
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Fall 2019

Computational Analysis of Antipode Algorithms for the Output Computational Analysis of Antipode Algorithms for the Output

Feedback Hopf Algebra Feedback Hopf Algebra

Lance Berlin
Old Dominion University, lberl001@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Applied Mathematics Commons, Computer Sciences Commons, and the Systems

Engineering Commons

Recommended Citation Recommended Citation
Berlin, Lance. "Computational Analysis of Antipode Algorithms for the Output Feedback Hopf Algebra"
(2019). Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI:
10.25777/v5hd-rg25
https://digitalcommons.odu.edu/ece_etds/207

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.odu.edu%2Fece_etds%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fece_etds%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.odu.edu%2Fece_etds%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.odu.edu%2Fece_etds%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/207?utm_source=digitalcommons.odu.edu%2Fece_etds%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

COMPUTATIONAL ANALYSIS OF ANTIPODE

ALGORITHMS FOR THE OUTPUT FEEDBACK HOPF

ALGEBRA

by

Lance Berlin
Bachelor’s of Science in Engineering December 2013, Old Dominion University

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

ELECTRICAL AND COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
December 2019

Approved by:

W. Steven Gray (Director)

Luis A. Duffaut Espinosa (Mem-
ber)

Oscar R. González (Member)

Dimitrie C. Popescu (Member)

ABSTRACT

COMPUTATIONAL ANALYSIS OF ANTIPODE ALGORITHMS FOR
THE OUTPUT FEEDBACK HOPF ALGEBRA

Lance Berlin
Old Dominion University, 2019
Director: Dr. W. Steven Gray

The feedback interconnection of two systems written in terms of Chen-Fliess series can
be described explicitly in terms of the antipode of the output feedback Hopf algebra. At
present, there are three known computational approaches to calculating this antipode: the
left coproduct method, the right coproduct method, and the derivation method. Each of
these algorithms is defined recursively, and thus becomes computationally expensive quite
quickly. This motivates the need for a more complete understanding of the algorithmic
complexity of these methods, as well as the development of new approaches for determining
the Hopf algebra antipode. The main goals of this thesis are to create an implementation in
code of the derivation method and compare the computational performance against existing
code for the two coproduct methods in Mathematica. Both temporal and spatial complexity
are examined empirically, and the main conclusion is that the derivation method yields the
best performance.

iii

Copyright, 2020, by Lance Berlin, All Rights Reserved.

iv

Dedicated to my family.
You were there through the most difficult time.

I hope one day I can have as great an impact on others as you have had on me.

v

ACKNOWLEDGEMENTS

The author would first like to thank Dr. W. Steven Gray for his guidance and assistance
throughout both the research and writing processes. Without his mentoring, this achieve-
ment would not have been possible. Dr. Gray was supported by the National Science
Foundation under grant CMMI 1839378.

Next the author recognizes the members of the thesis committee, Dr. Luis Duffaut Es-
pinosa (Department of Electrical and Biomedical Engineering, The University of Vermont),
Dr. Oscar González (Department of Electrical and Computer Engineering, Old Dominion
University) and Dr. Dimitrie Popescu (Department of Electrical and Computer Engineer-
ing, Old Dominion University). Their time and input on this body of work were essential
contributions. Dr. Duffaut Espinosa by the National Science Foundation under grant CMMI
1839387.

A special thanks is given to Dr. Kurusch Ebrahimi-Fard (Department of Mathematical
Sciences, Norwegian University of Science and Technology, Norway) and the Instituto de
Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, in Madrid for hosting
the author during a series of visits. These occasions enabled much of the research appearing
in this thesis. Funding for these visits was graciously provided by the BBVA Foundation.

Another important figure in this work is Dr. J. William Helton (University of California
San Diego). Besides being an author of the NCAlgebra package that serves as a foundation
for the NCFPS software utilized in this thesis, he also made notable code contributions to
NCFPS itself. The work of Dr. Helton and his group was supported by National Science
Foundation grants DMS 0757212 and DMS 0700758.

The author would also like to acknowledge the support rendered by the staff of the
Electrical and Computer Engineering Department of Old Dominion University, as well as
the Department’s funding provided towards the author’s Master of Science degree.

Finally, the support and reinforcement of the author’s family cannot go unmentioned.
Their presence during times of hardship enabled this amongst many other achievements,
and they cannot be thanked enough.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES. viii

LIST OF SYMBOLS . ix

Chapter

1. INTRODUCTION . 1
1.1 MOTIVATION. 1
1.2 PROBLEM STATEMENT. 7
1.3 OUTLINE . 8

2. MATHEMATICAL PRELIMINARIES . 9
2.1 FORMAL LANGUAGE . 9
2.2 FORMAL POWER SERIES . 10
2.3 SYSTEM REPRESENTATIONS USING FLIESS OPERATORS 11
2.4 COMPOSITION INVERSE. 15

3. ANTIPODE ALGORITHMS. 19
3.1 COPRODUCT METHODS . 19
3.2 DERIVATION METHOD . 22

4. ON THE PERFORMANCE OF ANTIPODE METHODS . 25
4.1 DERIVATION IMPLEMENTATION IN MATHEMATICA 25
4.2 PERFORMANCE ANALYSIS . 29

5. CONCLUSIONS AND FUTURE WORK. 37

REFERENCES . 41

APPENDICES
A. SOFTWARE DOCUMENTATION . 42
B. MODIFIED TENSOR CODE . 59
C. SAMPLE TEST CODE . 64

VITA . 67

vii

LIST OF TABLES

Table Page

I Total number of terms and cancellations when applying the left coproduct re-
cursion. 22

II Execution times (s) of antipode methods for XS. 30

viii

LIST OF FIGURES

Figure Page

1 Parallel sum interconnection. 3

2 Parallel product interconnection. 4

3 Series interconnection. 4

4 Feedback interconnection. 5

5 Input-output system with Fliess operator representation. 12

6 Block diagram of Fc+d. 13

7 Block diagram of Fc ⊔⊔ d. 14

8 Block diagram of Fc◦d. 15

9 Block diagram of Fc@d. 15

10 Execution times of antipode methods for XS. 31

11 Execution times of antipode methods for XM . 32

12 Peak memory consumption of antipode methods for XS. 33

13 Peak memory consumption of antipode methods for XM . 33

14 Memory utilization for derivation implementation. 34

15 Memory utilization for left coproduct implementation. 36

16 Memory utilization for right coproduct implementation. 36

ix

LIST OF SYMBOLS

(c, η) The coefficient of η in the series c
@ Feedback product
∅ Empty word
|η| Length of the word η

Rℓ⟨⟨X⟩⟩ Set of formal power series with coefficients in Rℓ over X
◦̃ Modified composition product
⊔⊔ Shuffle product
ajη The jth coordinate function indexed by η
Eη Iterated integral indexed by the word η

Fc Fliess operator with generating series c
Sajη The antipode of ajη
X∗ The set of all words composed of letters in X

1

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

There are a variety of ways to mathematically represent a nonlinear input-output system.
A particularly versatile class of representations is the set of functional series expansions,
which includes Volterra, Weiner, and Chen-Fliess series [1–11]. The latter set, also known
as Fliess operators, has shown to be particularly useful in control theory [1, 6, 12]. Simply
put, a Chen-Fliess series is a weighted sum of iterated integrals taken over the vector of
input functions. Such a series can be written uniquely in terms of a formal power series
in noncommutative variables. This allows for direct algebraic manipulation. Such a series
is effectively a noncommutative Taylor series representation of the input-output map of a
system [6]. Chen-Fliess series are normally written as infinite sums indexed by words.

1.1.1 FORMAL POWER SERIES

A set of letters, X = {x0, x1, . . . , xm}, is referred to as an alphabet. From the elements
of an alphabet, one can form finite sequences of letters known as words over X such as
η = xi1 · · ·xik . The letters in X are noncommutative with respect to multiplication, thus
words containing the same letters in different orders are considered distinct. The length of
η is defined by |η|, which is simply the number of letters in the word. Let |η|xi

indicate the
number of times the letter xi occurs in the word η. The set X∗ contains all possible words
over X, including the empty word ∅.

Catenation on X∗ is the binary operation X∗ ×X∗ → X∗ : (η1, η2) 7→ η1η2. The empty
word acts as a unit, i.e., ∅η = η∅ = η ∀ η ∈ X∗. Catenation is associative, thus X∗ is a
monoid under catenation. Mappings from X∗ onto Rℓ are known as formal power series.
They are often written in terms of a formal sum c =

∑
η∈X∗(c, η)η, where (c, η) ∈ Rℓ denotes

the coefficient of η. The R-vector space of all such series is written Rℓ⟨⟨X⟩⟩. Here addition
is defined as

c+ d =
∑
η∈X∗

((c, η) + (d, η))η,

2

and scalar multiplication is defined as

αc =
∑
η∈X∗

α(c, η)η.

This space also forms an associative R-algebra, where multiplication is the Cauchy product

cd 7→
∑

η1,η2∈X∗

(c, η1)(d, η2)η1η2

and the product on Rℓ⟨⟨X⟩⟩ is defined componentwise. In addition, the shuffle product of
two words, ⊔⊔ , can be defined recursively by

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) ⊔⊔ ξ),

where xi, xj ∈ X∗, η, ξ ∈ X∗, and η ⊔⊔ ∅ = ∅ ⊔⊔ η = η [4]. This definition can be extended
linearly to the space Rℓ⟨⟨X⟩⟩ to form an associative and commutative R-algebra, the so
called shuffle algebra.

Example 1.1.1. Given c = 1 + x0x1 and d = x2x0, observe

c ⊔⊔ d = (1 + x0x1) ⊔⊔ x2x0

= 1 ⊔⊔ x2x0 + x0x1 ⊔⊔ x2x0

= x2x0 + x0(x1 ⊔⊔ x2x0) + x2(x0x1 ⊔⊔ x0)

= x2x0 + x0[x1(1 ⊔⊔ x2x0) + x2(x1 ⊔⊔ x0)] + x2[x0(x1 ⊔⊔ x0) + x0(x0x1 ⊔⊔ 1)]

= x2x0 + x0[x1x2x0 + x2x1x0] + x2[x0x1x0 + x0x0x1]

= x2x0 + x0x1x2x0 + x0x2x1x0 + x2x0x1x0 + x2x0x0x1.

1.1.2 FLIESS OPERATORS

Any series c ∈ Rℓ⟨⟨X⟩⟩ can be associated with a causal m-input, ℓ-output operator, Fc.
Let p ≥ 1 and t0 < t1 be fixed. Given a Lebesgue measurable function u : [t0, t1] → Rm,
define it’s p-norm as ||u||p = max{||ui||p : 1 ≤ i ≤ m} with ||ui||p denoting the usual Lp-
norm for a measurable, real-valued function, ui, defined on [t0, t1]. Let Lm

p [t0, t1] represent
the set of all measurable functions defined on [t0, t1] which have finite || · ||p norm. The
closed ball of radius R at the origin in Lm

p [t0, t1] is denoted by

Bm
p (R)[t0, t1] := {u ∈ Lm

p [t0, t1] : ||u||p ≤ R}.

3

yu

Fd

Fc

+

Fig. 1: Parallel sum interconnection.

C[t0, t1] is the subset of continuous functions in Lm
1 [t0, t1]. For every η ∈ X∗ it is possible

to inductively define the mapping Eη : L
m
1 [t0, t1] → C[t0, t1] as

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0)dτ

with xi ∈ X, η̄ ∈ X∗, u0 = 1, and E∅[u] = 1. There then exists a corresponding input-output
operator for c, namely the Fliess operator

Fc[u](t) =
∑
η∈X∗

(c, η)Eη[u](t, t0)

[4]. One refers to c as the generating series of Fc.
Define |z| := max1≤i≤ℓ |zi| for z ∈ Rℓ. If there exists constants K,M > 0 such that

|(c, η)| ≤ KM |η|(|η|!)s,∀η ∈ X∗,

then Fc is said to have Gevery order s ∈ R [13]. When s = 1, Fc is a well-defined mapping
from Bm

p (R)[t0, t0 + T] into Bℓ
q(S)[t0, t0 + T] when R, T > 0 are sufficiently small and

p, q ∈ [1,∞] are conjugate exponents [14]. The set Rℓ
LC⟨⟨X⟩⟩ is comprised of all such locally

convergent series.

1.1.3 OPERATIONS ON FLIESS OPERATORS

Given a pair of Fliess operators, Fc and Fd with c, d ∈ Rℓ
LC⟨⟨X⟩⟩, the parallel sum

connection satisfies Fc + Fd = Fc+d, and the parallel product connection satisfies FcFd =

Fc ⊔⊔ d, as illustrated in Figures 1 and 2, respectively [4]. If the operators are connected in
series as shown in Figure 3, where now c ∈ Rℓ⟨⟨X⟩⟩ and d ∈ Rm⟨⟨X⟩⟩, then the resulting

4

yu

Fd

Fc

×

Fig. 2: Parallel product interconnection.

y u
v

Fd Fc

Fig. 3: Series interconnection.

composition Fc ◦ Fd always produces another Fliess operator represented by Fc◦d. The
composition product between c and d is defined as

c ◦ d =
∑
η∈X∗

(c, η)ψd(η)(1)

[15–17]. The mapping ψd is the ultrametric continuous algebra homomorphism from R⟨⟨X⟩⟩
to the set of vector space endomorphisms on R⟨⟨X⟩⟩, End(R⟨⟨X⟩⟩), given by

ψd(xiη) = ψd(xi) ◦ ψd(η)

ψd(xi)(e) = x0(di ⊔⊔ e)

for i = 0, 1, . . . ,m, e ∈ R⟨⟨X⟩⟩, where di is the i-th component series of d (d0 := 1).
Further, ψd(∅) is the identity map on R⟨⟨X⟩⟩. The composition product is both associative
and R-linear in its left argument.

5

yu

Fd

Fc+

Fig. 4: Feedback interconnection.

Example 1.1.2. Given c = 1 + x0x1 and d = x1x0

c ◦ d = ψd(∅)(1) + ψd(x0x1)(1)

= 1 + x0(1 ⊔⊔ x0[x1x0 ⊔⊔ 1])

= 1 + x0x0x1x0.

