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ABSTRACT 

DYNAMIC SOIL-STRUCTURE RESPONSE AND FAILURE OF WOOD UTILITY 

POLES UNDER HURRICANE-FORCE WIND AND NON-LINEAR CABLE LOADS 

Ramani Ayakannu, MS, PE 

Old Dominion University, 2024 

Director: Dr. Zia Razzaq 

 

This dissertation presents the outcome of a study of the dynamic soil-structure 

interaction response of tapered wood utility poles embedded in various foundation soils 

subject to quasi-static and dynamic wind loads. The study includes the effects of nonlinear 

soil behavior with varying quantities of moisture and nonlinear cable tension loads on a 

class H1 wood pole. The natural frequency response of the pole is determined using a finite 

element formulation. The dynamic response in the presence of wind-induced forcing 

function is studied using a SAP2000 finite element scheme with wind speeds up to 220 

mph. The natural frequency of the wood pole increased nine-fold with a tuned mass damper 

with mass and stiffness ratios of 0.15 and 10, respectively. Wood pole breakage occurs 

when the wind speed is more than 160 mph in the plane of the cable for clayey soils if the 

embedment depth is more than 5.5 ft. pole breakage does not occur for wind speeds up to 

120 mph in sandy soils. The theoretical models formulated predict the critical wind speeds 

and embedment depths beyond which catastrophic pole rupture and excessive ground 

displacements occur. Results from a one-fifth scale experimental fixed base test model of 

a class H1 pole provided the natural frequency and damping ratio. The experimental results 

agreed well with those predicted using the finite element analysis. The current wood pole 

design standards based on static analysis do not consider the dynamic response of the poles, 

causing pole failures and service disruptions. 
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NOMENCLATURE 

a                      Acceleration 

A(x)                Cross Sectional Area 

AE, Z                 Elastic Modulus of Soil 

ASCE              American Society Of Civil Engineers 

C                       Element or System Damping Matrix 

DSSIR              Dynamic Soil Structure Interaction Response 

F                       Element of System Forcing Function Matrix 

f(t)                   Forcing Function 

FEA                  Finite Element Analysis 

FRP                   Fiber Reinforced Poly 

g                        Gravitational Constant 

h                        Finite Element length or size 

I(x)                    Cross Sectional  Area 

K                        Element or System Stiffness Matrix 

m(x)                  Mass Per Unit Length 

mph                    Miles Per Hour 

pcf                      Pounds Per Cubic Feet 

R                        Radius of Curvature 

s, S                      Length of Cable 

T                         Cable Tension 

T0                      Initial Cable Tension 

TMD                  Tuned Mass Damper 
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v                         Velocity 

w                        Weight Of Cable 

α                         Mass Proportional Constant 

β                         Stiffness Proportional Constant 

γsoil                     Density Of Soil 

γwood                  Density Of Wood Species 

ξ                          Damping Co-efficient for element or System 

ϕ                         Curvature of a given function 

ω                         Circular Frequency of Element or System 
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CHAPTER I 

1 INTRODUCTION 

1.1 Background 

Strong winds and hurricanes in various parts of the world have resulted in the 

collapse of utility poles, disrupting electrical and communication distribution systems and 

creating hazardous conditions for the public. This study is prompted by the severe damages 

observed to utility structures, mainly wood utility poles, during Hurricane Maria in Puerto 

Rico on September 19, 2017, and Hurricane Katrina that hit New Orleans in 2005. The 

death toll due to Hurricane Maria and Katrina was estimated at 3000, and 1200 deaths, 

respectively. 

The damage to the utilities resulted in several weeks of electricity service 

interruptions. There has been a renewed interest in studying the failure of utility structures 

due to hurricane-force winds and water damage and improving on the current design 

standards and codes to minimize these failures. The failure of wood utility poles is more 

common compared to steel and concrete poles. 

To capture the predicted soil-structure interaction dynamic response of the pole, a 

SAP2000 dynamic finite element model is created. The foundation soil stiffness is 

characterized using a series of ‘soil springs’ below the ground level with damping. The 

properties of the soil springs vary with the properties of foundation soils and depths. Three 

types of foundation soils are considered: sandy, clayey, and granite (rock).  
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The experimental and SAP2000 results are validated compared to the results from 

a MATLAB code.  

1.2 Literature Review 

Much research has been conducted to understand better the behavior of poles 

embedded in soil and subject to wind loading. Some of the relevant research is listed in this 

section. 

Wood pole design has been evolving over the last 80 years. Brent et al. [1] studied 

this evolution in the design philosophy in their journal publication “Are wood poles getting 

weaker?”. This paper follows the evolution of wood pole design over the last 80 years, and 

an example is used to demonstrate how the relative safety factor has increased. A brief 

review of the changes in the National Electrical Safety Code [2]  strength requirements 

from 1927 to 2007 shows how little it has changed. Technological advances in calculators, 

computers, and computer software make it possible to analyze complex problems. Once 

simplified to facilitate computation, equations are expanded to include previously ignored 

components. However, the NESC has yet to adopt and incorporate these changes, resulting 

in more conservative designs. 

Utility poles are made of other materials like Fiber-Reinforced Polymer (FRP), 

steel, or concrete [3-5]. The earliest FRP poles were manufactured and installed in 1954 by 

Gar Wood Industries [6]. The advantages and disadvantages of steel poles were studied by 

B. Lacoursiere [7]. In the publication “Steel Utility Poles: Advantages and Disadvantages,” 

Lacoursiere demonstrated that steel poles have more predictable behavior and effectively 

withstand design forces.  
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Utility poles are typically subjected to Wind, cables, and ground motion lateral 

loads. However, the buckling strength is an important mechanical property. This was 

investigated by A. B. Peabody and J.W.Wekezer [8] in the journal “Buckling strength of 

wood poles using Finite Element.” The Eigen values were solved for various geometric 

and boundary conditions. It was found that there was good agreement with Euler’s formula. 

An essential dynamic property of wood poles is the damping ratio. Farhang 

Ostadan, Nan Deng, and Jose M. Roesset [9] described the method of estimating the 

damping rations in their publication “Estimating Total System Damping for Soil-Structure 

Interaction Systems.” The damping ratio is a complex interplay of materials damping and 

radiation damping in a dynamic solution. Using three methods, they studied the damping 

ratios for 5%, 10%, 15%, and 20%. The three methods used were half-bandwidth, the 

inverse of the peak, and the damping ratio method. It was found that the response from an 

impulse load applied to the Soil Structure Interaction (SSI) model yielded an accurate 

estimate of the system damping. 

The Substation design guide standard, ASCE 113, provides guidelines for the 

design of structures within an electric substation. A guide to using the standard was 

provided by Leon Kemper [10] titled “ASCE Guide for Design of Substation Structures”. 

In this article, the author outlines the current recommended practices used by engineers in 

the USA. However, dynamic soil structure interaction response (DSSIR) is only referenced 

as optional but not mandated.  

ASCE Manuals and Reports on Engineering Practice No. 141, titled “Wood Pole 

Structures for Electrical Transmission Line” [11], is the prevailing recommended practice 
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design guide for designing wood utility poles. This manual provides recommended design 

parameters that engineers are currently using. Static analysis is extensively promoted with 

design tables and recommended allowable stress values. Soil Structure Interaction is 

referenced as an advanced method of analysis and accepted as an alternate method of 

analysis and design. Other important design parameters, such as the influence of the 

moisture content on the soil spring constants, are not adequately emphasized. 

The National Electric Safety Code [7] [12] provides guidelines for the safety design 

and supporting structures of all electrical equipment. The code covers public and private 

sites, including homes, buildings and structures, power generation, and industrial 

substations. Public safety through design was the primary goal of this code.  

The age of the wood specimen affects its physical and mechanical properties. 

Shafieezadeh et al. [13] studied the effect of age on the fragility curves of utility poles that 

rely on age-dependent probabilistic capacity models and wind-induced demand models. 

This study shows that the decay process in wood may increase the fragility of the poles 

significantly and would be a significant component in the risk assessment of power grid 

and distribution networks against hurricanes and strong winds. 

The seismic response of wood utility poles in seismically active areas needs further 

studies and research. Siringoringo et al. [14] studied the seismic performance of light poles 

on elevated highway bridges. They studied the effect of the bridge’s natural frequency on 

the amplification of the existing light poles. The study found that response amplification 

occurred when the bridge’s natural frequency was within the light pole’s fundamental 

frequency. 
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Poles are classified based on the ANSI 05.1-2022 standard. Additional information on the 

poles shown is included in Appendix 6.7. The tables in Appendix 6.7  have information 

on the physical dimensions, tip diameter, base diameter, estimated tip load, base bending 

moment, and embed depths. 

The North American Wood Pole Council is the governing body that provides 

guidelines for standardizing wood pole design. The recommended fiber strengths and 

Modulus of Elasticity are listed in Technical Bulletin No. 18-D-203 [15]. Wood Pole 

design considerations, procedures, and guidelines are provided in Technical Bulletin No. 

17-D-202 [16]. The recommended wood pole design methodology is a fundamental static 

analysis of the pole for wind and cable tensions. The Soil Structure Interaction (SS1) is 

generally not considered.   

A utility wood pole and soil interaction is a complex three-dimensional problem. 

The methodology to characterize the interaction between soil and an embedded pole titled 

Modelling Soil Behavior With Simple Springs, Part 1 and Part 2, is presented by Bohnhoff 

[17]. The method proposed by Bohnhoff is adopted to compute the soil stiffnesses. 

Vortex-induced vibration is a complex phenomenon that involves the interaction of 

wind turbulence and the structures. This phenomenon is observed in cantilever-type 

structures such as transmission poles and utility structures. Quarib [18] presented his 

findings from a three-phase dead-end structure study. The Strouhal and Reynolds numbers 

for fluid flow around a structural element are important parameters that will govern the 

resonance response of a cantilever-type structure. The critical velocity of the wind can be 

calculated based on the Strouhal number, the natural frequency of the structure, the 
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hydraulic diameter, and the Reynolds number. The study assumed that the poles are fixed 

at the base and does not include the effect of the soil structure interaction on the dynamic 

response. 

Vortex-induced vibration occurs in a wide range of transmission line structures. 

Daryl Boggs [19] in his publication titled “ Challenges in Design and Mitigation of Wind-

induced Vibration for Slender Steel Pole Transmission Structures,” studied several types 

of electrical transmission line structures and considered several types of mitigation 

methods, including increasing the stiffness, filling the inside of the steel structures with 

sand, or weak slurry, the addition of tuned mass dampers, and spoiling of vortices using 

vanes or helical strakes. Daryl Boggs also emphasized the need to consider fatigue and 

dynamic analysis due to the many cyclic loads an electric transmission line structure is 

subjected to. 

Various types of foundations are provided for electric transmission line structures. 

These can be direct embedment of the structures, as in the care of cantilever poles, or 

conventional foundations such as spread footings or piles foundations. Kulhawy presented 

the various types of foundations used for electric transmission line structures, and Hirany 

in the publication titles “Foundation Engineering for Transmission Line Structures” [20].  

A general discussion of the design of the foundations is outlined in this presentation. The 

foundation loads from the electric transmission line structure is obtained by analyzing the 

structure with a fixed a fixed base. The reactions at the base are used to design the 

appropriate foundations. 
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The Modulus of Elasticity of wood is an import factor that affects the performance 

of the wood utility poles. There are many wood species used as wood utility poles. The 

North American Wood Pole Council [21] published a guideline for the mean values of the 

modulus of elasticity of various wood species based on numerous research and 

experimental data. The modulus of elasticity recommended in [21] are mean values and 

hence have a an upper and lower bound values.  

A guideline on the loading of an electric transmission line structure is given in the 

“Guidelines for Electrical Transmission Line Structure” [22]. This standard provides 

general information on the loads acting on an electric transmission line structure. Various 

types of loads, such as wind, cable, ice, and earthquake, are presented in the standard. 

Appendix G of this standard provides information on force coefficients on pole structures 

based on wind tunnel test data.  

Much research has been done to predict the embedment depth of the poles in 

various types of soil. Many engineers use the “10% of length of pole + 2 feet” as a general 

practice for sandy and clayey soils. This method is often called ROT, that is, Rule of 

Thumb. An improved method is proposed by Gajan and McNames [23] in their publication 

titled “Improved Design of Embedment Depths for Transmission Pole Foundations Subject 

to Lateral Loading.” Broms and Flemming et al. suggested the passive earth pressure 

method to compute the embedment depths for classes H1, H2, and H3. They considered 

short and long piles in the study. Short piles are those with a ratio embedment depth to 

diameter greater than 10. The proposed methods are compared with PLS-Caisson software 

and the ROT method. The study found that the embedment depths using the ROT method 
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overestimated the embedment depths by ± 60%. The improved method agreed well with 

PLS-Caisson software.  The lateral loads considered are static loads applied at the top of 

the pole. No dynamic loads were considered in this study.  

Based on the literature reviews, the proposed research has not previously been 

published in the literature. 

1.3 Problem Statement 

Presented herein is the study of the Dynamic Soil Structure Interaction Response 

(DSSIR) of Wood Utility Poles embedded in sandy, clayey soils and rock subjected to 

static and dynamic wind loads, including the effects of cables at the top of the pole. The 

dynamic response of the wood poles subject to time history wind loads applied to the poles 

at resonance frequencies is also studied. 

The test specimen's stiffness, Young’s Modulus (E), damping ratio, and natural 

frequencies are obtained experimentally. The test specimen's natural frequency is 

compared to the theoretically computed natural frequencies for validation. 

A 1/5th scale test pole of a class H1 wood utility pole is used for the 

experimentation. The test poles are 4ft 0in and 6ft 0 inch long. The top and bottom 

diameters of the class H1 are 8.7 inches and 14.1 inches, respectively. The test pole's scaled 

top and base diameters are approximately 1-1/2 and 2-1/2 inches, respectively.  
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1.3.1 Effect of Cable Force on Poles 

Cable elements at the top of the poles have the following effect on the response of 

the pole: 

• It reduces the natural frequencies of the Pole-Cable system. The reduction in natural 

frequencies is due to the non-linear load-displacement characteristics and mass of 

the cable. 

• The displacements at the top of the pole in the cable forces' positive and negative 

directions are different and non-linear. The cable tension increases with 

displacement along the negative direction and decreases with displacements in the 

positive direction. An example of the non-linear behavior of the cable is shown in 

Figure 2-5 

A sketch of a wood utility pole with a cable is shown in Figure 1-1, and Figure 1-2. 

The nodes and nodal springs for pole embedment in the soil are shown in Figure 1-3. 
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Figure 1-1. Class H1 Wood Pole with Cable 
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Figure 1-2. Enlarged View of Class H1 Wood Utility Pole 
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Figure 1-3. Nodes and Nodal Spring Definitions for Class H1 Wood Pole 
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A nodal spacing of 6 inches was selected to capture the soil behavior. The nodal 

springs represent the load-displacement characteristics of the soil in the X-, Y-, and Z- 

directions at a specified depth. The X-direction is the axis along the length of the spring 

element. The load-displacement characteristics can be linear or non-linear. Linear soil 

springs are used to study the dynamic response of the test and class H1 poles. Prediction 

of pole failures based on the ground and pole tip displacements are studied using non-linear 

springs. 

1.3.2 Soil Structure Interaction 

Soil Structure Interaction, or SSI, is the phenomenon by which a structure's 

behavior is influenced by the nature of the soil in which the structure is embedded. Soil 

Structure Interaction has two primary effects on the response of a structural system, 

namely: 

• The structure’s dynamic response is altered. Since the stiffness of the soil is 

generally smaller than the structure, the natural frequency reduces. The dynamic 

responses of wood poles with and without cables in various types of soils (Sandy, 

Clayey, and rock) are the primary focus of this study. 

• There is an increase in the system damping from the effects of the soil. The impact 

of the soil damping is not part of this study. 

1.3.3 Effect of Moisture on the Soil Stiffness 

Moisture in sandy and clayey soils reduces the soil's stiffness properties. Generally, 

rock does not absorb water; hence, its stiffness is unaltered. This study used 15%, 30%, 
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50%, and 75% soil stiffness reductions to study the dynamic responses. Site-specific 

geotechnical investigations will provide in-situ soil parameters to calculate soil stiffness 

and stiffness reduction rates due to moisture. Sandy and clayey soils with high seasonable 

water tables or rain variations will see significant variations in soil stiffness. Rock generally 

does not absorb moisture; hence, stiffness reductions are not considered in this study. 

The main components of the proposed research involve: 

1. Test frame to support the test poles, as shown in Error! Reference source not 

found..   

a. Accelerometers are mounted at the top of the test poles. 

2. Accelerometers at the top of the pole record the data on a Personal Computer. The 

accelerations at the top of the test poles are measured as described in section 2.1. 

3. Compute the test poles' dynamic properties (damping ratio, stiffness, and natural 

frequencies) from the measured tests.  

4. Compute the test specimen's Young’s Modulus (E) value by conducting a load 

displacement experiment.  

5. Develop a Finite Element model for the mass, stiffness matrix, damping, forcing 

function, and soil springs matrices by solving the Fourth Order differential equation 

of motion, including the soil's effect.  

6. Determine the theoretical dynamic properties of the test pole using: 

a. SAP2000 Structural Analysis Software. SAP2000 uses the lumped mass 

approach. 

b. MATLAB Code using consistent mass and stiffness matrices. 
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7. Study the experimentally and theoretically obtained dynamic properties of the test 

poles. 

8. Study the theoretical dynamic response of a class H1 pole embedded in clayey, 

sandy soils and rock at various depths, subject to static and dynamic wind loads, 

including cable tension effects. The cable used in the study is a ½” diameter, 100 ft 

long cable attached to the top of the poles and pinned at the far end. 

9. Study the dynamic response of the class H1 pole at resonance conditions. 

10. Study the effect of a Tuned Mass Damper mounted at the top of the class H1 pole. 
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Figure 1-4. Test Pole Dimensions 
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1.4 Objective and Scope 

The primary objective of the proposed study is to investigate the Dynamic Soil 

Structure Interaction Response (DSSIR) of wood utility poles embedded in sandy and 

clayey soils and rock subject to wind loads in the presence of cable forces at the top of the 

pole. The natural frequency response of the poles embedded in soil are then compared with 

a fixed base. The dynamic response at resonance conditions is also investigated. The static 

and dynamic response of the class H1 pole are studied. The effect of the non-linear soil 

springs is considered to predict pole failure criteria. 

The test results from the test poles are compared with theoretical results using 

SAP2000 and MATLAB code. The study will also highlight the potential errors or 

discrepancies in the wood utility pole analysis and design currently adopted by engineers. 

1.5 Assumptions and Conditions 

1. The displacements are in the X- or Y- and Z-axis only. 

2. The displacements are measured at the top of the pole for the test poles. 

3. For the theoretical study, wind exposure category D is chosen to simulate exposure to 

coastal wind. 

4. The wind loads are computed based on ASCE 7-16. 

 

  



34 

 

CHAPTER II 

2 EXPERIMENTAL STUDY 

2.1 Experimental Setup 

This section discusses the experimental setup to determine the natural frequency 

and damping ratios of the test specimen. Figure 6-1 and Figure 6-2 show drawings of the 

steel test frame, and Figure 6-3 is a picture of the test frame. The test frame comprises 2 

1/2” x 2-1/2” x 3/16” steel angles and bolted connections using ½” diameter bolts. 

2.2 Test Scheme 

The test poles were tested to determine the natural frequency, damping ratio, and 

Young’s Modulus of the wood species. The span of the cable element used was 

approximately 25’ 0” and ¼” in diameter for cable load-displacement characteristics.   

2.3 Test Specimen Material Properties 

This test was performed to document the physical dimensions and weights of the 

test specimen. These measured values will be input parameters for further calculations and 

analysis. The measured physical properties of the test specimens are shown in Table 2-1 

and Table 2-2. The properties of the cable used in this test program are shown in Table 2-3. 

2.3.1 Dynamic Response Pull Test 

This test was performed to determine the dynamic response of the test pole for 

various initial displacements. The initial displacement was gradually increased until the 

pole's failure or the experimental setup's limits were reached. 
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2.3.2 Dynamic Response Pull Test No. 1 

The 6’ 0” test pole (Test Specimen TP1) was cut to 4’ 0” at the base to fit in the 

frame. The test pole is shown in Figure 6-5. Movement at the base was observed during 

the test, but the test was continued, noting the base connection movement. The test was 

stopped after the test specimen was displaced to 3.39 inches. 

This test No. 1 (Test Specimen TP1) was then repeated since significant movement 

at the base was observed. The base assembly was modified to ensure a fixed base condition. 

