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Ca2+ activation andmembrane electroporation by 10-ns and 4-ms electric pulses (nsEP andmsEP)were compared
in rat embryonic cardiomyocytes. The lowest electric field which triggered Ca2+ transients was expectedly higher
for nsEP (36kV/cm) than formsEP (0.09 kV/cm) but the respective doseswere similar (190 and460mJ/g). At higher
intensities, both stimuli triggered prolonged firing in quiescent cells. An increase of basal Ca2+ level by N10 nM in
cells with blocked voltage-gated Ca2+ channels and depleted Ca2+ depot occurred at 63 kV/cm (nsEP) or
0.14 kV/cm (msEP) and was regarded as electroporation threshold. These electric field values were at 150–230%
of stimulation thresholds for both msEP and nsEP, notwithstanding a 400,000-fold difference in pulse duration.
For comparable levels of electroporative Ca2+ uptake, msEP caused at least 10-fold greater uptake of propidium
than nsEP, suggesting increased yield of larger pores. Electroporation by msEP started Ca2+ entry abruptly and
locally at the electrode-facing poles of cell, followed by a slowdiffusion to the center. In a stark contrast, nsEP evoked
a “supra-electroporation” pattern of slower but spatially uniform Ca2+ entry. Thus nsEP and msEP had comparable
dose efficiency, but differed profoundly in the size and localization of electropores.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

During the last decade, the research into bioeffects of intense,
nanosecond duration electric pulses (nsEP) has been growing exponen-
tially. The principal directions of this research are the lethal cell damage
bynsEP and itsmechanisms [1–6], with emerging applications in cancer
and tissue ablation [7–11], and the biophysical mechanisms of mem-
brane permeabilization by nsEP, properties of electropores, and their
impact on cell function [4,12–16]. Recently, more studies have focused
on cell stimulation and Ca2+ activation by nsEP, potentially leading to
someunique physiological andmedical applications, including heart pac-
ing, defibrillation, and stimulation of neurosecretion and other functions
[13,17–21]. However, the mechanisms of cell excitation and Ca2+ mobi-
lization by nsEP remain uncertain.

With conventional electrostimulation using “long” (micro- and
millisecond) pulses, the externally applied electric field moves ions in
extra- and intracellular electrolytes, whereas the cell membrane acts
as a barrier. The resulting build-up of the electric potential across the
membrane amplifies the externally applied electric field (the process

calledMaxwell–Wagner ionic polarization), with the amplification factor
formammalian cells being on the order of thousands [22–24]. This ampli-
fication enables the excitation and electroporation by external electric
fields many orders of magnitude weaker than the natural electric field
across the cell membrane. External fields impose the highest transmem-
brane potential (TMP) at cell poles facing stimulating electrodes, and
membranedepolarization at the cathode-facing pole leads to the opening
of voltage-gated channels and excitation. In contrast, electroporative
TMP levels can be reached faster at the anode-facing pole where the
resting membrane potential adds to the external electric field. The
polar pattern of membrane permeabilization by individual millisecond
pulses (msEP) and shorter pulses (down to at least 600 ns) has been
routinely detected by the polar entry ofmarker dyes and ions (propidium,
ethidium, YO-PRO-1, and Ca2+) [25–28]. The entry could be higher from
either anodic or cathodic pole, depending on the marker and other
factors, including the different pore size at the two poles [27]. Polar dye
entry was also reported after high-rate trains of multiple pulses as short
as 4 ns [29].

Stimuli shorter than 100–200 ns may be too brief to cause ionic
polarization, but can induce TMP needed for electroporation by a
dielectric polarization mechanism [22,24,25,30–32]. However, the
amplification factor is smaller and the stimulus strength needs to
be increased accordingly. Moreover, such stimuli appear too brief
to shift the voltage sensor of voltage-gated channels across the plasma
membrane and cause a series of conformation changes leading to the
channel opening (which takes 10–100 μs [33]). Still, isolated reports
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suggested that nsEP can excite nerve and muscle cells just like
conventional micro- and millisecond electric shocks [17,34,35], but
the mechanism underlying the excitation by nsEP was not explained
or explored. Other studies [17] suggested that excitation may in part
be mediated by electroporation (which leads to the loss of the resting
potential, depolarization, and channel opening).