Consider a Fliess operator Fc whose input is fed by an operator Fd via a feedback
connection as shown in Figure 4. The closed-loop system is known to always have a Fliess
operator representation [15, 16]. The generating series in this case is given by c@d, the
feedback product of c and d. This product can be computed utilizing the Hopf algebra of
coordinate functions associated with the underlying output feedback group [18–20]. If I is
taken to be the identity map on Lm

p [t0, t1], then define the set of unital Fliess operators
Fδ = {I + Fc : c ∈ R⟨⟨X⟩⟩}. Formally define a generalized series δ such that Fδ := I. In
which case, I + Fc := Fδ+c = Fcδ and cδ = c + δ. All such generating series for Fδ will be
denoted by R⟨⟨Xδ⟩⟩. It can be shown that (Fδ, ◦, I) forms a group under the composition

Fcδ ◦ Fdδ = (I + Fc) ◦ (I + Fd) = Fcδ◦dδ ,

where cδ ◦ dδ := δ + d + c ◦̃ d for c, d ∈ R⟨⟨X⟩⟩. The modified composition product, ◦̃ , is
defined similarly to the composition product with c ◦̃ d =

∑
η∈X∗(c, η)ρd(η)(1). In this case,

ρd(xiη) = ρd(xi) ◦̃ ρd(η) and ρd(xi)(e) = xie + x0(di ⊔⊔ e) for e ∈ R⟨⟨X⟩⟩ [12]. The output
feedback Hopf algebra, H, is comprised of the set of coordinate maps of the form

aiη : Rm⟨⟨X⟩⟩ → R

: c 7→ (ci, η),

6

where η ∈ X∗ and i = 1, 2, . . . ,m. The commutative product is defined as

µ : aiη ⊗ ajξ 7→ aiηa
j
ξ.

Here the unit 1 is defined to map any c ∈ Rm⟨⟨X⟩⟩ to zero. Define the degree of aiη as
deg (aiη) = 2|η|x0 +

∑m
j=1 |η|xj

+1, which then renders H graded and connected. Specifically,
H =

⊕
n≥0Hn, where Hn represents the set of all elements of degree n and H0 = R1. The

coproduct ∆ is defined such that the formal power series product c⊚ d := d+ c ◦̃ d satisfies

∆aiη(c, d) = aiη(c⊚ d) = (ci ⊚ d, η).

The essential fact is that the group inverse c−1
δ := δ + c−1 is computed using the antipode

of the output feedback Hopf algebra.

Lemma 1.1.1. [20] The Hopf algebra (H,µ,∆) has an antipode S satisfying aiη(c
−1) =

(Saiη)(c) for all η ∈ X∗ and c ∈ Rm⟨⟨X⟩⟩.

The first few anitpode terms, ordered by degree, are:

H1 : Sa
i
∅ = −ai∅

H2 : Sa
i
xj

= −aixj

H3 : Sa
i
x0

= −aix0
+ aixℓ

aℓ∅

H3 : Sa
i
xjxk

= −aixjxk

H4 : Sa
i
x0xj

= −aix0xj
+ aixℓ

aℓxj
+ aixℓxj

aℓ∅

H4 : Sa
i
xjx0

= −aixjx0
+ aixjxℓ

aℓ∅

H4 : Sa
i
xjxkxl

= −aixjxkxl

H5 : Sa
i
x2
0
= −aix2

0
+ aixℓ

aℓx0
+ aixℓx0

aℓ∅ + aix0xℓ
aℓ∅ − aixν

aνxℓ
aℓ∅ − aixνxℓ

aν∅a
ℓ
∅,

for i, j, k, l = 1, 2, . . .m.1

The antipode, S, described in Lemma 1.1.1, provides a tool for calculating the feedback
product, @. The theorem that follows describes this method.

Theorem 1.1.1. [20] For any c, d ∈ Rm⟨⟨X⟩⟩ it follows that c@d = c ◦̃ (−d ◦ c)−1 =

c ◦ (δ − d ◦ c)−1.
1The Einstein summation notation is used throughout to indicate summations from either 0 or 1 to m,

e.g.,
∑m

i=1 aib
i = aib

i. It will be clear from the context which lower bound is applicable.

7

The next result utilizes this concept for system inversion of single-input, single-output
(SISO) Fliess operators whose generating series have a well defined relative degree in a
certain sense [21]. Here the natural part of any c ∈ RLC⟨⟨X⟩⟩ is given by cN =

∑
k≥0(c, x

k
0)x

k
0

so that cN ∈ RLC [[X0]], where X0 := {x0}.

Theorem 1.1.2. [21] Suppose c ∈ RLC⟨⟨X⟩⟩ has relative degree r. Let y be analytic at
t = 0 with generating series cy ∈ RLC [[X0]] satisfying (cy, x

k
0) = (c, xk0), k = 0, . . . , r − 1.

Then the input

u(t) =
∞∑
k=0

(cu, x
k
0)
tk

k!
,

where

cu =

((
(xr0)

−1(c− cy)

(xr−1
0 x1)−1c

)−1
)

N

is the unique analytic solution to Fc[u] = y on [0, T] for some T > 0.

In both applications, the composition inverse is computed via the antipode S. Since H
is a graded connected Hopf algebra, two standard recursions are known for computing them
in terms of the coproduct ∆ [22]. Recently in [23], a third recursion was identified using so
called derivations. Little is known at present about the computational efficiency of each of
these methods.

1.2 PROBLEM STATEMENT

The goals of this thesis are to:

1. Develop a software implementation in Mathematica of the output feedback Hopf al-
gebra antipode using the recent method of derivations.

2. Compare the computational complexity of such an implementation against existing left
and right coproduct techniques, and determine empirically which method provides a
more efficient approach. To achieve a more robust comparison, a multivariable version
of the coproduct code from [22] will be run against the code developed for the method
of derivations. Both time and spatial performance will be measured and compared.
The intuitive hypothesis is that the method of derivations should provide appreciable
performance gains over the two coproduct methods.

8

1.3 OUTLINE

This thesis is organized into five chapters. Chapter 2 presents the mathematical frame-
work needed to describe the techniques being developed in the sections that follow. These
topics include formal languages, operations on words of these languages, power series rep-
resentations of systems, and Hopf algebra concepts.

Chapter 3 describes the three existing techniques for computing the antipode of the
output feedback Hopf algebra: the left coproduct recursion, the right coproduct recursion,
and the method of derivations.

In Chapter 4, a software implementation of the derivation method is presented. It is writ-
ten using the Wolfram language and the full code is listed and detailed. The code makes up
a small subset of the NonCommutative Formal Power Series (NCFPS) package documented
in Appendix A. Following the code, a comparison of antipode techniques’ performance is
made based on the code listed in Appendix B and Appendix C.

Chapter 5 summarizes the conclusions and provides some directions for future research.

9

CHAPTER 2

MATHEMATICAL PRELIMINARIES

2.1 FORMAL LANGUAGE

In a formal language, an alphabet, X, is a set of letters such as X = {x0, x1, . . . , xm}. A
finite sequence of the letters from X such as η = xi1 · · · xik , is a word over X. As in natural
languages, permuting the letters changes the word. For example, η1 = x0x1 is distinct from
η2 = x1x0. While distinct, these two words do have the same length, which is denoted by
|η|. Specifically, |η| is the number of letters that a word contains. There is also the need
to count how many times a given letter in X occurs within a word η. Let |η|xi

denote the
number of times the letter xi is present in η. In the case of η1 as given above, |η1|x1 = 1.
The set of all possible words using the letters in a given alphabet X is written as X∗. This
set includes the empty word, ∅, which contains no letters, and thus has the property |∅| = 0.
Any subset X ′ ⊆ X∗ is referred to as a language. The following operation on X∗ is essential.

Definition 2.1.1. The catenation product is the binary operation

C : X∗ ×X∗ → X∗

: (η1, η2) 7→ η1η2,

where η1, η2 ∈ X∗.
Normally C(η1, η2) is written as η1η2. This operation is associative

(η1η2)η3 = η1(η2η3), ∀ηi ∈ X∗,

but not commutative since
η1 η2 ̸= η2 η1.

The empty word acts as the unit, i.e.,

η∅ = ∅η = η, ∀η ∈ X∗.

Thus, (X∗, C, ∅) is a monoid.

10

2.2 FORMAL POWER SERIES

A formal power series is any mapping of the form X∗ 7→ Rℓ, where ℓ is any positive
integer. It is common to represent such a series as a formal sum over words

c =
∑
η∈X∗

(c, η)η,

where (c, η) ∈ Rℓ is used to denote the coefficient of the word η in c. The set Rℓ⟨⟨X⟩⟩
contains all possible series which can be formed over the alphabet X. Rℓ⟨⟨X⟩⟩ is an R-
vector space where addition is defined as

c+ d =
∑
η∈X∗

((c, η) + (d, η))η

and scalar multiplication by α ∈ R is defined as

αc =
∑
η∈X∗

α(c, η)η.

2.2.1 OPERATIONS

In this section, a number of important operations on Rℓ⟨⟨X⟩⟩ are defined.

Definition 2.2.1. The catenation product of Definition 2.1.1 can be extended over Rℓ⟨⟨X⟩⟩
as

C : Rℓ⟨⟨X⟩⟩ × Rℓ⟨⟨X⟩⟩ → Rℓ⟨⟨X⟩⟩

: (c, d) 7→
∑

η,ξ∈X∗

(c, η)(d, ξ)ηξ,

where the product on Rℓ × Rℓ is defined componentwise.

The catenation product on Rℓ⟨⟨X⟩⟩ forms an associative R-algebra.

Definition 2.2.2. [4] The shuffle product between two words, xiη, xjξ ∈ X∗, is defined
recursively as

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) + ξ).

This recursion terminates in the case where one or both arguments are the empty word, ∅,
so that

η ⊔⊔ ∅ = ∅ ⊔⊔ η = η.

11

This operation is extended linearly to series in Rℓ⟨⟨X⟩⟩ as

c ⊔⊔ d =
∑

η,ξ∈X∗

(c, η)(d, ξ)η ⊔⊔ ξ.

Under the shuffle product, Rℓ⟨⟨X⟩⟩ is an associative and commutative R-algebra. Two
types of series composition are defined next.

Definition 2.2.3. [15,16] For X1 = {x0, x1, . . . , xm}, X2 = {x0, x1, . . . , xn}, and two series
c ∈ Rℓ⟨⟨X1⟩⟩ and d ∈ Rm⟨⟨X2⟩⟩, the composition product is

c ◦ d =
∑
η∈X∗

(c, η)ψd(η)(1),

where c ◦ d ∈ Rℓ⟨⟨X2⟩⟩ and the mapping ψd is given as

ψd : X → End(R⟨⟨X⟩⟩)

: xi 7→ x0(di ⊔⊔ ·)

with ψd(xiη) = ψd(xi) ◦ ψd(η), di is i-th component series of d, and d0 := 1. On R⟨⟨X⟩⟩,
ψd(∅) acts as the identity map.

The product described in Definition 2.2.3 has the property of being associative as well
as left R-linear.

Definition 2.2.4. [12] For X1 = {x0, x1, . . . , xm}, X2 = {x0, x1, . . . , xn}, and two series
c ∈ Rℓ⟨⟨X1⟩⟩ and d ∈ Rm⟨⟨X2⟩⟩

c ◦̃ d =
∑
η∈X∗

(c, η)ρd(η)(1),

where c ◦̃ d ∈ Rℓ⟨⟨X2⟩⟩ is referred to as the modified composition product. The mapping ρd
is given as

ρd : X → End(R⟨⟨X⟩⟩)

: xi 7→ xi ·+x0(di ⊔⊔ ·),

where ρd(xiη) = ρd(xi) ◦ ρd(η), di is the i-th component series of d, and d0 := 1.

2.3 SYSTEM REPRESENTATIONS USING FLIESS OPERATORS

With any series c one can associate an input-output map. First, the input space is
defined.

12

y u Fc

Fig. 5: Input-output system with Fliess operator representation.

Definition 2.3.1. For any Lebesgue measurable function u : [t0, t1] → Rm, define ||u||p =
max{||ui||p : 1 ≤ i ≤ m} with p ≥ 1 and ||ui||p denoting the usual Lp-norm for a measurable,
real-valued function, ui, defined on [t0, t1]. The set of all such u having a finite || · ||p norm
is written as Lm

p [t0, t1].
The ball of radius R in Lm

p [t0, t1] centered at the origin is denoted by

Bm
p (R)[t0, t1] := {u ∈ Lm

p [t0, t1] : ||u||p ≤ R}.

The subset of all continuous functions in Lm
1 [t0, t1] is denoted C[t0, t1]. For any η ∈ X∗ there

is an associated iterated integral, Eη : L
m
1 [t0, t1] → C[t0, t1], defined inductively by

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0)dτ,

where xi ∈ X, η̄ ∈ X∗, u0 = 1, and E∅[u] = 1. In the context of nonlinear system
modeling, the letter x0 represents an internal input from the system itself (a sort of zero-
input response) where as the remaining letters of an m-input system, x1, . . . , xm, represent
the external inputs.

Definition 2.3.2. [4] For a given generating series c ∈ Rℓ⟨⟨X⟩⟩, the corresponding Fliess
operator is

Fc[u](t) =
∑
η∈X∗

(c, η)Eη[u](t, t0).

The summation above is only a formal expression unless convergence can be proven.

Definition 2.3.3. [13] Let |z| := max1≤i≤ℓ |zi| for z ∈ Rℓ. A series c ∈ Rℓ⟨⟨X⟩⟩ is said to
have Gevery order s ∈ R if there exist constants K,M > 0 such that

|(c, η)| ≤ KM |η|(|η|!)s, ∀η ∈ X∗.

13

For the case where s = 1, it is known that the sum defining Fc[u] converges uniformly
and absolutely for any u ∈ Bm

p (R)[t0, t1] provided that R, T > 0 are sufficiently small [14].
Therefore, Fc maps Bm

p (R)[t0, t0 + T] into Bℓ
q(S)[t0, t0 + T] when p, q ∈ [1,∞] are conjugate

exponents, i.e. 1/p+ 1/q = 1. All such locally convergent series are denoted by Rℓ
LC⟨⟨X⟩⟩.