The wireless accelerometer was securely attached to the top of the pole and connected to 

the receiver and computer. The pole was tested for displacements up to 4.93 inches; 

however, the test specimen did not exhibit any signs of cracks or fractures. 

2.3.3 Dynamic Response Pull Test No.2. 

Test Specimen TP1 used in test No. 1, was reused in this test No. 2. The wireless 

accelerometer was securely installed on the top of the pole and connected to the receiver 

and computer. The specimen was displaced up to 7.25 inches, but there was no sign of 

cracks or fractures. 

2.3.4 Dynamic Response Pull Test No. 3 

The test specimen, TP2, was installed in the frame with a new connection detail 

shown in Figure 2-1 below: 
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The bottom of the pole was in contact with the floor and secured against the base 

of the steel frames to prevent any movements. The wireless accelerometer was securely 

attached to the top of the test pole and connected to the receiver and computer to record 

the accelerations. The pole failed at a displacement of 4.98 inches. 

Figure 2-1. Test No. 3 and Fixed Base Connection Detail 
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2.3.5 Cable Pull Test 

This test was conducted to study the load-displacement characteristics of the cable. 

The primary goal is to understand the non-linear nature of the cable load-displacement 

behavior, and agreement with the theoretical values. 

2.3.6 Properties of Test Pole 

The weight and dimensions of the pole were measured using a digital gage. The 

results of the measured dimensions and weight are shown in Table 2-1 below. 

 

Test Pole 
Number 

Top 
Diameter 

[in] 

Bottom 
Diameter 

[in]  

Length 
[ft] 

Measured 
Weight [lbf] 

Volume 
[ft3] 

Unit Weight 
[pcf] 

TP1 1.463 1.95 4.00 2.190 0.064 34.46 
TP2 1.497 2.37 6.02 3.890 0.122 31.86 
TP3 1.460 2.37 6.00 3.630 0.120 30.25 
TP4 1.493 2.39 6.03 3.980 0.124 32.09 

Average  1.48   2.37      32.16 

 

The average tip diameter of the test poles is 1.48 inches. The average base diameter 

for the 6’ 0” test poles is 2.37 inches. The average unit weight of the wood specimen used 

is 32.16 pounds per cubic foot (pcf). 

 

 

 

Table 2-1: Measured Pole Dimensions and Weights 
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Test Pole 
Number 

Tip Area 
[in2] 

Base Area 
[in2] 

Moment 
of Inertia 
at Tip [in4] 

Moment of 
Inertia at 
Base [in4] 

Section 
Modulus 

at Tip [in3] 

Section 
Modulus 
at [in3] 

TP1 1.682 2.997 0.225 0.715 0.308 0.732 
TP2 1.759 4.412 0.246 1.549 0.329 1.307 
TP3 1.674 4.424 0.223 1.557 0.306 1.312 
TP4 1.751 4.486 0.244 1.602 0.327 1.340 

 

The calculated section properties of the test specimens, TP1, TP2, TP3, and TP4 

are shown Table 2-2. These computed values will be used to determine the dynamic 

responses of the test specimen.  

2.4 Test Specimen Wood Species 

The test poles are made from the Western Red Cedar species. [Western Red Cedar]  

also called western arborvitae, giant arborvitae, or Pacific red cedar, is an ornamental and 

timber evergreen conifer of the cypress family (Cupressaceae), native to the Pacific coast 

of North America. 

Western red cedars and shrubs and shrubs are pyramidal. The trees may grow up to 

60 meters (about 200 feet) tall and 6 meters in circumference. The cinnamon-red or 

brownish outer bark is relatively thin, fissured, and scaly, shredding in regular flakes, while 

the inner bark is fibrous. Short, horizontal, or slightly drooping branches bear dense 

branchlet systems in flattened sprays that appear bright green beneath. Pictures of these 

wood species are shown in Figure 6-11 and Figure 6-12. 

Table 2-2: Section Properties of Test Poles 

https://www.britannica.com/plant/cypress
https://www.britannica.com/plant/Cupressaceae
https://www.britannica.com/place/North-America
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2.5 Cable Tension Test 

Two (2) cable lengths of 27’ 7” and 31’ 9” were used to study the load-displacement 

characteristics of the cable. Table 2-3 shows cable spans and the measure weights. Cable 

tensions are computed based on the measured weights. 

 

  Length of Cable Weight of Cable 

S. No [ft] [in] Ft (decimal) 
Total Weight 

[lbf] 

Weight per 
linear feet 

[plf] 
1 27 7 27.583 3.24 0.117 
2 31 9 31.750 3.89 0.123 

 

Table 2-4 and Table 2-5 show the measured cable tensions for various longitudinal 

displacements. The plot of cable displacements vs cable tension is shown in Figure 2-2, 

Figure 2-3, and Figure 2-4. 

 

 

 

 

 

 

 

Table 2-3: Measured Weight of Cable 
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Test Cable Profile 1 

  

Span (ft) 
  

Displacement 
at support 

(in) 
sag (in) tension(lbs.) 

S. No ft in         

1 25 4.00 3.76 0.00 18.250 7.41 

2     3.70 -0.06 17.750 7.68 

3     3.38 -0.38 16.500 8.48 

4     3.00 -0.76 15.000 9.52 

5     2.51 -1.25 12.500 12.16 

6     2.44 -1.32 11.875 13.11 
7     2.20 -1.56 10.375 16.24 
8     1.86 -1.90 8.175 24.77 

              

9 24 10.50 1.12 0.00 30.000 4.27 

10     1.34 0.22 30.500 4.26 

11     1.65 0.53 30.750 4.26 

12     2.05 0.93 31.750 4.06 

13     2.88 1.76 34.750 3.83 

14     3.91 2.79 35.375 3.68 

 

 

Table 2-4: Measured Cable Tension and Displacements for Cable Profile 1 
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Test Cable Profile 2 

  
Span (ft.)   

Displacement 

at support (in) 
Sag (in) Tension (lbf) 

S. No ft in         

1 31 7.50 1.90 0.00 12.500 19.92 

2     2.21 0.22 14.250 15.97 

3     2.62 0.53 16.625 13.47 

4     2.88 0.94 17.750 11.50 

5     3.27 1.20 20.250 10.69 

6     3.88 1.59 22.250 9.48 

 

 

Figure 2-4. Graph of Cable Tension Vs. Displacement (-x) for 31' 7 1/2" Cable Span 
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Table 2-5: Measured Cable Tension and Displacement for Cable Profile 2 
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From Figure 2-2, Figure 2-3, and Figure 2-4, it can be concluded that there is a 

reasonably good agreement, within experimental errors, between the experimentally 

measured and theoretical load-displacement curves. 

2.6 Theoretical Load Displacement Curve of 7mm (1/4”) Diameter Cable. 

The theoretical load-displacement curve for a 7mm cable is shown in Figure 2-5. 

The graph plotted for a positive displacement of about 3.28 inches and a negative 

displacement of 1.12”. The corresponding cable force is 9.96 lbs. and 99.57 lbs., 

respectively. The non-linear nature of the cable profile is evident. 

 

Figure 2-5. Theoretical Load Displacement Curve for 7mm Cable 
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2.7 Determination of Young’s Modulus of Wood Specimen 

A simple static pull test was conducted to estimate the Young’s Modulus of the 

wood test specimen. The applied load and corresponding displacement values are shown 

in Table 2-6. In the table, the experimental and calibrated are shown.  

 

 

No. 
Displacement 

[in] 
Load 
[lbf] 

Experimental 
Young's 

Modulus [ksi] 

Calibrated 
Applied 

Load [lbf] 

Calibrated 
Young's 
Modulus 

[ksi] 

Variation 

1 0.72 26.77 3550 26.33 3435 3% 

2 0.82 29.28 3450 30.14 3435 0% 

3 0.83 30.91 3535 30.52 3435 3% 

4 0.94 34.89 3535 34.71 3435 3% 

5 1.11 41.06 3535 41.19 3435 3% 

6 1.19 45.23 3590 44.24 3435 4% 

7 1.25 46.64 3590 46.53 3435 4% 

8 1.41 49.98 3390 52.62 3435 -1% 

9 1.47 52.99 3450 54.91 3435 0% 

10 1.63 67.67 3950 61.00 3435 13% 

11 1.88 68.02 3450 70.53 3435 0% 

 

A plot of the experimental load-displacement curve is shown in Error! Reference 

source not found.. A linear interpolation curve is also inserted in the figure to predict the 

Table 2-6: Static Load-Displacement Test Data 
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trend of the experimental data. The load-displacement curve was plotted using only valid 

data. The load was then calibrated based on the equation of the trend curve.  

 

 

Figure 2-6. Load Displacement for Test Pole 
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experimentally obtained Young’s modulus, the stiffness of the test pole is computed. The 

computed stiffness of the test pole is 0.0377 kip/in (37.7 lbs./in). 

2.8 Static Pull Test Number 1 

The static pull test is conducted to calculate the test specimen's natural frequencies 

and damping ratios.  

 

Figure 2-7. Fixed Base Condition -Option 1 Base Connection 
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The computed dynamic properties are shown in Table 2-7. Figure 2-7 shows the 

base connection. The base connection had significant movements during the test. The base 

connection movement raised concerns about the validity of the test results. The test pole 

was secured to the base plate assembly to ensure no movement in the base during the test, 

and to simulate a fixed base. The natural frequency was calculated using a Fast Fourier 

Transform (FFT) in MATLAB code for each test data. The damping ratio was calculated 

by curve fitting a theoretical curve over the experimental data. 

 

S. No 
Period, 

[sec] 

Natural 
Frequency 

[Hz] 

Damping 
Ratio [%] 

1 0.050 20.125 1.804 
2 0.043 23.295 1.133 
3 0.048 20.825 2.678 
4 0.050 19.973 2.154 
5 0.046 21.512 1.214 
6 0.046 21.540 8.226 

Average 0.047 21.212 2.868 

 

This test's mean natural period and frequency were 0.047s and 21.212Hz, 

respectively. The mean estimated damping ratio was 2.868%. 

2.9 Static Pull Test Number 2 

The previous Pull Test Number 1 was repeated because of concerns of the base 

movements during the test. The base connection was secured properly with additional 

Table 2-7: Dynamic Properties for Test No. 1 
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shims to prevent movement., and the test repeated. The natural frequencies, periods, and 

damping ratios are computed from the acceleration records. The calculated periods, natural 

frequencies, and damping ratios are shown in Table 2-8. 

 

S. No 
Period, 

[sec] 

Natural 
Frequency 

[Hz] 

Damping 
Ratio 
[%] 

1 0.047 21.294 1.106 

2 0.046 21.514 0.517 

3 0.044 22.899 1.156 

4 0.046 21.645 0.588 

Mean 0.046 21.614 1.021 

 

The mean natural period and frequency were estimated at 0.046s and 21.613Hz, 

respectively. The mean calculated damping ratio was 1.021% for this 2nd test. 

2.10 Static Pull Test Number 3 

Test pole 2 (TSP 2) was used for this test. The properties of the test pole, TSP 2, 

are shown in Table 2-1. The accelerations were recorded for various initial displacements. 

A MATLAB code was developed to analysis the data for Periods, Natural frequencies, and 

damping ratios. The result of the analysis is summarized in Table 2-9. 

 

 

 

Table 2-8: Dynamic Properties for Test No. 2 
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Test No. 
Period, 

[sec] 

Natural 
Frequency 

[Hz] 

Damping 
Ratio [%] 

1 0.048 20.736 1.288 
2 0.056 17.861 0.731 
3 0.050 20.200 0.796 
4 0.042 23.877 1.041 
5 0.048 20.842 1.577 
6 0.046 21.646 1.090 
7 0.046 21.779 0.975 
8 0.044 22.550 0.594 
9 0.044 22.709 1.058 

Average 0.047 21.355 1.017 

 

The average natural period and frequency is 0.047s and 21.355 Hz. The estimated 

average damping ratio was 1.01% for this 3rd test. 

2.11 Bending Stress of Test Specimen 

A static pull test was done to determine the bending stress, and stiffness of the test 

specimen. The test specimen broke when the displacement at the top of the pole reached 

4.98 inches. The failure load corresponding to failure displacement and test specimen 

bending stiffness is 0.188 kip (187.8 lbs.). The bending stress at failure was calculated to 

be 2.214 ksi for the test specimen. 

 

 

Table 2-9: Dynamic Properties of Test Pole for Experiment Number 3 
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CHAPTER III 

3 THEORETICAL ANALYSIS 

When a flexible chain or rope is loosely hung between two fixed points, it hangs in 

a curve that looks a little like a parabola, but in fact is not quite a parabola; it is a curve 

called a catenary, which is a word derived from the Latin catena, a chain. There are many 

types of electric utility cables such as ABC, All Aluminum Conductor, All Aluminum 

Alloy Conductor, Aluminum Conductor Steel-Reinforced etc. Electric utility cables 

typically have a code word named after birds, like Turkey, Swan, Swanate, Sparroe, to 

name a few. Each code word has a specific sizes kcmil or AWG. kcmil stands for thousands 

of circular mils. AWG stands for American Wire Gauge. Each cable code word has a 

specific wire size, weight, rated strength, ampacity and electric resistance. 

3.1 Geometric Properties of Cable Profile 

This section presents the theoretical derivation of the mathematical equations that 

describe the behavior of cable elements. 

Utility poles form the backbone of electrical infrastructure in the U.S. These utility 

poles support overhead power distribution lines to distribute power throughout the country. 

Power lines are typically attached and located at the top of the pole. They carry the electric 

power and deliver high-voltage electricity from a nearby substation to the transformer, 

which then lowers the voltage for everyday use by customers. 
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Figure 3-1. Cable Profile and Notations 

 

Figure 3-2. Cable Supported at Unequal Elevations. 
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Utility poles are also used to support communication cables. In many situations, utility 

poles support both electric power, and communication cables. Communication cables are 

often lighter, and smaller in diameter, hence the cable tension from these cables is much 

smaller than electric cables. 

 

Figure 3-3. Segment of Cable 

 

Figure 3-4. Static Equilibrium of Forces 
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Figure 3-1, Figure 3-2, Figure 3-3, and Figure 3-4 show a cable profile with the 

relevant notations and dimensions for analyzing a cable element. 

L or l = the distance from the low point of a cable to support along the X-axis. 

T = tension in cable at any given point 

T0 = tension in cable at the low point of the curve 

w = weight of cable per unit length 

S = length of cable 

The rate of change of angle of direction from points m to n is given by  
𝛿𝑠

𝛿𝜃
 

Takings limits 

𝑙𝑖𝑚
𝛿𝑠→𝑜

𝛿𝜃

𝛿𝑠
=

ⅆ𝜃

ⅆ𝑠
 

 (1) 

where, 
ⅆ𝜃

ⅆ𝑠
 is the curvature if a curve at a given point. 

Also, the arc length, ds, is given by 

ⅆ𝑠 = 𝑅 ⋅ ⅆ𝜃 (2) 

Rearranging equation (2) 

ⅆ𝜃

ⅆ𝑠
=

1

𝑅
 

(3) 

Where R is the radius of curvature 
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From Figure 3-3, 

ⅆ𝑦

ⅆ𝑥
= tan(𝜃) 

(4) 

Differentiating with respect to s 

ⅆ

ⅆ𝑠
(
ⅆ𝑦

ⅆ𝑥
) =

ⅆ

ⅆ𝑥
tan(𝜃) 

(5) 

Equation (5) can be rewritten as follows 

ⅆ

ⅆ𝑥
(
ⅆ𝑦

ⅆ𝑥
)
ⅆ𝑥

ⅆ𝑠
=

ⅆ

ⅆ𝜃
tan(𝜃)

ⅆ

ⅆ𝑠
𝜃 

(6) 

Equation (6) reduces to 

ⅆ2

ⅆ𝑥2 𝑦. cos𝜃 = 𝑠𝑒𝑐2(𝜃).
1

𝑅
 (7) 

Rearranging equation (7) 

ⅆ2

ⅆ𝑥2
𝑦. cos(𝜃) =

𝑠𝑒𝑐2(𝜃)

cos(𝜃)
.
1

𝑅
 

(8) 

ⅆ2

ⅆ𝑥2
𝑦. cos(𝜃) = sec3 𝜃 .

1

𝑅
 

(9) 

From trigonometric identity, 

sec2 𝜃 = 1 + tan2 𝜃  (10) 

Substituting equation (10) into Equation (9) 
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ⅆ2

ⅆ𝑥2
𝑦 = (1 + tan2 𝜃)

3
2.

1

𝑅
 

(11) 

Substituting equation (4) into Equation (11) 

ⅆ2

ⅆ𝑥2
𝑦 = (1 + (

ⅆ𝑦

ⅆ𝑥

2

))
3
2.

1

𝑅
  

(12) 

(12) to get the equation for curvature, R 

𝑅 =

(1 + ((
ⅆ𝑦
ⅆ𝑥

)
2

))
3
2

ⅆ2

ⅆ𝑥2 𝑦
 

(13) 

Rearranging equation (12), the equation for the curvature of a curve is obtained 

𝜙 =
𝑑2

𝑑𝑥2𝑦

(1+(
𝑑𝑦

𝑑𝑥
)
2
)
3
2

 

(14) 

where 𝜙 is the curvature of a curve 

3.2 Length of a Cable Profile 

The arc length of a small segment of a curve is given by 

𝛿𝑠 = 𝑅. 𝛿𝜃 (15) 

Rearranging equation (15) 

1

𝑅
=

𝛿𝜃

𝛿𝑠
 

(16) 

Rearranging equation  
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Taking limits on both sides 

𝑙𝑖𝑚
𝛿𝑆→0

𝛿𝜃

𝛿𝑠
=

ⅆ𝜃

ⅆ𝑠
 

(17) 

Therefore,  

ⅆ𝜃

ⅆ𝑠
=

1

𝑅
 

(18) 

Form trigonometry, the following expressions, 

ⅆ𝑦

ⅆ𝑥
= tan 𝜃  

(19) 

ⅆ𝑦

ⅆ𝑠
= sin 𝜃  

(20) 

ⅆ𝑥

ⅆ𝑠
= cos𝜃  

(21) 

Now, using the Pythagorean theorem, 

(ⅆ𝑠)2 = (ⅆ𝑥)2 + (ⅆ𝑦)2 (22) 

Dividing equation (22) by (ⅆ𝑥)2 to get 

(
ⅆ𝑠

ⅆ𝑥
)

2

= (
ⅆ𝑥

ⅆ𝑥
)
2

+ (
ⅆ𝑦

ⅆ𝑥
)

2

 
(23) 

(
ⅆ𝑠

ⅆ𝑥
)

2

= 1 + (
ⅆ𝑦

ⅆ𝑥
)

2

 
(24) 
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ⅆ𝑠

ⅆ𝑥
= √(1 + (

ⅆ𝑦

ⅆ𝑥
)

2

)  

(25) 

 

ⅆ𝑠 = √(1 + (
ⅆ𝑦

ⅆ𝑥
)

2

) . ⅆ𝑥   
(26) 

Equation (26) is integrated to get the length of a curve between any two given points,  

∫ ⅆ𝑠
𝑙

0

= ∫ √(1 + (
ⅆ𝑦

ⅆ𝑥
)

2

) . ⅆ𝑥
𝑙

0

 

(27) 

 

𝑠 = ∫ √(1 + (
ⅆ𝑦

ⅆ𝑥
)

2

) . ⅆ𝑥
𝑙

0
 

(28) 

where s is the length of the curve. 

3.3 Cable Force 

Figure 3-1, and Figure 3-4, shows the forces in a segment of a cable, 

∑𝐹𝑥 = 0  (29) 

−𝑇0 + 𝑇. 𝑐𝑜𝑠(𝜃) = 0 (30) 

𝑇 =
𝑇0

𝑐𝑜𝑠(𝜃)
  

(31) 
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∑𝐹𝑦 = 0  (32) 

−𝑤𝑠 + 𝑇. 𝑠𝑖𝑛(𝜃) = 0 (33) 

𝑤𝑠 = 𝑇. 𝑠𝑖𝑛(𝜃) (34) 

𝑠 =
𝑇

𝑤
. 𝑠𝑖𝑛(𝜃) 

(35) 

Substituting equation (31) into equation (35) 

𝑠 =
𝑇0

𝑐𝑜𝑠(𝜃) . 𝑤
. 𝑠𝑖𝑛(𝜃) 

(36) 

𝑠 =
𝑇0

𝑤
. 𝑡𝑎𝑛(𝜃) 

(37) 

Substituting equation (19) into equation (37) 

𝑠 =
𝑇0

𝑤
.
ⅆ𝑦

ⅆ𝑥
 

(38) 

Let, 

𝑐 =
𝑇0

𝑤
 

(39) 

where c is a constant 

Therefore, equation (38) simplifies to: 

𝑠 = 𝑐.
ⅆ𝑦

ⅆ𝑥
 

(40) 

Differentiating equation (40) with respect to x to get 
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ⅆ𝑠

ⅆ𝑥
= 𝑐.

