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ABSTRACT Automatic Modulation Recognition (AMR) is one of the critical steps in the signal processing
chain of wireless networks, which can significantly improve communication performance. AMR detects
the modulation scheme of the received signal without any prior information. Recently, many Artificial
Intelligence (AI) based AMR methods have been proposed, inspired by the considerable progress of AI
methods in various fields. On the one hand, AI-based AMR methods can outperform traditional methods in
terms of accuracy and efficiency. On the other hand, they are susceptible to new types of cyberattacks, such as
model poisoning or adversarial attacks. This paper explores the vulnerabilities of an AI-based AMRmodel to
adversarial attacks in both single-input-single-output andmultiple-input-multiple-output scenarios.We show
that these attacks can significantly reduce the classification performance of the AI-based AMRmodel, which
highlights the security and robustness concerns. Therefore, we propose a widely usedmitigationmethod (i.e.,
defensive distillation) to reduce the vulnerabilities of the model against adversarial attacks. The simulation
results indicate that the AI-based AMR model can be highly vulnerable to adversarial attacks, but their
vulnerabilities can be significantly reduced by using mitigation methods.

INDEX TERMS Artificial intelligence, next-generation networks, automatic modulation recognition, adver-
sarial attacks, model poisoning, defensive distillation.

I. INTRODUCTION
In recent years, significant support for next-generation net-
works has been provided due to the high demand for new-era
applications, such as mobile health, self-driving cars, meta-
verse, digital twins, extended and virtual reality (XR and
VR), as well as the requirement for more intelligent networks,
ultra-low latency, extremely high data speed, and ability to
support a massive number of various mobile and Internet of
Things (IoT) devices with extreme density. The high commu-
nication performance required by diverse applications can be
achieved through advanced communication and networking

The associate editor coordinating the review of this manuscript and
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solutions. Among these technologies, Automatic Modulation
Recognition (AMR) plays a critical role in the signal process-
ing chain as it involves identifying the modulation signal effi-
ciently and accurately even when insufficient or lacking prior
information exists. AMR can significantly improve overall
communication performance. Various AMR solutions using
different methods, such as instantaneous features [1], the
optimized linear combination of higher-order cumulants [2],
wavelet transforms [3], and cyclic spectrum [4], have been
proposed in the literature.

Recent studies have demonstrated that Artificial Intelli-
gence (AI) and Machine Learning (ML) based solutions
outperform across all aspects of next-generation networks,
from the physical layer to the application layer [5], [6], [7].
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A conceptual model for 6G has been presented in [8],
which emphasizes the importance of AI/ML-powered solu-
tions at each layer of the model to meet the requirements of
next-generation wireless networks in terms of latency, power
allocation, privacy, security, and more. AMR methods can
significantly improve next-generation network performance
using Deep Learning (DL) methods. AMR is defined as a
multi-classes classification problem in ML/DL implementa-
tion. The study [9] provides a comprehensive overview of
DL-based AMR models for wireless communications and
conducts extensive simulations for both Single-Input-Single-
Output (SISO) and Multiple-Input-Multiple-Output (MIMO)
communication systems to analyze the performance of dif-
ferent DL-based AMR models. Although there has been
considerable research on DL-based AMR solutions, little
attention has been paid to the security threats these models
may encounter, such as adversarial ML attacks or model
poisoning. Adversarial attacks are widely used cyberattacks
that can severely compromise the accuracy of most ML mod-
els. These attacks introduce Adversarial Examples (AEs) or
manipulated input with slight differences during training to
mislead the model’s performance. Although AEs are often
imperceptible to humans, they can cause the model to mis-
classify or be directed erroneously.

