 0.0079  66.74  < 0.0001    

B² 0.0362  1 0.0362  307.02  < 0.0001    

B³ 0.0005  1 0.0005  4.52  0.0533    

Residual 0.0015  13 0.0001        

Cor 

Total 0.0874  18         
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APPENDIX F 

MODELS TERM COEFFICIENT FOR APC 12 x 8 PROPELLER  

  CT CQ CP η 

Factor Coefficient Estimate 

Intercept 0.1067629 0.0047833 0.0300541 0.1001125 

RPM -2.25E-07 1.84E-07 1.16E-06 -2.101E-05 

J -0.0499906 0.0099475 0.062502 2.4262723 

RPM*J 7.651E-06 4.36E-07 2.74E-06 5.866E-05 

J2 -0.1712688 -0.0223709 -0.1405608 -2.589145 
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APPENDIX F.1 

MODELS TERM COEFFICIENT FOR APC 14 x 12 PROPELLER 

 

  CT CQ CP η 

Factor Coefficient Estimate 

Intercept 0.10604196 0.008827499 0.05546481 0.453257229 

RPM - -3.62E-07 -2.28E-06 -0.000438771 

J 0.01716667 0.007806712 0.049051049 2.971018863 

RPM*J - 1.04397E-06 6.55947E-06 -0.000117215 

RPM2 - - - -1.12075E-07 

J2 -0.1368315 0.018612448 -0.1169455 -7.656844268 

RPM² * J - - - 6.84796E-07 

RPM * J² - - - -0.00044837 

RPM³ - - - 1.10367E-11 

J³ - - - 10.34236266 

RPM² * J² - - - 1.65511E-07 

RPM³ * J - - - -7.29678E-11 

RPM * J³ - - - -0.000586971 

J4 - - - -4.354588528 
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APPENDIX F.2 

MODELS TERM COEFFICIENTS FOR APC 17 x 12 PROPELLER  

 

  CT CQ CP η 

Factor Coefficient Estimate 

Intercept 0.109594 0.0051138 0.0321307 -0.388644064 

RPM -1.18E-06 
-2.60E-07 

-1.63E-06 
-0.000137678 

J 

-

0.0420619 0.0153013 0.096141 
7.449337917 

RPM*J 8.92E-06 1.19E-06 7.49E-06 0.0009423 

J2 0.1372186 0.0270266 0.1698135 -22.64474062 

RPM * 

J2 - - 
- -0.002122081 

J³ - - - 34.97964739 

RPM * 

J³ - - - 0.001628671 

J4 - - - -21.49563376 
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APPENDIX F.3 

MODEL TERM COEFFICIENTS FOR 16 IN SWEPT BLADE ALUMINIUM PROPELLER 

 

  CT CQ CP η 

Factor Coefficient Estimate 

Intercept 0.1030028 0.0054754 0.03440297 +0.174909  

RPM -1.53E-06 -2.53E-07 -1.59E-06 +0.000013  

J -0.019591 0.012982709 0.08157262 +0.785682  

J2 -0.1437355 -0.022150314 -0.13917438 +2.64797  

J3 - - - -4.23500  
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APPENDIX G 

NORMAL PROBABILITY PLOTS FOR APC 12 x 8 PROPELLER (CT, CQ, CP, AND EFFICIENCY 

RESPECTIVELY) 
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APPENDIX G.1 

NORMAL PROBABILTY PLOTS FOR APC 14 x 12 PROPELLER (CT, CQ, CP, AND EFFICIENCY 

RESPECTIVELY) 
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APPENDIX G.2 

NORMAL PROBABILITY PLOTS FOR APC 17 x 12 PROPELLER (CT, CQ, CP, AND EFFICIENCY 

RESPECTIVELY) 
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APPENDIX G.3 

NORMAL PROBABILITY PLOTS OF EFFICIENCY FOR 16 IN SWEPT BLADE ALUMINIUM 

PROPELLER (CT, CQ, CP, AND EFFICIENCY RESPECTIVELY) 
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APPENDIX H 

RESIDUALS VS. PREDICTED PLOTS FOR APC THIN ELECTRIC 12 x 8 PROPELLER (CT, CQ, CP, 

AND EFFICIENCY RESPECTIVELY) 
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APPENDIX H.1 