Since “short” nsEP increase TMP without movement and redistri-
bution of mobile charges, their effect should be less restricted to
electrode-facing poles of the cell. Pore enlargement presumably occurs
during the imposed pulse [36], and shorter pulses can reasonably be
expected to produce smaller pores. Indeed, modeling of nsEP interaction
with cells predicted diffuse electroporation pattern throughout the
plasma membrane and intracellular membranes, termed “supra-
electroporation”, and the calculated diameter of pores was smaller
than in the conventional electroporation [30,37,38]. Experimental studies
confirmed poration of intracellular organelles by nsEP [9,13,20,39,40]
and smaller pore size [14,36,41]. However the diffuse, non-polar pattern
of pore formation has not been demonstrated by direct experiments,
which made it one of the goals of the present work.

We focused on studying the excitation and electroporation in isolated
cardiomyocytes, considering both the shortage of data about nsEP effects
in excitable cells, and the potential benefit of nsEP technology for cardiac
defibrillation. Since at least some adverse effects of defibrillation shocks
are attributed to electroporation [42–46], the formation of only smaller
pores by switching from msEP to nsEP may reduce damage and cell
loss. The undesired transport of solutes through electropores is further
reduced by essentially eliminating the electrophoretic component [37].
The excitation which relies on the dielectric polarization should lead to
deeper penetration and more uniform activation of tissue [9,22,24,25,
30,32], both being crucial advantages for defibrillation. While these
benefits come at the expense of the reduced amplification factor, which
for nsEP is from tens to hundreds [22,24,31], higher intensity of shocks
will not necessarily translate into higher energy, as the energy losses to
move free charges towards the cell membrane are eliminated.

To our knowledge, nsEP effects on cardiomyocytes were analyzed in
just a single peer-reviewed study, which reported both Ca2+ transients
and Ca2+ waves induced by 4-ns stimuli [17]. The authors concluded
that at least for certain nsEP parameters, these Ca2+ responses are
probably mediated by nanoporation of sarcolemma. They employed
multi-pulse stimulation protocolswhich complicated the interpretation
of results (repetitive nsEP at 2 Hz; or three 1-ms, 2.4 kV/cm stimuli
followed by either a single nsEP or a 10-kHz nsEP train), especially
considering that 2.4 kV/cm is well above the electroporation threshold
for 1-ms pulses [47–49] and that intense instant heating was likely
(up to 20 °C per one msEP, based on the dose and adiabatic heat
calculation [50,51]). In this work, we compared the stimulation and
electroporation effects of individual 10 ns and 4 ms stimuli for different
conditions and in a wide range of pulse intensities.

2. Materials and methods

2.1. Cell culture

Embryonic rat cardiac myocytes, the culture medium, and its
supplements were purchased from Lonza (Walkersville, MD) and
handled according to supplier recommendations. Cells were seeded on
“0” thickness glass coverslips coated with nitrocellulose and incubated
at 37 °C with 5% CO2 in air, in RCGM medium supplemented with 7.5%
horse serum, 7.5% fetal bovine serum, 0.1% of pre-mixed gentamicin/
amphotericin-B solution, and 200 μM of 5-bromo-2′-deoxyuridine.
To prepare coverslip coating solution, a nitrocellulose filter paper
(Invitrogen, Eugene, OR) was dissolved in methanol (0.1 cm2/10 ml).
Every 3 days, 50% of the growth medium was replaced by fresh one.
Cells on coverslips did not propagate and were used up to three weeks
after thawing.

2.2. Reagents and solutions

Fura-2 pentapotassium salt, Fura-2/AM, and Pluronic F-127 (20%
solution in DMSO) were purchased from Life Technologies (Grand
Island, NY). Verapamil and cyclopiazonic acid (CPA) were obtained
from Tocris Bioscience (Minneapolis, MN). Other chemicals were from
Sigma-Aldrich (St. Louis, MO). During experiments, cells were continu-
ally perfused at 0.5 ml/min (or 10ml/min for faster drug delivery) with
a physiological solution containing (in mM): 140 NaCl, 5.4 KCl, 1.5
MgCl2, 2 CaCl2, 10 glucose, and 10 HEPES (pH 7.3, 300–310 mOsm/kg).
For Ca2+-free conditions, CaCl2 was replaced with 2 mM Na-EGTA.