2.3.1 SYSTEM INTERCONNECTIONS

For input-output systems which have locally convergent Fliess operator representations,
it is known that all the standard system interconnections in control theory also have Fliess
operator representations which are locally convergent.

Theorem 2.3.1. [4] Given two Fliess operators Fc and Fd with c, d ∈ Rℓ
LC⟨⟨X⟩⟩, the

parallel sum connection shown in Figure 6 is equivalent to

Fc + Fd = Fc+d,

where c+ d ∈ Rℓ
LC⟨⟨X⟩⟩.

Example 2.3.1. Let Fc[u](t) = 1 +
∫ t

t0
u1(τ)dτ and Fd[u](t) = 2

∫ t

t0

∫ τ1
t0
u1(τ2)

∫ τ2
t0
dτ3dτ2dτ1.

Then Fc and Fd have generating series c = 1+x1 and d = 2x0x1x0 respectively, and Fc+Fd

has the generating series

c+ d = 1 + x1 + 2x0x1x0.

Thus,

Fc+d[u](t) = 1 +

∫ t

t0

u1(τ)dτ + 2

∫ t

t0

∫ τ1

t0

u1(τ2)

∫ τ2

t0

dτ3dτ2dτ1.

yu

Fd

Fc

+

Fig. 6: Block diagram of Fc+d.

14

Theorem 2.3.2. [4] Given two Fliess operators Fc and Fd with c, d ∈ Rℓ
LC⟨⟨X⟩⟩, the

parallel product connection shown in Figure 7 is equivalent to

FcFd = Fc ⊔⊔ d,

where c ⊔⊔ d ∈ Rℓ
LC⟨⟨X⟩⟩.

yu

Fd

Fc

×

Fig. 7: Block diagram of Fc ⊔⊔ d.

Example 2.3.2. Assume as in Example 2.3.1, that Fc and Fd have generating series c =
1 + x1 and d = 2x0x1x0. The generating series for FcFd is given by

c ⊔⊔ d =(1 + x1) ⊔⊔ 2x0x1x0

=2x0x1x0 + x1 ⊔⊔ 2x0x1x0

=2x0x1x0 + 2x1x0x1x0 + 4x0x1x1x0 + 2x0x1x0x1.

Theorem 2.3.3. [15, 16] Given two Fliess operators Fc and Fd with c ∈ Rℓ
LC⟨⟨X1⟩⟩,

d ∈ Rm
LC⟨⟨X2⟩⟩, ℓ,m ∈ Z+, and |X1| = m + 1, the series connection shown in Figure 8 is

equivalent to
Fc ◦ Fd = Fc◦d

where c ◦ d ∈ Rℓ
LC⟨⟨X2⟩⟩ as defined in Definition 2.2.3.

Example 2.3.3. For X = {x0, x1} and generating series c = 1 + x1 and d = 2x0x1x0, the
generating series for Fc ◦ Fd is given by

c ◦ d =(1 + x1) ◦ 2x0x1x0
=ψd(∅)(1) + 2ψd(x1)(1)

=1 + 2x0(x0x1x0 ⊔⊔ 1)

=1 + 2x0x0x1x0.

15

y u
v

Fd Fc

Fig. 8: Block diagram of Fc◦d.

Theorem 2.3.4. [19, 20] Given two Fliess operators Fc and Fd with c ∈ Rℓ
LC⟨⟨X1⟩⟩,

d ∈ Rm
LC⟨⟨X2⟩⟩, ℓ,m ∈ Z+, |X1| = m + 1, and |X2| = ℓ + 1, the feedback connection shown

in Figure 9 is equivalent to Fc@d, where

c@d = c ◦̃ (−d ◦ c)−1, (1)

where @ is called the feedback product, and c−1 is the composition inverse of series c.

yu

Fd

Fc+

Fig. 9: Block diagram of Fc@d.

As indicated in the last theorem, there is a need to compute the composition inverse of
a series. The mathematics behind this concept are presented next.

2.4 COMPOSITION INVERSE

The feedback product in Equation (1) is related to the output feedback group [19, 20].
Define the set of unital Fliess operators to be

Fδ = {I + Fc : c ∈ R⟨⟨X⟩⟩},

where I is the identity map. A fictitious series, δ, is utilized here as a placeholder to represent
the generating series of the identity map, I, i.e. Fδ := I. In which case I+Fc := Fδ+c = Fcδ ,

16

where cδ = c+δ. The set R⟨⟨Xδ⟩⟩ contains all generating series for Fδ. Composing operators
from this set gives a group (Fδ, ◦, I), where

Fcδ ◦ Fdδ = (I + Fc) ◦ (I + Fd) = Fcδ◦dδ

with
cδ ◦ dδ := δ + d+ c ◦̃ d. (2)

A unital associative R-algebra (A, µ, σ) with R-vector space A can be described in terms
of two R-linear maps

µ : A⊗ A→ A

and
σ : R → A.

The product µ is associative satisfying (ab)c = a(bc), a, b, c ∈ A where ab := µ(a⊗ b). The
map σ satisfies 1a = a = a1, a ∈ A, where 1 := σ(1) is the unit of A.

A dual of (A, µ, σ) called a counital coassociative coalgebra can be constructed using two
R-linear maps

∆ : A→ A⊗ A

and
ϵ : A→ R

that satisfy the coassociative and counital properties, respectively. That is, (id⊗∆) ◦∆ =

(∆⊗ id) ◦∆, where id is the identity map on A, and (ϵ⊗ id) ◦∆ = id = (id⊗ ϵ) ◦∆. The
triple (A,∆, ϵ) is the coalgebra.

For two R-algebras (A1, µ1, σ1) and (A2, µ2, σ2), a R-linear map ψ : A1 → A2 where

ψ ◦ µ1 = µ2 ◦ (ψ ⊗ ψ)

ψ ◦ σ = σ2

is known as an R-algebra homomorphism. A similar mapping can be defined for coalgebras.
If ∆ and ϵ are both R-algebra homomorphisms, the five-tuple (A, µ, σ,∆, ϵ) is called an
R-bialgebra.

Consider the Hopf convolution product defined as

f ⋆ g := µ ◦ (f ⊗ g) ◦∆,

where f and g are elements of End(A), the set of all endomorphisms on A. Along with the
unit ϑ = σ ◦ ϵ, the triple (End(A), ⋆, ϑ) forms an associative R-algebra.

17

The antipode of the bialgebra, S ∈ End(A), satisfies S ⋆ id = id ⋆ S = ϑ. When it exists,
the antipode is unique. The convolution inverse of id is S. That is

S = id⋆−1 = (ϑ− (ϑ− id))⋆−1 = ϑ+
∞∑
k=1

(ϑ− id)⋆k.

Definition 2.4.1. [24] A Hopf algebra is a bialgebra (H,µ, σ,∆, ϵ) with an antipode S ∈
End(H).

There is a connected graded Hopf algebra corresponding to the group (Fδ, ◦, I) denoted
by H [25–27]. It contains coordinate maps of the form

aiη : Rm⟨⟨X⟩⟩ → R

: c 7→ (ci, η),

where η ∈ X∗ and i = 1, 2, . . . ,m. The commutative product on H is defined as

µ : aiη ⊗ ajξ 7→ aiηa
j
ξ.

The unit 1 will map any c ∈ R⟨⟨X⟩⟩ to zero. Each coordinate function aiη ∈ H has a degree
given by

deg(aiη) = 2|η|x0 +
m∑
j=1

|η|xj
+ 1.

The degree allows for H to be graded and connected with H =
⊕

n≥0Hn, where Hn is the
set containing all coordinate functions of degree n and H0 = R1. The coproduct on H,
∆ : H → H ⊗H, is defined as

∆aiη(c, d) = aiη(c⊚ d) = (ci ⊚ d, η),

where the formal series product, ⊚, is given by Equation (2). Namely,

c⊚ d := d+ c ◦̃ d.

The key point is that the inverse in Fδ can be computed using the antipode in H. Suppose
F−1
cδ

= Fc−1
δ

, where c−1
δ = δ + c−1. Theorem 2.4.1 describes how to compute c−1.

Theorem 2.4.1. [20] The Hopf algebra (H,µ,∆) has an antipode S satisfying aiη(c−1) =

(Saiη)(c) for all η ∈ X∗, i = 1, 2, . . . ,m, and c ∈ Rm⟨⟨X⟩⟩.

18

As an example, the first few coordinate function antipodes are listed below.

H1 : Sa
i
∅ = −ai∅

H2 : Sa
i
xj

= −aixj

H3 : Sa
i
x0

= −aix0
+ aixℓ

aℓ∅

H3 : Sa
i
xjxk

= −aixjxk

H4 : Sa
i
x0xj

= −aix0xj
+ aixℓ

aℓxj
+ aixℓxj

aℓ∅

H4 : Sa
i
xjx0

= −aixjx0
+ aixjxℓ

aℓ∅

H4 : Sa
i
xjxkxl

= −aixjxkxl

H5 : Sa
i
x2
0
= −aix2

0
+ aixℓ

aℓx0
+ aixℓx0

aℓ∅ + aix0xℓ
aℓ∅ − aixν

aνxℓ
aℓ∅ − aixνxℓ

aν∅a
ℓ
∅,

(3)

for i, j, k, ℓ = 1, 2, . . .m.1

Given that series inversion is an integral step in computing the output of feedback-
connected Fliess operators, the next chapter focuses on known algorithms that compute the
antipode of H [18–20,23].

1The Einstein summation notation is used throughout to indicate summations from either 0 or 1 to m,
e.g.,

∑m
i=1 aib

i = aib
i. It will be clear from the context which lower bound is applicable.

19

CHAPTER 3

ANTIPODE ALGORITHMS

The three existing methods for calculating the antipode of the output feedback Hopf algebra
(H,µ,∆) are described in this chapter. Described first are two techniques which utilize the
coproduct ∆ of H as well as left augmentation operators [18–20]. The third approach
is centered around right augmentation operators which act as derivations on the product
µ [23].

3.1 COPRODUCT METHODS

Consider the R-vector space of coordinate functions with positive degree, V+ ⊂ H.

Definition 3.1.1. For any xi ∈ X, η ∈ X∗, and ajη in H, the left augmentation operator is
defined as

θxi
(ajη) := ajxiη

with θxi
(1) := 0. For any words η, ξ ∈ X∗ with η := xi1xi2 · · ·xik let

θη(a
j
ξ) := θxik

◦ · · · ◦ θxi2
◦ θxi1

(ajξ).

The left augmentation operator acts as an endomorphism on V+.

Definition 3.1.2. The deshuffling coproduct, ∆j
⊔⊔ (V+) ⊂ V+ ⊗ V+, is defined on V+ such

that

∆j
⊔⊔ a

i
∅ = ai∅ ⊗ aj∅

∆j
⊔⊔ ◦ θxk

= (θxk
⊗ id + id⊗ θxk

) ◦∆j
⊔⊔ ,

where id is the identity map on H.

Example 3.1.1. Consider

∆1
⊔⊔ a

2
x0x1

= ∆1
⊔⊔ ◦ θx0 ◦ θx1(a

2
∅)

= (θx0 ⊗ id + id⊗ θx0) ◦∆1
⊔⊔ ◦ θx1(a

2
∅)

= (θx0 ⊗ id + id⊗ θx0) ◦ (θx1 ⊗ id + id⊗ θx1) ◦∆1
⊔⊔ (a

2
∅)

= (θx0 ⊗ id + id⊗ θx0) ◦ (θx1 ⊗ id + id⊗ θx1) ◦ a2∅ ⊗ a1∅

= (θx0 ⊗ id + id⊗ θx0) ◦ (a2x1
⊗ a1∅ + a2∅ ⊗ a1x1

)

= a2x0x1
⊗ a1∅ + a2x1

⊗ a1x0
+ a2x0

⊗ a1x1
+ a2∅ ⊗ a1x0x1

.

20

The next theorem states that the coproduct ∆̃ := ∆ − 1 ⊗ id can be computed by the
following recursion.

Theorem 3.1.1. [20] The following identities hold:

(1) ∆̃ai∅ = ai∅ ⊗ 1

(2) ∆̃ ◦ θxi
= (θxi

⊗ id) ◦ ∆̃

(3) ∆̃ ◦ θx0 = (θx0 ⊗ id) ◦ ∆̃ + (θxi
⊗ µ) ◦ (∆̃⊗ id) ◦∆i

⊔⊔

for i = 1, 2, . . . ,m.

Example 3.1.2. Given X = {x0, x1, x2} consider

∆̃a2x1x0
= ∆̃ ◦ θx1 ◦ θx0(a

2
∅)

= (θx1 ⊗ id) ◦ [(θx0 ⊗ id) ◦ ∆̃ + (θx1 ⊗ µ) ◦ (∆̃⊗ id) ◦∆1
⊔⊔

+ (θx2 ⊗ µ) ◦ (∆̃⊗ id) ◦∆2
⊔⊔](a

2
∅)

= (θx1 ⊗ id) ◦ [(θx0 ⊗ id) ◦ (a2∅ ⊗ 1) + (θx1 ⊗ µ) ◦ (∆̃⊗ id) ◦ (a2∅ ⊗ a1∅)

+ (θx2 ⊗ µ) ◦ (∆̃⊗ id) ◦ (a2∅ ⊗ a2∅)]

= (θx1 ⊗ id) ◦ [(a2x0
⊗ 1) + (θx1 ⊗ µ) ◦ (a2∅ ⊗ 1⊗ a1∅)

+ (θx2 ⊗ µ) ◦ (a2∅ ⊗ 1⊗ a2∅)]

= (θx1 ⊗ id) ◦ [a2x0
⊗ 1+ a2x1

⊗ a1∅ + a2x2
⊗ a2∅]

= a2x1x0
⊗ 1+ a2x2

1
⊗ a1∅ + a2x2x1

⊗ a2∅.

The next result is a classical theorem from the theory of Hopf algebras.

Theorem 3.1.2. [28] The antipode, S, of any graded connected Hopf algebra (H,µ,∆) can
be computed for any a ∈ Hk, k ≥ 1 by

Sa = −a−
∑

(Sa′(1))a
′
(2) = −a−

∑
a′(1)Sa

′
(2),

where the reduced coproduct is ∆′a = ∆a − a ⊗ 1 − 1 ⊗ a =
∑
a′(1)a

′
(2) (using the notation

of Sweedler).