In recent research, we have investigated adversarial
threats and mitigation methods for various communica-
tion systems, including mmWave beamforming [10], chan-
nel estimation [11], and Intelligent Reflecting Surfaces
(IRS) [12], [13], [14]. This study aims to investigate the sus-
ceptibilities of AI-based AMR models to adversarial attacks
and propose a mitigation approach that can enhance their
resilience for both SISO andMIMO communication systems.
We adopt an AI-based AMR model, i.e., Long Short Term
Memory (LSTM)-based neural network, from [15] since the
main focus of this study is to investigate the vulnerability
of AI-based AMR models against adversarial attacks, not
to develop new AI-based AMR models. Regarding mitiga-
tion methods, this paper employs the defensive distillation
method to increase the model’s robustness against adversar-
ial attacks. Four different adversarial attack methods, i.e.,
Fast Gradient Sign Method (FGSM), Momentum Iterative
Method (MIM), Basic Iterative Method (BIM), and Projected
Gradient Descent (PGD), are applied to models to inves-
tigate the attack success ratio. From this, the vulnerability
of each model is identified. Simulation results demonstrate
that AI-based AMR models are vulnerable to adversarial
attacks, but it is shown that the proposed defensive distillation
mitigation method can effectively enhance the robustness of
LSTM-AMR models against such attacks.

The main contributions of this paper are summarized as
follows.

• We explore the vulnerabilities of an AI-based AMR
model under adversarial attacks in both SISO and
MIMO communication systems. An LSTM-based AMR
model is adopted for simulations.

• We conduct simulations using four different adversarial
attack methods (FGSM, MIM, BIM, and PGD) to ana-
lyze the attack performance in terms of attack success
ratio and identify the potential weaknesses in the com-
munication system.

• Wepropose awidely usedmitigationmethod, i.e., defen-
sive distillation, to reduce the model’s vulnerabilities
against adversarial attacks and compare the robustness
of the defended model to the undefended model.

The rest of the paper is organized as follows. Section II
introduces the preliminaries in AMR, adversarial attacks, and
the mitigation method. Section III introduces the adopted
LSTM-AMRmodel and data preparation. Section IV presents
simulation results and observations, and SectionV concludes.

II. PRELIMINARIES
A. AUTOMATIC MODULATION RECOGNITION (AMR)
Wireless communication systems typically employ various
modulation techniques to modulate signals for efficient data
transmission. AMR is an intermediary process between sig-
nal detection and signal demodulation that relies solely on
received signals to identify the modulation scheme of the
transmitted signals without any additional auxiliary informa-
tion. In the last few decades, the modulation methods have
become more complex and diverse to meet the requirements
of increasingly complex communication scenarios. Mean-
while, various AMRmethods have been developed to achieve
effective modulation recognition. AMR methods typically
can be classified into likelihood-based AMR and feature-
based AMR [9]. Likelihood-based AMR approaches essen-
tially formulate modulation recognition as a multi-hypothesis
test, in which the likelihood function of a received signal is
comparedwith a threshold under the assumption of the known
probability density function of the signal [16]. However, they
suffer from high computational complexity. Feature-based
AMR approaches mainly perform two steps: feature extrac-
tion and classification. Instantaneous features and/or statisti-
cal features are extracted from the received signals, and then
decision-making methods are adopted to classify the received
signals based on the extracted features. By contrast, feature-
based AMR methods provide sub-optimal performance but
with low computational complexity.

In the last decade, we have witnessed tremendous achieve-
ment by applying DL methods to various challenging appli-
cations where traditional methods are not able to provide
promising performance, such as computer vision and nat-
ural language processing. This also inspires the continuing
research of AMR through a learning manner. In one of the
early DL based AMR studies [17], the authors proposed
a Convolutional Neural Network (CNN) to extract features
from a modulated signal for modulation classification. The
results showed that the proposed CNN outperforms tradi-
tional methods in terms of accuracy. The authors in [18]
introduced a DL-based AMR algorithm that utilizes CNN and
Recurrent Neural Networks (RNN) to extract representative
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and effective features automatically. This algorithm was
designed to classify various signal modulations, such as
BFSK, DQPSK, MSK, GMSK, 4PAM, and 16QAM, under
different channel conditions, such as additive white Gaus-
sian noise (AWGN) and Rayleigh fading. In [19], this paper
combines the advantages of CNN and the long short-term
memory (LSTM) to extract the spatial and temporal features
of signals, respectively, to improve the performance of the
DL-based AMR method further. In conclusion, DL-based
AMR methods provide better performance than traditional
algorithms.

B. ADVERSARIAL ATTACKS
Adversarial attacks are a type of cyberattack that aims to
reduce the accuracy of a machine-learning model by adding
imperceptible perturbations to the input data. Perturbation
refers to modifications or alterations made to the input data,
which can take different forms. For example, noise can be
considered one such form of perturbation, and the magnitude
of perturbation, i.e., noise level, can be quantified using
different scales, including dB-based scales, depending on the
context and domain.

