
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Mathematics & Statistics Faculty Publications Mathematics & Statistics 

2-2018 

New Approaches to Model Simulated Spatio-Temporal Moran's New Approaches to Model Simulated Spatio-Temporal Moran's 

Index Index 

Nhan Bu 

Jennifer Lorio 

Norou Diawara 

Kumar Das 

Lance Waller 

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_fac_pubs 

 Part of the Longitudinal Data Analysis and Time Series Commons, and the Statistical Models 

Commons 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/mathstat_fac_pubs
https://digitalcommons.odu.edu/mathstat
https://digitalcommons.odu.edu/mathstat_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/822?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

Journal of Probability                         
and Statistical Science  
16(1), 11-24, Feb. 2018 

 

New Approaches to Model Simulated  

Spatio-Temporal Moran's Index 
 

Nhan Bu  Jennifer Lorio  Norou Diawara       Kumer Das       Lance Waller 

Old Dominion University            Lamar University   Emory University 

 
ABSTRACT  The Moran's index is a statistic that measures spatial autocorrelation; it 
quantifies the degree of dispersion (or clustering) of objects in space. However, when 
investigating data over a general area, a single global Moran statistic may not give a 
sufficient summary of the spread, behavior, features or latent surfaces shared by neigh- 
boring areas; rather, by partitioning the area and taking the Moran statistic of each 
divided subareas, we can discover patterns of the local neighbors not otherwise apparent. 
In this paper, we present a simulation experiment where the local Moran values are 
computed and a time variable is added to a spatial Poisson point process. Changes in the 
Moran statistics over the neighboring areas are investigated and ideas on how to perform 
the analysis are proposed. 

 
Keywords  Extreme value distribution; Moran's index; Simulated processes; Spatio- 
temporal model. 

 

1. Introduction  
 

In the era of big data, we rely on modeling correlation between features of data to make 

inference. One such correlation in spatial data is the Moran's Index. As first described by Moran 

[16], when given a set of variates (x, y) (defined on some two-dimensional discrete area) we 

may want to investigate whether there is any evidence that spatial autocorrelation is present 

overall or in neighboring clusters based on selected features. Applications of such spatial 

statistics can be found in many areas, for example, in agricultural research, specific plots of land 

may influence in several aspects the production of nearby plots. Defining random variables with 

spatial components as described in Vaillant et al. [21] can further advance the understanding of  
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the correlation. Because local trends in data may not be shared globally, many authors such

as Baddeley [2] and Anselin [1] have partitioned the global Moran value into a sum of lo-

cal indices of spatial association (LISA). However, the impact of time was not incorporated.

Spatio-temporal autocorrelation was first introduced by Cliff & Ord [5] and the concept has

been explored by many others over the years (see for example, [14, 12, 23]). We develop a

computational method to understand the local trends in the spatio-temporal environment. Log-

ically, we can expect observations that are close to likely be more similar in characteristic than

those that are far apart. Hence the hypothesis test of the spatial arrangement of these feature

variates are of interest, i.e., we ask “Are the spatio-temporal arrangements random or distinctly

clustered?”

To answer that question, we refine the use of the Moran’s Index by taking a general area,

subdivide it into smaller regions, and measure the spatial dependencies of points generated

under a Poisson point process over a discrete time sequence. This is a novel approach for which

the analysis of the temporal evolution of spatial patterns in the spread could be summarized.

The rest of the paper is organized as follows. Section 2 provides an in depth overview

of the Moran’s Index. Section 3 presents the time sequence Poisson process algorithm and the

simulation study completed on a partitioned area domain. Section 4 provides an overview model

fit of the spatio-temporal Moran’s statistic under the Generalized Pareto Distribution (extreme

value modeling). And lastly, we end with a conclusion.