From Theorem 3.1.2 there are two possibilities for computing the antipode, S. Apply
S to the left side of the coproduct (left coproduct recursion) or apply S to the right side of
the coproduct (right coproduct recursion). The only potential difference between the two

21

methods is in regards to the efficiency of the computation. In [22] it was shown in the SISO
case that the left coproduct recursion produces terms which cancel out in the final result.
The right coproduct recursion was shown to be more efficient in [18] as it was proven that
this recursion is free of cancellations.

The following theorem provides a fully recursive algorithm to compute the antipode of
the output feedback Hopf algebra.

Theorem 3.1.3. [20] The antipode, S, of any aiη ∈ V+ in the output feedback Hopf algebra
can be computed by the following algorithm:

i. Recursively compute ∆j
⊔⊔ via Definition 3.1.2.

ii. Recursively compute ∆̃ via Theorem 3.1.1.

iii. Recursively compute S via Theorem 3.1.2 with ∆′aiη = ∆̃aiη − aiη ⊗ 1.

Example 3.1.3. Let X = {x0, x1, x2} and η = x0x1. To calculate Sa2x0x1
by either coprod-

uct method, it is first necessary to compute the reduced coproduct ∆′a2x0x1
. Observe

∆′a2x0x1
= ∆̃a2x0x1

− a2x0x1
⊗ 1

= ∆̃ ◦ θx0 ◦ θx1(a
2
∅)− a2x0x1

⊗ 1

= [(θx0 ⊗ id) ◦ ∆̃ + (θx1 ⊗ µ) ◦ (∆̃⊗ id) ◦∆1
⊔⊔

+ (θx2 ⊗ µ) ◦ (∆̃⊗ id) ◦∆2
⊔⊔] ◦ θx1 ◦ a2∅ − a2x0x1

⊗ 1

= (θx0 ⊗ id) ◦ (θx1 ⊗ id) ◦ a2∅ ⊗ 1

+ (θx1 ⊗ µ) ◦ (∆̃⊗ id) ◦ (θx1 ⊗ id + id⊗ θx1) ◦ a2∅ ⊗ a1∅

+ (θx2 ⊗ µ) ◦ (∆̃⊗ id) ◦ (θx1 ⊗ id + id⊗ θx1) ◦ a2∅ ⊗ a2∅ − a2x0x1
⊗ 1

= a2x0x1
⊗ 1+ (θx1 ⊗ µ) ◦ (∆̃⊗ id) ◦ (a2x1

⊗ a1∅ + a2∅ ⊗ a1x1
)

+ (θx2 ⊗ µ) ◦ (∆̃⊗ id) ◦ (a2x1
⊗ a2∅ + a2∅ ⊗ a2x1

)− a2x0x1
⊗ 1

= (θx1 ⊗ µ) ◦ (a2x1
⊗ 1⊗ a1∅ + a2∅ ⊗ 1⊗ a1x1

)

+ (θx2 ⊗ µ) ◦ (a2x1
⊗ 1⊗ a2∅ + a2∅ ⊗ 1⊗ a2x1

)

= a2x1x1
⊗ a1∅ + a2x1

⊗ a1x1
+ a2x2x1

⊗ a2∅ + a2x2
⊗ a2x1

.

In which case, the left coproduct formula yields

Saiη =− aiη −
∑

(Sa′(1))a
′
(2)

Sa2x0x1
=− a2x0x1

− a2x1x1
a1∅ − a2x1

a1x1
− a2x2x1

a2∅ − a2x2
a2x1

,

22

while the right coproduct formula gives

Saiη =− aiη −
∑

a′(1)Sa
′
(2)

Sa2x0x1
=− a2x0x1

− a2x1x1
a1∅ − a2x1

a1x1
− a2x2x1

a2∅ − a2x2
a2x1

.

Example 3.1.4. Let X = {x0, x1} and η = x20. When applying the coproduct to the term
on the left

Sa1η =− a1x2
0
− S(a1x1

)a1x0
− S(a1x1x0

)a1∅ − S(a1x0x1
)a1∅ − S(a1x2

1
)(a1∅)

2

=− a1x2
0
− (−a1x1

)a1x0
− (−a1x1x0

+
�

�
�a1x2

1
a1∅)a

1
∅

− (−a1x0x1
+ (a1x1

)2 + a1x2
1
a1∅)a

1
∅ −�������

(−a1x2
1
)(a1∅)

2

=− a1x2
0
+ a1x1

a1x0
+ a1x1x0

a1∅ + a1x0x1
a1∅ − (a1x1

)2a1∅ − a1x2
1
(a1∅)

2.

For the left coproduct method applied to x20 as in Example 3.1.4 it can be seen that of
the six unique terms generated, one of them has a cancellation which leaves the term with
a coefficient of 1. Table I counts the terms for a few antipodes of coordinate functions in
the form aixn

0
, n ∈ Z+, following the same convention as the previous example.

TABLE I: [18] Total number of terms (with and without multiplicities) and cancellations
when the left coproduct recursion is applied and m = 1.

Coordinate Total Number Total Number Number of
Map Degree of Unique Terms of Terms Cancellations

3 2 2 0
5 6 6 1
7 17 26 9
9 50 150 70
11 139 1082 427
13 390 9366 2417
15 1059 94,586 12,730

3.2 DERIVATION METHOD

Analogous to θxk
in the previous section, consider now the right augmentation operator.

23

Definition 3.2.1. For any xi ∈ X, η ∈ X∗, and ajη in H, the right augmentation operator
is defined as

θ̃xi
(ajη) := ajηxi

with θ̃xi
(1) := 0. For any words η, ξ ∈ X∗ with η := xi1xi2 · · ·xik let

θ̃η(a
j
ξ) := θ̃xik

◦ · · · ◦ θ̃xi2
◦ θ̃xi1

(ajξ).

In the case of products of coordinate functions in H, the right augmentation operator
acts as a derivation (Leibniz rule). That is,

θ̃η(a
j1
η1
aj2η2 · · · a

jk
ηk
) :=

k∑
l=1

aj1η1a
j2
η2
· · · θ̃η(ajlηl) · · · a

jk
ηk
.

Example 3.2.1. Consider

θ̃x0(a
i
x0
aix1

aix0x2
) = θ̃x0(a

i
x0
)aix1

aix0x2
+ aix0

θ̃x0(a
i
x1
)aix0x2

+ aix0
aix1

θ̃x0(a
i
x0x2

)

= aix2
0
aix1

aix0x2
+ aix0

aix1x0
aix0x2

+ aix0
aix1

aix0x2x0
.

The following operations will also be useful:

θ̃′x0
(ajη) = −θ̃x0(a

j
η) +

m∑
k=1

ak∅ θ̃xk
(ajη)

= −ajηx0
+

m∑
k=1

ak∅a
j
ηxk

θ̃′xi
(ajη) = −θ̃xi

(ajη) = −ajηxi
, i ̸= 0.

(4)

Analogously,
Θ̃′

ξ = θ̃′xik
◦ · · · ◦ θ̃′xi2

◦ θ̃′xi1
,

where ξ := xi1xi2 · · ·xik . Since θ̃′xi
is defined linearly in terms of θ̃xi

, it will also act as a
derivation on H, and consequently, so will Θ̃′

ξ. The following theorem describes how to
compute the antipode, S, exclusively in terms of right-augmentation operators.

Theorem 3.2.1. [23] For any nonempty word η ∈ X∗, the antipode S : H → H in the
output feedback Hopf algebra can be written as

Saiη = (−1)|η|−1Θ̃′
η(a

i
∅).

24

Example 3.2.2. Let X = {x0, x1, x2} and η = x0x1. Applying the derivation method gives

Sa2η =(−1)|η|−1Θ̃′
η(a

2
∅)

=(−1)2−1θ̃′x1
◦ θ̃′x0

(a2∅)

=− θ̃′x1
(−a2x0

+ a1∅a
2
x1

+ a2∅a
2
x2
)

=− a2x0x1
+ a1x1

a2x1
+ a1∅a

2
x1x1

+ a2x1
a2x2

+ a2∅a
2
x2x1

.

This calculation agrees with that given in Example 3.1.3 for the coproduct methods, but
it clearly requires fewer steps.

25

CHAPTER 4

ON THE PERFORMANCE OF ANTIPODE METHODS

4.1 DERIVATION IMPLEMENTATION IN MATHEMATICA

In this section an implementation in Mathematica is presented for the derivation method
to compute the antipode of the output feedback Hopf algebra. To provide a benchmark
for performance, code from [22] was modified for the coproduct methods by including the
internal summation in Theorem 3.1.1 (3) for the multivariable case. In order to achieve
a more robust handling of noncommutative algebraic manipulations than what is offered
by the base Mathematica engine, the package NCAlgebra [29] was utilized. The functions
presented here are fully reliant on the method in which noncommutative multiplication is
treated by invoking the NCAlgebra package.

To validate the accuracy of the antipode code developed here, two types of unit tests
were performed. The first collection of tests ensured the function generates valid results by
using the antipode to calculate the inverse of a set of series. When composing the inverses
with the original series, the expected result is the identity element. The second set of tests
only computed the antipodes using this new code. The results were directly compared to
those obtained from doing the same calculations using the previous coproduct method code,
which was independently validated.

4.1.1 NOTATION

Special consideration must be taken in this environment to define the letters of the
underlying alphabet X. In the SISO case, for example, the alphabet X is established by

X={x0,x1};
SetNonCommutative/@X;

which allows for both x0 and x1 to be treated as variables which do not commute under
Mathematica’s explicitly defined noncommutative multiplication. Words are represented as
products under this noncommutative operator, for example,

26

x0**x1**x0

represents x0x1x0 ∈ X∗. The double asterisk operation specifies noncommutative multipli-
cation. The empty word, ∅, is treated here as the monomial 1∅, which through a slight
abuse of notation is represented in software by simply the real number 1. The coordinate
functions of H are each denoted with the head label A and two arguments: the first is the
index i ∈ {1, 2, . . . ,m} for the series ci when c ∈ Rm⟨⟨X⟩⟩, and the second is the associated
word which acts as an index for the function. For example,

A[2,x0**x1]

represents the coordinate function a2x0x1
. For the SISO case where c ∈ R⟨⟨X⟩⟩, the first

argument is 1 by default.

4.1.2 FUNCTIONS

With a structured means of representing the coordinate functions in H, it is necessary
to build the functions which perform the operations as defined in the previous chapter.

Function 4.1.1. The implementation of the right-augmentation operator, θ̃xi
, is denoted

by RightAugment and given below.

RightAugment[a_Plus,i_,x_List]:= Map[RightAugment[#,i,x]&,a]
RightAugment[a_Times,i_,x_List]:= RightAugment[a,i,x]=

Sum[MapAt[RightAugment[#,i,x]&,a,ic], {ic,Length[a]}]
RightAugment[a_A^exp_,i_,x_List]:=

exp*a^(exp-1)*RightAugment[a,i,x]
RightAugment[a_A,i_,x_List]:= A[a[[1]],a[[2]]**x[[i+1]]]
RightAugment[a_,i_,x_List]:= 0

• The first argument is any polynomial expression of coordinate functions, a, for which
a ∈ Rℓ⟨X⟩.

• The second argument is the one-based1 index, i, of the augmenting letter, xi ∈ X,
corresponding to its canonically ordered position in X.

• The last argument allows one to specify the alphabet X. Here, the list x is assumed
to be canonically ordered.

1As opposed to the zero-based indexing more typically encountered in computer science contexts.

27

In order, the definitions in Function 4.1.1 are responsible for:

1. enforcing the linearity of the operator over addition, ensuring that it is correctly
distributed over sums of coordinate functions;

2. making the operator act as a derivation on products (Liebniz’s rule);

3. optimally extending the derivation rule for the cases where coordinate functions are
repeated in a product, shortcutting the expansion of terms to just perform the power
rule;

4. defining the actual augmentation operator θ̃xi
(ajη) := ajηxi

; and

5. handling the special case where θ̃xi
(1) := 0.

Note also that the second definition evokes the technique of memoization2 by caching its
result each time it is called in order to avoid repeating deep recursions that have already
been calculated.

Example 4.1.1. θ̃x2(a
1
x0
) on an alphabet X = {x0, x1, x2} is computed by

RightAugment[A[1,x0],2,{x0,x1,x2}]

which returns the result a1x0x2
written in the form

A[1,x0**x2]

Function 4.1.2. The implementation of the augmentation operator in Equation (4), θ̃′xi
, is

denoted by ModRightAugment and given below.

ModRightAugment[a_Plus,i_,x_List]:=
Map[ModRightAugment[#,i,x]&,a]

ModRightAugment[a_,0,x_List]:= ModRightAugment[a,0,x]=
-RightAugment[a,0,x]+Sum[A[ic,1]*
RightAugment[a,ic,x],{ic,1,Length[x]-1}]

ModRightAugment[a_,i_,x_List]:= -RightAugment[a,i,x]

• The first argument is any polynomial expression of coordinate functions, a, for which
a ∈ Rℓ⟨X⟩.

2A technique where a function’s computations are stored, allowing subsequent calls to that function to
avoid the time it takes to compute the result again [30].

28

• The second argument is the one-based index, i, of the augmenting letter, xi ∈ X,
corresponding to its canonically ordered position in X.

• The last argument allows one to specify the alphabet X. Here, the list x is assumed
to be canonically ordered.

Function 4.1.2 consists of definitions which:

1. exercise the linearity of the operator over addition;

2. implement the rule θ̃′x0
(ajη) = −θ̃x0(a

j
η) +

∑m
k=1 a

k
∅ θ̃xk

(ajη) = −ajηx0
+
∑m

k=1 a
k
∅a

j
ηxk

; and

3. implement θ̃′xi
(ajη) := −θ̃xi

(ajη) = −ajηxi
, i ̸= 0.

Note here that there is no explicit rule given for θ̃′xi
to act as a derivation. The derivation

property is inherited algebraically as a consequence of θ̃′xi
being defined linearly in terms

of θ̃xi
. Just like the rules for the previous function, the second definition in this instance

caches its result.

Function 4.1.3. The implementation of the Hopf algebra antipode computation, S, is
denoted by Antipode and given below.