Formally, given an input sample x ∈ Rn and a machine
learning model f : Rn

→ Rm, an adversarial example xadv
can be generated as follows:

1) Choose a perturbation direction δ ∈ Rn.
2) Add the perturbation to the input sample: xadv = x+ δ.
3) Ensure that the perturbation is small enough to be

imperceptible: |δ|p ≤ ϵ, where ϵ is a small constant
and | · |p denotes the p-norm.

4) Ensure that the perturbation causes misclassification:
f (xadv) ̸= f (x).

There are several different methods for generating adver-
sarial examples, including the following:

1) Fast Gradient Sign Method (FGSM): This method
generates adversarial examples by adding a small per-
turbation in the direction of the gradient of the loss
function with respect to the input. Formally, the pertur-
bation is given by δ = ϵ, sign(∇xJ (x, y)), where J (x, y)
is the loss function, y is the actual label of the input x,
and ϵ is a small constant.

2) Basic Iterative Method (BIM): BIM is a variant
of the FGSM attack where multiple small perturba-
tions are added iteratively to the input. Formally, the
perturbation at each iteration i is given by δi =

ϵsign(∇xJ (xi−1, y)), where J (xi−1, y) is the loss func-
tion concerning the previous iteration’s adversarial
example xi−1 and y is the true label of the input x.
The final adversarial example is obtained by clipping
the perturbations to ensure that they remain within the
ϵ-ball around the original input: xadv = clipϵ(x +∑
i = 1kδi), where k is the number of iterations and

clipϵ is the projection operator onto the ϵ-ball.
3) Moment Iterative Method (MIM): MIM is a variant

of BIM that adds a momentum term to the iterative

updates to smooth out the perturbations and improve
the transferability of the adversarial examples. For-
mally, the update rule at each iteration i is given by
δi = αδi−1+

ϵ
|∇xJ (xi−1,y)|1

sign(∇xJ (xi− 1, y)), where α

is a momentum parameter and |·|1 denotes the L1 norm.
The final adversarial example is obtained in the same
way as BIM.

4) Projected Gradient Descent (PGD): PGD is a more
powerful iterative attack that performs multiple steps
of gradient descent with small step sizes, followed by
a projection onto the ϵ-ball. Formally, the update rule
at each iteration i is given by xi = clipϵ(xi− 1 +
αsign(∇xJ (xi−1, y))), where α is the step size and clipϵ
is the projection operator onto the ϵ-ball. The final
adversarial example is obtained by taking the output of
the last iteration: xadv = xk .

C. DEFENSIVE DISTILLATION
Defensive distillation is a popular method to defend machine
learning models against adversarial attacks [20], [21]. Defen-
sive distillation aims to train a new model less sensitive to
small perturbations in the input data. The process involves
two main steps: first, a softened probability distribution is
used as a label distribution for the original model, and second,
a distilled model is trained using the softened labels.
The first step involves using a softened probability distri-

bution psoft as the label distribution for the original model
f (x; θ ). The softmax function with temperature τ is used to
obtain the softened probabilities:

psoft(y|x; τ ) =
exp(fy(x; θ )/τ )∑
i exp(fi(x; θ )/τ )

, (1)

where y is the actual label for the input x, the softened proba-
bilities are smoother than the hard probabilities obtained from
the regular softmax function. They are effective in defending
against certain types of adversarial attacks.

The second step involves training a distilled model g(x;φ)
using the softened labels psoft. The objective function for
training the distilled model is given by:

min
φ

E(x, y) ∼ D[−
∑

ipsoft(i|x; τ ) log gi(x;φ)], (2)

whereD is the dataset used for training, the objective function
encourages the distilled model to predict similar probabilities
to the original model while being less sensitive to small
perturbations in the input data.