2.3. Measurement of cytosolic Ca2+ concentration

The detailed procedures employed for loading cells with Fura-2 and
dye calibration were reported earlier [13,20]. In brief, cells were loaded
with the dye for 30 min at room temperature, in the dark, in the
physiological solution supplemented with 5 μM Fura-2/AM and
0.02% of Pluronic F-127. After loading, the coverslip was placed in a
glass-bottomed perfusion chamber mounted on an IX71 microscope
(OlympusAmerica, Center Valley, PA) andwashedwith the physiological
solution for 15min to allow for deesterification of the dye. Fura-2fluores-
cence was measured using an ET FURA2 filter set (Chroma Technology,
Bellows Falls, VT) and a UApoN340 40×/1.35 objective (Olympus). A
fast wavelength switcher Lambda DG4 (Sutter Instruments, Novato,
CA) was employed to excite the dye alternatively at 340 and 380 nm
and fluorescence was recorded at 510 nm. Images were acquired in a
streaming mode (20 ms exposure, 25 image pairs/s) using Metafluor
v.7.5 software (Molecular Devices, Sunnyvale, CA) and iXon Ultra 897
EM CCD camera (Andor Technology, Belfast, UK).

2.4. Measurement of propidium (Pr) uptake

The perfusion chamber was filled with the physiological solution
containing 3 μg/ml of Pr iodide and perfusion was turned off. Pr becomes
highly fluorescent upon entering the cell and binding to nucleic acids, but
cannot enter the cell through the intact plasmamembrane. Therefore, the
gain in Pr emission is commonly used to quantify the disruption of the
plasma membrane barrier function by electroporation [14,27,52–55].
Emission of Pr was recorded using a TRITC filter cube (Olympus) and
the iXon Ultra 897 camera (100 ms exposure, 0.9 images/s). The
recording began 1 min prior to electroporation and continued for 9 min
after it; the gain in fluorescence by the end of recording was used as a
measure of Pr uptake.

2.5. Exposure to nsEP and msEP

The technique of electric field delivery to individual cells was the
same as reported previously [4,13–15,20,55]. Trapezoidal pulses of up
to 20 kV amplitude and approximately 10 ns duration (at 50% height)
were produced by a model FPG 20-1NM pulse generator (FID GmbH,
Burbach, Germany). Rectangular 4-ms pulses were produced by a
Grass S88 Stimulator (Grass Instrument, Quincy, MA). Typical pulse
shapes of nsEP and msEP are presented in the inset of Fig. 1.

Pulses were delivered to selected cells on a coverslip with a pair of
tungsten rod electrodes (0.1 mm diameter). The pulse shapes and
amplitudes were monitored with a TDS 3052 oscilloscope (Tektronix,
Beaverton, OR). Electrodes were positioned precisely at 50 μm above
the coverslip surface using an MPC-200 robotic manipulator (Sutter,
Novato, CA). To deliver nsEP at the lowest tested electric field of
25 kV/cm, the electrodes were raised to 70 μm. Cells selected for expo-
sure were in the middle of the 0.24-mm gap between the tips of the
electrodes. Pulses were triggered externally and synchronized with
image acquisition and bath buffer exchanges by a TTL pulse protocol
using Digidata 1440A board and Clampex v. 10.2 software (Molecular
Devices, Sunnyvale, CA). The electric field at the location of the cells
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was determined by a 3D simulation with a finite-element Maxwell
equation solver Amaze 3D (Field Precision, Albuquerque, NM) as
described earlier [15].

2.6. Data analysis

Numerical data were analyzed using Origin 8.0 software package
(Origin Lab, Northampton, MA) and plotted using Grapher V. 11.4
(Golden Software, Golden, CO). Data are presented as mean ± s.e.
Statistical analyses were performed using a two-tailed t-test where
p b 0.05 was considered statistically significant.