2. Moran's Index Spatial Autocorrelation

2.1 Global Spatial Autocorrelation

In practice, the Moran’s Index, I , is typically used to evaluate the clusters in the spatial

arrangement of a given variable. In other words, it is a measurement method for quantifying the

degree of clustering or dispersion. The global Moran Index based on a sample of n observations

is defined as:

I D
n

P

i¤j wij

Pn
iD1

Pn
j D1 wij xixj

Pn
iD1 x2

i

;

where xi and xj are the actual values of spatial characteristic or feature indications i and j ,

and wij is the weight between features i and j . Recent advances in Geographic Information

System (GIS) tools offer better measures of location and can be used to make integral reference

to effect or environment. There are many choices on how the weights are defined. For example,

in taxology (scientific identification, naming, and classification of living things), wij D 1 if

species i and j belong to the same group as presented in [17]. Another choice of wij had

been proposed by Gittleman and Kot [8] in their phylogenetic inertia effects study where they

describe the evolutionary biology for phylogenetic inertia under the assumption that species

(trees) cannot be treated as independent points for statistical analysis, but rather they share
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characteristics at distinct distances and time. They defined the weights as:

wij D
1

.dij /˛
;

where dij are the distances measured on trees and ˛ is the correction factor. In general, the range

of I is from �1 to C1. Values closer to +1 indicate clustering and values closer to �1 indicate

dispersion. Waller and Gotway [22] noted that the range Œ�1; 1� can actually be misleading as

the choice of the weights can affect the range.

The work by Deng et al. [7] further illustrates the usefulness of the Moran’s Index where

time is added to the statistic. In their paper, six main indicators were adopted to describe

the physical characteristics of river systems in the Taihu Basin region of China. The spatial-

temporal evolution of the distribution pattern of this river system was analyzed with data from

the 1960s to 2000s. The feature or characteristic indicators of these rivers include river density,

river frequency, water surface ratio, river development coefficient, river systems complexity,

river systems stability, river bifurcation ratio, river length ratio, river sinuosity, main river area

length ratio, and box dimension. The Moran’s Index was then calculated to measure the spatio-

temporal evolution of the river systems with the conclusion that global distribution patterns

of river length and box dimension were statistically significant, and hence spatially clustered.

Moran values were computed and averaged by decades from the 1960s, 1980s, and 2000s.

While the Moran’s Index captures information on spatial autocorrelation of the location

and covariate (features), more generalized modifications to the statistic have been utilized in

case studies by Vaillant et al. [21], where analysis was conducted on the spread of sugar cane

yellow leaf virus. In particular, they modeled the propagation of infection with a focus on the

spatial spread of disease over time. For a time interval partitioned into periods and each pair of

observation dates .ti�1; ti /, i D 1; : : : ; I � 1, for some fixed positive integer I , they defined the

Moran’s index based on a nearest neighbor scheme:

Mi D
X

.x;y/2D

wx;y1Œ0;ti�1�.Tx/1.ti�1;ti �Ty;

where D denotes the discrete set of plant locations, Tx the date (time variable) of virus detection

for plant x, and 1Œ0;ti�1�.Tx/ is an indicator of whether time Tx falls in the interval Œ0; ti�1� and

wx;y denotes the distance between points in the same interval. Similarly, 1Œti�1;t�.Ty/ is an

indicator of whether time Ty falls in the interval Œti�1; t �.

2.2 Localized Spatio-Temporal Autocorrelation

Since the relationship between measurable features needs to be validated over time and

space, subdividing the area into neighboring areas will allow us to explore pathways where

statistical measures of correlations can be effectively interpreted, in a computationally tractable

algorithm. A Poisson point process in the domain area is a great starting point to build a model
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for Moran’s values. In this paper, we utilize a similar definition of the Moran’s Index and while

the values are not between �1 and 1, it is essentially the same in spirit as in [6].

Consider a space S and let B be a (measurable) subset of S, i.e. B � S. Let X D

fx1; x2; : : : ; xng be a sample of random points in B. Set N.B/ as the total count of the sample

points in B where occurrences of events have been noticed. Then N.B/ is a measure and is

called a point process. That is,

N.B/ D
X

x

1B.x/; where 1B.x/ D

8

<

:

1; if x 2 B;

0; otherwise.
(1)

Now suppose random samples of points x1; x2; � � � ; xn are uniformly distributed on a

bounded region B. Then, the density is simply

f .x/ D

8

<

:

1
jB j

; if x 2 B;