ⅆ

ⅆ𝑥
(
ⅆ𝑦

ⅆ𝑥
) 

(41) 

Let 𝜌 =
ⅆ𝑦

ⅆ𝑥
 

ⅆ𝑠

ⅆ𝑥
= 𝑐.

ⅆ

ⅆ𝑥
(𝜌) 

(42) 

Substituting equation (25) into equation (42) and rearranging to get 

√(1 + (𝜌)2) = 𝑐.
ⅆ

ⅆ𝑥
(𝜌) 

(43) 

Rearranging equation (43)  

ⅆ𝑥 =
𝑐

√(1 + (𝜌)2)
ⅆ𝜌 

(44) 

Integrating both sides of equation (44) 

∫ⅆ𝑥 = ∫
𝑐

√(1 + (𝜌)2)
ⅆ𝜌  

(45) 

𝑥 = 𝑐1 + 𝑐. sinh−1 𝜌 (46) 

where, 𝑐1 is a constant of integration. 

Applying boundary conditions to find 𝑐1 

𝑥 = 0 

ⅆ𝜌

ⅆ𝑦
= 0 
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𝑐1 + sinh−1(0) = 0 

Therefore, 

𝑐1 = 0 

Therefore, equation (46) reduces to: 

𝑥 = 𝑐. sinh−1 𝜌  (47) 

Rearranging Equation (47)  

𝑥

𝑐
= sinh−1 𝜌  (48) 

𝜌 = sinh
𝑥

𝑐
   (49) 

Substitute 𝜌 =
ⅆ𝑦

ⅆ𝑥
 into equation (49) to  get 

ⅆ𝑦

ⅆ𝑥
= sinh

𝑥

𝑐
   

(50) 

ⅆ𝑦 = sinh
𝑥

𝑐
  ⅆ𝑥 

(51) 

Integrating equation (51)  

∫ⅆ𝑦 = ∫sinh
𝑥

𝑐
  ⅆ𝑥 

(52) 

𝑦 = 𝑐. cosh (
𝑥

𝑐
)  (53) 

Equation (53) is the equation of a catenary or cable. 
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Substituting for 𝑐 =
𝑇0

𝑤
 

𝑦 =
𝑇0

𝑤
. cosh (

𝑥

𝑐
)  

(54) 

3.4 Length of Curve 

To obtain an expression for the length of a curve, we differentiate equation (53)  

ⅆ𝑦

ⅆ𝑥
=

ⅆ

ⅆ𝑥
(𝑐. cosh (

𝑥

𝑐
))                (55) 

ⅆ𝑦

ⅆ𝑥
= sinh (

𝑥

𝑐
)) 

(56) 

Substituting 
ⅆ𝑦

ⅆ𝑥
= sinh (

𝑥

𝑐
)) into equation (28) and integrating for half the length because 

of symmetry: 

𝑠 = ∫ √(1 + (sinh (
𝑥

𝑐
)

2

) . ⅆ𝑥
𝑙

0

 

(57) 

𝑠 = ∫ cosh (
𝑥

𝑐
)ⅆ𝑥

𝑙

0

 
(58) 

 

Equation (58) reduces to: 

𝑠 = 𝑐. sinh (
𝑙

𝑐
) 

(59) 

Substituting the expression for c into equation (59) to get, 
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𝑠 =
𝑇0

𝑤
. sinh(

𝑙

𝑇0

𝑤

) 

(60) 

The equation for the length of the curve is given by equation (61)  

𝑠 =
𝑇0

𝑤
. sinh (

𝑤. 𝑙

𝑇0
) 

(61) 

3.5 Sag in Cable 

In  Figure 3-1, the sag in a cable is defined as the vertical distance between the 

lowest point on the cable profile (or origin) and the support, 

𝑠𝑎𝑔 = 𝑦 − 𝑐  

(62) 

𝑠𝑎𝑔 = 𝑐. cosh (
𝑙

𝑐
) − 𝑐 

(63) 

𝑠𝑎𝑔 = 𝑐. cosh (
𝑙

𝑐
) − 𝑐 

 

(64) 

𝑠𝑎𝑔 = 𝑐. (cosh(
𝑙

𝑐
) − 1) 

 

(65) 

𝑠𝑎𝑔 =
𝑇0

𝑤
. (cosh(

𝑙

𝑇0

𝑤

) − 1) 

 

(66) 

𝑠𝑎𝑔 =
𝑇0

𝑤
. (cosh (

𝑤. 𝑙

𝑇0
) − 1) 

 

(67) 

A cable profile can also be expressed as an expansion series. 
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Equation (53) is shown below, can be expressed as an infinite series as shown in equation 

(69),  

𝑦 = 𝑐 ⋅ cosh (
𝑥

𝑐
) 

𝑦 = 𝑐. (1 +
1

2!
. (

𝑥

𝑐
)
2

+
1

4!
. (

𝑥

𝑐
)
4

+ ⋯
1

𝑛!
. (

𝑥

𝑐
)

𝑛

 
 

(68) 

For a cable profile 
𝑥

𝑐
 is typically less than 1, hence  

1

4!
. (

𝑥

𝑐
)

4

  and higher orders can be 

neglected. 

 Equation (68) reduces to: 

𝑦 = 𝑐. (1 +
1

2!
. (

𝑥

𝑐
)
2

) 
 

(69) 

Sag in a cable profile is given by, 

𝑠𝑎𝑔 = 𝑦 − 𝑐 
 

(70) 

Substituting (69) into (70) to get 

𝑠𝑎𝑔 = 𝑐. (1 +
1

2!
. (

𝑥

𝑐
)

2

) − 𝑐 

 

(71) 

Equation (71) is simplified as follows 

𝑠𝑎𝑔 = 𝑐 +
𝑐

2
. (

𝑥

𝑐
)
2

− 𝑐 (72) 
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𝑠𝑎𝑔 =
𝑐

2
. (

𝑥

𝑐
)
2

 

(73) 

𝑠𝑎𝑔 =

𝑇0

𝑤
2

.(
𝑥

𝑇0

𝑤

)

2

 

 

(74) 

Substituting 𝑥 = 𝑙 to get 

𝑠𝑎𝑔 =
𝑤. 𝑙2

2. 𝑇0
 

(75) 

Equation (75) is the simplified equation for a sag in one-half of a cable element. 

In the case of poles with a cable attached at the top, it is necessary to determine the cable's 

tension for a given pole displacement. This change is displacement will result in a 

corresponding change in the cable tension. 

Equations (54) and (61) are non-linear equations; the solution is typically by trial and error 

for a given value of change in displacement at the top of a pole. 

3.6 Numerical Example 

A numerical example is provided in this section to illustrate the behavior of the 

cable for displacements of the top of the pole. Consider a cable of span 100ft between two 

supports. The weight of the cable is 1.5 plf, with an initial cable tension of 1.0 kip.  
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3.6.1 Solution Process 

The cable length will remain the same irrespective of the pole deflection. Hence, 

the span will change by the value of the pole displacement; thus, the tension in the cable 

will change correspondingly. The cable tension is calculated by trial and error. The 

calculated values of cable tension for various pole displacements are shown in Table 3-1. 

𝑙 = 100𝑓𝑡 

𝜔 = 1.5𝑝𝑙𝑓 

Where l is the distance from the low point of the cable profile to the support, w is 

the weight per unit length of the cable. 

 

 

 

 

 

 

 

 

 



66 

 

 

No. Displacement [in] 
Cable Tension 

[kip] 
Sag [ft] 

1 -12 0.515 14.552. 

2 -6 0.65 11.531 

3 -5 0.685 10.956 

4 -4 0.725 10.352 

5 -3 0.772 9.713 

6 -2.5 0.8 9.379 

7 -2 0.83 9.033 

8 -1.5 0.865 8.674 

9 -1 0.904 8.3 

10 -0.5 0.948 7.91 

11 0 1 7.5 

12 0.5 1.061 7.068 

13 1 1.135 6.608 

14 1.5 1.226 6.115 

15 2 1.344 5.58 

16 2.5 1.503 4.989 

17 3 1.736 4.32 

18 3.5 2.125 3.529 

19 4 3 2.5 

20 4.25 4.223 1.775 

 

Figure 3-5 shows the plot of the calculated cable tension and pole displacement. 

The figure shows that the cable tension displacement relationship of the chosen cable 

property is highly non-linear. 

 

 

Table 3-1: Table of Computed Displacement and Cable Tension 
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Figure 3-5. Graph of Cable Tension Vs. Displacement 

The positive displacement increases the span of the cable and correspondingly 

increases the cable tension. Negative displacement, on the other hand, reduces the span and 

reduces the cable tension. 

3.7 Properties of Tapered Pole 

The diameter of a tapered pole at any point along its length is given by equation (76)Error! 

Reference source not found. 

ⅆ(𝑥) = ⅆ𝑏 (1 −
𝑥

𝑙
) + (

𝑥

𝑙
)ⅆ𝑡 

 

(76) 

where, 

ⅆ(𝑥) is the diameter of the pole at any given point along its length. 
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ⅆ𝑏 is the diameter at the base of the pole. 

ⅆ𝑡 is the pole's diameter at the top or tip of the pole. 

The second moment of Inertia of the pole cross section is given by Equation (77) 

𝐼(𝑥) =
𝜋

64
ⅆ(𝑥)4 

 

(77) 

The cross-sectional area of the pole is given by Equation (78)  

𝐴(𝑥) =
𝜋

4
ⅆ(𝑥)2 

 

(78) 

The weight of the pole section per unit length is given by, 

𝑤(𝑥) =
𝜋

4
ⅆ(𝑥)2. 𝛾𝑤𝑜𝑜ⅆ (79) 

where, 

𝛾𝑤𝑜𝑜ⅆ is the density of the tapered pole wood species. 

Similarly, the mass of the pole section per unit length is given by, 

𝑚(𝑥) = 𝑤(𝑥)/𝑔 (80) 

where, 

𝑔 is the gravitational constant. 

𝑚(𝑥) is the mass per unit length. 
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3.8 Equation of Motion  

The governing equation of motion of an element embedment in a layer of soil to 

include soil structure interaction is given by: 

𝐸. 𝐼(𝑥)
𝜕4𝑢

𝜕𝑥4
+ 𝑚(𝑥)

𝜕2𝑢

𝜕𝑡2
+ 𝑐𝑝

𝜕𝑢

𝜕𝑡
+ 𝑐𝑠

𝜕𝑢

𝜕𝑡
+ 𝑘𝑠𝑢 = 𝑓(𝑡) 

 

(81) 

where, 

𝑢 is the displacement. 

𝐸 is the Young’s modulus of the pole wood species  

𝐼(𝑥) is the moment of inertia od the pole section 

𝑚(𝑥) is the mass per unit length of the pole section 

𝑐𝑝 is the damping co-efficient of the tapered wood pole 

𝑐𝑠 is the damping co-efficient of the soil 

𝑘𝑠 is the stiffness of the soil 

𝑓(𝑡) is any forcing function 

The solution to equation (81) is performed using a finite element solution based on 

Galerkin’s weighted average method. 

𝑤(𝑥). (𝐸. 𝐼(𝑥)
𝜕4𝑢

𝜕𝑥4 + 𝑚(𝑥)
𝜕2𝑢

𝜕𝑡2 + 𝑐𝑝
𝜕𝑢

𝜕𝑡
+ 𝑐𝑠

𝜕𝑢

𝜕𝑡
+ 𝑘𝑠𝑢 − 𝑓(𝑡)ⅆ𝑥) = 0 (82) 
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where, 

w(x) is the weighting function.  

Integrating equation (82) by parts to get 

[𝐸. 𝐼(𝑥).𝑤(𝑥).
ⅆ3𝑢

ⅆ𝑥3
]
0

𝑙

+ ∫ (−1)
ⅆ

ⅆ𝑥
𝑤(𝑥).(𝐸. 𝐼(𝑥)

ⅆ3𝑢

ⅆ𝑥3
+ 𝑤(𝑥).𝑚(𝑥)

ⅆ2𝑢

ⅆ𝑡2

𝑙

0

+ 𝑤(𝑥). 𝑐𝑝

ⅆ𝑢

ⅆ𝑡
+ 𝑤(𝑥)𝑐𝑠

ⅆ𝑢

ⅆ𝑡
+ 𝑤(𝑥)𝑘𝑠𝑢

− 𝑤(𝑥)𝑓(𝑡)) ⅆ𝑥 = 0 

 

 

 

(83) 

Integrating by parts again to get 

[𝐸. 𝐼(𝑥).𝑤(𝑥).
ⅆ3𝑢

ⅆ𝑥3
+ 𝐸. 𝐼(𝑥)

ⅆ𝑤(𝑥)

ⅆ𝑥
.
ⅆ2𝑢

ⅆ𝑥2
]
0

𝑙

+ ∫
ⅆ2

ⅆ𝑥2
𝑤(𝑥).(𝐸. 𝐼(𝑥)

ⅆ3𝑢

ⅆ𝑥3
+

ⅆ

ⅆ𝑥
𝑤(𝑥).𝑚(𝑥)

ⅆ2𝑢

𝜕𝑡2

𝑙

0

+ 𝑤(𝑥). 𝑐𝑝

ⅆ𝑢

𝜕𝑡
+ 𝑤(𝑥)𝑐𝑠

ⅆ𝑢

ⅆ𝑡
+ 𝑤(𝑥)𝑘𝑠𝑢 − 𝑤(𝑥)𝑓(𝑡))ⅆ𝑥 = 0 

 

 

 

 

 

(84) 
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[𝐸. 𝐼(𝑥)(𝑤(𝑥).
ⅆ3𝑢

ⅆ𝑥3
+

ⅆ𝑤(𝑥)

ⅆ𝑥
.
ⅆ2𝑢

ⅆ𝑥2
)]

0

𝑙

+ ∫((
ⅆ2𝑤(𝑥)

ⅆ𝑥
2

) ⋅ 𝐸. 𝐼(𝑥)
ⅆ2𝑢

ⅆ𝑥2
+

ⅆ

ⅆ𝑥
𝑤(𝑥).𝑚(𝑥)

ⅆ2𝑢

𝜕𝑡2

𝑥

0

+ 𝑤(𝑥). 𝑐𝑝

ⅆ𝑢

𝜕𝑡
+ 𝑤(𝑥)𝑐𝑠

ⅆ𝑢

ⅆ𝑡
+ 𝑤(𝑥)𝑘𝑠𝑢 − 𝑤(𝑥)𝑓(𝑡))ⅆ𝑥 = 0 

 

 

 

 

(85) 

 

Equation  

(85) will be solved by discretizing the pole into discrete elements. The highest order of the 

partial differential equation of motion is 4. 

therefore, 

2𝑚 = 4 

which simplifies to 

𝑚 = 2 

Therefore, there are two (2) degrees of freedom for each node, and hence four (4) 

degrees of freedom per element. Each joint will have a vertical force component, shear 

force, and rotation. 

Let the displacement be given by: 
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𝑈(𝑥, 𝑡) = 𝑔(𝑥) ⋅ 𝑢(𝑡) (86) 

Equation (86) has both a dimension and time function. 

let, 

𝑔(𝑥) = 𝑎 + 𝑏. 𝑥 + 𝑐. 𝑥2 + 𝑐.3 (87) 

a, b, c, and d are constants to be evaluated. 

Differentiating equation (87) to get 

𝑔′(𝑥) = 0 + 𝑏 + 2𝑐𝑥 + 3ⅆ𝑥2 (88) 

Equations (87) and (88) can be expressed in a matrix form, 

[
𝑦(𝑥)

𝑔′(𝑥)
] = [1 𝑥 𝑥2 𝑥3

0 1 2𝑥 3𝑥2
] [

𝑎
𝑏
𝑐
ⅆ

] 

 

(89) 

Considering a beam element with n nodes and m elements, shown in Figure 3-6, 
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Figure 3-6. Member node and Elements 

 

We shall define the nodal displacements and rotations as: 

𝑢1 is nodal vertical displacement perpendicular to the element at node 1 

𝑢2 is rotation at node 1 

Similarly, 

𝑢𝑛−1 is the nodal displacement at node (n-1) 

𝑢𝑛 is rotation at node n 

Applying equation (87) and (88) at nodes 1 and 2 to get, 

𝑢1 = 𝑎 + 𝑏. 𝑥1 + 𝑐. 𝑥1
2 + ⅆ. 𝑥1

3 

𝑢2 = 0 + 𝑏 + 2. 𝑐. 𝑥1 + 3. ⅆ. 𝑥1
2 
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𝑢3 = 𝑎 + 𝑏. 𝑥2 + 𝑐. 𝑥2
2 + ⅆ. 𝑥2

3 

𝑢4 = 0 + 𝑏 + 2. 𝑐. 𝑥2 + 3. ⅆ. 𝑥2
2 

The above four (4) equations can be rewritten in a matrix form, 

[

𝑢1

𝑢2

𝑢3

𝑢4

] =

[
 
 
 
 
1 𝑥1 𝑥1

2 𝑥1
3

0 1 2. 𝑥1 3. 𝑥1
2

1 𝑥2 𝑥2
2 𝑥2

3

0 1 2. 𝑥2 3. 𝑥2
2]
 
 
 
 

. [

𝑎
𝑏
𝑐
ⅆ

] 

 

(90) 

 

 

Solving for the constants a, b, c, and d, 

[

𝑎
𝑏
𝑐
ⅆ

] =

[
 
 
 
 
1 𝑥1 𝑥1

2 𝑥1
3

0 1 2. 𝑥1 3. 𝑥1
2

1 𝑥2 𝑥2
2 𝑥2

3

0 1 2. 𝑥2 3. 𝑥2
2]
 
 
 
 
−1

. [

𝑢1

𝑢2

𝑢3

𝑢4

] 

 

(91) 

Substituting equation (91) into equation  

(89) to get 

[
𝑦(𝑥)

𝑔′(𝑥)
] = [1 𝑥 𝑥2 𝑥3

0 1 2𝑥 3𝑥2
]

[
 
 
 
 
1 𝑥1 𝑥1

2 𝑥1
3

0 1 2. 𝑥1 3. 𝑥1
2

1 𝑥2 𝑥2
2 𝑥2

3

0 1 2. 𝑥2 3. 𝑥2
2]
 
 
 
 
−1

. [

𝑢1

𝑢2

𝑢3

𝑢4

] 

 

(92) 

For a given element 
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𝑥1 = 0 

𝑥2 = ℎ 

Hence, equation (92) becomes, 

[
𝑦(𝑥)

𝑔′(𝑥)
] = [1 𝑥 𝑥2 𝑥3

0 1 2𝑥 3𝑥2
] [

1 0 0 0
0 1 0 0
1 ℎ ℎ2 ℎ3

0 1 2. ℎ 3. ℎ2

]

−1

. [

𝑢1

𝑢2

𝑢3

𝑢4

] 

 

(93) 

[
𝑦(𝑥)

𝑔′(𝑥)
] = [𝜙1 𝜙2 𝜙3 𝜙4]. [

𝑢1

𝑢2

𝑢3

𝑢4

] 

 

(94) 

[
u
θ
] = [ϕ1 ϕ2 ϕ3 ϕ4]. [

u1

u2

u3

u4

] 

 

(95) 

where, 

𝑢 is the displacement at any point along the length of the element 

𝜃 is the rotation at any point along the length of the element 

h is the element size 

[𝑈] = ∑∅𝑖

𝑖=4

𝑖=1

. 𝑢𝑖 

 

(96) 

The solution of equation (96) gives the expressions for the shape functions. 𝜙1, 𝜙2, 𝜙3, 

and 𝜙4 
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[𝜙] = [2𝑥3

ℎ3 −
3𝑥2

ℎ2 + 1 𝑥 −
2𝑥2

ℎ
+

𝑥3

ℎ2

3𝑥2

ℎ2 −
2𝑥3

ℎ3

𝑥3

ℎ2 −
𝑥2

ℎ
]  (97) 

Therefore,  

𝜙1 =
2𝑥3

ℎ3
−

3𝑥2

ℎ2
+ 1 

(98) 

𝜙2 = 𝑥 −
2𝑥2

ℎ
+

𝑥3

ℎ2
 

(99) 

𝜙3 =
3𝑥2

ℎ2
−

2𝑥3

ℎ3
 

(100) 

𝜙4 =
𝑥3

ℎ2
−

𝑥2

ℎ
 

(101) 

 

The graphs for shape functions 𝜙1and 𝜙3 are shown in Figure 3-7. 
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Figure 3-7. Graph for Shape Factors 𝝓𝟏and 𝝓𝟑 

 

The graphs for the shape functions 𝜙2and 𝜙4 are shown in Figure 3-8. 