RESIDUALS VS. PREDICTED PLOTS FOR APC THIN ELECTRIC 14 x 12 PROPELLER (CT, CQ, CP, 

AND EFFICIENCY RESPECTIVELY) 
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APPENDIX H.2 

RESIDUALS VS. PREDICTED PLOTS FOR APC THIN ELECTRIC 17 x 12 PROPELLER (CT, CQ, CP, 

AND EFFICIENCY RESPECTIVELY) 
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APPENDIX H.3 

RESIDUALS VS. PREDICTED PLOTS FOR 16 IN SWEPT BLADE ALUMINUM PROPELLER (CT, CQ, 

CP, AND EFFICIENCY RESPECTIVELY) 
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APPENDIX I 

RESIDUALS VS. RUN PLOTS FOR APC 12 x 8 PROPELLERS (CT, CQ, CP, AND EFFICIENCY 

RESPECTIVELY) 
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APPENDIX I.1 

RESIDUALS VS. RUN PLOTS FOR APC 1 4 x 12 PROPELLER (CT, CQ, CP, AND EFFICIENCY 

RESPECTIVELY) 
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APPENDIX I.2 

RESIDUALS VS. RUN PLOTS FOR APC 17 x 12 PROPELLER (CT, CQ, CP, AND EFFICIENCY 

RESPECTIVELY) 
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APPENDIX I.3 

RESIDUALS VS. RUN PLOTS FOR 16 IN SWEPT BLADE ALUMINUM PROPELLER (CT, CQ, CP, AND 

EFFICIENCY RESPECTIVELY) 
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APPENDIX J 

CONFIRMATION FOR  APC THIN- ELECTRIC 12 x 8 PROPELLER  

Verification Run 

31 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.0453838 0.0449292 0.0419987 0.0487688 

CQ 0.0053958 0.0053174 0.0049698 0.0058217 

CP 0.0339025 0.0334102 0.0312264 0.0365786 

η 0.7019747 0.7324869 0.6569792 0.7469701 

     
Verification Run 

32 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.0877389 0.0870246 0.0843502 0.0911275 

CQ 0.0074873 0.0075156 0.0070609 0.0079136 

CP 0.0470440 0.0472216 0.0443650 0.0497229 

η 0.5761956 0.5675251 0.5311522 0.6212389 

     
Verification Run 

33 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.0856685 0.0879659 0.0822808 0.0890561 

CQ 0.0071722 0.0071494 0.0067459 0.0075984 

CP 0.0450640 0.0449211 0.0423859 0.0477422 

η 0.5796093 0.5680483 0.5345792 0.6246394 

     
Verification Run 

34 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.0493670 0.0463544 0.0459845 0.0527495 

CQ 0.0058199 0.0056959 0.0053943 0.0062455 

CP 0.0365674 0.0357887 0.0338933 0.0392415 

η 0.7132255 0.7186944 0.6682636 0.7581874 
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APPENDIX J.1 

CONFIRMATION FOR APC THIN- ELECTRIC 14 x 12 PROPELLER  

Verification Run 

31 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.0338549 0.0266475 0.0261429 0.0415668 

CQ 0.0338549 0.0038556 0.0036763 0.0055661 

CP 0.0290358 0.0242255 0.0230989 0.0349727 

η 0.834135  0.870036  0.802505  0.865765  

     
Verification Run 

32 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.1039469 0.1041686 0.0962289 0.1116650 

CQ 0.0091463 0.0082836 0.0082767 0.0100159 

CP 0.0574679 0.0520476 0.0520040 0.0629318 

η 0.41978  0.403239  0.388879  0.450681  

     
Verification Run 

33 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.1043556 0.1071764 0.0966266 0.1120845 

CQ 0.0091888 0.0083946 0.0082355 0.0101421 

CP 0.0577351 0.0527450 0.0517453 0.0637249 

η 0.399996  0.386581  0.368324  0.431667  

     
Verification Run 

34 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.0343021 0.0280140 0.0265918 0.0420124 

CQ 0.0049052 0.0043399 0.0040380 0.0057723 

CP 0.0308200 0.0272683 0.0253717 0.0362683 

η 0.79243  0.81023  0.761684  0.823176  

     
Verification Run 

45 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.1040020 0.1019109 0.0962827 0.1117214 