A pseudocode implementation of the defensive distillation
is given in Algorithm 1.
In the algorithm, N is the number of training examples,

and C is the number of classes in the dataset. The algorithm
iteratively updates the parameters of the distilled model by
minimizing the loss function, where the loss is defined using
the softened probabilities psoft and the predictions of the
distilled model g(x;φ). The number of iterations T is a hyper-
parameter that can be tuned to achieve the best performance
on a validation set.
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Algorithm 1 Defensive Distillation
1: Input: Training data (xi, yi), original model f (x; θ ), tem-

perature τ , number of iterations T
2: Output: Distilled model g(x;φ)
3: Initialize distilled model parameters φ

4: for t = 1 to T do
5: Compute softened probabilities psoft(y|x; τ ) for each

training example (x, y)
6: Update distilled model parameters φ by minimizing

the loss:

L(φ) = −
1
N

N∑
i=1

C∑
j=1

psoft(j|xi; τ ) log gj(xi;φ)

7: iter ← iter + 1
8: end for
9: return g(x;φ)

Defensive distillation is a powerful technique for defending
machine learning models against adversarial attacks. How-
ever, it is not foolproof and can still be vulnerable to specific
attacks. Evaluating the effectiveness of defensive distillation
of a particular dataset and attack scenario is crucial.

III. MODEL DESCRIPTION AND DATASET PREPARATION
In this section, we first introduce the dataset preparation
for both SISO and MIMO scenarios and then describe the
adopted LSTM-based AMR model in the simulations. SISO
refers to a communication system with only one antenna at
the transmitter and one at the receiver while MIMO repre-
sents a communication system with multiple antennas at both
the transmitter and the receiver. MIMO systems are used in
modern wireless communication standards, such as 4G LTE,
5G, and beyond, to improve the data throughput, increase the
range, and enhance the reliability of the communication link.
The critical differences between SISO and MIMO systems
are antenna configuration, channel capacity, complexity, and
performance. MIMO systems typically provide higher data
rates, longer ranges, and better reliability than SISO systems,
especially in environments with multipath propagation and
interference.

A. DATASET PREPARATION FOR SISO SCENARIO
To investigate the performance and vulnerability of the AI-
based (i.e., LSTM-based) AMR model in a SISO scenario,
the GNU radio ML dataset RML2016.10a [22] is adopted
for simulations since this dataset is publicly available and
widely used in research as the benchmark. There are 220,000
signal samples in the GNU radio ML dataset RML2016.10a,
and each sample is associated with one modulation at a
specific Signal-to-Noise Ratio (SNR). Each sample consists
of a 256-dimensional vector comprising 128 in-phase and
128 quadrature components. There are 11 different modu-
lations, including BPSK, QPSK, 8PSK, QAM16, QAM64,

CPFSK, GFSK, PAM4, WBFM, AM-SSB, and AM-DSB.
The data samples are constructed at 20 different SNR levels
from -20 dB and 18 dB with an interval of 2 dB.

B. DATASET PREPARATION FOR MIMO SCENARIO
MIMO system with precoding is adopted from [9]. It is a
common MIMO system that consists of a transmitter with Nt
antennas and a receiver withNr antennas. The transmitter and
receiver are assumed to have full knowledge of the channel,
and the transmission is over a flat fading channel. With the
MIMO system above, we generate the dataset with three
different antenna setting groups: (Nt = 4, Nr = 2), (Nt = 16,
Nr = 4) and (Nt = 64, Nr = 16). The signal samples
are modulated with six different modulations, i.e., 2PSK,
QPSK, 8PSK, 16QAM, 64QAM, and 128QAM, at different
SNR levels from -10 dB to 20 dB. 500 samples are prepared
per SNR for each modulation and the number of transmitted
symbols per signal sample is 128.

C. MODEL DESCRIPTION
This subsection explains the LSTM-based AMR model
adopted from [15]. Recurrent Neural Networks (RNNs)
are commonly applied for learning persistent features of
sequence data. LSTM is a particular type of RNN that is
efficient in learning long-term dependencies and is heavily
used for natural language processing and signal process-
ing [23]. The major components in an LSTM cell are three
gates, namely the input gate, forget gate, and the output gate,
which are used to control how the information propagates
in the network. The gating mechanism allows LSTM cells
to memorize information for extended periods, thus realizing
continuous feature learning. The key equations of an LSTM
cell are listed below:

it = σ (xtU i
+ ht−1W i

+ bi)

ft = σ (xtU f
+ ht−1W f

+ bf )

ot = σ (xtUo
+ ht−1W o

+ bo)

Ĉt = tanh(xtUg
+ ht−1W g

+ bc)

Ct = ft ⊙ Ct−1 + it ⊙ Ĉt
ht = ot ⊙ tanh(CtUo) (3)

where xt is input vector, it is input gate vector, ft is forget
gate vector, ot is output gate vector, ct is cell state vector, ht
is hidden state vector, bi, bf , bo, bc are bias vectors, U ,W is
parameter matrices, and σ , tanh are activation functions. ⊙
denotes the Hadamard product for the element-wise product
of matrices.