0; otherwise;
(2)

where jB j is the area (Lebesgue measure) of the bounded region B and is referred to as the

intensity �.B/. That is, E.N.B// D �.B/, as in [11]. Intuitively, if we generate an infinite

number of points based on the density, we would expect the spread to converge to the whole

area of B itself over time. We will verify that expectation. Instead of a global measure of spread,

suppose we partition B into subareas Bj , Bj � B, j D 1; 2; : : : ; m for some fixed m 2 N. Then

the probability of x being in the subset Bj is defined as

P.x 2 Bj/ D

Z

Bj

f .x/dx D
�.Bj \ B/

�.B/
:

The total count of x’s in Bj is denoted N.Bj/ and it follows that

N.Bj/ � Binomial

�

n; p D
�.Bj \ B/

�.B/

�

:

Note that since Bj are partitions of B for each j D 1; : : : ; m, then it follows that the N.Bj/’s are

mutually independent. The number of points relative to the intensity may vary: “rare” in some

locations or “dense” in others, but it follows the Poisson point process. A special case of a point

process in B with independent events, with associated intensity � > 0 the process is defined as:

1. N.B/ follows a Poisson distribution with mean �jB j.

2. P.N.B/ D n/ D e��jB j�jB jn=.nŠ/, 8n 2 N.

3. For Bj 2 R
2, N.Bj/’s are mutually independent.

The Poisson point process assumes that the events are equally likely to occur anywhere in

B and the events do not interact with each other neither avoiding spread. We will use such

nonhomogeneous time sequence Poisson process to generate points within the area domain of

interest. With this new approach of describing spatio-temporal spread, we propose to measure

the Moran’s statistics under simulation experiment.
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3. Simulation Study

With the novelty in the approach, we propose a simulation under a Poisson point process

adding time with subarea clusters. For the simulation, the area will be a square of 4 � 4 dimen-

sion, partitioned into unit squares. We include time at indicators i D 0; 1; 2; : : : ; I , and add

that component to the domain subareas Dij , j D 1; 2; : : : ; m, where m is the total number of

subareas. We take on a similar approach as Vaillant et al. [21] where we treat our observed field

as a spatial grid with regular spacing between rows. That is, we have grids Dij for i D 1; : : : ; I

and j D 1; : : : ; mi where mi is the number of points generated in the time interval Œi � 1; i�.

As described in [13], we will define the Moran’s statistic in the grid Dij as:

M
j
i D

X

u;u02Dij

wu;u01.ti�1;ti � .Tu; Tu0/ ;

where

1. Tu is the time at which location u is observed (e.g. becomes infected).

2. wu;u0 represents a spatial weight between any two distinct event locations which could be

a function, e.g,

(a) the inverse distance between the two points.

(b) the inverse distance squared between the two points.

(c) an estimate of the autocorrelation/semivariance statistic.

We will use (a) in the simulation. Many options for implementing the process are available

and we use R with the spatstat package. We begin with an observed (4 � 4 units) area that

is sub divided into 16 smaller areas (i.e. a grid). Next, within these subareas, we create disks

with radius of half unit. These disks will allow us to generate sample points within the subareas

as well as prevent any overlap of points between the subareas. We choose the Poisson point

process to randomly generate points in the 16 subareas. Lastly, our Moran statistic is calculated

as the sum of the inverse distances between each point that are generated within each of the

disks over time.

The steps are as follows: in R, we (i) introduce a perturbation (using a Poisson point

process) at each local subarea based on some initial location with constant rate � at an initial

time, (ii) find the Moran statistic within each subarea, (iii) generate new points with different

Poisson process rates defined for each time period as �i D i�; i D 1 : : : ; I where I is the

number of time intervals (iv) calculate the Moran statistic. We continue steps (iii) through (iv)

until all time periods are covered.

Algorithm: Iterative local Moran statistics

Procedure:

(i) Define the first time and subareas and include their centers.

(ii) Iterate local points from a Poisson process in that subarea.
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(iii) Compute the Moran statistic within that time and subarea combination.

Repeat the generation of the Poisson points at the next time period within each subarea. Com-

pute the Moran statistic within each subarea.

Stop when all times and subareas are reached.

End

Figure 1 (a) shows our observed area with 16 subareas and associated disks. To keep

it simple, the disks do not overlap and the point process is subsampled and confined to these

disks. Another benefit of this model is the tractability of data handling from the output. Figure 1

(b) below shows two points generated within a certain disk. This point generation process is

repeated across all 16 disks.