Antipode[A[s_,a_NonCommutativeMultiply],x_List]:=
(-1)^(WordLength[a]-1)*
Fold[ModRightAugment[#1,FirstPosition[x,#2][[1]]-1,x]&,A[s,1],a]
Antipode[A[s_,1],x_List]:= -A[s,1]
Antipode[a_A,x_List]:=
ModRightAugment[A[a[[1]],1],FirstPosition[x,a[[2]]][[1]]-1,x]

• The first argument is any single coordinate function in H.

• The second is the alphabet X for the indexing word. The list x is assumed to be
presented in a canonical order.

In order, the definitions in Function 4.1.3:

1. implement Theorem 3.2.1, namely, Sajη := (−1)|η|−1Θ̃′
η(a

j
∅), with a functional compo-

sition of θ̃′xi
operators;

2. handle the specific case of a coordinate function indexed by the empty word, aj∅; and

29

3. address the case of a coordinate function for a single letter word, that is, ajxi
for

i ∈ {0, 1, . . . ,m}.

Example 4.1.2. The antipode Sa2x0x1
is calculated on the alphabet X = {x0, x1, x2} by

Antipode[A[2,x0**x1],{x0,x1,x2}]

which confirms the results given in Examples 3.1.3 and 3.2.2, namely,

A[1,x1]A[2,x1] + A[2,x1]A[2,x2] - A[2,x0**x1]
+ A[1,1]A[2,x1**x1] + A[2,1]A[2,x2**x1]

4.2 PERFORMANCE ANALYSIS

In this section, a performance comparison between the derivation method and the two
coproduct methods is given using the Mathematica implementations described above. The
code for the derivation and coproduct methods use very different data structures to represent
the results. For this reason, a greater emphasis is placed on the timing benchmarks as a
metric in making performance comparisons. In order to analyze the spatial results between
all three methods, special considerations are taken to “normalize” the benchmarks based on
the differences in series representations, as described in Section 4.2.2. The spatial data also
serves to ensure that memory resources are not saturated during the calculations, which
would skew or inflate the timing results obtained.

For consistency, all tests were run on the same Windows-based computer with a 2.70 GHz
Intel Core i7-3740QM processor and 4×4 GB of 1600 MHz DDR3 SDRAM. Mathematica
version 10.4 was used as well as excerpts of code from NCAlgebra version 4.0.6. These code
excerpts were utilized by all three antipode methods tested.

Two sets of tests were run for each implementation. One set examined performance for
a given alphabet XS := {x0, x1} corresponding to a SISO system, while the other performed
calculations based on a space built on the alphabet XM := {x0, x1, x2}, which models a
two-input, two-output system. For each test case, the antipode operation was applied to
a single coordinate function. Across cases, the varied parameter was the degree of each
coordinate function. Functions of the form aj

xi
0

are considered the worst case out of all
functions of degree 2i+ 1, i ≥ 0 because of the number of terms and recursions which they
produce. The test cases were comprised exclusively of coordinate functions of this form

30

so as to determine an empircal upper-bound on performance with respect to functions of
odd-numbered degrees.

Each test was run independently on the same machine. Mathematica caches results which
have been previously calculated during a kernel session and calls upon those previously
determined values if a function call with the same parameters is made again later. For
this reason, a fresh kernel was initialized before each calculation. This avoids biases that
would be present in recursive functions utilizing cached values from previous runs. Both the
timing and memory data were obtained using Mathematica’s built-in performance metric
tools. The tests were run on successively increasing degrees of coordinate functions up to
and until a particular test case required memory utilization in excess of 10 GB, at which
point the calculation was aborted and no larger degree functions were examined. Because
of this resource restriction, not all data sets presented cover the same range of functional
degrees. No limit for execution time was imposed on the tests. The included data points
are averages of the results obtained from Mathematica’s built-in tools run over five trials in
each test case.

TABLE II: Execution times (s) of antipode methods for XS.

Degree Derivation Right Coproduct Left Coproduct
1 0.000015 0.000133 0.000132
3 0.000131 0.000668 0.000573
5 0.000303 0.001243 0.002165
7 0.000918 0.002829 0.008646
9 0.003188 0.007377 0.045618
11 0.012189 0.020672 0.332750
13 0.045569 0.065496 2.937636
15 0.171627 0.221144 28.604094
17 0.683118 0.911619 312.933532
19 3.200415 3.779574 -
21 17.238338 20.226803 -
23 116.778690 132.333375 -
25 1028.466542 1069.589595 -

31

4.2.1 TIMING PERFORMANCE

First, the execution times (wall times) of the antipode calculation are compared for
each method. The performances of all three methods on a SISO system with the alphabet
XS = {x0, x1} are provided in Figure 10. Figure 11 plots the results for antipodes on the
same coordinate functions with the alphabet XM = {x0, x1, x2}, modeling a two-input, two-
output system. In Table II the timing results averaged over all tests for the SISO case are
listed for comparison. For the test cases where execution times were greater than 1 second,
the standard deviation of each method was less than 4% of the mean.

Fig. 10: Execution times of antipode methods for XS.

Note that in the SISO case the relative difference in execution times between the deriva-
tion and right coproduct methods decreases as the problem size increases with the derivation
method maintaining slightly better performance throughout. The left and right coproduct
methods have roughly the same timings for degrees where there are relatively few cancella-
tions in the left coproduct calculation (for example, there is one cancellation for degree five,
427 cancellations for degree 11 and 12,730 cancellations for degree 15 as shown in Table I).
In the multi-input, multi-output (MIMO) case, the derivation method consistently outper-
forms the other methods in terms of speed. In fact, this trend was observed to hold for all
MIMO systems up to five letters during tests not reported here.

32

Fig. 11: Execution times of antipode methods for XM .

4.2.2 SPATIAL PERFORMANCE

Next the memory utilization of each antipode method is presented. During the execution
of each test, the total amount of system memory being utilized is monitored in real-time,
and at the end of the calculation the peak usage is reported. This helps to validate the
trends observed in the timing analysis by ensuring that the memory resources of the system
were not saturated during the tests. Such a saturation would increase execution times due
to increased memory management overhead. This would then create a discontinuity in the
performance trend that would not be reflective of the algorithm’s performance.

Additionally, one can identify from these results the consumption trends of each method;
this allows for predictions on the size of the input that will result in the steepest performance
decreases due to resource saturation. The results for the SISO system tests are presented in
Figure 12, while Figure 13 gives the results for the MIMO system. For test cases utilizing
more than 1 megabyte of memory, the standard deviation was less than 1% of the mean.

Observe that both the derivation and right coproduct methods have similar growth
trends in the SISO case up to coordinate functions of degree 19. After that point the right
coproduct method’s consumption increases at a significantly faster rate than the derivation
method. After degree 25, the right coproduct method was unable to complete the calculation

33

Fig. 12: Peak memory consumption of antipode methods for XS.

Fig. 13: Peak memory consumption of antipode methods for XM .

34

under the imposed memory constraint.
The left coproduct method had the highest peak consumption in each SISO test most

likely due to the excessive inter-term cancellations that it generates. For the MIMO case,
the derivation method not only utilizes fewer resources but grows at a notably slower rate
than the other methods. Therefore, it is able to compute higher degree antipodes than the
other two methods when given the same memory constraints.

The sudden jump in memory usage from degree 1 to degree 3 in the derivation method
is a consequence of the implementation rather than the algorithm itself. Degree 1 is written
as a transformation consisting only of a sign change on the argument. Higher degree terms
require recursive function calls which involve considerably more overhead, by comparison.

In addition to the peak interim memory usage, the spatial analysis is supplemented by
also examining the resultant memory usage. This metric counts the size of information that
persists after the calculation. This includes data such as the resulting solution’s represen-
tation and cached interim values like those generated by memoization. By comparing the
resource consumption observed under this metric and the previous one, a deeper insight into
the efficiency of each algorithm is possible.

Fig. 14: Memory utilization for derivation implementation. The peak interim memory
(Max) and the final memory (Min) for each alphabet are joined by shaded regions.

Figure 14 shows both the interim memory usage (max) and the final resultant memory
usage (min) for the derivation method plotted together. The red shaded region joins together

35

both metrics for the SISO case, while the blue shaded region lies between the two metrics
for the MIMO case. In both instances, these regions highlight the difference between the
number of resources used to perform the calculation and the number needed to store the
result. The interim and resultant resource counts quickly converge towards the same relative
values as the degree increases. Two conclusions can be drawn from this observation: the
first is that both the size of the result and the resources needed to calculate it have similar
asymptotic bounds; the second is that there is relatively little extraneous overhead required
to perform the calculation.

The left coproduct data is presented in a similar manner in Figure 15. Here the gap
between resultant and total utilized memory remains tight as the size of the problem grows.
From the log scale, it is evident that the relative difference remains more or less constant.
This is somewhat surprising, even despite the optimizations described in [22], given that
the left coproduct method is responsible for a rapidly growing number of cancellations as
shown in Table I. In contrast, Figure 16 shows the right coproduct method trends tending
toward similar bounds initially. Eventually, however, the intermediate memory usage fol-
lows a much steeper curve than the one observed for the resultant memory usage. This is
again unexpected when compared to the behavior observed in the left coproduct method.
It is worth highlighting that the diverging trend in the right coproduct method begins at
about the same functional degree that the left coproduct method testing terminates. For
this degree and higher, the left coproduct method could not calculate results without ex-
ceeding the imposed memory restriction. Therefore, more extensive examination of the left
coproduct method’s performance may reveal a similar or perhaps worse trend behavior.

36

Fig. 15: Memory utilization for left coproduct implementation. The peak interim memory
(Max) and the final memory (Min) for each alphabet are joined by shaded regions.

Fig. 16: Memory utilization for right coproduct implementation. The peak interim
memory (Max) and the final memory (Min) for each alphabet are joined by shaded regions.

37

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The first goal of this thesis was to develop a Mathematica implementation of the output
feedback Hopf algebra antipode using the method of derivations. This was done successfully
as described in Chapter 4 and Appendix A.

The second goal was to determine how this approach performs in comparison to the
previous methods. The results of this analysis were presented in Chapter 4. It was observed
that for a Hopf algebra formed over an alphabet of two letters, the derivation algorithm
has approximately the same time complexity as the more efficient of the two coproduct
approaches. In the cases of larger alphabets, the derivation outperformed the other methods
by a full order of magnitude.

Future research should include analytically determining asymptotic upper and lower
bounds on the complexity behavior of the derivation approach. This would add additional
evidence to support what was observed empirically in this project. In addition, certain
optimizations may be possible regarding the derivations. A more rigorous analysis of the
recursion formula may yield a simpler, closed form approach to calculating the derivative.
Furthermore, the right coproduct method may also be worth reexamining with an imple-
mentation done on specialized hardware architectures in order to determine if it can be
more viable for applications. Just as matrix operations excel on highly parallelized archi-
tectures like graphical processing units, the recent popularity of machine learning networks
has driven the creation of a number of hardware platforms which specialize in tensor oper-
ations [31–33].

38

REFERENCES

[1] A. Isidori, Nonlinear Control Systems. Berlin, Heidelberg: Springer-Verlag, 3rd ed.,
1995.

[2] R. W. Brockett, “Volterra series and geometric control theory,” Automatica, vol. 12,
no. 2, pp. 167–176, 1976.

[3] M. Lamnabhi, Séries de Volterra et séries génératrices non commutatives. Universite
Paris-Sud, 1980.

[4] M. Fliess, “Fonctionnelles causales non linéaires et indéterminées non commutatives,”
Bulletin de la Société Mathématique de France, vol. 109, pp. 3–40, 1981.

[5] M. Fliess, “Réalisation locale des systèmes non linéaires, algèbres de lie filtrées tran-
sitives et séries génératrices non commutatives,” Inventiones mathematicae, vol. 71,
pp. 521–537, Mar 1983.

[6] M. Fliess, M. Lamnabhi, and F. Lamnabhi-Lagarrigue, “An algebraic approach to
nonlinear functional expansions,” IEEE Transactions on Circuits and Systems, vol. 30,
no. 8, pp. 554–570, 1983.

[7] H. H. Nijmeijer, Nonlinear dynamical control systems. New York: Springer-Verlag,
1990.

[8] W. J. Rugh, Nonlinear system theory the Volterra/Wiener approach. Johns Hopkins
studies in information science and systems, Baltimore: Johns Hopkins University Press,
1980.

[9] M. Schetzen, The Volterra and Wiener theories of nonlinear systems. New York: Wiley,
1980.

[10] V. Volterra, Sopra le funzioni che dipendono da altre funzioni. Tip. della R. Accademia
dei Lincei, 1887.

[11] Y. Wang, “Algebraic differential equations and nonlinear control systems,” 1990.

[12] W. S. Gray and Y. Li, “Generating series for interconnected analytic nonlinear sys-
tems,” SIAM Journal on Control and Optimization, vol. 44, no. 2, pp. 646–672, 2005.

39

[13] I. M. Winter-Arboleda, W. S. Gray, and L. A. Duffaut Espinosa, “Fractional Fliess
operators: Two approaches,” in 2015 49th Annual Conference on Information Sciences
and Systems (CISS), pp. 1–6, March 2015.

[14] W. Gray and Y. Wang, “Fliess operators on Lp spaces: convergence and continuity,”
Systems and Control Letters, vol. 46, no. 2, pp. 67–74, 2002.

[15] A. Ferfera, Combinatoire du Monoïde Libre Appliquée à la Composition et aux Vari-
ations de Certaines Fonctionnelles Issues de la Théorie des Systèmes. PhD thesis,
University of Bordeaux I, 1979.

[16] A. Ferfera, “Combinatoire du monoïde libre et composition de certains systèmes non
linéaires,” in Analyse des systèmes, no. 75-76 in Astérisque, pp. 87–93, Société mathé-
matique de France, 1980.

[17] W. S. Gray and M. Thitsa, “A unified approach to generating series for mixed cascades
of analytic nonlinear input-output systems,” International Journal of Control - INT J
CONTR, vol. 85, pp. 1–18, 11 2012.

[18] L. A. Duffaut Espinosa, K. Ebrahimi-Fard, and W. S. Gray, “A combinatorial Hopf
algebra for nonlinear output feedback control systems,” Journal of Algebra, vol. 453,
no. C, pp. 609–643, 2016.