The adopted LSTM-based AMR model consists of two
LSTM layers followed by a fully connected layer and a
softmax layer as shown in Figure 1. The in-phase and quadra-
ture components of modulated signals are fed to the model
as a two-dimensional vector. The first two LSTM layers
have 128 LSTM units each, and the output of the last LSTM
layer is a 128-dimensional vector which is passed to the fol-
lowing fully connected linear layer and softmax layer. In the
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FIGURE 1. The architecture of the LSTM-based AMR model. This model is
trained for signal modulation recognition using the amplitude-phase
signal.

SISO scenario, the softmax layer maps the features learned
from previous layers to one of 11 output classes indicating the
11 modulation schemes. In the MIMO scenario, the softmax
layer maps the features learned from previous layers to one
of 6 output classes since there are six different modulations
in the MIMO dataset. Essentially, the reason to use an LSTM
model for signal classification is that signals with different
modulation schemes contain different amplitude and phase
features, and the LSTM model is capable of learning these
temporal features effectively.

To train the LSTM model for modulation recognition,
first, the SISO and MIMO datasets are split into training,
validation, and test sets at a ratio of 6:2:2 for SISO andMIMO
scenarios, respectively. The loss function used is categorical
cross-entropy, and the initial learning rate is set to 0.001 with
the Adam optimizer. The learning rate will be halved if the
validation loss does not decrease within 5 epochs, and the
training process will be stopped if the validation loss remains
stable for 50 epochs. The batch size is set to 400, and the
training process is conducted using an Nvidia GTX 1080Ti
GPU and Keras with Tensorflow as the backend.

IV. EXPERIMENTS
This section provides the experimental results for the SISO
and MIMO scenarios using LSTM-based AMR undefended
and defendedmodels, with the attack success ratio. The attack
success ratio refers to the ratio of successfully transmitted
malicious data or signals to the total amount of data or signals
transmitted. It is also widely used in communication systems
to assess their security and provide a measure of how vulner-
able the system is to different types of attacks. In this study,
the experimental results are obtained by averaging across
multiple iterations, i.e., 30 times. The analysis focuses on
the attack success ratio of four different adversarial attack
methods (BIM, FGSM, MIM, and PGD) with and without
the application of amitigationmethod (defensive distillation).

The objective is to identify potential weaknesses in the com-
munication system.

A grid search approach is employed to determine the opti-
mal parameters for defensive distillation-based adversarial
ML attack mitigation. The grid search involved systemat-
ically exploring a predefined parameter grid to find the
parameter combination that yielded the best performance.
The parameters considered in the grid search included the
temperature parameter for defensive distillation, the regu-
larization strength, and the learning rate. The combination
that resulted in the highest model robustness against adver-
sarial attacks was identified by exhaustively searching the
parameter grid. This grid search methodology ensures a
comprehensive exploration of parameter space, leading to
an informed selection of the optimal parameters for defen-
sive distillation in the context of adversarial ML attack
mitigation.

A. SIMULATION RESULTS IN SISO SCENARIO
In a SISO scenario, the transmitter sends a single signal,
which is received by the receiver over a single channel.
This type of system is commonly used in simple point-to-
point communication links, such as those between a mobile
phone and a base station. Fig. 2 illustrates the attack success
ratio of the undefended SISO model for each adversarial
attack, i.e., BIM, FGSM, MIM, and PGD. According to the
figure, the developed model is not robust under BIM, MIM,
and PGD attacks, i.e., the attack success ratio can go up
to 1.0 even under attack powers ϵ < 0.06. However, the
FGSM attack has a low success ratio compared to other attack
methods, i.e., the maximum attack success ratio is 0.6 under
a heavy attack power ϵ = 1.0. It means the developed AMR
model is robust against FGSM attacks. In some cases, FGSM
attacks may be less effective than other more sophisticated
attacks, such as BIM, MIM, and PGD attacks. Therefore, it is
important to carefully consider the threat model and evaluate
the effectiveness of different attack methods under different
scenarios.