3. Results and discussion

3.1. Stimulation by 10 ns and 4-ms pulses

Ca2+ activity in the embryonic cardiomyocytes varied from one cell
to another, and it also changed with the age of the culture. In the early
culture, most cells spontaneously fired arrhythmic Ca2+ transients.
The peak amplitude of the spontaneous transients ranged between
0.5–2 μM in different cells, but in each individual cell it was fairly stable.
Applying 10-ns pulses at 25 kV/cm (Fig. 1A) or 4-ms pulses at 0.05 kV/cm
(data not shown) did not elicit transients or any detectable changes in the
cytosolic Ca2+, and had no apparent effect on the spontaneous activity.
The minimum effective electric field (36 kV/cm for nsEP and 0.08 kV/
cm for msEP) elicited full-amplitude, all-or-none Ca2+ transients
(Fig. 1B, C). Despite themuch greater electric field needed for stimulation
with nsEP, the delivered dose was lower (190 mJ/g at 10 ns versus
460 mJ/g at 4 ms). We did not search for exact stimulation thresholds
and instead refer here to the above numbers as to “near-threshold”
values.

3.2. Intense stimuli trigger prolonged Ca2+ increase and spontaneous firing

Increasing the stimulus amplitude to about twice the near-threshold
value caused a prolonged elevation of the cytosolic Ca2+ along with a
high-rate spontaneous firing in previously quiescent cells (Fig. 2). This
response was seen with either nsEP or msEP and was likely a result of
lasting permeabilization of the sarcolemma by electroporation, which
is supported by the data discussed in the next sections. The recovery
of cytosolic Ca2+ to the basal level could take minutes, followed by
restoration of quiescent state and generation of “regular” all-or-none

Ca2+ transients in response to stimuli of the near-threshold intensity
(Fig. 2A). In other cells, spontaneous Ca2+ oscillations persisted even
after the restoration of the basal Ca2+ level; moreover, the oscillations
recovered after incubation with 10 μM nifedipine or extracellular Ca2+

removal (Fig. 2B,C). Thus, the lasting Ca2+ oscillations relied on the
spontaneous opening of L-type Ca2+ channels, and the “active” condition
of the cell was preserved regardless of whether it was actually firing or
not. A detailed analysis ofmechanisms involvedwould require a separate
study; here we would only like to note the qualitative similarity of nsEP
and msEP effects as the intensity of the stimuli was increased beyond
the near-threshold levels.

3.3. Dose efficiency of nsEP andmsEP for electroporation of the sarcolemma

In order to quantitate the electroporative Ca2+ entry, we used a
cocktail of 10 μM verapamil (to block L-type Ca2+ channels of the
sarcolemma), 10 mM caffeine (to deplete Ca2+ from the sarcoplasmic
reticulum by stimulating ryanodine receptors), and 10 μM of CPA (to
block re-uptake of Ca2+ to the reticulum). This cocktail triggered a
brief Ca2+ elevation followed by a drop and stabilization below the
basal level (Fig. 3). Concurrently, the cocktail fully blocked Ca2+

transients in response to nsEP or msEP of the near-threshold electric
field. However, an increase of the stimulus strength evoked Ca2+

responses of a different type: (1) their amplitude increased gradually
as the stimulus strength was increased, (2) Ca2+ concentration could
continue to increase for tens of seconds with or without recovery, and
(3) when present, Ca2+ recovery to the basal level was slow (Figs. 3
and 4A). This response was abolished in a Ca2+-free medium (data not
shown) andwas concluded to be a result of electroporation of the plasma
membrane.

The smallest Ca2+ increase that could be reliably resolved in our
experiments was about 10 nM (a horizontal dotted line in Fig. 4). Thus
the electroporation thresholds were 0.14 and 63 kV/cm for msEP and
nsEP, respectively (Fig. 4A). Despite this 500-fold difference, the thresh-
old electroporation dose was 2-fold smaller for nsEP (0.6 J/g) than for
msEP (1.2 J/g).

Above the threshold, the amplitude of Ca2+ rise increased as a
power function of the stimulus intensity. In order to compare the
stimulation and electroporation thresholds, we (a) normalized the
electroporating voltages to the near-threshold stimulation electric
field values (0.09 kV/cm for msEP and 36 kV/cm for nsEP), or
(b) normalized the electroporating voltages to the highest known

20ns

2 kV

5 V

5 ms

200 nM

400 nM

4 ms

10 ns

10 ns

400 nM

400 nM

10 s

25 kv/cm

36 kv/cm

0.09 kv/cm

A

B

C

Fig. 1. Spontaneous, nsEP-induced, andmsEP-induced Ca2+ transients in rat embryonic cardiomyocytes. A–C: different individual cells subjected to subthreshold (A) and suprathreshold
stimuli (B, C). Stimulation parameters are given in the legends. Vertical dotted lines show when the stimuli were applied. Insets show typical shapes of nsEP and msEP.
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subthreshold electric field (0.05 kV/cm for msEP and 25 kV/cm for
nsEP). These steps have yielded, respectively, the lower and the
higher boundaries of electroporation thresholds estimated relative
to the stimulation thresholds.