[19] W. S. Gray and L. A. Duffaut Espinosa, “A Faà di Bruno Hopf algebra for a group of
Fliess operators with applications to feedback,” Systems and Control Letters, vol. 60,
no. 7, pp. 441–449, 2011.

[20] W. S. Gray, L. A. Duffaut Espinosa, and K. Ebrahimi-Fard, “Faà di Bruno Hopf algebra
of the output feedback group for multivariable Fliess operators,” Systems and Control
Letters, vol. 74, no. C, pp. 64–73, 2014.

[21] W. S. Gray, L. A. Duffaut Espinosa, and M. Thitsa, “Left inversion of analytic nonlinear
SISO systems via formal power series methods,” Automatica, vol. 50, no. 9, pp. 2381–
2388, 2014.

[22] W. Gray, L. Duffaut Espinosa, and K. Ebrahimi-Fard, “Recursive algorithm for the
antipode in the SISO feedback product,” Proc. 21st International Symposium on the
Mathematical Theory of Networks and Systems, pp. 1088–1093, 01 2014.

40

[23] K. Ebrahimi-Fard and W. S. Gray, “Center problem, Abel equation and the Faà di
Bruno Hopf algebra for output feedback,” International Mathematics Research Notices,
vol. 2017, no. 17, pp. 5415–5450, 2017.

[24] D. E. Radford, Hopf algebras. Ebrary science and technology e-book collection, Hack-
ensack, New Jersey: World Scientific, 2012.

[25] E. Abe, Hopf Algebras. Cambridge Tracts in Mathematics, Cambridge University Press,
2004.

[26] S. Dascalescu, C. Nastasescu, and S. Raianu, Hopf Algebra: An Introduction. Chapman
& Hall/CRC Pure and Applied Mathematics, Taylor & Francis, 2000.

[27] M. Sweedler, Hopf algebras. Mathematics lecture note series, W. A. Benjamin, 1969.

[28] H. Figueroa and J. M. Gracia-Bondia, “Combinatorial Hopf algebras in quantum field
theory I,” Reviews in Mathematical Physics, vol. 17, no. 8, pp. 881–976, 2004.

[29] M. Stankus, J. W. Helton, and M. de Oliveira, “NCAlgebra.” https://math.ucsd.
edu/~ncalg/, 2019.

[30] T. H. Cormen, Introduction to algorithms, p. 387. Cambridge, Massachusetts: MIT
Press, 3rd ed., 2009.

[31] J. Dean, D. Patterson, and C. Young, “A new golden age in computer architecture:
Empowering the machine-learning revolution,” IEEE Micro, vol. 38, pp. 21–29, Mar
2018.

[32] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-L. Cantin, C. Chao, C. Clark, J. Coriell,
M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. Mackean, A. Mag-
giore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Nor-
rie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thor-
son, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and
D. H. Yoon, “In-datacenter performance analysis of a tensor processing unit,” in 2017

https://math.ucsd.edu/~ncalg/
https://math.ucsd.edu/~ncalg/

41

ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA),
vol. 128643, pp. 1–12, ACM, 2017.

[33] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,
N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul,
J. Tse, G. Venkataramanan, Y. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A
neuromorphic manycore processor with on-chip learning,” IEEE Micro, vol. 38, pp. 82–
99, January 2018.

42

APPENDIX A

SOFTWARE DOCUMENTATION

NCFPS
Noncommutative Formal Power Series

Commands for Mathematica

Lance Berlin, Maurício de Oliveira, Luis A. Duffaut Espinosa,
W. Steven Gray, Benjamin C. Greenberg, J. William Helton

November 11, 2019

0 Reserved Labels

◼ A

◼ Description

For any η ∈ X *, the coefficient, or coordinate, functions aη
k are maps on formal series c ∈m 〈〈X 〉〉 yielding coeffcients

aη
k(c) := 〈ck, η〉

where ck = Ση∈〈X 〉 〈ci, η〉 η

This letter is reserved as the head for such functions and is used primarily with the functions RhoRightAugment ,

RightAugment , MapCoordinateFunctions, and Antipode.

◼ Syntax

Aindex,word

index is the kth element of c and word is the noncommutative word, η, which index a coordinate function aη
k.

DO NOT include the series from which the function is to draw coefficients. Instead use the function MapCoordinate-

Functions. This label exists for algebraic purposes.

◼ Example

A[2,x0**x1]

A[2, x0 ** x1]

1 Elementary Commands

◼ CharacteristicSeries

◼ Description

Given a subset L ⊆ X*, the characteristic series of L is the element in 〈〈X〉〉 defined by char(L) =∑ν∈L ν.

Printed by Wolfram Mathematica Student Edition

43

◼ Syntax

CharacteristicSerieslist

list is a list of words describing the language L.

◼ Example

L={x0**x0,x1,x2**x1};

CharacteristicSeries[L]

x1 + x0 ** x0 + x2 ** x1

◼ FirstLetter

◼ Description

Given η = xi1xi2⋯xik ∈ X *, the first letter of η is xi1 . The definition is extended linearly to series.

◼ Syntax

FirstLetterseries

series is noncommutative formal power series.

◼ Example

FirstLetter[x1**x0+2x1**x0**x0]

3 x1

◼ ImproperPart

◼ Description

The improper part of a series c ∈ ℓ〈〈X〉〉 is (c, ∅). The current implementation assumes ℓ = 1.

◼ Syntax

ImproperPartseries

series is a noncommutative formal power series.

◼ Example

ImproperPart[1+x0+x0**x0+x0**x0**x0]

1

◼ LanguageFilter

◼ Description

The polynomial c* is the largest polynomial in c ∈ ℓ〈〈X〉〉 such that supp(c*) ⊆ L ⊂ X *. The current implementation

assumes ℓ = 1.

◼ Syntax

LanguageFilter[c,L]

returns the largest polynomial in the noncommutative series c such that the support of that polynomial is a subset of

the language L.

LanguageFilter[c,Y,X]

returns the largest polynomial in the noncommutative series c such that the support of that polynomial is a subset of

2 Documentation_thes.nb

Printed by Wolfram Mathematica Student Edition

44

the language Y* ⊂ X*, where Y and X are each noncommutative alphabets such that Y ⊂ X.

◼ Example

c=2+x0-3x1**x0+4x0**x1**x0;

lang={1,x0,x1,x1**x0};

LanguageFilter[c,lang]

2 + x0 - 3 x1 ** x0

c=2+x0+3x1**x0-4x2**x0;

y={x0,x1};

x={x0,x1,x2};

LanguageFilter[c,y,x]

2 + x0 + 3 x1 ** x0

◼ NCDegree

◼ Description

Given p ∈ ℓ〈X〉, the degree of p is deg(p) = max{|η| : η ∈ supp(p)}. By definition, deg(0) = -∞. The partial degree

with respect to xi ∈ X is degxi
(p) = max{ηxi

 : η ∈ supp(p)}. By definition, degxi
(0) = -∞. The current implementation

assumes ℓ = 1.

◼ Syntax

NCDegreepolynomial

polynomial is a non-commutative formal polynomial.

NCDegreepolynomial,symbol

symbol is a letter in a noncommutative alphabet.

◼ Example

NCDegree[x1**x0**x0**x1+x1**x1**x1]

4

NCDegree[x1**x0**x0**x1+x1**x1**x1,x1]

3

◼ NCOrder

◼ Description

Given c ∈ ℓ〈〈X〉〉, the order of c is ord(c) = min{|η| : η ∈ supp(c)}. By definition, ord(0) = ∞. The partial order with

respect to xi ∈ X is ordxi
(c) = min{ηxi

 : η ∈ supp(c)}. By definition, ordxi
(0) = ∞. The current implementation assumes

ℓ = 1.

◼ Syntax

NCOrderseries

series is a noncommutative formal power series.

NCOrderseries,symbol

Documentation_thes.nb 3

Printed by Wolfram Mathematica Student Edition

45

symbol is a letter in a noncommutative alphabet.

◼ Example

NCOrder[x1**x0**x0**x1+x1**x1**x1]

3

NCOrder[x1**x0**x0**x1+x1**x1**x1,x1]

2

◼ NCPrefix

◼ Description

Given words η, ν ∈ X *, the word η is a prefix of the word ην.

◼ Syntax

NCPrefixmonomial,list

monomial is a noncommutative monomial, and list is a list of noncommutative monomials.

◼ Example

NCPrefix[x1**x0,{x1,x0**x1}]

{x1 ** x0 ** x1, x1 ** x0 ** x0 ** x1}

◼ ProperPart

◼ Description

The proper part of a series c ∈ ℓ〈〈X〉〉 is c′ = c - (c, ∅). The current implementation assumes ℓ = 1.

◼ Syntax

ProperPartseries

series is a noncommutative formal power series.

◼ Example

ProperPart[1+x0+x0**x0+x0**x0**x0]

x0 + x0 ** x0 + x0 ** x0 ** x0

◼ ProperQ

◼ Description

The proper part of a series c ∈ ℓ〈〈X〉〉 is c′ = c - (c, ∅). The current implementation assumes ℓ = 1.

◼ Syntax

ProperQseries

series is a noncommutative formal power series.

◼ Example

ProperQ[1+x0+x0**x0+x0**x0**x0]

False

4 Documentation_thes.nb

Printed by Wolfram Mathematica Student Edition

46

◼ RelativeDegree

◼ Description

Suppose X = {x0, x1, … , xm}. Any series c ∈ ℓ〈〈X〉〉 can be written as c = cN + cF , where cN := ∑k≥0 c, x0
k x0

k and cF

:= c - cN . The distinguished letter x0 is called the drift letter. For each component series ci ∈ 〈〈X〉〉, i = 1, 2,…, ℓ, let

ri ≥ 1 be the largest integer such that supp(ci,F) ⊆ x0
ri-1X *. Then ci has relative degree ri if the linear word x0

ri-1x j ∈

supp(ci) for some j ∈ {0, 1,…,m}, otherwise it is not well defined. In addition, c has (vector) relative degree {r1, r2,…,

rℓ} if the ℓ × m matrix

A =

c1, x0
r1-1 x1 c1, x0

r1-1 x2 ⋯ c1, x0
r1-1 xm

c2, x0
r2-1 x1 c1, x0

r2-1 x2 ⋯ c1, x0
r1-1 xm

⋮ ⋮ ⋱ ⋮

cℓ, x0
rℓ-1 x1 cℓ, x0

rℓ-1 x2 ⋯ cℓ, x0
rℓ-1 xm

has full rank. Otherwise, c does not have relative degree. By far, the most common occurrence of this definition is for

the case where ℓ = m. In which case, the condition on A is equivalent to det(A) ≠ 0.

◼ Syntax

RelativeDegreeseries,list,symbol

series is a noncommutative formal power series in the alphabet defined by list. symbol is the drift letter.

◼ Example

RelativeDegree[x0+x0**x1+x0**x0**x1+x0**x1**x0+x0**x1**x0**x1,{x0,x1},x0]

{2}

◼ RhoRightAugment

◼ Description

Let θ

i

ρ
 denote the antipodal right-augmentation operator and X = {x0, x1, …, xm}. This mapping operates on coordinate

functions (see A) according to

θ

i

ρ
aη

k := -θ

iaη

k ∀ i ≠ 0

θ

0
ρ
aη

k := -θ

0aη

k +∑r=1
m a∅

r θ

raη

k

See RightAugment .

This operator acts as a derivation

θ

i

ρ
aη1

k1 ⋯ aηs

ks  :=∑j=1
s aη1

k1 ⋯θ

i

ρ
aηj

kj ⋯ aηs

ks

◼ Syntax

RhoRightAugmentcfunc,ind,alph

cfunc is a coordinate function of the type described in A, ind is the index of the corresponding letter in the alphabet

alph.

◼ Example

X={x0,x1};

RhoRightAugment[A[1,x0**x1],0,X]

-A[1, x0 ** x1 ** x0] + A[1, 1]×A[1, x0 ** x1 ** x1]

Documentation_thes.nb 5

Printed by Wolfram Mathematica Student Edition

47

◼ RightAugment

◼ Description

Let θ

i denote the right-augmentation operator and X = {x0, x1, …, xm}. This endomorphism adds letters to the right of a

specified coordinate function (see A)

θ

iaη

k := aηxi

k

θ

i(1) = 0

May need to overhaul to implement the following functionality:

For a word η := xi1 ⋯ xir and an arbitrary word ψ ∈ X *

θ

ηaη

k = θ

ir ∘ ⋯ ∘ θ


i1 aψ

k 

This operator acts as a derivation

θ

iaη1

k1 ⋯ aηs

ks  :=∑j=1
s aη1

k1 ⋯ aηj xi

kj ⋯ aηs

ks

◼ Syntax

RightAugmentcfunc,ind,alph

cfunc is a coordinate function of the type described in A, ind is the index of the corresponding letter in the alphabet

alph.

◼ Example

X={x0,x1};

RightAugment[A[1,x0**x1],0,X]

A[1, x0 ** x1 ** x0]

◼ Support

◼ Description

Given c ∈ ℓ〈〈X〉〉, the support of c is supp(c) = {η ∈ X * : (c, η) ≠ 0}. The current implementation ℓ = 1.

◼ Syntax

Supportseries

series is noncommutative formal power series.

◼ Example

Support[x1**x0+2x1**x0**x0]

{x1 ** x0, x1 ** x0 ** x0}

◼ TruncateSeries

◼ Description

A series c ∈ ℓ〈〈X〉〉 is truncated to a polynomial in ℓ〈X〉 of degree n. The current implementation assumes m = ℓ = 1.

◼ Syntax

TruncateSeriesseries,integer

series is a noncommutative formal power series, and integer is a nonnegative integer.

6 Documentation_thes.nb

Printed by Wolfram Mathematica Student Edition

48

◼ Example

TruncateSeries[1+x0+x0**x0+x0**x0**x0,2]

1 + x0 + x0 ** x0

◼ WordLength

◼ Description

Given η ∈ X *, the word length, |η|, is the number of symbols in η. The word length with respect to xi ∈ X, ηxi
, is the

number of symbols in η that match xi.

◼ Syntax

WordLengthlist

list is a list of monic noncommutative monomials.