Table 1 shows the attack success ratio of different types of
attacks along with different levels of attack strength for the
undefended SISO model in detail. The first row shows the
attack strength, ranging from 0.01 to 1.0, and the first col-
umn shows the names of the attack types, i.e., BIM, FGSM,
MIM, and PGD. According to the table, BIM, MIM, and
PGD have a high success ratio for most attack powers (ϵ),
while FGSM has a lower success ratio. This indicates that
the other three attacks may be more effective than FGSM in
generating adversarial attacks. For example, the BIM attack
had a success ratio of 0.38, the FGSM attack had a success
ratio of 0.06, the MIM attack had a success ratio of 0.75,
and the PGD attack had a success ratio of 0.50 at an attack
strength of 0.01. On the other hand, the values of the success
ratio go up to 1.00, 0.58, 1.00, and 1.00 for BIM, FGSM,
MIM, and PGD attacks at the highest attack power (ϵ = 1.0),
respectively.
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TABLE 1. Attack success ratio of the undefended SISO model.

FIGURE 2. Attack success ratio of the undefended SISO model.

Fig. 3 shows the attack success ratio of the defended SISO
model under the selected attacks, i.e., BIM, FGSM,MIM, and
PGD. According to the figure, all attack success ratio values
decrease under all attack types compared to the undefended
model. BIM, MIM, and PGD show similar trends. However,
the attack success ratio values vary between around 0.1 to
0.6 under light (ϵ = 0.01) and heavy attack powers (ϵ =
1.0). As expected, the FGSM attack has a low success ratio
compared to other attack methods; i.e., the maximum ratio
is around 0.1 under all attack powers ϵ, and the developed
model is more robust against FGSM attacks.

Table 2 provides detailed information about the perfor-
mance of different attack methods on a machine learning
model in terms of attack success ratio at different levels of
attack power. The table is organized in a grid format, with the
rows indicating the attack methods (BIM, FGSM, MIM, and
PGD) and the columns indicating the strength of the attack
(ranging from 0.01 to 1.0). Each cell in the table represents
the success ratio of the corresponding attack method at the
corresponding level of attack power. For instance, the success
ratio of the BIM at 0.01 attack power is 0.11, while the attack
success ratio at 1.0 attack power is 0.55. Similarly, the attack
success ratio of MIM attack at 0.1 power is 0.04, while its
attack success ratio at 1.0 attack power is 0.58. Note that the
FGSM attack method has the least impact on the machine
learning model, as its success ratio is consistently low at all
levels of attack power. The minimum success ratio for FGSM
is 0.00, while the maximum success ratio is 0.13 (at attack
power of 0.9 and 1.0). On the other hand, the BIM, MIM,
and PGD attack methods are more effective at compromising
the model’s performance. For BIM/MIM/PGD, the minimum
success ratios are 0.11, 0.04, and 0.12 (at an attack power

FIGURE 3. Attack success ratio of the defended SISO model.

of 0.01), respectively. The maximum success ratios for these
methods are 0.61, 0.60, and 0.67 at a high attack power,
respectively.

B. SIMULATION RESULTS IN MIMO SCENARIO
In a MIMO scenario, multiple signals are transmitted
simultaneously over multiple channels, and the receiver
uses advanced signal processing techniques to separate and
decode the signals. Fig. 4 shows the attack success ratio of
the defended MIMO model under the selected adversarial
attacks. According to the figure, BIM/MIM/PFG attacks are
very effective, and the attack success ratio values can achieve
1.0 (i.e., 100%) even at mid-level attack powers, ϵ >= 0.5.
As in the previous scenario, the FGSM attack has a low
attack success ratio compared to other attack methods, i.e.,
the maximum attack success ratio is around 0.4 under heavy
attack powers ϵ = 1.0. It is obvious that the attack success
ratio increases with the attack power in parallel. The details
will be investigated in the following table.