CQ 0.0089574 0.0087020 0.0080997 0.0098151 

CP 0.0562811 0.0546761 0.0508919 0.0616702 

η 0.403361  0.379782  0.357886  0.448836  
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Verification Run 

46 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.0670826 0.0692874 0.0593560 0.0748093 

CQ 0.0079915 0.0089249 0.0071442 0.0088388 

CP 0.0502119 0.0560771 0.0448882 0.0555357 

η 0.797473  0.750268  0.75815  0.836796  
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APPENDIX J.2 

CONFIRMATION FOR APC THIN- ELECTRIC 17 X 12 PROPELLER  

Verification Run 

31 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.0230323 0.0206243 0.0204777 0.0255870 

CQ 0.0039003 0.0036758 0.0036789 0.0041216 

CP 0.0245061 0.0230954 0.0231153 0.0258970 

η 0.661655  0.661126  0.647061  0.67625  

     
Verification Run 

32 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.0855134 0.0854475 0.0829891 0.0880377 

CQ 0.0078366 0.0077113 0.0076179 0.0080553 

CP 0.0492388 0.0484517 0.0478645 0.0506132 

η 0.638096  0.63131  0.62419  0.652003  

     
Verification Run 

33 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.0863067 0.0863962 0.0837629 0.0888504 

CQ 0.0077218 0.0076141 0.0075014 0.0079422 

CP 0.0485174 0.0478409 0.0471324 0.0499023 

η 0.6243573 0.6122331 0.5705153 0.6781993 

     
Verification Run 

34 

Response 

Predicted  

Mean Observed 

95% PI 

low 

95% PI 

high 

CT 0.0280312 0.0270095 0.0255002 0.0305622 

CQ 0.0044377 0.0043682 0.0042184 0.0046570 

CP 0.0278829 0.0274465 0.0265048 0.0292609 

η 0.618093  0.612233  0.603886  0.6323  
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APPENDIX J.3 

CONFIRMATION FOR 16 IN STRAIGHT BLADE ALUMINUM PROPELLER  

Verification 

Run 21 

Response 

Predicted  

Mean Observed 95% PI low 95% PI high 

CT 0.0760492  0.0775221  0.0749697  0.0771287  

CQ 0.0066559 0.0064142 0.0065851 0.0067267 

CP 0.0418204 0.0403017 0.0413756 0.0422651 

η 0.601562  0.631766  0.59213  0.610993  
 

Verification 

Run 22 

Response 

Predicted  

Mean Observed 95% PI low 95% PI high 

CT 0.0371865 0.0328134 0.0339111 0.040462 

CQ 0.004167 0.00404157 0.004096 0.00423801 

CP 0.026182 0.0253939 0.0257359 0.0266282 

η 0.789972 0.774782 0.770483 0.809461 

     
Verification 

Run 23 

Response 

Predicted  

Mean Observed 95% PI low 95% PI high 

CT 0.0369483 0.03285 0.0333387 0.0405579 

CQ 0.00427384 0.00409662 0.00420061 0.00434707 

CP 0.0268533 0.0257398 0.0263932 0.0273134 

η 0.775608 0.77776 0.754545 0.796672 
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APPENDIX K  

16 IN STRAIGHT BLADE PROPELLER PERFORMANCE PLOTS OF CT, CP, CQ, AND η 

RESPECTIVELY 
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APPENDIX L 

MODEL TERM COEFFICIENTS OF CT, CQ, CP, AND η FOR 16 IN STRAIGHT BLADE ALUMINIUM 

PROPELLER (WIDE J RANGE) 

  CT CQ CP η 

Factor Coefficient Estimate 

Intercept +0.102803  +0.007338  +0.046105 +0.200929  

RPM -1.98112E-06  +8.90180E-08  +5.59330E-07 +0.000083  

J -0.136514  -0.003045  -0.019134 -3.94667  

RPM*J 
+0.000030  -1.28097E-06  -8.04860E-06 

-0.001113 

  

J2 +0.258268  +0.013960  +0.087713 

+51.66365 

  

RPM * J2 -0.000102  
+2.32746E-06  +0.000015 +0.005474  

J³ -0.373043  -0.033302  -0.209241 -189.65859  

RPM * J³ +0.000098  - - -0.011235  

J4 -0.030692  - - +303.96744  
RPM * J4 - - - +0.008039 

J5 - - - -181.53206 
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