WordLengthlist,symbol

symbol is a letter in X.

◼ Example

WordLength[{x1**x0**x0**x1,1,x1**x1**x0}]

{4, 0, 3}

WordLength[{x1**x0**x0**x1,1,x1**x1**x0},x0]

{2, 0, 1}

2 Unitary Commands

◼ Antipode

◼ Description

For a word η := xi1 ⋯ xir ≠ ∅, the antipode S can be written

Saη
k = (-1)r-1 Θ


η

ρ
a∅

k 

where

Θ

η

ρ
:= θ


ir

ρ
∘ ⋯ ∘θ


i1

ρ

See RhoRightAugment .

◼ Syntax

Antipodecfunc,alph

cfunc is a coordinate function of the type described in A, alph is the alphabet for the context being operated in.

Documentation_thes.nb 7

Printed by Wolfram Mathematica Student Edition

49

◼ Example

X={x0,x1};

Antipode[A[1,x0**x1],X]

A[1, x1]2 - A[1, x0 ** x1] + A[1, 1]×A[1, x1 ** x1]

◼ GlobalGrowthConstants

◼ Description

A series c ∈ ℓ〈〈X〉〉 is said to be globally convergent if there exists real numbers K,M > 0 such that |(c, η)| ≤ KMη for

all η ∈ X *, where |z| = maxi |zi| when z ∈ ℓ, and |η| denotes the length of the word η. The smallest such constants are

called the global growth constants. When possible, this command returns the minimal K,M (in this order) and plots

log(|(c, η)|) versus word length, as well as the uniform bound log(M)|η| + log(K).

Assume there exists an expression such that |(c, η)| ≤ KM0
ηx0 M1

ηx1⋯Mm
ηxm for all η ∈ X * and X = {x0, x1, …, xm}. When

including a list alphabet, the command returns the minimal K,M0,M1,...,Mm (in this order) as well as showing a table of

error values for the linearized fit of the form log(|(c, η)|) = log(K) + log(M0)ηx0+ log(M1)ηx1+ ⋯ + log(Mm)ηxm

◼ Syntax

GlobalGrowthConstantsseries

series is a noncommutative formal power series.

GlobalGrowthConstantsseries,list

list is a list containing an alphabet of letters.

◼ Example

c = CharacteristicSeries[Table[CatalanNumber[n],{n,10}]*KleeneStar[{x0},9]];

GlobalGrowthConstants[c]

2 4 6 8
|η|

2

4

6

8

ln[|(c,η)|]

{1., 3.01008}

8 Documentation_thes.nb

Printed by Wolfram Mathematica Student Edition

50

c=2+3x0+5x1+7x0**x0+9x0**x1+11x1**x0+12x0**x1**x0+15x0**x0**x0;

X={x0,x1};

GlobalGrowthConstants[c,X]

Estimate Standard Error t-Statistic P-Value

1 0.6854 0.158152 4.33381 0.0074724
x0 0.617353 0.0790759 7.8071 0.000552573
x1 0.869613 0.15313 5.67893 0.00235791

{1.98457, 1.85401, 2.38599}

◼ KleeneStar

◼ Description

Given languages L, L ⊆, define the product LL = {ηη ∈ X * : η ∈ L, η ∈ L}. The Kleene star of L is L* = ∑k=0
∞ Lk where

L0 denotes the empty word, and Lk+1 = LLk. In practice, only the first n + 1 terms of the summation can be computed,

where n ≥0.

◼ Syntax

KleeneStarlist,integer

list is a list of monic monomials, and integer is a nonnegative integer.

◼ Example

KleeneStar[{x0,x1},2]

{1, x0, x1, x0 ** x0, x0 ** x1, x1 ** x0, x1 ** x1}

◼ LeftShift

◼ Description

Given any ξ ∈ X*, the corresponding left-shift operator on X* is defined as

ξ-1 : X* → 〈X〉 : η ↦ 
η ' η = ξη '
0 otherwise.

Note that in the second half of this definition, η is being mapped to the zero polynomial, i.e., p = 0, as opposed to the

empty word ∅. So this operator is a mapping into 〈X〉 and not into X*. For any c ∈ ℓ〈〈X〉〉, this definition is

extended linearly as

ξ-1(c) = ∑η∈X *(c,η) ξ-1(η) = ∑
η∈X *

(c,ξη)η.

The current implementation assumes ℓ = 1.

◼ Syntax

LeftShiftseries,monomial

series is a noncommutative formal power series, and monomial is a monic noncommutative monomial.

LeftShiftseries,monomial,power

power is a nonnegative integer.

Documentation_thes.nb 9

Printed by Wolfram Mathematica Student Edition

51

◼ Example

LeftShift[2x0**x1+x0**x1**x0+x1**x0**x0+x0**x0**x0,x0**x1]

2 + x0

LeftShift[x0**x1**x0**x1**x0**x0,x0**x1,2]

x0 ** x0

LeftShift[x0**x1**x0**x1**x0**x0,x0**x1,0]

x0 ** x1 ** x0 ** x1 ** x0 ** x0

◼ LocalGrowthConstants

◼ Description

A series c ∈ ℓ〈〈X〉〉 is said to be locally convergent if there exists real numbers K,M > 0 such that |(c, η)| ≤ KM η |η|!

for all η ∈ X *, where || = maxi |i| when  ∈ ℓ, and |η| denotes the length of the word η. The smallest such constants

are called the local growth constants. When possible, this command returns the minimal K,M (in this order) and plots

log((c,η)/η!) versus word length, as well as the uniform bound log(M) η + log(K).

Assume there exists an expression such that |(c, η)| ≤ KM0
ηx0 M1

ηx1⋯Mm
ηxm ηx0!ηx1!⋯ηxm

! for all η ∈ X * and X = {x0,

x1, …, xm}. When including a list alphabet, the command returns the minimal K,M0,M1,...,Mm (in this order) as well as

showing a table of error values for the linearized fit of the form log[|(c, η)|/(ηx0 ηx1⋯ηxm
)] = log(K) + log(M0)ηx0+

log(M1)ηx1+ ⋯ + log(Mm)ηxm

◼ Syntax

LocalGrowthConstantsseries

series is a noncommutative formal power series.

LocalGrowthConstantsseries,list

list is a list containing an alphabet of letters.

10 Documentation_thes.nb

Printed by Wolfram Mathematica Student Edition

52

◼ Example

c = ShuffleInverse[1-2x0,10];

LocalGrowthConstants[c]

2 4 6 8 10
|η|

1

2

3

4

5

6

7

ln[|(c,η)|/|η|!]

{1., 2.}

c=2+3x0+5x1+7x0**x0+9x0**x1+11x1**x0+12x0**x1**x0+15x0**x0**x0;

X={x0,x1};

LocalGrowthConstants[c,X]

Estimate Standard Error t-Statistic P-Value

1 0.97384 0.339656 2.86713 0.0351121
x0 -0.113217 0.169828 -0.666658 0.534514
x1 1.00113 0.328871 3.04414 0.028615

{2.64809, 0.892957, 2.72136}

◼ ShuffleInverse

◼ Description

Let c ∈ ℓ〈〈X〉〉 with (c, ∅) ≠ 0. The shuffle inverse of c is

cш -1 = c, ∅ (1 - c′)
ш -1

 = c, ∅
-1
∑k=0

∞ (c′)ш k.

The inverse is approximated to order n ≥ 0 if the upper bound of the summation above is n. The current implementa-

tion assumes ℓ = 1.

◼ Syntax

ShuffleInverseseries,integer

series is a noncommutative formal power series, and integer is a nonnegative integer.

Documentation_thes.nb 11

Printed by Wolfram Mathematica Student Edition

53

◼ Example

c = 1+x0+x1;

cinv = NCExpandShuffleInverse[c,3]

NCExpandShuffleProductc,cinv

1 - x0 - x1 + 2 x0 ** x0 + 2 x0 ** x1 + 2 x1 ** x0 + 2 x1 ** x1 - 6 x0 ** x0 ** x0 - 6 x0 ** x0 ** x1 -

6 x0 ** x1 ** x0 - 6 x0 ** x1 ** x1 - 6 x1 ** x0 ** x0 - 6 x1 ** x0 ** x1 - 6 x1 ** x1 ** x0 - 6 x1 ** x1 ** x1

1 - 24 x0 ** x0 ** x0 ** x0 - 24 x0 ** x0 ** x0 ** x1 - 24 x0 ** x0 ** x1 ** x0 - 24 x0 ** x0 ** x1 ** x1 -

24 x0 ** x1 ** x0 ** x0 - 24 x0 ** x1 ** x0 ** x1 - 24 x0 ** x1 ** x1 ** x0 - 24 x0 ** x1 ** x1 ** x1 -

24 x1 ** x0 ** x0 ** x0 - 24 x1 ** x0 ** x0 ** x1 - 24 x1 ** x0 ** x1 ** x0 - 24 x1 ** x0 ** x1 ** x1 -

24 x1 ** x1 ** x0 ** x0 - 24 x1 ** x1 ** x0 ** x1 - 24 x1 ** x1 ** x1 ** x0 - 24 x1 ** x1 ** x1 ** x1

3 Binary Commands

◼ CompositionProduct

◼ Description

Suppose X = {x0, x1,…, xm}, X

 = {x


0, x1, . . . , xm

 }, c ∈ ℓ


〈〈X

〉〉 and d ∈ m


〈〈X〉〉. Define the family of mappings

Dx


i
 : 〈〈X〉〉 → 〈〈X〉〉 : ℯ ↦ x0(di ш ℯ),

i = 0, 1,…, m with d0 = 1. Assume D∅ is the identity map on 〈〈X〉〉 and compose these operators in the obvious way

so that Dx


i x


j
 =: Dx


i
Dx


j
. The composition of a word η ∈ X


 and d is defined as

η
 ◦ d = (xikx


ik-1⋯x


i1) ◦ d = Dx


ik
Dx


ik-1
⋯Dx


i1
(1) = Dη

(1).

In which case, the composition product of c and d is

c ◦ d = ∑η

∈X


*
(c, η) η ◦ d.

The composition power is defined as

c◦i = c ◦ c ◦ ⋯ ◦ c ,

where c appears i times and c◦0 := 1.

The current implementation assumes X

 = X and ℓ


 = 1.

◼ Syntax

CompositionProductseries,list1,list2

series is a noncommutative formal power series, list1 is a list of noncommutative formal power series, and

list2 is a list of symbols defining an alphabet.

CompositionProductseries,list2,power

power is a nonnegative integer.

12 Documentation_thes.nb

Printed by Wolfram Mathematica Student Edition

54

◼ Example

X = {x0,x1,x2};

c = x1**x2;

d = {x0+2x1,x2};

CompositionProduct[c,d,X]

2 x0 ** x0 ** x0 ** x2 + 2 x0 ** x0 ** x1 ** x2 +

x0 ** x0 ** x2 ** x0 + 2 x0 ** x0 ** x2 ** x1 + 2 x0 ** x1 ** x0 ** x2

CompositionProduct[x0**x1,{x0,x1},2]

x0 ** x0 ** x0 ** x1

◼ MapCoordinateFunctions

◼ Description

This function takes an expression of coordinate functions and applies them to a noncommutative formal power series.

◼ Syntax

MapCoordinateFunctionscexp,series

cexp is an expression of coordinate functions (see A), series is any noncommutative formal power series.

NOTE: It is very important that cexp does not contain any coordinate functions of words whose lengths are greater

than the degree of series. This is because words which are not encountered in series are taken to have coefficients

of 0. If series has been truncated such that NCDegree[series] evaluates to n and cexp contains a coordinate

function A[word] such that WordLength[word]>n is True, then a cancellation of nonzero coefficients will occur. It

is, however, safe for series to be of a greater degree than the largest word of any coordinte function in cexp.

◼ Example

c=2+x0-x1**x0;

MapCoordinateFunctions[A[1,1]×A[1,x1**x0]+A[1,x1],c]

-2

◼ ModifiedCompositionProduct

◼ Description

Suppose X = {x0, x1,…, xm}, X

 = {x


0, x1, . . . , xm

 }, c ∈ ℓ


〈〈X

〉〉 and d ∈ m


〈〈X〉〉. Define the family of mappings

D


x


i
 : 〈〈X〉〉 → 〈〈X〉〉 : ℯ ↦ xiℯ + x0(di ш ℯ),

i = 0, 1,…, m with d0 := 0. Assume D

∅ is the identity map on 〈〈X〉〉 and compose these operators in the obvious way

so that D


x


i x


j
 =: D


x


i
D


x


j
. The composition of a word η ∈ X


 and d is defined as

η
 ◦ d = (xikx


ik-1⋯x


i1) ◦

 d = D


x


ik
D


x


ik-1
⋯D


x


i1
(1) = D


η
(1).

In which case, the composition product of c and d is

c ◦
 d = ∑η


∈X


*
(c, η) η ◦ d.

The modified composition power is defined as

c◦


i = c ◦

 c ◦


 ⋯ ◦


 c ,

Documentation_thes.nb 13

Printed by Wolfram Mathematica Student Edition

55

where c appears i times and c◦


0 := 1.

The current implementation assumes X

 = X and ℓ


 = 1.

◼ Syntax

ModifiedCompositionProductseries,list1,list2

series is a noncommutative formal power series, list1 is a list of noncommutatie formal power series, and

list2 is a list of symbols defining an alphabet.

ModifiedCompositionProductseries,list2,power

power is a nonnegative integer.

◼ Example

X = {x0,x1,x2};

c = x1**x2;

d = {x0+2x1,x2};

ModifiedCompositionProduct[c,d,X]

x1 ** x2 + x0 ** x0 ** x2 + 2 x0 ** x1 ** x2 + x0 ** x2 ** x0 +

2 x0 ** x2 ** x1 + x1 ** x0 ** x2 + 2 x0 ** x0 ** x0 ** x2 + 2 x0 ** x0 ** x1 ** x2 +

x0 ** x0 ** x2 ** x0 + 2 x0 ** x0 ** x2 ** x1 + 2 x0 ** x1 ** x0 ** x2

ModifiedCompositionProduct[x0**x1,{x0,x1},2]

x0 ** x1 + x0 ** x0 ** x0 ** x1

◼ ScalarProduct

◼ Description

Given c,d ∈ ℓ〈〈X〉〉, the scalar product is

(c, d) = ∑η=X*∑i=1
ℓ (ci, η) (di, η).