Table 3 presents the attack success ratio for the selected
four adversarial attacks (FGSM, BIM, MIM, and PGD) on
the developed undefended MIMO model at different levels
of attack powers (from 0.01 to 1.0). According to the table,
all attack types except FGSM seem very effective, as they
achieve 100% attack success ratio on several high attack pow-
ers. Among them, BIM andMIM are the most effective attack
methods against the model, as they achieve a high success
ratio across a wide range of strength levels. On the other
hand, FGSM is not very effective at lower strength levels
(0.01 and 0.1), but becomes more effective as the strength
level increases.
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Attack 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
BIM 0.38 0.92 1.00 1.0 1.00 1.0 1.00 1.00 1.00 1.00 1.0 1.00 1.00 1.00 1.0 1.0 1.00 1.0 1.00 
FGSM 0.06 0.00 0.08 0.0 0.07 0.0 0.17 0.23 0.11 0.11 0.1 0.35 0.41 0.47 0.4 0.5 0.53 0.6 0.58 
MIM 0.75 1.00 1.00 1.0 1.00 1.0 1.00 1.00 1.00 1.00 1.0 1.00 1.00 1.00 1.0 1.0 1.00 1.0 1.00 
PGD 0.50 0.87 1.00 1.0 0.94 1.0 1.00 1.00 1.00 1.00 1.0 1.00 1.00 1.00 1.0 1.0 1.00 1.0 1.00 
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TABLE 2. Attack success ratio of the defended SISO model.

TABLE 3. Attack success ratio of the undefended MIMO model.

FIGURE 4. Attack success ratio of the undefended MIMO model.

Fig. 5 illustrates the attack success ratio of the defended
MIMO model for the same attacks and attack powers
as in the previous scenario. The figure shows that the
attack success ratio values significantly decrease for the
defended MIMO model, especially for mid-level attack
power. BIM/MIM/PGD attacks exhibit similar trends, i.e.,
having a low attack success ratio at low attack power and a
high attack success ratio at high attack powers. As expected,
the FGSM attack method has the least impact, i.e., almost
none, as its success ratio is consistently low at all levels of
attack power, i.e., around 0.1. Some results show a zero (0)
attack success ratio, meaning the attack success ratio is very
low or almost 0.

Table 4 provides more detailed information regarding the
attack success ratio of different adversarial attack methods
on the defended MIMO model at different attack powers.
According to the table, the FGSM attack has almost no
impact on the defended MIMO model at all attack powers,
i.e., the maximum attack success ratio is 0.11. Other attack
types (BIM/MIM/PGD) still impact the defended model. For
example, looking at the BIM attack, at 0.01 attack power, the
success ratio is 0.0, meaning the attack was not successful.
However, at 0.7 attack power, the success ratio jumps to 0.75.
For the MIM attack, the success ratio for 0.01 attack power
is 0.0, but it increases to 0.09 for 0.02 attack power. The

FIGURE 5. Attack success ratio of the defended MIMO model.

success ratio remains low for the following attack powers
but increases substantially for higher attack powers, reaching
a maximum success ratio of 0.75 for 0.9 attack power. For
the PGD attack, the success ratio remains 0.0 for 0.01 attack
power, but it increases to 0.20 for 0.02 attack power. The
success ratio then varies between 0.0 and 0.5 for different
attack powers and reaches a maximum value of 0.60 for
1.0 attack power.

C. OBSERVATIONS
This study aims to investigate the performance and vulnera-
bilities of AI-based AMR models under popular adversarial
attacks, such as FGSM, BIM, MIM, and PGD, as well as the
impact of the selected mitigation method (defensive distil-
lation) on performance improvement. The simulation results
indicate that AI-based AMR models are vulnerable to model
poisoning attacks, but the impact can be reduced or elimi-
nated with mitigation methods. Based on the findings, the
following observations can be made:
Observation 1: Adversarial attacks are effective in compro-
mising the accuracy of deep learning models, with attack
success ratios ranging from 0% to over 100% depending on
the attack method and power.
Observation 2: The attack success ratio of adversarial attacks
tends to increase with the attack power. In most cases, attack
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Attack 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
BIM 0.11 0.28 0.19 0.30 0.33 0.40 0.52 0.42 0.45 0.45 0.55 0.57 0.60 0.56 0.57 0.60 0.57 0.61 0.55 
FGSM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.04 0.04 0.02 0.10 0.09 0.09 0.13 0.13 
MIM 0.04 0.22 0.32 0.36 0.29 0.32 0.44 0.53 0.60 0.54 0.55 0.52 0.51 0.52 0.53 0.60 0.55 0.56 0.58 
PGD 0.12 0.15 0.25 0.35 0.35 0.31 0.37 0.59 0.50 0.45 0.50 0.59 0.55 0.67 0.60 0.63 0.63 0.60 0.59 