 

Figure 3-8. Graph for Shape Factors 𝝓𝟐 and 𝝓𝟒 
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` 

3.9 Derivatives of Shape Functions 

In this section, the derivatives of shape functions are discussed. 

First derivatives of 𝜙1: 

𝜙′
1

=
6. 𝑥2

ℎ3
−

6. 𝑥

ℎ2
 

 

(102) 

Where, 𝜙′
1
 is the first derivative of shape function. 

Second derivatives of 𝜙1: 

𝜙′′
1

=
12. 𝑥

ℎ3
−

6

ℎ2
 

 

(103) 

Third derivatives of 𝜙1: 

𝜙′′′
1

=
12

ℎ3 
 

 

(104) 

First derivatives of 𝜙2 

𝜙′
2

=
3. 𝑥2

ℎ2
−

4. 𝑥

ℎ
+ 1 

 

 

(105) 

Second derivatives of 𝜙2 

𝜙′′
2

=
6. 𝑥

ℎ2
−

4

ℎ
 

 

(106) 

Third derivatives of 𝜙2 
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𝜙′′′
2

=
6

ℎ2
 

(107) 

First derivative of 𝜙3: 

𝜙′
3

=
6. 𝑥

ℎ2
−

6. 𝑥2

ℎ3
 

(108) 

Second derivative of 𝜙3: 

𝜙′′3 =
6

ℎ2
−

12. 𝑥

ℎ3
 

 

(109) 

Third derivative of 𝜙3: 

𝜙′′′

3
= (−)

12

ℎ3
 

(110) 

First derivative of 𝜙3: 

𝜙′
4

=
3. 𝑥2

ℎ2
−

2. 𝑥

ℎ
 

(111) 

Second derivative of 𝜙4: 

𝜙′′4 =
6. 𝑥

ℎ2
−

2

ℎ
 

(112) 

Third derivative of 𝜙4: 

𝜙′′′

4
=

6

ℎ2
 

(113) 
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Figure 3-9 shows the graph for 𝝓′
𝟏
 and 𝝓′

𝟑
. The values of 𝝓′

𝟏
 and 𝝓′

𝟑
at the nodal points 

are zero. 

 

Figure 3-9. Graph of Shape Factors 𝝓′
𝟏
 and 𝝓′

𝟑
 

 

Figure 3-10 shows the graph for 𝝓′
𝟐
 and 𝝓′

𝟒
. The values of 𝝓′

𝟐
 at the nodal points are 1 

and 0, respectively. The values at the nodal point for 𝝓′
𝟒
 is 0 and 1. 
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Figure 3-10. Graph of Shape Factors 𝝓′
𝟐
 and 𝝓′

𝟒
 

 

Figure 3-11 shows the graph for the second derivatives of the shape functions 𝜙′′
1
 and 

𝜙′′3. 𝜙′′
1
varies from 6 at the starting node and -6 at the ending node. Similarly, 𝜙′′

3
 varies 

from -6 at the starting node to 6 at the ending node. 
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Figure 3-11. Graph of Shape Factors 𝝓′′
𝟏
 and 𝝓′′𝟑 

 

Figure 3-12 shows the graph for the second derivatives of the shape functions 

𝜙′′
2
 and 𝜙′′4. 𝜙′′

2
varies linearly from -2 to +4 at the starting and ending nodes, 

respectively. While 𝜙′′
4
 varies linearly from -4 to +2 at the start and end nodes, 

respectively. 
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Figure 3-12. Graph of Shape Factors 𝝓′′
𝟐
 and 𝝓′′𝟒 

 

Figure 3-13 shows the graph for the third derivatives of the shape functions 

𝜙′′′
1
 and 𝜙′′′

3
 are constants with values of +12 and -12, respectively. 
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Figure 3-13. Graph of shape factors 𝝓′′′
𝟏
 and 𝝓′′′

𝟑
 

Figure 3-14 shows the graph for the third derivative of the shape functions, 

𝜙′′′
2
 and 𝜙′′′

4
 have constant values of 6. 

Figure 3-14. Graph of shape factors 𝝓′′′
𝟐
 and 𝝓′′′

𝟒
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3.10 Boundary Terms  

In equation  

(85), the boundary terms are further analyzed. 

[𝐸. 𝐼(𝑥)(
ⅆ3𝑢

ⅆ𝑥3
+

ⅆ2𝑢

ⅆ𝑥2
)]

0

𝑙

 
(114) 

In equation (114), [𝐸. 𝐼(𝑥) (
ⅆ3𝑢

ⅆ𝑥3)]
0

𝑙

 is the applied shear force at the boundary nodes and 

[𝐸. 𝐼(𝑥) (
ⅆ2𝑢

ⅆ𝑥2)]
0

𝑙

 is the applied bending moment at the boundary nodes. 

The applied joint forces are expressed form as: 

𝐹𝐽𝑡 = [

𝐹1𝑣

𝐹2𝑚

𝐹3𝑣

𝐹4𝑚

] 

 

  

(115) 

Equation  

(85) can be expressed as: 

∫ 𝐹ⅆ𝑥 = ∫ 𝐹1ⅆ𝑥 + ∫ 𝐹2ⅆ𝑥
𝑥3

𝑥2

𝑥2

𝑥1

𝑙

0

+ ⋯ + ∫ 𝐹𝑛ⅆ𝑥
𝑥𝑛

𝑥𝑛−1

 
(116) 

Rewriting the above equation, 
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∫ 𝐹ⅆ𝑥 = ∑𝐹𝑖ⅆ𝑥

𝑚

𝑖=1

𝑙

0

 

 

(117) 

where, 

m is the number of elements 

From equation  

(85), 

let, 

𝐾 = ∑ (∫
ⅆ2

ⅆ𝑥2 𝑤(𝑥).𝐸. 𝐼(𝑥)
ⅆ2

ⅆ𝑥2 𝑢. )ⅆ𝑥
𝑥𝑗

𝑥𝑖
𝑚
𝑖=1  (118) 

where, 

K is the stiffness matrix 

𝑀 = ∑(∫ (𝑚(𝑥).𝑤(𝑥). 𝐸. 𝐼(𝑥)
ⅆ2

ⅆ𝑡2
𝑢(𝑥, 𝑡)) ⅆ𝑥

𝑥𝑗

𝑥𝑖

)

𝑚

𝑖=1

 
(119) 

where, 

M is the mass matrix 

𝐶 = ∑ (∫ ((𝑐𝑝 + 𝑐𝑠).𝑤(𝑥). 𝐸. 𝐼(𝑥)
ⅆ2

ⅆ𝑥2 𝑢(𝑥, 𝑡))ⅆ𝑥
𝑥𝑗

𝑥𝑖
)𝑚

𝑖=1  

 

(120) 

where, 
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C is the damping matrix 

𝑆 = ∑(∫ ((𝑠(𝑥)).𝑤(𝑥). 𝑢(𝑥, 𝑡)) ⅆ𝑥
𝑥𝑗

𝑥𝑖

)

𝑚

𝑖=1

 

 

(121) 

where, 

S is the element soil spring matrix 

𝐹 = ∑ (∫ (𝑤(𝑥). 𝑓(𝑡))ⅆ𝑥
𝑥𝑗

𝑥𝑖
)𝑚

𝑖=1  

 

(122) 

where, 

F is the applied element member force matrix 

3.11 Member Properties 

Let, 

ⅆ𝑝𝑏 = diameter of pole at the base of the pole 

ⅆ𝑝𝑡 = diameter of pole at tip of the pole 

𝑙𝑝𝑏 = length of the pole 
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3.12 Element Stiffness Matrix 

In this section, the stiffness matrix for an element will be formulated. Equation 

(118) will be used to derive each element of the element matrix. The integral computation 

for the elements of the stiffness was performed using Mathcad. 

𝑘11 = 𝐸. 𝐼. ∫ 𝜙′′
1
.

ℎ

0

𝜙′′
1
ⅆ𝑥 =

12

ℎ3
 

 

(123) 

𝑘12 = 𝐸. 𝐼. ∫ 𝜙′′
1
.

ℎ

0

𝜙′′
2
ⅆ𝑥 =

6

ℎ2
 

(124) 

𝑘13 = 𝐸. 𝐼. ∫ 𝜙′′
1
.

ℎ

0

𝜙′′
3
ⅆ𝑥 = −

12

ℎ3
 

(125) 

𝑘14 = 𝐸. 𝐼. ∫ 𝜙′′
1
.

ℎ

0

𝜙′′
4
ⅆ𝑥 =

6

ℎ2
 

(126) 

𝑘21 = 𝐸. 𝐼. ∫ 𝜙′′
2
.

ℎ

0

𝜙′′
1
ⅆ𝑥 =

12

ℎ2
 

(127) 

𝑘22 = 𝐸. 𝐼. ∫ 𝜙′′
2
.

ℎ

0

𝜙′′
2
ⅆ𝑥 =

4

ℎ
 

(128) 

𝑘23 = 𝐸. 𝐼. ∫ 𝜙′′
2
.

ℎ

0

𝜙′′
3
ⅆ𝑥 = −

6

ℎ2
 

(129) 

𝑘24 = 𝐸. 𝐼. ∫ 𝜙′′
2
.

ℎ

0

𝜙′′
4
ⅆ𝑥 =

2

ℎ
 

(130) 
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𝑘31 = 𝐸. 𝐼. ∫ 𝜙′′
3
.

ℎ

0

𝜙′′
1
ⅆ𝑥 = −

12

ℎ3
 

(131) 

𝑘32 = 𝐸. 𝐼. ∫ 𝜙′′
3
.

ℎ

0

𝜙′′
2
ⅆ𝑥 = −

6

ℎ2
 

(132) 

𝑘33 = 𝐸. 𝐼. ∫ 𝜙′′
3
.

ℎ

0

𝜙′′
3
ⅆ𝑥 =

12

ℎ3
 

  (133) 

𝑘34 = 𝐸. 𝐼. ∫ 𝜙′′
3
.

ℎ

0

𝜙′′
4
ⅆ𝑥 = −

6

ℎ2
 

(134) 

𝑘41 = 𝐸. 𝐼. ∫ 𝜙′′
4
.

ℎ

0

𝜙′′
1
ⅆ𝑥 =

6

ℎ2
 

(135) 

𝑘42 = 𝐸. 𝐼. ∫ 𝜙′′
4
.

ℎ

0

𝜙′′
2
ⅆ𝑥 =

2

ℎ
 

(136) 

𝑘43 = 𝐸. 𝐼. ∫ 𝜙′′
4
.

ℎ

0

𝜙′′
3
ⅆ𝑥 =

6

ℎ2
 

(137) 

𝑘44 = 𝐸. 𝐼. ∫ 𝜙′′
4
.

ℎ

0

𝜙′′
4
ⅆ𝑥 =

4

ℎ
 

(138) 

  

The element of the stiffness computed above in a matrix is shown below in equation (139). 

𝐾 = 𝐸. 𝐼𝑎𝑣 . [

𝑘11 𝑘11 𝑘11 𝑘11

𝑘11 𝑘11 𝑘11 𝑘11

𝑘11 𝑘11 𝑘11 𝑘11

𝑘11 𝑘11 𝑘11 𝑘11

] 

(139) 
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    =
𝐸. 𝐼𝑎𝑣

ℎ3
. [

12 6ℎ −12 6ℎ
6ℎ 4ℎ2 −6ℎ 2ℎ2

−12 −6ℎ 12 −6ℎ
6ℎ 2ℎ2 −6ℎ 4ℎ2

] 

 

Equation (139) is called the consistent stiffness matrix since it is based on the shape 

functions for the corresponding displacements. 

where, 

𝐼𝑎𝑣 is the average 2nd moment of area of inertia of the pole section.  

𝐼𝑎𝑣 is taken as the average value of the moment of inertia between a tapered section's top 

and bottom sections. 

3.13 Element Mass Matrix 

The elements of the mass matrix are computed using equation (119). As in the case of the 

element stiffness matrix, the integrals are evaluated using Mathcad. 

𝑚11 = 𝑚𝑎𝑣 ∫ 𝜙1.
ℎ

0

𝜙1ⅆ𝑥 =
13ℎ

35
 

(140) 

𝑚12 = 𝑚𝑎𝑣 ∫ 𝜙1.
ℎ

0

𝜙2ⅆ𝑥 =
11ℎ2

210
 

(141) 

𝑚13 = 𝑚𝑎𝑣 ∫ 𝜙1.
ℎ

0

𝜙3ⅆ𝑥 =
9ℎ

70
 

(142) 
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𝑚14 = 𝑚𝑎𝑣 ∫ 𝜙1.
ℎ

0

𝜙4ⅆ𝑥 = −
13ℎ2

420
 

(143) 

𝑚21 = 𝑚𝑎𝑣 ∫ 𝜙2.
ℎ

0

𝜙1ⅆ𝑥 =
11ℎ2

210
 

(144) 

𝑚22 = 𝑚𝑎𝑣 ∫ 𝜙2.
ℎ

0

𝜙2ⅆ𝑥 =
ℎ3

105
 

(145) 

𝑚23 = 𝑚𝑎𝑣 ∫ 𝜙2.
ℎ

0

𝜙3ⅆ𝑥 =
13ℎ2

420
 

(146) 

𝑚24 = 𝑚𝑎𝑣 ∫ 𝜙2.
ℎ

0

𝜙4ⅆ𝑥 = −
ℎ3

140
 

(147) 

𝑚31 = 𝑚𝑎𝑣 ∫ 𝜙3.
ℎ

0

𝜙1ⅆ𝑥 =
9ℎ

70
 

(148) 

𝑚32

= 𝑚𝑎𝑣 ∫ 𝜙3.
ℎ

0

𝜙2ⅆ𝑥

=
13ℎ2

140
 

(149) 

𝑚33

= 𝑚𝑎𝑣 ∫ 𝜙3.
ℎ

0

𝜙3ⅆ𝑥

=
13ℎ

35
 

(150) 
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𝑚34 = 𝑚𝑎𝑣 ∫ 𝜙3.
ℎ

0

𝜙4ⅆ𝑥 = −
11ℎ2

210
 

(151) 

𝑚41 = 𝑚𝑎𝑣 ∫ 𝜙4.
ℎ

0

𝜙1ⅆ𝑥 = −
13ℎ2

420
 

(152) 

𝑚42 = 𝑚𝑎𝑣 ∫ 𝜙4.
ℎ

0

𝜙2ⅆ𝑥 = −
ℎ3

140
 

(153) 

𝑚42

= 𝑚𝑎𝑣 ∫ 𝜙4.
ℎ

0

𝜙2ⅆ𝑥

=
ℎ3

140
 

(154) 

𝑚43

= 𝑚𝑎𝑣 ∫ 𝜙4.
ℎ

0

𝜙3ⅆ𝑥

= −
11ℎ2

210
 

(155) 

𝑚44 = 𝑚𝑎𝑣 ∫ 𝜙4.
ℎ

0

𝜙4ⅆ𝑥 =
ℎ3

105
 

(156) 

 

Assembling the element mass matrices into a matrix form to get: 

𝑀 = 𝑚𝑎𝑣 . [

𝑚11 𝑚12 𝑚13 𝑚14

𝑚21 𝑚22 𝑚23 𝑚24

𝑚31 𝑚32 𝑚33 𝑚34

𝑚41 𝑚42 𝑚43 𝑚44

] 

(157) 
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        =
𝑚𝑎𝑣ℎ

420
. [

156 22ℎ 54 −13ℎ
22ℎ 4ℎ2 13ℎ −3ℎ2

54 13ℎ 156 −22ℎ
−13ℎ −3ℎ −22ℎ 4ℎ2

] 

Equation (157) is also called the consistent mass matrix since it is based on the shape 

function for the corresponding displacements. 

3.14 Damping Matrix 

3.15 Consistent Damping Matrix 

The elements of the damping matrix are computed using equation  

(120). As in the case of the element stiffness matrix, the integrals are evaluated using 

Mathcad. 

 

Note: 

The derivation of the damping matrix is only a classical exercise since the damping matrix 

is dependent on the mass and stiff matrix. The damping matrix based on the mass and 

stiffness matrix will be derived in the next section. 

𝑐11 = 𝑐.∫ 𝜙1.
ℎ

0

𝜙1ⅆ𝑥 =
13ℎ

35
 

(158) 

𝑐12 = 𝑐.∫ 𝜙1.
ℎ

0

𝜙2ⅆ𝑥 =
11ℎ2

210
 

      (159) 
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𝑐13 = 𝑐.∫ 𝜙1.
ℎ

0

𝜙3ⅆ𝑥 =
9ℎ

70
 

  (160) 

𝑐14 = 𝑐.∫ 𝜙1.
ℎ

0

𝜙4ⅆ𝑥 = −
13ℎ2

420
 

(161) 

𝑐21 = 𝑐.∫ 𝜙2.
ℎ

0

𝜙1ⅆ𝑥 =
11ℎ2

210
 

(162) 

𝑐22 = 𝑐.∫ 𝜙2.
ℎ

0

𝜙2ⅆ𝑥 =
ℎ3

105
 

     (163)  

 

𝑐23 = 𝑐.∫ 𝜙2.
ℎ

0

𝜙3ⅆ𝑥 =
13ℎ2

420
 

(164) 

𝑐24 = 𝑐.∫ 𝜙2.
ℎ

0

𝜙4ⅆ𝑥 = −
ℎ3

140
 

(165) 

 

𝑐31 = 𝑐.∫ 𝜙3.
ℎ

0

𝜙1ⅆ𝑥 =
9ℎ

70
 

(166) 

𝑐32 = 𝑐.∫ 𝜙3.
ℎ

0

𝜙2ⅆ𝑥 =
13ℎ2

420
 

(167) 

𝑐33 = 𝑐.∫ 𝜙3.
ℎ

0

𝜙3ⅆ𝑥 =
13ℎ

35
 

(168) 
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𝑐34 = 𝑐.∫ 𝜙3.
ℎ

0

𝜙4ⅆ𝑥 = −
11ℎ

210
 

(169) 

𝑐41 = 𝑐.∫ 𝜙4.
ℎ

0

𝜙1ⅆ𝑥 =
13ℎ2

420
 

(170) 

𝑐42 = 𝑐.∫ 𝜙4.
ℎ

0

𝜙2ⅆ𝑥 = −
ℎ3

140
 

(171) 

𝑐43 = 𝑐.∫ 𝜙4.
ℎ

0

𝜙3ⅆ𝑥 = −
11ℎ2

210
 

(172) 

𝑐44 = 𝑐.∫ 𝜙4.
ℎ

0

𝜙4ⅆ𝑥 =
ℎ4

105
 

(173) 

Assembling the element-damping matrices into a matrix form 

𝐶 = 𝑐. [

𝑐11 𝑐12 𝑐13 𝑐14

𝑐21 𝑐22 𝑐23 𝑐24

𝑐31 𝑐32 𝑐33 𝑐34

𝑐41 𝑐42 𝑐43 𝑐44

] 

        =
(𝑐𝑝 + 𝑐𝑠)ℎ

420
. [

156 22ℎ 54 −13ℎ
22ℎ 4ℎ2 13ℎ −3ℎ2

54 13ℎ 156 −22ℎ
−13ℎ −3ℎ −22ℎ 4ℎ2

] 

 

(174) 

where, 

𝑐𝑝 is the damping co-efficient of the pole material. 

and, 

𝑐𝑠 is the damping co-efficient of the soil. 
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3.16 Raleigh’s Damping 

The damping in a structure is a function of mass and stiffness. Hence, the damping matrix 

will be formulated based on the following assumption, 

[𝐶] = 𝛼. [𝑀] + 𝛽. [𝐾] 

       =[[𝑀] [𝐾]] [
𝛼
𝛽] 

(175) 

where, 

[𝐶] is the damping matrix 

[𝐾] is the stiffness matrix 

𝛼 is the constant to be determined 

𝛽 is a factor to be determined 

 

 

Substituting 𝑐 = 2𝜉𝑚𝜔 and 𝑘 = 𝑚𝜔2 into equation (Error! Reference source not 

found.) to get 

 

 

𝑐 = 𝛼𝑚 + 𝛽𝑘 (176) 

2𝜉𝑚𝜔 =  𝛼𝑚 + 𝛽𝑚𝜔2 (177) 
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In matrix form, equation                                       (179) can be written as 

 

Substituting equation (180) into (175), 

 

Equation (182) will be used to formulate the damping matrix for a multi- degree of 

freedom systems or elements. Damping ratios vary depending on the wood species, age, 

physical dimensions, preservative treatment types, and pole conditions. Typical values of 

damping will range from 3% to 15%. 