When the msEP and nsEP intensities were normalized as in step
(a) above, the Ca2+uptake values overlapped and could be approximated
with a common power fit, with a high coefficient of determination (R2=
0.95, Fig. 4B). The intercept of this best fit line with the 10-nM detection
limit at 150% (Fig. 4B) can be regarded as a lower boundary of the electro-
poration threshold for both msEP and nsEP. For normalization as in step
(b), the normalized Ca2+ uptake values also overlapped and could be
approximated with a common power fit (R2 = 0.91; data not shown).
From this fit, the upper boundary of the electroporation threshold was
estimated at 230%.

Thus, for bothmsEP and nsEP, electroporation occurred at intensities
of only 150–230% of the stimulation threshold (or at doses between
200% and 500%), which was a striking similarity for stimuli differing in
duration by almost 6 orders of magnitude.

3.4. Different size of pores opened by nsEP and msEP

If the safety factor of electrostimulation is defined simply as a ratio of
electroporating and stimulating voltages (or doses), our data would

suggest no impact from changing the pulse duration. At the same
time, previous studies as well as in silico models found that shorter
electric pulses produce fewer large-diameter pores [12,14,30,36] and
should be less damaging. Measuring the electroporative entry of a
small cation such as Ca2+ does not necessarily reveal the difference in
pore size, hence it was probed with a larger Pr cation [15,54].

From plots in Fig. 4A, we identified the electric field intensities of
msEP and nsEP which caused practically the same Ca2+ response:
0.14 and 63 kV/cm; 0.55 and 135 kV/cm; and 1.1 and 270 kV/cm. In
separate experiments, we measured Pr uptake and plotted it against
the Ca2+ uptake at the respective stimulus strength. Fig. 5 shows that
for nsEP and msEP treatments which caused the same Ca2+ rise, the
msEP treatment caused at least a 10-fold greater Pr uptake. This result
indicates that msEP indeed opened more of the larger, Pr-permeable
pores. Perhaps the fraction of Pr-permeable pores was small when
compared to the entire pore population, and therefore had little impact
on Ca2+ uptake which entered the cell through amuch larger population
of pores. This conclusion is similar to the one made earlier when
comparing Pr and water uptake caused by 60- and 600-ns electric
pulses [14]. Notwithstanding the relatively small number of larger-size
pores, the physiological consequences of their formation can be signifi-
cant. For example, the presence of even a small population of larger-size
pores was implicated as amajor reason why cell survival in cells exposed

A

B

C

Fig. 2. Intense msEP and nsEP cause sustained elevation of cytosolic Ca2+ and trigger asynchronous firing in previously quiescent cells. Stimulation parameters are given in the legends;
vertical dotted lines showwhen the stimuli were applied. Horizontal dashed lines show the basal level of Ca2+ (about 100 nM). In three different cells, msEP (A) and nsEP (B, C) caused a
lasting but reversible Ca2+elevation. A: A recovered cell generates regular Ca2+ transients in response to non-electroporative stimuli. B and C: Asynchronous Ca2+ oscillations depend on
the entry of extracellular Ca2+ through L-type Ca2+ channels. They are reversibly blocked by nifedipine or perfusion by a Ca2+-free solution (horizontal bars).
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to high-intensity 300-ns, 2-μs, or 9-μs electric pulses was much lower
than after 10-ns pulse treatments at the same dose [1]. Thus, despite
the similarity of electroporation thresholds with respect to the stimula-
tion thresholds, nsEPwill likely cause less damage to cells by not opening
larger electropores in the plasma membrane.