Attack 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

BIM 0.48 0.67 0.79 0.87 1.00 1.00 1.00 0.94 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
FGSM 0.00 0.02 0.00 0.02 0.01 0.04 o.oi 0.07 0.06 0.05 0.09 0.15 0.20 0.25 0.32 0.32 0.36 0.37 0.41 
MIM 0.53 0.73 0.76 0.67 0.82 0.92 0.94 1.00 1.00 1.00 1.00 0.96 0.90 1.00 0.85 0.97 1.00 1.00 1.00 
PGD 0.35 0.71 0.88 0.89 0.90 0.87 0.86 0.95 1.00 1.00 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.97 0.96 
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TABLE 4. Attack success ratio of the defended SISO model.

success ratios increase rapidly as the attack power goes from
0.01 to 0.1, but then plateau or increase more slowly for larger
attack powers.
Observation 3: Mitigation methods can reduce the attack
success ratios of adversarial attacks, but their effectiveness
varies depending on the attack method and power.
Observation 4: MIMO models can provide better defense
against adversarial attacks compared to SISO models.
Observation 5: Adversarial attacks significantly impact both
undefended and defended SISO/MIMO models in terms of
attack success ratio, particularly for BIM/MIM/PGD attacks.
Observation 6: FGSM attack method has the least impact on
models, as its success ratio is consistently low at all levels of
attack power.
Observation 7 : PGD is the most effective attack against the
defended SISO model, with an attack success ratio of 0.67.
Observation 8: MIM is the most effective attack against the
defended MIMO model, with an attack success ratio of 0.75.

V. CONCLUSION
As we continually integrate AI/DL technologies into AMR
to improve communication performance, it has also aroused
security issues that do not receive sufficient attention in the
literature. The main objective of this study is to evaluate the
performance of AI-based AMR models and their robustness
against various adversarial attacks (i.e., FGSM, BIM, PGD,
and MIM) with and without the selected mitigation method
(defensive distillation). The experimental results demonstrate
that both undefended and defended SISO/MIMO models are
vulnerable to adversarial attacks, with attack success ratio
values significantly increasing at high attack power. In the
defended SISOmodel, the PGD attack has the highest success
ratio, followed by BIM and MIM attacks. In the defended
MIMO model, the MIM attack has the highest success ratio,
followed by BIM and PGD attacks. The FGSM attack had
minimal impact on the attack success ratio for both unde-
fended and defended SISO/MIMOmodels compared to other
adversarial attack types due to its simplicity and limitations,
i.e., linear approximation, limited perturbation strength, and
knowledge of the model. The experimental results also reveal
that mitigating methods significantly impact model robust-
ness, reducing the attack success ratio of all attacks. These
findings highlight the need to develop more secure and robust
AI-based models for next-generation communication tech-
nologies to protect against adversarial attacks.

In future work, we will focus on adversarial attack detec-
tion in AI-based models in communications, which is the
necessary step before attack mitigation. Furthermore, we will

attempt to develop better defense mechanisms against adver-
sarial attacks for the AI-based AMR model, improving the
security of machine learning systems. While the current
study provides valuable insights into the effectiveness of
defensive distillation for defending AI-based AMR models
against adversarial attacks, it is acknowledged that further
comparisons and sensitivity/stability analyses are warranted.
These additional analyses, planned as part of future work,
will enable a more comprehensive evaluation of the proposed
approach, including comparisons with alternative mitigation
methods and assessment of themodel’s sensitivity to different
attack scenarios and stability over varying conditions. This
will provide a more robust and convincing evaluation of
the AMR model defense’s proposed defensive distillation
methodology.
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