Figure 1 Area plot and (b) points generated in one disk.

The Moran values generated within each disk across the 6 time periods are represented in

Table 1 for � D 2. The table shows that there is no extra point generated in disks 3 and 14 at

the first time period and this is denoted with “NA”. The algorithm only considers two or more

points when computing the Moran statistic, due to the way we defined our weights (inverse

distance).

The table also displays the global Moran values at each time period in the last line. The

values are quite large relative to the measures of the subareas. In addition, for time period 1,

disks 3 and 14 did not generate any points; the global Moran does not sufficiently portray a

good description of the correlation and leads to exaggerated large values. The local Moran’s

statistics based on subareas provide a better description of the data according to the number of

points generated within the disk.

Another benefit of the proposed approach is the tractability of data handling from the out-

put. The spatial distribution of the generated points over time is displayed in Figure 2. This is

not a surprising result since time is a function of the intensity �jB j where B is our observed

area. In the simulation, we kept intensity fixed for each time period and allowed for time inter-

action, i.e. letting it vary across (sequential) time points. Thus, the density plot shows that for
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sufficiently large time intervals, the amount of points generated will start to spread in the entire

area as expected in the description of the model in the previous section.

Table 1 Moran values for � D 2

Time

disk 1 2 3 4 5 6

1 3.53 7.75 8.90 114.25 116.28 13.92

2 2.29 2.66 50.59 117.16 266.95 43.08
3 NA 5.80 2.19 278.04 65.05 60.36

4 23.04 7.70 14.01 212.57 24.99 63.85
5 19.26 NA 29.60 55.70 245.33 77.13

6 6.28 10.46 192.15 93.76 192.52 54.88
7 2.22 0.00 47.04 24.61 25.14 130.91
8 11.95 20.35 43.11 32.57 185.78 129.88

9 8.41 46.86 46.84 47.26 67.79 83.96
10 11.29 16.86 46.44 91.11 170.05 112.64

11 38.81 7.80 68.91 256.41 125.90 207.29
12 3.30 91.13 25.43 62.48 253.22 237.19

13 29.81 30.73 21.67 71.18 44.23 118.23
14 NA 17.25 26.71 98.46 107.99 173.16

15 2.19 211.91 79.45 44.79 415.01 251.05
16 12.63 20.09 72.53 34.14 61.49 229.93

Global Moran 148.61 450.36 1017.681 1086.424 1887.994 3736.684

Figure 2 Density over time

4. Model Analysis of Moran's Values

From the above, the local Moran’s values provide a better summary of the spread after

partitioning the spatial area into subareas and looking at behaviors associated with spread. We
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further explore the Moran’s values, as comparisons of the Moran’s statistics will offer more

insight about the nature of the autocorrelation. One method used is the mixed linear model.

As a generalization of the standard linear model, this method allows us to account for data

which exhibit correlation and nonconstant variability as noticed in the previous section. The

results show that time is significant. While the model captures the profile of the most important

characteristic, time, the data has large variations associated with the Moran’s values. Thus, we

should be careful with methods that have an underlying normality assumption.

We simulate larger data of Moran’s values using Monte Carlo inference technique about

the mean of the Moran’s statistics hoping to capture the distribution of the Moran’s statistics at

values of � D 2. The algorithm ran at 10; 000 iterations produced the histogram displayed in

Figure 3.

Figure 3 Histograms of Moran’s statistics

Figure 3 shows that the distribution of Moran’s values is skewed to the right, showing that

estimation techniques of Moran that are based on normality assumptions may be questionable.

This is due to the varying nature of the dependency of the intensity. However, if we did not

allow for time interaction, then the well established methods associated with Moran’s indices

are sufficient for the analysis.

4.1 Hypothesis Test: Randomness

Spatial autocorrelation with glm is however not well understood (see [8-9]). To further

conceptualize the idea of normality violations, we implement the Von Neumann rank test to

assess whether or not our sample of points come from an underlying normal population. Using

R for the calculations, the Von-Neumann test is constructed as in [19]:

Description: Tests if a sample is sampled randomly from an underlying normal population

Assumptions: Data are at least measured on an ordinal scale. And let X1; : : : ; Xn be a sequence

of random variables with observations x1; : : : ; xn.
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Hypothesis: H0 W Sequence X1; : : : ; Xn is randomly generated vs H1 W Sequence is not ran-

domly generated.