3.5. Supra-electroporation of sarcolemma by nsEP

As discussed above, with long electric pulses and capacitive charging
of the cell membrane, the critical TMP builds up primarily at cell poles
facing the electrodes. With nsEP being too brief to move ions to charge

Fig. 3.A cocktail of caffeine, CPA, and verapamil fully blocks Ca2+ transients in response to previously effective stimuli and enables the observation of electroporative Ca2+ entry aftermore
intense stimuli. A and B: representative experiments with msEP and nsEP, respectively. The perfusion with the cocktail (horizontal bar) transiently increases the cytosolic Ca2+, followed
by its drop below the basal level. An inset zoom (B) shows a small Ca2+ response with 10× magnification. See Fig. 2 for other details.
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the membrane, and relying on the dielectric polarization instead, the
electroporation by nsEP should be less restricted to cell poles. Simu-
lation models predicted a widespread, diffuse pattern of supra-
electroporation [30,38], which however has not been demonstrated
by direct measurements.

To compare the localization of electroporation by msEP and nsEP,
we chose larger cells (50–100 μm in diameter) which would allow for
better spatial resolution of Ca2+ gradients by fluorescent imaging. The
non-electroporative mechanisms of Ca2+ response to electric stimuli
were blocked with the drug cocktail described above. Electroporated
areas of the cell membrane were recognized by the route of Ca2+

entry as monitored by a time-lapse imaging. While we did not block

non-selective cation channels, they are not voltage-gated and were
not expected to be activated directly by msEP or nsEP.

The experiments revealed a striking difference in the spatial patterns
of nsEP andmsEP effects (Figs. 6 and 7).With 4-mspulses, Ca2+ entered
from the poles (more from the anodic pole) and diffused to the center of
the cell for seconds after the pulse. In Fig. 7, this pattern of entry is
manifested by the reduced and delayed Ca2+ increase in the center of
the cell compared to the electrode-facing poles. The early Ca2+ entry
at the anodic pole could be assisted by electrophoresis during the
pulse, which explains a brief dip in the course of Ca2+ increase. In
contrast to msEP, 10-ns pulses caused a gradual, slow increase of Ca2+

in the entire volume of the cell, without any specific localization and

A B

Fig. 5. Propidium uptake triggered by nsEP andmsEP at intensities equipotent for electroporative Ca2+ uptake. A: Propidium uptake was studied at 3 different msEP and nsEP intensities,
which were chosen to cause the same Ca2+ entry by electroporation (see text and Fig. 4). The uptake of propidium (as measured 9 min after the stimulus) from nsEP was reduced
significantly (p b 0.01) while Ca2+ uptake was the same. Mean values ± s.e for 5–8 experiments. Labels indicate the electric field applied, kV/cm. B: sample traces of propidium uptake
caused by nsEP and msEP at the indicated E-field. Vertical dotted line marks the application of the pulse.
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+
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+
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Fig. 6. The difference between conventional electroporation (top) and supra-electroporation (bottom) is visualized by different patterns of Ca2+ entry. Cardiomyocytes were incubated
with the same inhibitors as in Fig. 4. Cells were permeabilized to Ca2+ by a single 4-ms pulse (top) or a 10-ns pulse (bottom). Shown are representative images at indicated time points
after the electric shock. Ca2+ concentration is coded by intensity-modulated pseudocolor. The positions of anode and cathode stimulating electrodes are designated in the first panel by
“+” and “−”. Note Ca2+entry from the cell poles after 4-ms pulse, and entry without apparent localization after the 10-ns pulse. See text for more details. Drawings above and below the
cell images show a vertical cross-section of a cell in the plane between two electrodes; arrows point to sites of Ca2+ entry after msEP and nsEP, respectively.
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showingonlymodest differences between the center and the poles. This
distinction between msEP and nsEP was consistently observed in all
treated cells and within a wide range of amplitudes of the stimuli
(Fig. 7). To our knowledge, this is the first experimental observation of
non-localized “supra-electroporation” pattern after nsEP treatment.

4. Conclusions

At near-threshold intensities, both nsEP and msEP triggered Ca2+

transients in rat embryonic cardiomyocytes, apparently by activating
voltage-gated channels without electroporation. The electroporation
threshold for both stimuli was at just 150–230% of the stimulation
threshold (200–500% when comparing the dose). Such similarity was
unexpected from stimuli which differ by almost six orders ofmagnitude
in duration. At the same time, we experimentally established two
distinguishing features of electroporation by nsEP, namely the reduced
formation of larger-size pores and non-polar, diffuse distribution of
electropores over the cell body. These distinguishing features may be
beneficial for medical applications such as defibrillation (by reducing
the harmful side effects from electroporation and by enabling more
uniform tissue penetration) and warrant more focused studies at tissue
and organ levels.
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