𝜉 =
1

2
𝛼1𝜔 + 𝛽𝜔 

 

 

(178) 

 

 

To solve equation Error! Reference source not found., we assume two 

known damping ratio values for the corresponding frequencies. 

𝜉1 =
1

2
{𝛼

1

𝜔1
+ 𝛽𝜔1}                                                                           

𝜉2 =
1

2
{𝛼

1

𝜔2
+ 𝛽𝜔2} 

 

                                      

(179) 

 

 

  

 

 

[
α
β] = 2

[
 
 
 
1

ω1
ω1

1

ω2
ω2]

 
 
 
−1

[
ξ1
ξ2

] 

(180) 

 

[
𝜉1

𝜉2
] =

1

2

[
 
 
 
1

𝜔1
𝜔1

1

𝜔2
𝜔2]

 
 
 

[
𝛼
𝛽] 

 

(181) 

[𝐶] = [[𝑀] [𝐾]](2)

[
 
 
 
1

𝜔1
𝜔1

1

𝜔2
𝜔2]

 
 
 
−1

[
𝜉1

𝜉2
] 

(182) 
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3.17 Lateral Vertical Soil Spring Stiffness of Sandy, Clayey Soils, and Rock 

In this section, the vertical and horizontal soil spring stiffnesses for soils and rock 

is discussed. The soil stiffness behavior will differ for cohesionless, cohesive soil, and rock 

since the pressure distribution depends on the soil type.  

A method to compute the soil springs for clayey and sandy soil proposed by 

Bohnhoff [17] is used for this study. A typical load displacement curve is in Figure 3-15, 

reproduced from [17]. 

 

Figure 3-15. Load-Displacement Relationship for a Soil Spring 

 

The inertial lateral stiffness, 𝐾ℎ of an individual soil spring is given by 
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where 

t is the thickness of the soil layer between the soil springs 

𝐸𝑠 is the Young’s Modulus of soil at depth z. 

Es is constant with depths for clayey soils and varies linearly with depth for sandy soils. 

Es value for sandy soils vary with depth, hence 

where 

𝐸𝑆,𝑧 = Es that is zero at ground level and increases linearly with depth z below grade. 

𝐴𝑧 = increase in Young’s Modulus per unit increase in depth z below ground. 

z = depth below ground. 

3.17.1 Soil Spring Ultimate Strength 

The ultimate lateral load capacity of a soil spring is given by: 

where 

𝐹𝑢𝑙𝑡 = ultimate load capacity of a spring at depth z 

𝑝𝑢,𝑧 = ultimate lateral soil resistance of soil at depth z 

𝐾ℎ = 2.0 𝑡 𝐸𝑠 (183) 

𝐸𝑆,𝑧 = 𝐴𝑧 . 𝑧 (184) 

𝐹𝑢𝑙𝑡 = 𝑝𝑢,𝑧𝑡𝑏 (185) 
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b = average width or diameter of pole at depth z 

t = thickness of the soil layer, or spacing of the soil springs 

for sandy soils, 

𝑝𝑢,𝑧 = 3𝜎𝑣,𝑧
′ 𝐾𝑝 

for clayey soils, 

𝑝𝑢,𝑧 = 3𝑆𝑈 (1 +
𝑧

2𝑏
)  𝑓𝑜𝑟 0 < 𝑧 < 4𝑏  

𝑝𝑢,𝑧 = 9𝑆𝑈                                𝑓𝑜𝑟 > 4𝑏 

where 

𝐾𝑝 = passive earth pressure co-efficient 

     = 
1+𝑠𝑖𝑛∅

1−𝑠𝑖𝑛∅
 

𝜎𝑣,𝑧
′  = effective vertical stress at depth z 

       = 𝛾𝑧 − 𝑢𝑧 

γ = moist unit weight of soil 

𝑢𝑧 = pore water pressure at depth z 

𝑆𝑈 = undrained soil shear strength for saturated clayey soil 
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3.17.2 Critical Soil Displacement 

The load displacement curve is linear up the critical soil displacement, and plastic 

beyond the critical displacement. The critical displacement is given by 

  

3.18 Vertical Spring Stiffness of Sandy, Clayey soils, and Rock 

The vertical spring stiffness of soils is given by 

𝐾𝑧 = (
1

3
)𝑏𝛾𝑧2 (187) 

where 

𝐾𝑧 = vertical spring stiffness [F/L] 

b, γ, and z are defined in previous section 3.17.1 

3.19 Soil Spring Stiffness Matrix 

In section 3.17, the expressions for lateral and vertical soil springs were developed. 

In this section, the soil springs will be expressed in a matrix form for each element. A 

sketch of a linear spring is shown in Figure 3-16. The linear spring has one degree of 

freedom at each node. The rotational spring stiffness is ignored in this study. 

The expression for the spring force-stiffness-displacement relationship for a soil 

spring element with a single degree of freedom is given by 

∆𝑧,𝑐𝑟𝑖𝑡=  𝑝𝑢,𝑧𝑡𝑏 (186) 
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Figure 3-16. Sketch of Linear Spring 

 

where 

𝑓𝑠  = force in the spring [F] 

𝑥1, 𝑥2= axial displacement in the direction of force at the beginning and end nodes [L] 

𝑘 = is the string constant [F/L] 

The matrix for the spring element with 3-Degrees-of-freedom at each end, can be expressed 

as 

 

 

(𝑓𝑠) = [ 𝑘 −𝑘
−𝑘 𝑘

] (
𝑥1

𝑥2
) (188) 

(𝑓𝑠) = [𝐾𝑠](𝑢) (189) 
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where 

(𝑓𝑠) = Spring force matrix 

[𝐾𝑠] = Spring stiffness matrix 

(𝑢) = joint displacement matrix 

 

In equations (189)  and (190) [𝐾𝑠] is the nodal soil stiffness matrix for the soil.  

 

  

(𝑓𝑠) =

[
 
 
 
 
 
 

𝑘𝑥 0 0 −𝑘𝑥 0 0
0 𝑘𝑦 0 0 −𝑘𝑦 0

0 0 𝑘𝑧 0 0 0
−𝑘𝑥 0 0 𝑘𝑥 0 −𝑘𝑧

0 −𝑘𝑦 0 0 𝑘𝑦 0

0 0 −𝑘𝑧 0 0 𝑘𝑧 ]
 
 
 
 
 
 

(

  
 

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6)

  
 

 

(190) 
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3.20 Numerical Integration of Time History Test Records 

This section presents the numerical procedure and technique to obtain velocity and 

displacements from test acceleration records.  

let,  

a1 and a2 be the acceleration at time t1 and t2 respectively. 

We assume a linear variation of acceleration between the times t1 and t2. This can 

be expressed as: 

𝑎(𝑡) = b0 + b1. t 

 

(191) 

Where b0 and b1 are arbitrary constants that need to be determined. 

This equation can be expressed in a matrix form 

𝑎(𝑡) = [1 𝑡]. [
𝑏0
𝑏1

] 

 

(192) 

Applying the known accelerations at times t1 and t2 to get 

𝑎1 = b0 + b1. t1 

 

(193) 

𝑎2 = b0 + b1. t2  

We solve the above two equations using matrices, 
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[
𝑎1

𝑎2
] = [

0 𝑡1
0 𝑡

] [
𝑏0

𝑏1
] (194) 

Solving for b0 and b1 to get 

[
𝑏0

𝑏1
] = [

0 𝑡1
0 𝑡

]
−1

[
𝑎1

𝑎2
] 

(195) 

Substituting equation (195) into equation (192) to get, 

𝑎(𝑡) = [1 𝑡] [
0 𝑡1
0 𝑡

]
−1

[
𝑎1

𝑎2
] (196) 

 

𝑎(𝑡) = [(1 −
𝑡

∆𝑡
) (

𝑡

∆𝑡
)] [

𝑎1

𝑎2
] 

(197) 

 

𝑎(𝑡) = [∅1 ∅2] [
𝑎1

𝑎2
] (198) 

  

𝑎(𝑡) = ∅1𝑎1 + ∅2𝑎2 (199) 

where, 

∅1 = (1 −
𝑡

∆𝑡
) 

And, 
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∅2 =
𝑡

∆𝑡
 

Similarly, the equation for velocity is, 

𝑣(𝑡) = ∅1𝑣1 + ∅2𝑣2 

3.20.1 Velocity 

Similarly, the equation for acceleration is given by the rate of change of velocity 

with respect to time. 

𝑎 =  
ⅆ𝑣

ⅆ𝑡
 (200) 

Rearranging the above equation to get  

 

Substituting equation (197) into (201), 

 

 

 

 

Solving equation (203) to get 

𝑎ⅆ𝑡 − ⅆ𝑣 = 0 (201) 

(1 −
𝑡

Δ𝑡
) 𝑎1 + (

𝑡

Δ𝑡
)𝑎2 − ⅆ𝑣 = 0 

(202) 

∫ (1 −
𝑡

Δ𝑡
) 𝑎1 + (

𝑡

Δ𝑡
)𝑎2

Δ𝑡

0

+ ∫ ⅆ𝑣
𝑣2

𝑣1

= 0 
(203) 
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The term (𝑎1 + 𝑎2)/2 is the average acceleration, therefore, equation (205) becomes, 

 

3.21 Displacement  

Velocity is the rate of change of distance with respect to time. 

 

 

Substituting the equation for v, we get 

 

Rearranging and integrating equation (209), 

𝑣2 − 𝑣1 −
Δ𝑡𝑎1

2
−

Δ𝑡𝑎2

2
= 0 

(204) 

𝑣2 = 𝑣1 +
Δ𝑡𝑎1

2
+

Δ𝑡𝑎2

2
 

(205) 

𝑣2 = 𝑣1 +
1

2
(𝑎1 + 𝑎2)Δ𝑡 

(206) 

𝑣 =
ⅆ𝑠

ⅆ𝑡
 

(207) 

𝑣ⅆ𝑡 − ⅆ𝑣 = 0 (208) 

(1 −
𝑡

Δ𝑡
) 𝑣1 + (

𝑡

Δ𝑡
) 𝑣2 + Δ𝑡 (

𝑎1 + 𝑎2

2
) ⅆ𝑡 = ⅆ𝑠 

(209) 
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Solving equation (210), we get 

 

In summary, the velocity and displacement are given by equations (206) and (211) 

for a given value of accelerations and initial conditions. This forms the basis of the 

numerical integration of a set of acceleration records to obtain displacements and 

velocities.  

3.21.1 Non-Linear Soil Displacement Curve 

Clayey and Sandy soils exhibits non-linear load-displacement response when the applied 

load exceeds its ultimate load capacity. A typical load-displacement curve is shown in 

Figure 3-17. 

∫ (1 −
𝑡

Δ𝑡
) 𝑣1 + (

𝑡

Δ𝑡
) 𝑣2 + Δ𝑡 (

𝑎1 + 𝑎2

2
) ⅆ𝑡 − ∫ ⅆ𝑠

𝑠2

𝑠1

= 0
Δ𝑡

0

 
(210) 

𝑠2 = 𝑠1 + (
𝑣1 + 𝑣2

2
)Δ𝑡 + Δ𝑡2 (

𝑎1 + 𝑎2

2
) 

(211) 
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Figure 3-17. Aassumed Non-Linear Soil Load Displacement Curve 

 

3.22 Tuned Mass Damper (TMD) 

This section presents a proposed Tuned Mass Damper (TMD) solution to mitigate 

the effect of the resonance on poles subject to dynamic wind forces at resonance 

frequencies. The Tuned Mass Damper consists of a steel rod with a spherical steel ball 

attached to the top of the steel rod. The Tuned Mass Damper is mounted securely on top 

of the wood pole.  
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Figure 3-18. Sketch of TMD on Class H1 Wood Pole 

 

 

Figure 3-19. Two Degree of Freedom TMD system 
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In Figure 3-19, 𝑚1is the effective mass of the pole, 𝑚2 is the mass of the Tuned 

mass damper. 

The pole and TMD can be modeled as a lumped mass-spring system, as shown in 

Figure 3-18 and Figure 3-19 

The spring-mass system is represented by equation (212) 

 

For a 2-Degree of freedom mass-spring system, the equations are written in a matrix form 

as shown in equation (213) below. 

 

Let, 
𝑚2

𝑚1
= 𝑚𝑟, where 𝑚𝑟 is the ratio of mass of Tuned Mass Damper to effective mass of 

the pole, or the mass ratio. 

Let, 
𝑘2

𝑘1
=ρ, where ρ is the ratio of stiffness of Tuned Mass Damper to stiffness of the pole 

or the stiffness ratio. 

Substituting the expressions 
𝑚2

𝑚1
= 𝑚𝑟, and  

𝑘2

𝑘1
=ρ, into (213), we get 

 

[𝑚]{𝑢̈} + [𝑘]{𝑢} = 0 (212) 

[
𝑚1 0
0 𝑚2

] + [
𝑘1 + 𝑘2 −𝑘2

−𝑘2 𝑘2
] = [

0
0
] 

(213) 

[
𝑚1 0
0 𝑚1. 𝑚𝑟

] + [
𝑘1 + 𝑘1. 𝜌 −𝑘1. 𝜌

−𝑘1. 𝜌 𝑘1. 𝜌
] = [

0
0
] 

(214) 
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m1 [
1 0
0 mr

] + k1 [
(1 + ρ) −ρ

−ρ ρ
] = [

0
0
]  

 

Simplifying the above equation, we get 

[
1 0
0 𝑚𝑟

] +
𝑘1

𝑚1
[
(1 + 𝜌) −𝜌

−𝜌 𝜌
] = [

0
0
] 

𝑘1 is given by the expression  

𝑘1 = 𝑚1. 𝜔1
2 

 

where 𝜔1 is the effective circular natural frequency, and 𝑚1 is the effective mass of the 

pole. 

 

Equation (215) is the equation of motion for a two degree of freedom spring mass damper. 

The equation is solved for the eigen values, and vectors for a given effective mass, and 

stiffness ratio, and natural frequency. 

  

[
1 0
0 𝑚𝑟

] + 𝜔1
2. [

(1 + 𝜌) −𝜌
−𝜌 𝜌

] = [
0
0
] 

(215) 
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CHAPTER IV 

4 DISCUSSION OF RESULTS 

The results from experimental and theoretical analysis are discussed in this section. 

A summary of the test results for the natural frequencies of the test poles presented in 

section 4.1, followed by comparison of the dynamic properties of the test pole with 

theoretical computations. The mechanical properties of the test pole species, Young’s 

Modulus, unit weight, and bending stress obtained experimentally are presented shown in 

section 2.7, and 2.3.6.  

In section 4.3, the natural frequency response for a class H1 pole embedded in 

sandy, clayey and rock is discussed.  The ground and pole tip displacement response of the 

wood utility poles subject to static wind loads, and non-linear soil stiffness are discussed 

in section 4.4, and 4.5. Potential pole failures due to excessive ground, and pole tip 

displacements, including pole breakage from bending are presented.  

The cable mass ratio affects the natural frequency of the pole system. A detailed 

discuss on the effect of the cable mass ratio of the test poles, and the class H1 pole is 

discussed in section 4.7, and 4.10. 

Resonace in cantilever pole structures occur the frequency of wind matches the 

natural frequency of the pole. The results of the resonance displacement amplification for 

poles embedded in sandy and clayey soils are discussed in section 4.9. Mitigation of large 

displacement amplifications using a Tuned Mass Damper is discussed in section 4.11. 
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4.1 Dynamics Response to Initial Static Pull 

The results from experimental data together with the natural periods, frequencies, 

and damping ratios for the test specimens are shown in Table 2-7, Table 2-8, and Table 

2-9. Table 4-1 shows the summary of the mean dynamic properties of the test specimens.  

 

Test Specimen 
Test 

Number 

Damping 

Ratio 

[%] 

Period 

[sec] 

Natural 

Frequency 

[Hz] 

TSP1 1 2.87 0.047 21.21 

  2 1.02 0.046 21.61 

TSP2 1 1.07 0.047 21.36 

Average   1.64 0.047 21.39 

 

The average natural period and frequencies of the test poles are 0.47s and 21.39Hz, 

while the average damping ratio is 1.64%. 

4.2 Dynamic Response from Analysis 

Table 4-2 shows the periods, and natural frequencies obtained using a MATLAB 

code, analytical solution, and SAP2000 program for a 4’ 0” test specimen.   

 

 

 

Table 4-1: Experimentally Computed Dynamic Response 
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    Fundamental Period [sec] Fundamental Frequency [Hz] 

S. NO 
No. of 

Element 

FEM 
Analysis 

Using 
MATLAB 

Code 
(Consistent 
Mass and 
Stiffness) 

Analytical 
Solution 

FEM 
Analysis 

Using 
SAP2000 
(Lumped 

Mass, 
and 

Stiffness) 

FEM 
Analysis 

Using 
MATLAB 

Code 
(Consistent 
Mass and 
Stiffness) 

Analytical 
Solution 

FEM 
Analysis 

Using 
MATLAB 

Code 
(Consistent 
Mass and 
Stiffness) 

1 4 0.0341 0.0395 0.0444 29.336 25.340 29.525 

2 10 0.0338 0.0395 0.0343 29.565 25.340 29.141 

3 25 0.0338 0.0395 0.0342 29.602 25.340 29.268 

4 50 0.0338 0.0395 0.0429 29.608 25.340 29.286 

5 100 0.0338 0.0395 0.0341 29.609 25.340 29.290 

 

The period and frequency obtained from an analytical solution are based on the 

average diameter of the test pole. The MATLAB code was written using consistent mass 

and stiffness matrices. SAP2000 program results are based on lumped mass and stiffness 

matrix. The number of elements selected are 4, 10, 25, 50, and 100 to compare the 

MATLAB code and SAP2000 results. 

Results from the FEA analysis using consistent mass and stiffness agreed well with 

the SAP2000 Lumped Mass analysis. However, the natural period and frequency from the 

analytical solution is 14.4% less than the results from the FEM analysis. An average pole 

diameter was used to determine the cross-sectional properties of the test specimen for the 

analytical solution. In contrast, the actual diameter at the nodes was used for the FEM 

analysis. Both MATLAB code and SAP2000 program utilize FEM analysis. 

Table 4-2: Computed Natural Periods and Frequencies 
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The experimentally obtained natural frequency for the test specimen and FEM 

analysis are 21.39Hz, and 29.9Hz. The experimentally obtained natural frequency of the 

test specimens was 28.5% lower than the theoretical values. 

The natural frequencies and periods obtained using the Consistent Mass and 

Lumped Mass are the same for all practical purposes if a sufficient number of elements are 

chosen. Hence, either one of the methods would yield similar results. 

4.3 Frequency Response of Class H1 Tapered Pole Embedded in Foundation Soils 

The response of a class H1 pole embedded in three (3) soil types is discussed in this 

section. The results are then compared to a class H1 pole with a fixed base to further 

understand the differences in their responses. The three types of soil considered in this 

study are sandy soil, clayey soil, and rock. The dimensions of a class H1 wood pole is listed 

in Appendix F, Section 0. The tip and base diameter of the class H1 pole are 8.7 inches and 

14.2 inches, respectively. A 35-foot pole height was chosen with a 25-foot projection above 

the ground level. The embedment depth was varied from 10ft to 1ft, in 6” decrements, to 

capture the dynamic response. 

The assumed soil spring constants for the considered soils are shown in Table 4-3, 

Table 4-4, and Table 4-5. In these tables, AE, Z, is the elastic modulus of soil as a function 

of depth, Es,z   is the soil elastic modulus at the specified depths, kh is the lateral spring 

value (in X- and Y- directions) at the specified depths, and kz is the vertical spring values 

(skin friction). These assumed soil parameters are based on the publication “Modelling of 

Soil Behavior With Simple Springs” by Bohnhoff [17]. The Young’s Modulus of 660 psi/ft 

and 3930 psi for Sandy and Clayey soils is used in this study. The site-specific Young’s 
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Modulus of the soil can be obtained from a geotechnical investigation; however, the above 

values were chosen for this study. The end bearing capacity at the bottom of the pole is 

also shown in soil properties tables. The additional vertical stiffness at the bottom of the 

pole is additive to the nodal spring value. 