Test Statistic: Z D
�

1 � V
2

�
p

.N � 2/=.N 2 � 1/, where V D
PN �1

i�1 .XiC1�Xi/
2

PN
i�1.Xi � NX/

2 :

We modify the test to account for the fact that our data is two dimensional. Using the

standard Euclidean distance formula as “observations” of Xi’s within disk j , we set

Xi D
p

.x1 � d1/2 C .x2 � d2/2;

where .d1; d2/ denotes the center of the disk and .x1; x2/ a randomly generated point. That is,

use the distance from center of the disks as a ranking mechanism. If our sample was indeed

normally distributed, it would then be reasonable to see more points generated near the center

of the disk or clustering at some area of the disk.

The results in Table 2 show non-significant p-values. In fact there is significant evidence

that our points are randomly generated within each disk. This verifies that the normality as-

sumption should not be used, randomness is present in some form, and we should look towards

alternative models to analyze our data. These constants led to the use of extreme value distribu-

tion.

Table 2 p-value results of H0 W sequence is randomly generated

Disc 1 2 3 4 5 6 7 8 9 10 11 12 13

p-value :65 0:98 :23 :25 :24 :90 :76 :11 :68 :64 :22 :30 :89

Disc 14 15 16

p-value :14 :94 :11

4.2 Fitting Extreme Values

One main concern is the nature of spread over time. The Moran values may grow larger

and it might be of interest to investigate the extreme values as discussed in [6] or in [20]. For

instance, understanding the areal spread of a rare disease is crucial to quarantine and protection.

In this section, we focus on values in our output from disk 1, across all 5 time points (as an

illustrative example), that are considered “extreme” and we model the data to a Generalized

Pareto distribution (GPD). GPD’s are useful since they can help us describe and understand the

distribution function of a variable above a certain threshold. For more details about estimation

of GPD, see [4].

The simulation output has some very large values (outliers) that may actually be from the

way we defined our area and Moran’s index as suggested in [15]. Points generated extremely

close (d << 1) will result in extremely large Moran values. It is of interest to understand such

behavior. Thus, we shift our focus to the first disk at time 1. Using the interquartile range
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(IQR) as a measure of spread, since it is resistant to outliers, we can see from Table 3 below that

IQR D Q3 � Q1 D 5:17 hence values 3 � .IQR/ above Q3 can be considered extreme value

distributions.

Table 3 Quantiles for Disc 1 at time 1.

min Q1 median Q3 max

0 0 2:158214 5:169383 163:457831

Also notice the curve shape in Figure 4 of the QQ plot increasing from left to right indicates

the distribution is right skewed. This is further evidence pointing to extreme value distributions.

Figure 4 Normal QQ Plot of Moran values from simulation of Disk 1 at t D 1.

The generalized Pareto Distribution (GPD) is the classical asymptotically motivated model

for excesses above a high threshold. If our data points (Moran statistics for disk 1) are inde-

pendent and identically distributed above a threshold u, then the limiting distribution will be

a GPD. In applications, the GPD is used as a tail approximation to the population distribution

from which a sample excesses x � u above some threshold u are observed.

G.xju; �u; �/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 �
h

1 C �
�

x�u
�u

�i� 1
�

C
; � ¤ 0; x � 0

1 � exp
h

�
�

x�u
�u

�i

C
� D 0; x � 0

(3)

The GPD is parameterized by the shape and scale parameters � and �u. In particular, the GPD

as expressed in Equation (3) is expressed as exceedances x > u where �u; u; � describe

scale, location, and shape parameters, respectively as in [18]. In this representation the mean is

equivalent to the threshold.
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Parameters of the model are estimated again with Monte Carlo techniques and compared

(under maximum likelihood estimation, method of moments, and probability weighted mo-

ments estimation) using the data from the 10,000 runs of the algorithm. We then fit the data

to a GPD for the first disk for all time periods. For the first time period, we can see that the

mean residual life plot (Figure 5) is linear almost everywhere but in particular, becomes slightly

erratic above 50. This plot suggests that threshold u D 12 is an appropriate choice as sample

size of nu D 512 above excess provides a good balance between bias and variance of parameter

estimation for the GPD.

Figure 5

Table 4 Estimation comparison

Threshold No. Excess Shape � Scale �u

u nu MLE MoM PWM MLE MoM PWM

(SE) (SE) (SE) (SE) (SE) (SE)

5 1272 0:209 0:228 0:202 6:543 6:410 6:629
(0.032) (0.101) (0.034) (0.276) (0.817) (0.291)

10 611 0:240 0:236 0:240 7:433 7:489 7:441
(0.049) (0.181) (0.051) (0.468) (1.743) (0.477)

12 468 0:236 0:233 0:234 8:001 8:047 8:032
(0.055) (0.189) (0.058) (0.570) (1.935) (0.587)

15 339 0:288 0:248 0:287 7:865 7:865 007:834
(0.071) (0.687) (0.072) (0.690) (7.525) (0.687)

20 193 0:321 0:246 0:317 8:733 9:565 8:665
(0.099) (0.599) (0.101) (1.052) (7.537) (1.024)

25 114 0:276 0:220 0:280 10:964 11:720 10:815
(0.121) (0.279) (0.124) (1.658) (4.067) (1.630)

30 74 0:288 0:208 0:296 12:181 13:361 11:874
(0.159) (0.286) (0.157) (2.362) (4.698) (2.238)

Using R along with the POT package, we fit a GPD using the threshold value u D 12. We

then select threshold values below and above 12 to observe any trend and find one that fits best.
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Table 4 shows the parameter estimates using maximum likelihood estimation (MLE), method of

moments (MoM), and probability weighted moments (PWM). While the MLE has consistently

low standard errors, the PWM may be a better choice for higher threshold values. The MoM on

the other hand, has larger standard errors than the other two methods.

Moreover, in extreme value theory, there are three main domains of attraction: Gumbel,

Fréchet, and Weibull. The distributions in the Gumbel domain have the exponential, including

normal and Gamma as the limiting distribution of their tails. The Fréchet domain contains

distributions with infinite yet heavier tails. And lastly, the Weibull domain contains distributions

with lighter tails than the exponential distribution. Thus we want to test for the domain of

attraction which is determined by the shape parameter � , as in [3]. That is, the test of hypothesis

H0 W � D 0 vs Ha W � > 0 is equivalent to testing a Gumbel versus a Weibull domain of

attraction. Using a 95% confidence interval for all estimated values of � under the maximum

likelihood estimation, Table 5 indicates that � is likely to be positive. So we reject H0 W � D 0

for supporting evidence that our data follows a Weibull domain of attraction.

Table 5 95% CI for shape parameter �

Threshold u MLE CI

5 0:209 .0:147; 0:271/
10 0:240 .0:144; 0:336/
12 0:236 .0:129; 0::343/
15 0:288 .0:150; 0:426/
20 0:321 .0:128; 0:514/
25 0:276 .0:040; 0:512/
30 0:288 .�0:022; 0:598/

5. Conclusion

In this study, we show that for a given general area on some time scale, the global Moran

statistic does not adequately summarize or capture the spatial data. Instead we looked into di-

viding the area into smaller subareas adding time, and obtained spatio-temporal local Moran’s

values. This process of calibration or refinement allows us to better capture the spatio-temporal

information. Because we added a time factor, Moran’s values and assumption underlying pro-

cess generating them were explored. Extreme values of the Moran’s values were tested for

randomness, and fitted under extreme value distribution. Because some of the Moran’s val-

ues are large, a Generalized Pareto distribution that models excessiveness above an appropriate

threshold was considered and validation performed.

The analysis of the simulated Moran values suggests that methods of interpreting measures

of spatial correlation will incorporate different assumptions. Many measures of such correla-

tions will deal with critical ways the data is generated, their Geographic Information System, the
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interpretation of their values and their relationships. Meanwhile, our interpretation has shown

that relative simplistic methods can lead to misspecification of statistical properties and biased

decisions.
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