 

  
The density of Sandy Soil = 

110pcf       

S. No 
Embedment 

Depth [ft] 
AE,Z 

[psi] 
Es,z  

[ksi] 
kh  

[kip/in] 
kz  

[kip/in] 
End Bearing 

Capacity [kips] 

 0 660 0.00 0.01 0.01 -  

2 0.5 660 0.33 3.96 0.01 - 

3 1 660 0.66 7.92 0.04 - 

4 1.5 660 0.99 11.88 0.08 0.130 

5 2 660 1.32 15.84 0.15 0.173 

6 2.5 660 1.65 19.80 0.23 0.216 

7 1 660 1.98 23.76 0.33 0.259 

8 3.5 660 2.31 27.72 0.44 0.302 

9 4 660 2.64 31.68 0.58 0.346 

10 4.5 660 2.97 35.64 0.74 0.389 

11 5 660 3.30 39.60 0.91 0.432 

12 5.5 660 3.63 43.56 1.10 0.475 

13 6 660 3.96 47.52 1.31 0.518 

14 6.5 660 4.29 51.48 1.53 0.562 

15 7 660 4.62 55.44 1.78 0.605 

16 7.5 660 4.95 59.40 2.04 0.648 

17 8 660 5.28 63.36 2.32 0.691 

18 8.5 660 5.61 67.32 2.62 0.734 

19 9 660 5.94 71.28 2.94 0.778 

20 9.5 660 6.27 75.24 3.28 0.821 

21 10 660 6.60 79.20 3.63 0.864 

 

 

Table 4-3: Soil Spring Constants for Sandy Soil 
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The density of Clayey Soil = 

90 pcf       

S. No 
Height, 

[ft] 
AE,Z 
[psi] 

Es,z  
[ksi] 

kh 

[kip/in] 
kz, 

[kip/in] 
End Bearing 

Capacity [kips] 

1 0 3920 0.00 0.1 0.10 -  

2 0.5 3920 1.96 23.52 0.01 -  

3 1 3920 1.96 23.52 0.03 -  

4 1.5 3920 1.96 23.52 0.07 0.106 

5 2 3920 1.96 23.52 0.12 0.141 

6 2.5 3920 1.96 23.52 0.19 0.177 

7 3 3920 1.96 23.52 0.27 0.212 

8 3.5 3920 1.96 23.52 0.36 0.247 

9 4 3920 1.96 23.52 0.48 0.283 

10 4.5 3920 1.96 23.52 0.60 0.318 

11 5 3920 1.96 23.52 0.74 0.353 

12 5.5 3920 1.96 23.52 0.90 0.389 

13 6 3920 1.96 23.52 1.07 0.424 

14 6.5 3920 1.96 23.52 1.25 0.459 

15 7 3920 1.96 23.52 1.46 0.495 

16 7.5 3920 1.96 23.52 1.67 0.530 

17 8 3920 1.96 23.52 1.90 0.565 

18 8.5 3920 1.96 23.52 2.15 0.601 

19 9 3920 1.96 23.52 2.41 0.636 

20 9.5 3920 1.96 23.52 2.68 0.672 

21 10 3920 1.96 23.52 2.97 0.707 

 

 

 

Table 4-4: Soil Spring Constants for Clayey Soil 
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  Density of Rock = 140pcf       

S. No 
Height, 

[ft] 
AE,Z 

[psi] 
Es,z  

[ksi] 
kh 

[kip/in] 
kz, 

[kip/in] 
End Bearing 

Capacity [kips] 

1 0 29000 0.00 0 0 -  

2 0.5 29000 14.50 174.0 0.14 -  

3 1 29000 14.50 174.0 0.55 -  

4 1.5 29000 14.50 174.0 1.24 3.927 

5 2 29000 14.50 174.0 2.21 3.927 

6 2.5 29000 14.50 174.0 3.46 3.927 

7 3 29000 14.50 174.0 4.99 3.927 

8 3.5 29000 14.50 174.0 6.79 3.927 

9 4 29000 14.50 174.0 8.87 3.927 

10 4.5 29000 14.50 174.0 11.22 3.927 

11 5 29000 14.50 174.0 13.86 3.927 

12 5.5 29000 14.50 174.0 16.77 3.927 

13 6 29000 14.50 174.0 19.96 3.927 

14 6.5 29000 14.50 174.0 23.42 3.927 

15 7 29000 14.50 174.0 27.16 3.927 

16 7.5 29000 14.50 174.0 31.18 3.927 

17 8 29000 14.50 174.0 35.48 3.927 

18 8.5 29000 14.50 174.0 40.06 3.927 

19 9 29000 14.50 174.0 44.91 3.927 

20 9.5 29000 14.50 174.0 50.04 3.927 

21 10 29000 14.50 174.0 55.44 3.927 

 

The analysis is performed for the three soil types by varying the embedment depths. 

The effect of reduction in the soil spring values in the presence of moisture is considered 

by reducing the soil spring values by 15%, 30%, 50%, and 75%. 

The analysis model consisted of 75 elements equally spaced at 6”. SAP2000 was 

used to perform the modal analysis. 

Table 4-5: Soil Spring Constants for Rock 
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The analysis results were tabulated and compared with the fixed base condition. 

The dynamic response of the Class H1 pole is then plotted for various depths, together with 

the responses for various percentages of soil stiffness reduction for comparison. These 

graphs are shown in Figure 4-1, Figure 4-2, Figure 4-3, Figure 4-5 and Figure 4-6 

 

Figure 4-1:. Natural Frequency Response Vs. Embedment Depth [ft] for Sandy Soil 
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Figure 4-2. Natural Frequency Vs. Percentage Embedment for Sandy Soil 

Figure 4-1, and Figure 4-2 show the graph for response frequency vs embedment 

depths for Sandy Soil. The frequency response below 10% embedment appears to be linear. 

The curves seem to be non-linear above 10% embedment. The response frequencies for 

10% and 15% embedment depths are 2.29Hz and 3.7Hz, respectively. These values 

represent a 61.69% increase in the natural frequency and a significant increase for a 5% 

increase in the embedment depth for the assumed standard sandy soil.  

The dashed vertical line represents the natural frequency of the class H1 pole with 

a fixed base of nearly 4.8Hz. The natural frequency graph for the class H1 pole trends 

vertically for embedment depths greater than 20% and approaches a constant value of 

4.6Hz.  
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The reduction in the soil stiffness reduces the natural frequencies, especially for 

embedment depths lower than 20%. The 15% embedment depth seems to be the 

transition point from a linear to non-linear natural frequency response and a practical 

guide for embedment depths in sandy soils. 

 

Figure 4-3. Natural Frequency Vs. Embedment Depth [ft] For Clayey Soil 
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Figure 4-4. Natural Frequency Vs. Embedment Depth [%] For Clayey Soil 

Figure 4-3 and Figure 4-4 show the graph for Response Frequency vs. embedment 

depths for clayey soil. The response frequencies for 15%, 30%, 50%, and 75% reduced soil 

stiffness also show the effect on the reduced soil stiffness. 

The 12.5% embedment depth seems to be where the natural frequency response 

graph transitions from linear to non-linear. The response frequencies for 10% and 15% 

embedment are 3.052Hz and 4.2Hz, respectively. These values represent a 37.9% increase 

in the response frequency for a 5% increase in the embedment depth. 

The natural frequency response for clayey soil approaches a constant value of 4.6Hz 

beyond 20% embedment depths. 
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Figure 4-5. Natural Frequency Vs. Embedment Depth for Rock 

 

 

Figure 4-6. Natural Frequency Vs. Percentage Embedment [%] For Rock. 
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Figure 4-5, and Figure 4-6 show the Response Frequency vs. embedment depth for 

rock. It can be observed that the response frequencies do not significantly change above 

10% embedment depths. Also, moisture does not affect the stiffness properties of rock. The 

dashed vertical line is the natural frequency response h for a class H1 pole with a fixed 

base. The natural frequencies are larger for embedment depths greater than 10% than the 

fixed base. The diameter of the class H1 pole at the fixed base is 12.56 inches. The diameter 

of the pole base at 10% and 25% embedment depths is 12.94 inches and 13.71 inches, 

respectively. The stiffness increases with the pole's diameter, hence the larger natural 

frequency beyond 10% embedment depths. 

A 10% embedment depth for rock seems to be the optimal depth limit for practical 

purposes. 

4.4 Ground and Pole Tip Displacement of Class H1 Pole Embedded in Clayey Soil 

and Subjected to Static Wind Loads. 

This section discusses the ground displacement response of the class H1 wood pole 

with a 100 ft cable subjected to various wind speeds. A non-linear response of the soil is 

considered. The cable effects of the are also considered in the study. A sketch showing the 

½” diameter, 100 ft cable, class H1 wood pole, and non-linear springs is shown in Figure 

4-7. 
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Figure 4-7.  Sketch of Soils Springs, Cable, and Wood Pole 

The soil spring constants are computed based on the methods proposed by 

Bohnhoff [17]. The Young’s Modulus for clayey of 3920 psi and 660 psi/ft for sand are 

used. Young’s Modulus for clayey soils remains constant over the depth of the soil; 

however, it increases with depth for sandy soils. 

Table 4-6 shows a typical ultimate load and corresponding displacements for 

Clayey soils. 
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z [ft] Esz [psi] 
Kh 

[kip/in] 
Kz 

[kip/in] 
Fult [kip] du [in] 

dumax 
[in] 

0 1960 0 0 0 0 0 

0.5 1960 23.52 0.007 2.21 0.09 0.28 

1 1960 23.52 0.030 2.25 0.10 0.29 

1.5 1960 23.52 0.067 2.30 0.10 0.29 

2 1960 23.52 0.119 2.34 0.10 0.30 

2.5 1960 23.52 0.186 2.39 0.10 0.30 

3 1960 23.52 0.267 2.43 0.10 0.31 

3.5 1960 23.52 0.364 2.48 0.11 0.32 

4 1960 23.52 0.475 2.52 0.11 0.32 

4.5 1960 23.52 0.601 2.57 0.11 0.33 

5 1960 23.52 0.743 2.61 0.11 0.33 

5.5 1960 23.52 0.898 2.66 0.11 0.34 

6 1960 23.52 1.069 2.70 0.11 0.34 

6.5 1960 23.52 1.255 2.75 0.12 0.35 

7 1960 23.52 1.455 2.79 0.12 0.36 

7.5 1960 23.52 1.671 2.84 0.12 0.36 

8 1960 23.52 1.901 2.88 0.12 0.37 

8.5 1960 23.52 2.146 2.93 0.12 0.37 

9 1960 23.52 2.406 2.97 0.13 0.38 

9.5 1960 23.52 2.680 3.02 0.13 0.38 

10 1960 23.52 2.970 3.06 0.13 0.39 
 

A plot of the ultimate lateral load capacity vs. embedment depth for clayey soils is 

shown in Figure 4-8. The ultimate load capacity is bilinear due to the varying cross section 

of the pole. 

Table 4-6: Soil Spring Constants and Displacements for Clayey Soil 
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Figure 4-8. Ultimate Load Capacity Vs. Depth for Clayey Soil Soils 

The analysis for the ground and pole tip displacements are done using the SAP2000 

program.  
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Figure 4-9. Ground Displacement for Static Wind Load Various Embedment Depth 

The ground displacement for various positive wind speeds in the X-direction and 

embedment depths is shown in Figure 4-9. The horizontal axis is plotted on a logarithmic 

scale to visualize the displacement response better. In a dashed line, the line for elastic 

displacement for clayey soil is also shown to demarcate the elastic and non-linear 

displacements for various wind speeds in the positive X-directions. Displacements to the 

right of the elastic curve indicate that the ground displacements are non-linear, while 

displacements on the left side of the elastic curve mean that the ground displacements are 

elastic. 

For 5’ 0” embedment depth, Error! Reference source not found.1” and 4.5” 

ground displacement are observed at 205 mph and 220 mph, respectively. A 5’ 0” 

embedment depth is about 16.6% of the total pole length (30’ 0” in this case).  
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Figure 4-10. Ground Displacements Vs. Embedment Depth for Various Wind Speeds 

Figure 4-10 is plotted for ground displacement vs. embedment depths for various 

wind speeds. The horizontal axis is plotted in a logarithmic scale to visualize the 

displacement response better.  

Ground displacements remain elastic up to 140mph for depths from 5’ 0” to 10’ 0”. 

Excessive ground displacements can be seen from wind speeds of 200 mph and 220 mph 

for less than 6’ 0” embedment.  Wind speeds higher than 160 mph will induce permanent 
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As discussed in previous sections, the cable tension increases non-linearly and 

provides a restraint at the top of the pole. The increase in the cable tension is shown in 

Figure 3-5 and Table 3-1. This indicates that excessive ground displacement is unlikely for 

clayey soils subject to (-) X-direction winds. 

The ground displacement response for wind in the Y-direction is shown in Figure 

4-11. The 100 ft cable element will transmit wind load and cable tension at the top of the 

wood pole. The displacement at the top of the pole will have X- and Y- components. The 

resultant of the X-and displacements is used to compute the resultant displacements.   

 

Figure 4-11. Resultant Ground Displacement Vs. Wind Speed 

The resultant ground displacements for 6’ 0” and greater embedment depths are 
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embedment depth and 220 mph wind speed. There will be imminent collapse of the class 

H1 wood pole for 5’ 0” embedment and subjected to 220 mph wind pressure. The additional 

wind load from the cable contributes to the collapse of the pole from a theoretical ground 

displacement of about 61”. 

From the above discussion, it can be concluded that the collapse of a class H1 wood 

pole due to excessive ground displacement would be in the Y-direction. In other words, the 

wood pole collapse would occur, due to excessive ground displacement, in the 

perpendicular direction of the cable for winds speeds greater than 150 mph. 

 

Figure 4-12. Pole Tip Displacement Vs. Wind Speed  

Figure 4-12 shows the pole tip displacements for 5’ 0”, 6’ 0” and 6’ 6” embedment depths 

in clayey soils for wind speeds from 40 to 220 mph in the positive X-direction. The red 
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dashed line is the pole breakage displacement for 5’ 0” embedment depth. Pole breakage 

will occur in the class H1 pole embedded 5’ 0” in clayey soils at a wind speed of about 160 

mph. However, poles with 5’ 6” and greater embedment depths will not suffer any 

breakage. The displacements for depths 6’ 6” and larger are not shown in Figure 4-12 since 

no breakage will occur. The graph portion to the right of the red dashed line is irrelevant 

since pole failure would have already happened.  

 

Figure 4-13. Pole Tip Displacement Vs. Wind Speed (Y-Direction) for 5’ 0” Embedment 

Figure 4-13 is the graph for pole tip displacements Vs. Wind speed in the Y-

direction with 5’ 0” embedment in clayey soils. The pole breakage will likely occur at 140 

mph for the 5’ 0” embedment depth. The portion of the displacement graph to the right of 

the pole breakage displacement line is irrelevant since the pole would have failed at 140 

mph. 
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Figure 4-14. Pole Tip Displacement Vs Windspeed (Y-Direction) 

Figure 4-14 shows pole tip displacements Vs. wind speeds perpendicular to the plane of 

the cable for poles with 5’ 0” and 5’ 6” embedment depths. The pole breakage occurs at 

about 150 mph for both the poles. These graphs also show the pole breakage displacements 

in a dashed line. The pole breakage displacement to the right of the dashed line is non-

applicable. Pole tip displacements decrease with a decrease in embedment depths.  
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Figure 4-15. Wood Pole Tip Displacement Vs. Static Wind Speeds (-ve X-Direction) 

Figure 4-15 is a graph for pole tip displacements for various wind speeds in the 

negative X-direction and embedment depths. Pole tip displacements in the negative X-

directions are significantly smaller than the +ve X-and Y-direction winds. These 

displacements are also considerably smaller than the breakage displacements, and hence, 

it is unlikely that pole breakage will occur for winds in the positive X-direction.  
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understand the ground displacement failures. The theoretical load displacement values for 

sandy soils are shown in Table 4-6. 

 

Z 
 [ft] 

Es,z  
[psi/ft] 

Kh 

 [kip/in] 
Kz 

 [kip/in] 
Fult 

 [kip] 
du  

[in] 
dumax 

 [in] 

0 0 0 0 0 0 0 

0.5 330 3.96 0.009 0.304 0.077 0.231 

1 660 7.92 0.036 0.609 0.077 0.231 

1.5 990 11.88 0.082 0.913 0.077 0.231 

2 1320 15.84 0.145 1.218 0.077 0.231 

2.5 1650 19.8 0.227 1.522 0.077 0.231 

3 1980 23.76 0.327 1.827 0.077 0.231 

3.5 2310 27.72 0.445 2.131 0.077 0.231 

4 2640 31.68 0.581 2.436 0.077 0.231 

4.5 2970 35.64 0.735 2.740 0.077 0.231 

5 3300 39.6 0.908 3.044 0.077 0.231 

5.5 3630 43.56 1.098 3.349 0.077 0.231 

6 3960 47.52 1.307 3.653 0.077 0.231 

6.5 4290 51.48 1.534 3.958 0.077 0.231 

7 4620 55.44 1.779 4.262 0.077 0.231 

7.5 4950 59.4 2.042 4.567 0.077 0.231 

8 5280 63.36 2.323 4.871 0.077 0.231 

8.5 5610 67.32 2.623 5.175 0.077 0.231 

9 5940 71.28 2.940 5.480 0.077 0.231 

9.5 6270 75.24 3.276 5.784 0.077 0.231 

10 6600 79.2 3.630 6.089 0.077 0.231 

 

 

 

Table 4-6: Soil Spring Constants and Displacement for Sandy Soil 
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The non-linear load displacement values are used to model the soil behavior in the 

SAP2000 program. The variation of ultimate lateral capacity with embedment depths for 

sandy soils is shown in Figure 4-16.  

 

Figure 4-16. Ultimate Load Capacity vs Embedment for Sandy Soil 

The ground displacements obtained from analysis are shown in Figure 4-17, Figure 

4-18, and Figure 4-19. The elastic displacements are also plotted to differentiate the elastic 

and non-linear ground displacements. The elastic displacement is independent of depth for 

Sandy Soils. 
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Figure 4-17. Ground Displacement Vs. Windspeed (+ve X) for Various Embedment Depth 

 

Figure 4-17 is plotted on a logarithmic scale along the X-axis to show the ground 

displacements more clearly. 

The analysis was performed for wind speeds up to 120 mph since solution 

convergence could not be achieved for displacements for 5’ 0”, 5’ 6”, and 6’ 6” embedment 

depths. For poles with embedment depths of 5’ 0”, and 5’ 6”, 1” permanent displacements 

occurred at 100 mph, and 115mph.  

 

40

50

60

70

80

90

100

110

120

0.01 0.10 1.00 10.00

W
in

d
 S

p
ee

d
, 

X
 (

+
) 

D
ir

ec
ti

o
n
 [

m
p

h
]

Ground Displacement [in]

10' 0" Embedment
9' 6" Embedment
9' 0" Embedment
8' 6" Embedment
8' 0" Embedment
7'6"  Embedment
7' 0" Embedment
6' 6" Embedment
6' 0" Embedment
5' 6" Embedment
5' 0" Embedment
Limit of Elastic Displacement



139 

 

 

Figure 4-18. Ground Displacement Vs Wind Speed (+ve Y) for Various Embedment Depth 

 

Figure 4-18 shows a plot of Ground displacement for various wind speeds in the 

Y-direction and embedment depths. A permanent ground displacement of 1” occurs for 

115 mph wind in the +ve Y-direction and 5’ 6” embedment depth. Poles with embedment 

depths of 5’ 0” (16.7%) and 5’ 6” (18.4%) appear to have large ground displacements at 

lower wind speeds. Embedment depths must be increased for higher wind speeds to limit 

the permanent ground displacements. 
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Figure 4-19. Ground Displacement Vs. Wind Speed (-ve X) Direction 

 

Figure 4-19 is a graph for ground displacement for various wind speeds in the -ve 

X-direction and embedment depths. The ground displacements are significantly smaller 

when compared to +ve, X-, and Y-direction winds. Increased cable force with displacement 

restrains ground displacements in the -ve X-directions. 
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Figure 4-20. Pole Tip Displacement Vs. Wind Speed (+ve X-Direction) 

Figure 4-20 shows the graph of Pole Tip displacement for various positive X-

direction wind speeds for various embedment depths in the soil. The maximum 

displacement at the pole tip is 36.39 inches, and a bending moment of 9.73 ft-kip at the 

base is less than the breakage moment for 120 mph wind. The breakage bending moment 

is 18.91 ft-kip for the class H1 wood pole. It is unlikely that pole breakage will occur when 

the wind is in the negative X direction. 
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Figure 4-21. Pole Tip Displacement Vs. Wind Speed (Y-Direction) 

Figure 4-21 is a graph for Pole Tip displacement for various positive Y-direction 

wind speeds and embedment depths. The cable tension provides restraining forces at the 

top of the poles, hence higher resistance to wind forces. The maximum displacement for 

wind in the Y-direction is 11.76 inches. It is unlikely that breakage will occur in the Class 

H1 pole embedded in sandy soils up to 120 mph. 
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Figure 4-22. Displacement Vs. Wind Speed (-ve X-Direction) 

Figure 4-22 is a graph for Pole Tip displacement and various negative X-direction 

Wind Speeds and embedment depths. The displacement is significantly smaller when 

compared to the positive X- and Y-direction wind.  

 

 

 

40

50

60

70

80

90

100

110

120

-1.0 -0.5 0.0 0.5 1.0 1.5

W
in

d
 S

p
ee

d
 (

-
X

 D
ir

ec
ti

o
n
) 

[m
o
h
]

Pole Tip Displacement [in]

5' 0" Embedment

5' 6" Embedment

6' 0" Embedment

6' 6" Embedment

7' 0" Embedment

7' 6" Embedment

8' 0" Embedment

8' 6" Embedment

9' 0" Embedment

9' 5" Embedment

10' 0" Embedment



144 

 

4.6 Prediction of Pole Breakage Locations 

In this section, the breakage points along the height of the pole are studied. The 

breakage height is calculated using the experimentally obtained bending stress, pole 

diameter, and wind loads based on ASCE 7-16. The bending stress for the test pole is 2214 

psi. The corresponding bending stress at breakage is 18.92 ft-kip. 

A relationship between wind speed and pole tip displacement at the time of pole 

breakage is shown in Figure 4-23. 

 

Figure 4-23. Graph of Wind Speed Vs. Pole Failure Displacement for 5’ 0” 

Embedment Depth in Clayey Soil 
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to the ground at 160 mph and higher elevations from the ground level for higher speeds. 

The breakage point is approximately 7 ft from the ground level for 220 mph speed. 

The breakage of the poles can happen when a high-speed wind of more than 160 

mph is in the positive X or Y direction. Breakage is unlikely in the -ve X directions, and 

the tip and ground displacements are smaller than the +ve X- or Y-directions.  

The analysis was for sandy soils with wind speeds up to 120 mph because the 

solution did not converge for 5’ 0” and 5’ 6” embedment depths. The bending moment at 

the ground level for 120 mph is 9.73 ft-kip, less than the pole breakage moment of 18.91 

ft-kip. Hence, it is unlikely that any pole breakage will occur in the pole embedded in sandy 

soils with wind speeds up to 120 mph. 

4.7 Effect of Cable Mass Ratio 

The effect of the cable mass ratio on the dynamic response of the test poles is 

discussed in this section. A 5’ 0” tall test pole was selected for this study. The physical 

properties of the test pole are shown in Table 2-1 and Table 2-2. The dynamic analysis was 

performed using SAP2000, and the results are shown in Table 4-7. The effect of the mass 

ratio on the natural frequency response is shown in Figure 4-24.   
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Table 4-7: Dynamic Response of 5ft Test Pole with varying span and mass ratios 

S. No 
Span of Cable 

[ft] 
Weight of Cable 

[lbf] 
Mass Ratio 

Period 
[s] 

Natural 
Frequency [Hz] 

1 25 5.09 1.52 0.984 1.016 

2 24 4.88 1.46 0.953 1.049 

3 23 4.68 1.40 0.922 1.084 

4 22 4.47 1.33 0.892 1.121 

5 21 4.27 1.27 0.862 1.161 

6 20 4.07 1.21 0.863 1.202 

7 19 3.86 1.15 0.802 1.247 

8 18 3.66 1.09 0.772 1.295 

9 17 3.45 1.03 0.743 1.346 

10 16 3.25 0.97 0.713 1.402 

11 15 3.05 0.91 0.686 1.458 

12 14 2.84 0.85 0.655 1.527 

13 13 2.64 0.79 0.626 1.599 

14 12 2.44 0.73 0.596 1.678 

15 11 2.23 0.67 0.566 1.766 

16 10 2.03 0.61 0.536 1.866 

17 9 1.83 0.55 0.505 1.981 

18 8 1.62 0.48 0.473 2.114 

19 7 1.42 0.42 0.439 2.276 

20 6 1.22 0.36 0.405 2.466 

21 5 1.01 0.30 0.369 2.713 

22 4 0.81 0.24 0.329 3.044 

23 3 0.61 0.18 0.284 3.524 

24 2 0.41 0.12 0.231 4.325 

25 1 0.20 0.06 0.163 6.124 

26 0.5 0.10 0.03 0.115 8.663 

27 0.25 0.05 0.02 0.082 12.247 
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Figure 4-24. Graph of Cable Mass Ratio Vs. Response Natural Frequency 

The effect of the cable mass ratio on the natural system frequency is shown in 

Figure 4-24. The influence of the cable mass ratio on the natural frequency is negligible 

below 5%. The natural frequency reduction above 5% cable mass ratio follows an 

exponential curve. This curve is consistent and similar to the cable's non-linear load-

displacement curve.  The natural frequency of the test pole with no cable is 26.816Hz, 

shown in a dashed line in the figure.                   
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Figure 4-25. Natural Frequency Vs. Cable Span 

Figure 4-25 shows the effect of the cable span on the system’s natural frequency. 

The relationship appears to be similar to the cable mass ratio since the span of the cable 

and mass are coupled. 

4.8 Frequency Response of 5 ft Test Pole 

This section presents the results of the dynamic response of a 1/5th scale, 5’ 0” tall 

cantilever test pole embedded in clayey, sandy soils and rock. The properties of the pole 

are per Table 2-1. The simulation was done using SAP2000 for various embedment depths. 

The frequency responses are shown in Table 4-8.  

The response frequency and period of a 5 ft cantilever assuming a fixed base are 

25.939 Hz and 0.039 s, respectively.  
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    Sandy Soil   
Clayey 

Soil 
  Rock 

Embedment 

Depth [in] 
Embedment 

Depth [%] 
Frequency 

[Hz] 
Period 

[sec] 
Frequency 

[Hz] 
Period 

[sec] 
Frequency 

[Hz] 
Period 

[sec] 

3 4.2%  -  -  -  - 14.762 0.067 

4.00 5.6% 5.876 0.150 9.695 0.103 19.054 0.052 

5.00 6.9% 8.464 0.118 12.703 0.079 21.549 0.046 

6.00 8.3% 11.149 0.090 15.306 0.065 22.895 0.044 

7.00 9.7% 13.698 0.073 17.405 0.057 23.604 0.042 

8.00 11.1% 15.923 0.063 19.010 0.053 23.970 0.042 

9.00 12.5% 17.721 0.056 20.192 0.050 24.154 0.041 

10.00 13.9% 19.085 0.052 21.039 0.048 24.240 0.041 

11.00 15.3% 20.070 0.050 21.636 0.046 24.277 0.041 

12.00 16.7% 20.753 0.048 22.050 0.045 24.290 0.041 

 

 

Table 4-8: Response Period and Frequencies for 5ft Test Pole 
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Figure 4-26. Response Frequency Vs Embedment Depth [in] for 5 ft Test Pole 

 

 

Figure 4-27. Response Frequency Vs. Embedment Depth [%] for 5 ft Test Pole 
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Figure 4-27 and Figure 4-28 are graphs for the natural response frequency as a 

function of embedment depths for the test poles. As with the class H1 wood pole, the 5 ft 

test pole shows a similar frequency response.  

There is no significant increase in the natural frequency response for rock beyond 

10% embedment depth. The response frequencies are significantly lower for sandy and 

clayey soils when compared to rock. There is a 46.5% and 24% increase in the response 

frequencies for a 5% increase in embedment depths from 10% to 15%. 

 

 

Figure 4-28. Response Frequency Deviation from Fixed Base Condition for 5 ft Test Pole 

Figure 4-28 shows the natural frequency reduction for the 5-foot-tall test pole 

embedded in sandy, clayey, and rock relative to a fixed base. The response frequency 
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reduction for rock is negligible for embedment depths greater than 10%. The reduction is 

47.5% and 32.9% for Sandy and clayey soils, respectively, corresponding to 10% 

embedment depths. The deviations are 22.6% and 16.6% for sandy and clayey soils, 

respectively, corresponding to 15% embedment depth. 

The scaled-down test model exhibits similar dynamic response characteristics 

compared to the class H1 pole.  

4.9 Dynamic Response of Class H1 Pole Subject to Dynamic Time History Wind 

Load Embedded in Clayey and Sandy Soil. 

The dynamic response of the class H1 wood pole with 100 ft cable embedded in 

clayey and sandy soils subjected to dynamic time history wind load is presented in this 

section. The frequency of the wind time history is set to the fundamental system frequency. 

A resonant condition occurs when the ratio of the forcing function's frequencies and the 

pole's natural frequency equals one.  
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Nodal Wind Load [lbf] 

Height [ft] 
5mph 
[lbf] 

10mph 
[lbf] 

15mph 
[lbf] 

20mph 
[lbf] 

25mp
h [lbf] 

30mph 
[lbf] 

40mph 
[lbf] 

60mph 
[lbf] 

80mph 
[lbf] 

100mph 
[lbf] 

0 0.39 1.57 3.54 6.29 9.83 14.16 25.17 56.63 100.68 157.31 

1 0.78 3.11 6.99 12.43 19.42 27.97 49.72 111.87 198.88 310.76 

2 0.77 3.07 6.91 12.28 19.18 27.62 49.10 110.48 196.41 306.89 

3 0.76 3.03 6.82 12.12 18.94 27.27 48.48 109.09 193.94 303.02 

4 0.75 2.99 6.73 11.97 18.70 26.92 47.87 107.70 191.46 299.16 

5 0.74 2.95 6.64 11.81 18.46 26.58 47.25 106.31 188.99 295.29 

6 0.73 2.91 6.56 11.66 18.21 26.23 46.63 104.91 186.51 291.43 

7 0.72 2.88 6.47 11.50 17.97 25.88 46.01 103.52 184.04 287.56 

8 0.71 2.84 6.38 11.35 17.73 25.53 45.39 102.13 181.57 283.70 

9 0.70 2.80 6.30 11.19 17.50 25.18 44.77 100.74 179.09 279.83 

10 0.69 2.76 6.21 11.04 17.25 24.84 44.15 99.35 176.62 275.96 

11 0.68 2.72 6.12 10.88 17.16 24.49 43.54 97.96 174.14 272.10 

12 0.67 2.68 6.04 10.73 16.77 24.14 42.92 96.56 171.67 268.23 

13 0.66 2.64 5.95 10.57 16.52 23.79 42.30 95.17 169.20 264.37 

14 0.65 2.61 5.86 10.42 16.28 23.45 41.68 93.78 166.72 260.50 

15 0.64 2.57 5.77 10.27 16.04 23.10 41.06 92.39 164.25 256.64 

16 0.64 2.56 5.75 10.22 15.98 23.01 40.90 92.02 163.60 255.62 

17 0.64 2.54 5.72 10.18 15.909 22.89 40.70 91.58 162.80 254.38 

18 0.63 2.53 5.69 10.12 15.81 22.76 40.47 91.06 161.88 252.93 

19 0.63 2.51 5.65 10.05 15.71 22.62 40.21 90.47 160.83 251.30 

20 0.62 2.49 5.61 9.98 15.59 22.45 39.92 89.81 159.67 249.48 

21 0.62 2.48 5.57 9.90 15.47 22.28 39.60 89.10 158.41 247.51 

22 0.61 2.45 5.52 9.82 15.34 22.09 39.26 88.34 157.05 245.39 

23 0.61 2.43 5.47 9.73 15.20 21.88 38.90 87.53 155.60 243.13 

24 0.60 2.41 5.42 9.63 15.05 21.67 38.52 86.67 154.07 240.74 

25 0.60 2.38 5.36 9.53 14.89 21.44 38.12 85.76 152.47 238.23 

Base 

Reaction 
17.2 68.9 155.1 275.7 430.70 620.2 1102.6 2480.9 4410.5 6891.5 

 

Table 4-9: Nodal Wind Loads on Class H1 Wood Pole 
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Table 4-9Table 4-9 shows the nodal wind loads based on ASCE -7 16. The wind 

load varies over the height of the pole. The 0 ft height in Table 4-9 represents the ground 

level. The nodal wind loads were only calculated for up to 100 mph. Generally, resonance 

occurs when low-speed winds with frequencies matching the natural frequencies of 

structures act on structures. It is common in tall cantilever-type structures like cantilever 

Utility poles, light poles, and industrial chimneys. 

 

Figure 4-29. Nodal Wind Loads on Class H1 Wood Pole 

 

The nodal wind loads, shown in Table 4-9, are plotted in a logarithmic scale along 

the X-axis, as shown in Figure 4-29. The non-uniform variation of wind load along the 
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height is due to the tapered cross-section of the wood pole and varying wind pressure 

coefficients. 

The dynamic analysis was performed using SAP2000, and the dynamic 

amplification was computed for class H1 poles with 10’ 0”, 7’ 6”, and 5’ 0” embedment 

depths with wind speeds from 5 mph to 100 mph.  

 

Embedment Depth 
Length of 
Class H1 
Pole [ft] 

Natural Frequency [Hz] 

[ft] 
Percentage Of 
Length of Pole 

  Clayey Soil  Sandy Soil 

3 10.7% 28.00 - - 

4 13.8% 29.00 - - 

5 16.7% 30.00 3.70 3.34 

7.5 23.1% 32.50 4.26 4.06 

10 28.6% 35.00 4.37 4.19 

 

Table 4-10 shows the natural frequencies of the class H1 pole for various 

embedment depths. The frequencies shown in the table above will used as the input 

frequencies of the wind time history forcing function. 

The assumed wind load time history function is shown in Figure 4-30.  A cosine 

function is selected since the maximum amplitude is obtained at t=0s.  

 

Table 4-10: Embedment Depths and Natural Frequencies 
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Figure 4-30. Wind Time History Cosine Function 

 

The dynamic time history analysis was performed using SAP 2000 software by 

varying the amplitudes and frequencies for each wind speed and embedment depth. 
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Figure 4-31. Displacement Amplification (X-Direction) in Sandy Soil for Class H1 Poles 

 

The results of the dynamic response for sandy soil are shown in Figure 4-31 for 

wind in the X-direction and Figure 4-32 for wind and Y-direction, respectively. 

Figure 4-31 shows the displacement amplification for wind in the X-direction 

along the horizontal axis and displacement amplification in the vertical axis. A peak 

amplification factor of 2 occurs at about 38 mph for an embedment depth of 10’ 0”. 

However, there is no visible peak for the 7’ 6’ and 5’ 0’ embedment depths below 50 mph 

wind speed. A significant displacement amplification occurs at about 75 mph for a 5’ 0” 

embedment depth, which will result in the pole breakage.  
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Figure 4-32. Displacement Amplification (Y-Direction) in Sandy Soils for Class H1 Poles 

A 2.5 amplification for 5’ 0” embedment (16.67% Embedment) occurs at about 30 

mph wind in the Y-direction. The corresponding amplification factors of 2 and 6.0 occur 

at about 38 mph and 40mph for 7’ 6” (23.1% Embedment) and 10’ 0” (28.6% Embedment) 

embedment depths. The amplification factor is smaller for smaller embedment depths. For 

smaller embedment depths, the maximum displacement amplitude seems to occur at lower 

wind speeds for winds perpendicular to the cable, the Y-direction in this case. The X-axis 

is assumed to be the parallel axis along the cable's longitudinal axis.  
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In the 5’ 0” embedment depth case, there is an initial displacement amplification of 

about 2.0 at about 30 mph. However, there is imminent collapse or breakage beyond 50 

mph. 

Figure 4-33 and Figure 4-34 are graphs for clayey soil for 5’ 0”, 7’ 6”, and 10’ 0” 

embedment depths for wind speeds from 5 mph to 100 mph. The graphs are plotted for X-

and Y-wind directions. 

 

Figure 4-33. Displacement Amplification (X-Direction) in Clayey Soils 
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embedment depth. The first peak had 4.2 displacement amplification, and the second peak 

had 4.4 at 28 mph and 58 mph. 

 

Figure 4-34. Displacement Amplification (Y-Direction) in Clayey Soils 

 

There is a displacement amplification of 1.5 at about 38mph wind speed for 7’ 6” 

and 10’ 0” embedment depths for the X-direction wind. However, there is a significant 

displacement amplification of 6.3 at about 35mph.  

For the 5’ 0” (16.5%) embedment depth of a class H1 wood pole, the maximum 

dynamic displacement amplification occurs at about 28 mph. There is imminent pole 

breakage of collapse beyond 50 mph. 
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Also, for 7’ 6” (23.1%) and 10’ 0” (28.6%) embedment depths, the maximum 

dynamic displacement amplifications occur at about 38 mph. 

4.10 Cable Mass Ratio for Class H1 Pole with Cable 

In this section, the cable mass ratio is reviewed, as well as its influence on the 

dynamic response of the class H1 wood pole. The cable used for this study is  ½” diameter 

and 100 ft span. 

 

S. NO 
Embedment 

Depth [ft] 

Weight of 
Wood 

Pole [kip] 

Weight of 
Cable 
[kip] 

Mass 
Ratio 

1 10 0.90 0.067 7.46% 
2 9.5 0.88 0.067 7.61% 
3 9 0.86 0.067 7.78% 
4 8.5 0.84 0.067 7.95% 
5 8 0.83 0.067 8.12% 
6 7.5 0.81 0.067 8.30% 
7 7 0.79 0.067 8.48% 
8 6.5 0.77 0.067 8.68% 
9 6 0.76 0.067 8.87% 

10 5.5 0.74 0.067 9.08% 
11 5 0.72 0.067 9.29% 

 

The cable mass ratios are shown in Table 4-11. In this table, the cable mass ratio 

varies with depth since the height above the ground level is constant. The maximum cable 

mass ratio is 9.29%. The effect of the cable mass ratio on the natural frequency is discussed 

in Section 4.7. A graph showing the effect of cable mass ratio on the natural frequency is 

Table 4-11: Cable Mass Ratio Vs Embedment Depths 
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shown in Figure 4-25. A cable mass ratio less than 10% will have a minimal effect on the 

natural frequencies. 

4.11 Proposed Tuned Mass Damper to Mitigate Resonance Vibration 

This section proposes a Tuned Mass Damper to mitigate the resonance and 

displacement amplification in poles sensitive to resonance frequency dynamic wind forces. 

The class H1 pole and the Tuned Mass Damper (TMD) are modeled as a two- 

degrees of freedom spring-mass system, as discussed in Section 3.22.   

A sketch of the TMD is shown in Figure 4-35. The TMD consists of a 2” diameter steel 

rod (ASTM A36) and a 7 ½” diameter steel ball attached to the top of the steel rod. 

 

Figure 4-35. Sketch of Tuned Mass Damper 
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4.11.1 Dynamic Response of Class H1 Pole with TMD in Clayey Soils 

The natural periods and frequencies of class H1 wood poles embedded in clayey 

soils are shown in Table 4-12. A designer can select a suitable mass and stiffness ratio to 

tune the system frequency to a desired level.  

A typical natural frequency response of the wood pole with TMD is shown in 

Figure 4-36 for a 5’ 0” embedment depth. The graph is plotted on a logarithmic X-axis to 

visualize better the effect of the TMD mass and stiffness ratios. The resultant frequency 

response of the TMD is stable after a frequency ratio of 1.0 and remains relatively constant. 

However, the natural frequency of the pole continues to increase exponentially with the 

increase of the frequency ratio. 

 

Figure 4-36. Natural Frequency Response of Pole with TMD for Clayey Soils 
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Table 4-12 shows the dynamic properties of the Class H1 pole embedded in clayey 

soils for various depths.  

 

S. NO 
Embedment 

Depth [ft] 
Period 
[sec] 

Natural 
Frequency 
of Pole [Hz] 

Model Mass 
Participation 

Ratio 
ω [rad/s] 

stiffness 
[k/in] 

1 10 0.2286 4.3738 0.41 27.45 0.714 

2 9.5 0.2293 4.3604 0.42 27.40 0.712 

3 9 0.23 4.3475 0.43 27.32 0.708 

4 8.5 0.231 4.3282 0.44 27.19 0.703 

5 8 0.2326 4.2999 0.45 27.02 0.696 

6 7.5 0.2348 4.2598 0.46 26.77 0.686 

7 7 0.2379 4.2033 0.47 26.41 0.672 

8 6.5 0.2424 4.1256 0.49 25.92 0.652 

9 6 0.2488 4.0200 0.50 25.26 0.625 

10 5.5 0.2578 3.8788 0.52 24.37 0.589 

11 5 0.2708 3.6932 0.54 23.20 0.542 

 

These natural frequencies need to be tuned to a higher frequency to mitigate the 

large displacement amplifications and prevent pole failures by installing a TMD at the top 

of the pole. A mass and stiffness ratio of 0.15 and 10, respectively, was used for this study. 

Table 4-13 shows the dynamic analysis results for the TMD on the Class H1 Pole. 

The table also shows the weight, diameter, and height of the TMD rod or support. A 

stiffness ratio of 10 was used to determine the sizes of the TMD. The diameter of the TMD 

for a mass ratio of 0.15 is approximately 7 ½” in this example. 

 

 

Table 4-12: Dynamic Properties of Class H1 Pole Embedded in Clayey Soils 
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S. NO 
Embedment 

Depth [ft] 

Tuned 
Natural 

Frequency 
of Pole 

[Hz] 

Tuned 
Natural 

Frequency 
of 

Damper 
[Hz] 

Weight 
Of 

TMD 
[lbf] 

Diameter 
Of TMD 
Rod [in] 

Height 
of TMD 
Rod [in] 

1 10 38.29 4.07 54.91 2 33.7 
2 9.5 38.29 4.07 54.91 2 33.7 
3 9 38.10 4.05 55.00 2 33.8 
4 8.5 37.92 4.03 55.11 2 33.9 
5 8 37.68 4.01 55.28 2 34 
6 7.5 37.33 3.97 55.50 2 34.2 
7 7 36.83 3.92 55.87 2 34.4 
8 6.5 36.15 3.84 56.26 2 34.7 
9 6 35.22 3.74 56.82 2 35.2 

10 5.5 33.98 3.61 57.51 2 35.9 
11 5 32.38 3.44 58.30 2 36.9 

 

The effective increase in the tuned natural period and frequency of the class H1 

pole is shown as a ratio of the natural frequency of the pole in Table 4-14. With a mass and 

frequency ratio of 0.15 and 10, the natural frequency increases by an average ratio of 8.86. 

The increase in the natural frequency of the pole due to the TMD is nearly a factor of 9. 

 

 

 

 

 

Table 4-13: Tuned Frequencies of Class H1 Pole Embedded in Clayey Soils 
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S. NO 
Embedment 

Depth [ft] 

Natural 
Frequency 
Increase 

Ratio 

1 10.0 8.75 
2 9.5 8.78 

3 9.0 8.76 
4 8.5 8.76 
5 8.0 8.76 
6 7.5 8.76 
7 7.0 8.76 
8 6.5 8.76 
9 6.0 8.76 

10 5.5 8.76 
11 5.0 8.77 

Average 8.76 
 

4.11.2 Dynamic Response of Class H1 Pole Embedded in Sandy Soils 

The dynamic properties of a class H1 wood pole embedded in sandy soils are shown 

in Table 4-15. These values are used to calculate the tuned frequency response of the pole 

and TMD. The result of the analysis is shown in Table 4-16. 

The frequency response graph for the TMD system for sandy soils is similar to clayey soil, 

as shown in Figure 4-37. As in the case of clayey soils, the frequency response of the TMD 

is stable beyond a frequency ratio of 1.0. However, the natural frequency response of the 

pole continues to increase as the frequency ratio of the TMD increases. 

Table 4-14: Frequency Increase Ratio for Class H1 Pole Embedded in Clayey Soils 
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Error! Reference source not found.

 

Figure 4-37. Frequency Response of Pole and Tuned Mass Damper 

Since the natural frequency of the TMD remains constant beyond a frequency ratio 

of 0.2, it is valuable design information to tune the pole's natural frequency and the mass 

damper to a desired level without affecting the natural frequency of the TMD. 
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S. NO 
Embedment 

Depth [ft] 
Period 

[sec] 

Natural 
Frequency 

of Pole 
[Hz] 

Modal Mass 
Participation 

Ratio 

Modal Mass 
[kip-s2/in] 

ω 

[rad/s] 
stiffness 

[k/in] 

1 10 0.24 4.18 0.43 0.0009898 26.29 0.684 

2 9.5 0.24 4.18 0.44 0.0009911 26.25 0.683 

3 9 0.24 4.16 0.45 0.0009920 26.17 0.679 

4 8.5 0.24 4.14 0.46 0.0009950 26.09 0.677 

5 8 0.24 4.11 0.47 0.0010035 25.81 0.668 

6 7.5 0.25 4.06 0.48 0.0010058 25.48 0.653 

7 7 0.25 3.98 0.50 0.0010157 24.99 0.634 

8 6.5 0.26 3.87 0.51 0.0010270 24.29 0.606 

9 6 0.27 3.71 0.53 0.0010421 23.31 0.566 

10 5.5 0.29 3.50 0.55 0.0010593 22.01 0.513 

11 5 0.31 3.23 0.58 0.0010772 20.32 0.445 

 

 

 

 

 

 

 

 

Table 4-15: Dynamic Properties of Class H1 Pole Embedded in Sandy Soils 
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S. NO 
Embedment 

Depth [ft] 

Tuned 
Natural 

Frequency 
of Pole 

[Hz] 

Tuned 
Natural 

Frequency 
of 

Damper 
[Hz] 

Weight 
Of 

TMD 
[lbf] 

Diameter 
Of TMD 
Rod [in] 

Height of 
TMD 

Rod [in] 

1 10.0 36.66 3.90 57.4 2 34.2 
2 9.5 36.61 3.89 57.4 2 34.2 
3 9.0 36.49 3.88 57.4 2 34.3 
4 8.5 36.38 3.87 58.2 2 34.5 
5 8.0 36.21 3.85 58.3 2 34.3 
6 7.5 35.54 3.78 58.3 2 34.7 
7 7.0 34.85 3.70 58.9 2 35.1 
8 6.5 33.88 3.60 59.5 2 35.6 
9 6.0 32.51 3.46 60.4 2 36.4 

10 5.5 30.69 3.26 61.4 2 37.6 
11 5.0 28.35 3.01 62.4 2 39.5 

Average 34.4 3.7 59.0 - 35.5 

 

The relative increase ratio of the pole frequency is shown in Table 4-17. The 

average increase in the natural frequency of the pole due to the TMD is approximately 

8.76. or nearly 9. 

 

 

 

 

Table 4-16: Tuned Frequencies of Class H1 Pole Embedded in Sandy Soils 
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S. NO 
Embedment 

Depth [ft] 

Natural 
Frequency 
Increase  

1 10.0 8.76 

2 9.5 8.76 

3 9.0 8.76 

4 8.5 8.78 

5 8.0 8.82 

6 7.5 8.76 

7 7.0 8.76 

8 6.5 8.77 

9 6.0 8.76 

10 5.5 8.76 

11 5.0 8.76 

  Average 8.77 
  

The increase in the natural frequency appears to be the same for both sandy and 

clayey soils, also independent of the depth of embedment depth.   

Table 4-17: Frequency Increase Ratio for Class H1 Pole Embedded in Sandy Soils  
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CHAPTER V 

5 CONCLUSIONS AND FUTURE RESEARCH 

5.1 Conclusions 

Based on the soil-structure interaction study of wood utility poles both with and 

without cables, the following conclusions are drawn:  

1 The natural frequency response of the test wood poles predicted by the finite 

element analysis agreed well with that observed experimentally. 

2 The theoretical models formulated predict the critical wind speeds and embedment 

depths beyond which catastrophic pole rupture and excessive ground displacements 

occur.  

3 The natural frequency of the wood pole decreases almost exponentially with an 

increase in the cable mass to the wood pole mass ratio. 

4 A six-fold displacement amplification occurs at the tip of the Class H1 pole at a 

wind speed of 40 mph perpendicular to the plane of the cable and 30 mph along the 

plane of the cable in both sandy and clayey foundation soils. 

5 A nine-fold increase in the natural frequency was achieved when a tuned mass 

damper with mass and stiffness ratios of 0.15 and 10 was mounted at the top of the 

Class H1 pole embedded in sandy and clayey foundation soils. 

6 The tapered wood test pole exhibited a bending-type breakage at its mid-height, 

followed by a longitudinal laminar separation of the wood fibers.  
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7 No Class H1 wood pole breakage occurs when the wind speed is less than 160 mph 

in the plane of the cable for clayey soils, provided the embedment depth is greater 

than or equal to 5’ 6”. 

8 No Pole breakage will occur for all embedment depths in sandy soils for wind 

speeds up to 120 mph and all embedment depths considered for sandy soils. 

9 A non-linear relationship between the wind speed and pole breakage location above 

the ground level is observed. 

10 The analysis shows that the higher the wind speed, the higher the breakage point 

from the ground level. 

The study shows that the soil stiffness, presence of cables, and frequency of the 

wind speeds influence the natural frequency response of the wood pole. In addition, a tuned 

mass damper provides an effective method to mitigate the effects of resonance by 

increasing the natural frequency of the Class H1 wood pole. Based on the dynamic analysis 

presented, the catastrophic utility pole breakage and excessive foundation soil 

deformations can be predicted and prevented.  

5.2 Future Research 

The damping ratio of the soil has a considerable effect on the dynamic response of 

a Soil-Structure system, which needs further investigation. Additional studies can include 

partial saturation of the soil. Increased moisture content or age of wood utility poles can 

affect the physical properties of the pole. Further investigation of the dynamic properties 

of wood utility poles with varying moisture contents, including the age of the poles, would 

provide insight into the life cycle performance of the wood utility poles. 
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APPENDIX 

6.1 Appendix A: Drawing of Test Frame 

A drawing of the experimental test frame is shown in this section. Figure 6-1 and 

Figure 6-2 show a plan and section view of the test frame. The test frame is fabricated using 

2-1/2” x 2-1/2” x ¼” steel angles. The frame's base is provided with a ½” bolt hole to secure 

the base of the frame to the concrete floor if needed.  
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Figure 6-1. Plan View of Test Frame 
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Figure 6-2. Section View of Test Frame. 
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6.2 Appendix B: Pictures of Test Frame Set-up 

 

Figure 6-3. Picture of Test Frame 
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Figure 6-4. Test Frame with Cable and Digital Load Gage 
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Figure 6-5: 4' 0" Test Specimen and Base Connection 
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Figure 6-6: Digital Load Gag to Measure Cable Tension 
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Figure 6-7. 6' 0" Test Pole with Fixed Base Attachment 
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6.3 Appendix C. Picture of Test Pole Breakage 

Details of the test pole breakage are presented in this section. Figure 6-8, Figure 

6-9, and Figure 6-10, show pictures of the test pole breakage. The pole breakage initiated 

at the pole's base, extending roughly 26 inches.  

 

 

Figure 6-8. Test Pole Failure, Top and Bottom Sections 
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Figure 6-9: Test Pole Failure Profile 
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Figure 6-10. Test Pole Breakage Measurements 
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The tapered wood test pole exhibited a bending-type breakage at its mid-height, followed 

by a longitudinal laminar separation of the wood fibers.   

6.4 Appendix C: Pictures of Ceder Wood Species. 

Some pictures of the cedar Wood species are shown in this section. 

 

Figure 6-11: Picture of Western Cedar Trees 

 

Cedar trees grow in various parts of North America and worldwide. They can grow 

100 feet or more. Common Cedarwood types are Western Red Cedar, Northern White 
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Cedar, Eastern Red Cedar, Alaskan Cedar, and Spanish Cedar Wood. The Western Red 

Cedar trees can grow up to 200 feet. 

 

Figure 6-12: Picture of Western Cedar Trees 
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6.5 Appendix D: Accelerometer Information 

This section provides information about the accelerometer used to measure the 

acceleration for the test program. 

6.5.1 Accelerometer Specification 

Manufacturer: WitMotion Shen Zhen Co., Ltd 

Website: WitMotion (witmotion-sensor.com) 

Model: WT61, WT931 

 Both accelerometers have the following specifications: 

 

6.6 Appendix E: MATLAB code 

A MATLAB code was developed to validate and compare from experimental, and 

SAP2000 analysis is shown in this section. 

https://witmotion-sensor.com/
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Utility Pole Analysis MATLAB Code 

• The following MATLAB code performs dynamic analysis of Utility Poles. 

• Finite Element Analysis is used to formulate the Mass and Stiffness 

Matrices 

• The analysis is based on consistent mass and stiffness matrices. 

• The accuracy is dependent of the number of elements selected. 

 

6.6.1 Initialization 

clc; 

close; 

clear; 

format short; 

 

6.6.2 Input Data 

 

6.6.3 Joint Coordinates 

 

Column 1 is Joint labels 

Column 2 is X coordinate of Joint i, [ft] 

Column 3 is Y coordinate of joint i, [ft] 
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Figure 6-13: Element Nodal Displacements and Forces 

 

6.6.4 Read Excel Data 

The properties of the pole (length, number of nodes, coordinates, areas and 

Moment of Inertias are prepared in an excel spreadsheet and saved in the 

"MemberProperties.xlsx" file. This excel file is read into the program using the MATLAB code 

below. 

opts = spreadsheetImportOptions("NumVariables", 9); 

 

% Specify sheet and range 

opts.Sheet = "Sheet1"; 

opts.DataRange = "A2:I200";   % Change I200 for large data. 
 

% Specify column names and types 

opts.VariableNames = ["JointNumber", "XCordinate", "YOrZCordinate", 

"Var4", "MemberNumber", "i", "j", "AreaIn2", "Iin4"]; 

opts.SelectedVariableNames = ["JointNumber", "XCordinate", 

"YOrZCordinate", "MemberNumber", "i", "j", "AreaIn2", "Iin4"]; 

opts.VariableTypes = ["double", "double", "double", "char", "double", 

"double", "double", "double", "double"]; 
 

% Specify variable properties 

opts = setvaropts(opts, "Var4", "WhitespaceRule", "preserve"); 

opts = setvaropts(opts, "Var4", "EmptyFieldRule", "auto"); 

 

% Import the data 

MemberProperties = 

readtable("C:\Users\AYAKR\Documents\MATLAB\Programs\Pole 

Analysis\MemberProperties.xlsx", opts, "UseExcel", false); 
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JC=table2array(MemberProperties(:,1:3)); 

idx=isnan(JC(:,1)); 

JC=JC(~idx,:); 
 

numJointsA=JC(end,1); 

6.6.5 Member Properties 

Column 1 is member number. 

Column 2 is starting joint, j  

Column 3 is ending joint, k 

Column 4 is Cross-section area [in^2] 

Column 5 is Moment of Inertia [in^2] 

E=Young's Modulus of Pole [ksi] 

MP=table2array(MemberProperties(1:(end-1),4:8)); 

idx=isnan(MP(:,1)); 

MP=MP(~idx,:); 

E=2000;                  % Young's Modulus Of Material [ksi] 

MatDen=34.5;             % Density Of Material [pcf] 

MatDen=MatDen/(1000*12*12*12);           % Mass Density [kci] 
 

 

6.6.6 Joint Restraints 

 

uu - is the unrestrained joint displacements. 

rr -is the restrained joint displacements. 

U- is the Joint Labels 

 

nj=size(JC); 

numJoints=nj(1,1); 

nm=size(MP); 

numelements=nm(1,1); 
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DOF=numJoints*3; 
 

uu=4:DOF;                                           % Unrestrained Joint 

Displacements 

rr=1:3;                                             % Restrained Joints 

Displacements 

U=1:DOF; 

Dr=[0 0 0 0]; 
 

nuu=size(uu);                                       % Number of Joint 

Displacements                      

nrr=size(rr);                                       % Number of Restrained 

Displacements 
 

Nuu=nuu(1,end); 

Nrr=nrr(1,end); 

Suurr=Nuu+Nrr; 

 

if Suurr-DOF==0 

   disp('Inputs Ok') 

else 

   disp('Check Input for uu and rr') 

 

end 

Inputs Ok 

6.6.7 Joint Loads 

JL=zeros(Nuu,1);                         % Joint Loads 
 

% JL(4)=0; 

JLuu=JL(Nuu,1); 

Jrr=JL(rr,1); 

 

6.6.8 Member Loads 
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6.6.9 Initial Conditional 

 

u0(:,1)=zeros(Nuu,1); 

v0(:,1)=zeros(Nuu,1); 

u0(end,1)=0.1; 

 

6.6.10 Mass and Stiffness Matrices 

KG=zeros(DOF,DOF); 

w=zeros(numelements,1); 

m=zeros(numelements,1); 

MG=zeros(DOF,DOF); 

A=zeros(numelements,1); 

I=zeros(numelements,1); 

[KG, MG]=MASSandSTIFFNESS(MP,JC,numelements,MatDen,DOF,E); 

MG; 

KG; 

Kuu=KG(uu,uu); 

Kur=KG(uu,rr); 

Kru=KG(rr,uu); 

Krr=KG(rr,rr); 

Muu=MG(uu,uu); 

6.6.11 Compute Dynamic Properties 

Periods and Natural frequencies are calculated in this section 

[v,d]=eig(Kuu,Muu); 

phi=v; 

Mode1a=phi(1:3:end,1); 

Mode2a=phi(1:3:end,2); 

Mode3a=phi(1:3:end,3); 

Mode4a=phi(1:3:end,4); 

Mode1b=Mode1a(end,1); 

Mode2b=Mode2a(end,1); 

Mode3b=Mode3a(end,1); 

Mode4b=Mode4a(end,1); 

Mode1=phi(1:3:end,1)/Mode1b; 

Mode2=phi(1:3:end,2)/Mode2b; 

Mode3=phi(1:3:end,3)/Mode3b; 

Mode4=phi(1:3:end,4)/Mode4b; 

omega=diag(d); 
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omegan=sqrt(omega); 

tn=2*pi./omegan; 

Tn=tn(1:3:end); 

Freq=real(1./Tn); 

T0=Tn(1) 

T0 = 0.0421 

Fn=Freq(1) 

Fn = 23.7254 

6.6.12 Damping Matrix 

The damping Matrix is computed based on Raleigh's damping. 

 

Eksi1=5;                  % Damping Ratio for Frequency 1 

Eksi2=5;                 % Damping Ratio for Frequency 2 

Eksi1=(Eksi1/100); 

Eksi2=(Eksi2/100); 

omega1=omega(1,1); 

omega2=omega(7,1); 

AA=[1/omega1 omega1; 

    1/omega2 omega2]; 

zn=(1/2)*inv(AA)*[Eksi1 

             Eksi2]; 

alpha=zn(1); 

beta=zn(2); 

Cuu=Muu*alpha+Kuu*beta; 

6.6.13 Mass Normalized Matrix 

KNor=phi'*Kuu*phi; 

MNor=phi'*Muu*phi; 

CNor=phi'*Cuu*phi; 

6.6.14 Plot Mode Shapes 

yaxis=0:numelements; 

figure() 

Mode1=[0;Mode1]; 

Mode2=[0;Mode2]; 

Mode3=[0;Mode3]; 

Mode4=[0;Mode4]; 

subplot(1,4,1) 

plot(Mode1,yaxis); 

grid on; 
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grid minor; 

xlim([-1.25 1.25]); 
 

subplot(1,4,2); 

plot(Mode2,yaxis); 

grid on; 

grid minor; 

xlim([-1.25 1.25]); 
 

subplot(1,4,3); 

plot(Mode3,yaxis); 

grid on; 

grid minor; 

xlim([-1.25 1.25]); 
 

subplot(1,4,4); 

plot(Mode4,yaxis); 

grid on; 

grid minor; 

xlim([-1.25 1.25]); 
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6.6.15 Plot Analysis Frame 

 

figure() 

for i=1:numelements 

      n1=MP(i,2); 

      n2=MP(i,3); 

      x=[JC(n1,2) JC(n2,2)]; 

      y=[JC(n1,3) JC(n2,3)]; 

      plot(x,y,LineWidth=3) 

      hold on; 

end 

grid on; 

grid minor; 

xmax=max(JC(:,2)); 

Figure 6-14: Mode Shapes 
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xmin=min(JC(:,2)); 

ymax=max(JC(:,3)); 

ymin=min(JC(:,3)); 

xlim([(xmin-0.5) (xmax+0.5)]); 

ylim([(ymin),(ymax*1.05)]); 

 

 

Figure 6-15: Plot of Elements 

  

 

 

  



199 

 

6.7 Appendix F: Utility Pole Classification and technical information 

This section provides data on the pole sizes, classification and technical information 

of the wood utility poles. 
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