Of course for many series this sum diverges. The current implementation assumes ℓ = 1.

◼ Syntax

ScalarProductseries1,series2

series1 and series2 are noncommutative formal power series.

◼ Example

ScalarProduct[x0**x1+3x0**x0,x1**x1**x0+2x0**x1]

ScalarProduct[3 x0 ** x0 + x0 ** x1, 2 x0 ** x1 + x1 ** x1 ** x0]

◼ ShuffleProduct

◼ Description

The shuffle product of two words η = x jη
′, ξ = xkξ

′ ∈ X * is defined iteratively as

η ш ξ = (x jη
′) ш (xkξ

′) = x j(η′ш ξ) + xk(η ш ξ′)

with ξ ш ∅ = ∅ ш ξ = ξ. The definition of the shuffle product is extended linearly to any two series c,d ∈ 〈〈X〉〉 by

letting

14 Documentation_thes.nb

Printed by Wolfram Mathematica Student Edition

56

c ш d = ∑η,ξ∈X * (c, η) (d, ξ) ηш ξ.

Given two series c,d ∈ ℓ〈〈X〉〉 the shuffle product c ш d is defined componentwise, i.e., the i-th component series of c

ш d is (cш d)i = ci ш di, where 1 ≤ i ≤ ℓ. The current implementation assumes ℓ = 1.

◼ Syntax

ShuffleProductseries1,series2

series1 and series2 are noncommutative formal power series.

◼ Example

NCExpandShuffleProduct[2x0**x1,x0+x1]

4 x0 ** x0 ** x1 + 2 x0 ** x1 ** x0 + 4 x0 ** x1 ** x1 + 2 x1 ** x0 ** x1

◼ UltraMetricDistance

◼ Description

An ultrametic on ℓ〈〈X〉〉 is a mapping of the form

dist : ℓ〈〈X〉〉 ⨯ ℓ〈〈X〉〉 →  : (c, d) ↦ σord(c-d)

where σ such that 0 < σ < 1. The current implementation assumes ℓ = 1.

◼ Syntax

UltrameticDistanceseries1,series2,real

series1 and series2 are noncommutative formal power series, and real is a real number strictly between 0 and

1.

◼ Example

UltrametricDistance[x0+x0**x1**x1+x1**x0**x0,x0+x0**x0+x0**x0**x0,0.5]

0.25

4 Other Commands

◼ RealizationToSeries

◼ Description

Let G = {g0, g1,…, gm} be a set of smooth n-vector fields defined on a neighborhood W of z0 ∈ n. g0 is taken as the

drift vector field. Let h be a smooth ℓ-valued function on W. The generating series of the realization (G, h, z0) is c ∈

ℓ〈〈X〉〉, where X = {x0, x1,…, xm} and

(c, η) = Lgi1
⋯Lgik

h(z0), η = xik⋯xi1 ∈ X *

with Lgi
 : h ↦ ∂h/∂z · gi and L∅h = h.

◼ Syntax

RealizationToSerieslist1,function,list2,list3,integer

list1 is a list of m+1 mappings from n to n, function is a mapping from n to ℓ, list2 is a list of n real

numbers describing an initial condition, and list3 is the m+1 letter alphabet for the generating series c. The output

series c is truncated to degree integer. The current implementation assumes ℓ = 1.

Documentation_thes.nb 15

Printed by Wolfram Mathematica Student Edition

57

◼ Example

g0[z1_,z2_,z3_,z4_]:=z1 z2-z13,z1,-z3,z12+z2

g1[z1_,z2_,z3_,z4_]:={0,2+2 z3,1,0}

h[z1_,z2_,z3_,z4_]:=z4

z0:={0,0,0,0}

X={x0,x1};

RealizationToSeries[{g0,g1},h,z0,X,5]

2 x0 ** x1 + 2 x0 ** x1 ** x1 - 2 x0 ** x1 ** x0 ** x1 + 2 x0 ** x1 ** x0 ** x0 ** x1

16 Documentation_thes.nb

Printed by Wolfram Mathematica Student Edition

58

59

APPENDIX B

MODIFIED TENSOR CODE

(*Generating NC alphabet for multi-input*)

$RecursionLimit = Infinity;

FdBdegree = 7;

(*Numbers in character maps*)

CharacterMapsNums = ToString /@ Flatten[Range[0, m]];

(*Generating alphabet*)

alphabet = ToExpression[StringJoin["x", #] & /@ CharacterMapsNums];

(*ϕ is used to denote the empty word*)

SetNonCommutative /@ Flatten[Append[{ϕ}, alphabet]];

(*Concatenate coordinate function prefix with word index*)

Clear[Catm]

Catm[w_, x_List] := Flatten[StringJoin[w, #] & /@ x];

Clear[CatmList]

CatmList[w_List, x_] := Flatten[Catm[#, x] & /@ w];

(*Generate all coordinate functions with words of up to length n*)

Clear[CharacterMaps]

CharacterMaps[prefix_, y_List, n_Integer] :=

Catm[prefix, Flatten[NestList[CatmList[#, y] &, {""}, n]]]

(*Generating \ell series for multi-output *)

acoeffs = Table[ToExpression[

CharacterMaps["a" <> ToString[i], CharacterMapsNums, FdBdegree]], {i, 1, l}];

(*Define distribution over tensor products for performance gain*)

Clear[DistributeTensor]

DistributeTensorc_: 1 * tensor_ := Distribute[c * Distribute[tensor]];

DistributeTensor[tensor_Plus] := DistributeTensor[#] & /@ tensor;

(*Define a custom tensor product to replace notation*)

Clear[NCTensorProduct]

SetAttributes[NCTensorProduct, {Flat, Listable, OneIdentity}]

NCTensorProducta_ + b_, c_ := NCTensorProduct[a, c] + NCTensorProduct[b, c];

NCTensorProducta_, b_ + c_ := NCTensorProduct[a, b] + NCTensorProduct[a, c];

NCTensorProductc_?NumericQ * a_, d_?NumericQ * b_ :=

DistributeTensor[c * d * NCTensorProduct[a, b]];

NCTensorProductc_?NumericQ * a_, b__ := DistributeTensor[c * NCTensorProduct[a, b]];

NCTensorProducta__, d_?NumericQ * b_ := DistributeTensor[d * NCTensorProduct[a, b]];

(*Define notation using custom tensor*)

<< Notation`

InfixNotation ⊗ , NCTensorProduct

Unprotect[Times]

Times[NCTensorProduct[a1_Symbol, b1_Symbol],

NCTensorProduct[a2_Symbol, b2_Symbol]] := a1 * a2 ⊗ b1 * b2;

Notation x1_⊗x2_ * y1_⊗y2_ ⟺

Printed by Wolfram Mathematica Student Edition

60

Times[NCTensorProduct[x1_, x2_], NCTensorProduct[y1_, y2_]] 

(*Define our tensor product to use the above noncommuting tensor notation*)

Clear[ProductTensor]

SetAttributes[ProductTensor, {Flat, Listable, Orderless}]

ProductTensorc1_: 1 * a__, c2_: 1 * b__ := If[NumericQ[c1], If[NumericQ[c2],

DistributeTensor[c1 * c2 * ProductTensor[DistributeTensor[a], DistributeTensor[b]]],

DistributeTensor[c1 * ProductTensor[DistributeTensor[a], DistributeTensor[c2 * b]]]],

DistributeTensor[ProductTensor[DistributeTensor[c1 * a], DistributeTensor[c2 * b]]]];

ProductTensor[a__Plus, b__] := ProductTensor[#, b] & /@ a;

ProductTensor[a__, b__Plus] := ProductTensor[a, #] & /@ b;

ProductTensor[a__Plus, b__Plus] := ProductTensor[a, #] & /@ b;

ProductTensor[NCTensorProduct[a1__, b1__], NCTensorProduct[a2__, b2__]] :=

NCTensorProduct[a1 * a2, b1 * b2];

ProductTensorc1_: 1 * NCTensorProduct[a1__, b1__],

c2_: 1 * NCTensorProduct[a2__, b2__] := c1 * c2 a1 * a2 ⊗ b1 * b2;

(*Modify Times to use our noncommuting tensor notation*)

Unprotect[Times]

Timesc1_: 1 * NCTensorProduct[a1__, b1__], c2_: 1 * NCTensorProduct[a2__, b2__] :=

c1 * c2 a1 * a2 ⊗ b1 * b2;

Notation x1_⊗x2_ * y1_⊗y2_ ⟸

ProductTensor[NCTensorProduct[x1_, x2_], NCTensorProduct[y1_, y2_]] 

(*Define the product on the Hopf algebra*)

Clear[MuProduct]

MuProduct[tensor_] := DistributeTensor[tensor /. NCTensorProduct → Times];

MuProduct[a_List] := Apply[Times, a];

MuProduct[a_ ⊗ "1"] := a;

MuProduct["1" ⊗ a_] := a;

MuProduct[{a_, "1"}] := a;

MuProduct[{"1", a_}] := a;

(*Permute tensor products*)

Clear[TauPermutation]

TauPermutation[a_ ⊗ b_] := NCTensorProduct[b, a];

TauPermutation[a_, b_] := NCTensorProduct[b, a];

TauPermutation[a_Plus] := TauPermutation[#] & /@ a;

TauPermutationc_: 1 * a__ ⊗ d_: 1 * b__ :=

If[NumericQ[c], If[NumericQ[d], c * d * DistributeTensor[TauPermutation[a, b]],

c * DistributeTensor[TauPermutation[a, d * b]]],

d * DistributeTensor[TauPermutation[c * a, b]]];

(*Define the left shift operator*)

Clear[ThetaMap]

ThetaMapc_: 1 * a_, num_ := c * ToExpression[

StringTake[ToString[a], 2] <> ToString[num] <> StringDrop[ToString[a], 2]];

Clear[ThetaMapShift]

ThetaMapShiftc_: 1 * a_, num_ := c * If[StringTake[ToString[a], {3}] === ToString[num],

2 tensorCode.nb

Printed by Wolfram Mathematica Student Edition

61

  

StringReplacePart[ToString[a], "", {3, 3}], Message[ThetaMapShift::nnarg, x];

0];

ThetaMapShift::nnarg = "No shift possible.";

ThetaMapShift[0, num_] := 0;

(*Define functions for tensors with distributing compositions*)

Clear[TensorComposition2]

TensorComposition2[f_, g_, tensor_] :=

DistributeTensor[tensor /. NCTensorProduct[a_, b_] ⧴ NCTensorProduct[f[a], g[b]]];

Clear[TensorComposition]

TensorComposition[f_, tensor_, side_] := If[side ⩵ 1,

DistributeTensor[tensor /. NCTensorProduct[a_, b_] ⧴ NCTensorProduct[f[a], b]],

If[side ⩵ 2, tensor /. NCTensorProduct[a_, b_] ⧴ NCTensorProduct[a, f[b]]]];

(*Performance gain for the case of words with 0 coefficients*)

Clear[IdentityReplace]

IdentityReplace[a_, rules_] := Identity[a] /. rules;

(*Define tensor distribution for order 3 tensor compositions*)

Clear[TensorCompositionMu]

TensorCompositionMu[f_, g_, tensor_] := DistributeTensor[

tensor /. NCTensorProduct[a_, b_, c_] ⧴ NCTensorProduct[f[a], g[NCTensorProduct[b, c]]]]

(*Default value 1 is because there is only one series*)

Clear[CoproductShuffle]

CoproductShuffle[a_, component_: 1] :=

CoproductShuffle[a, component] = Module[{s1, s2}, s1 = ToString[a];

If[StringLength[s1] <= 2, If[NumericQ[a] , Message[CoproductShuffle::nnarg, x];

0, ToExpression[a] ⊗ ToExpression[StringDrop[s1, -1] <> ToString[component]]],

s2 = ToExpression[StringTake[s1, {3, 3}]];

TensorComposition[ThetaMap[#, s2] &, CoproductShuffle[

ThetaMapShift[s1, s2], component], 1] + TensorComposition[

ThetaMap[#, s2] &, CoproductShuffle[ThetaMapShift[s1, s2], component], 2]]]

CoproductShuffle::nnarg = "Incorrect argument. Argument should be, for example,

ai1120. But if coefficient is zero, then the evaluation is zero too";

(*Setting properties of ϕ with respect to NonCommutativeMultiply*)

NonCommutativeMultiply[ϕ, a__] := a;

NonCommutativeMultiply[a__, ϕ] := a;

NonCommutativeMultiply[ϕ, ϕ] := ϕ;

(*Define multiplicative behavior for empty word*)

Unprotect[Times]

Times[ϕ, a__] := a;

Times[a__, ϕ] := a;

Times[ϕ, ϕ] := ϕ;

(*CoproductShuffle[a]-ϕ⊗a-a⊗ϕ*)

Clear[ReducedCoproductShuffle]

ReducedCoproductShuffle[a_, component_: 1] :=

ReducedCoproductShuffle[a, component] = CoproductShuffle[a, component] -

tensorCode.nb 3

Printed by Wolfram Mathematica Student Edition

62

NCTensorProduct[ToExpression[StringTake[ToString[a], 2]], ToExpression[

StringTake[ToString[a], 1] <> ToString[component] <> StringDrop[ToString[a], 2]]] -

NCTensorProduct[a, ToExpression[StringTake[ToString[a], 1] <> ToString[component]]];

(*Implement tensor products composed with μ*)

Clear[MuRightTensor]

MuRightTensor[f_, tensor_, side_] := MuProduct[TensorComposition[f, tensor, side]];

MuRightTensor[f_, 0] := 0;

(*Δ

*)

Clear[CoproductComposition]

CoproductComposition[a_, rules_: 1] :=

CoproductComposition[a, rules] = Module[{s1, s2, s3}, s1 = ToString[a];

If[StringLength[s1] ≤ 2, If[NumericQ[a], Message[CoproductComposition::nnarg, x],

NCTensorProduct[ToExpression[a], "1"]], s2 = ToExpression[StringTake[s1, {3, 3}]];

If[rules === 1, s3 = TensorComposition[ThetaMap[#, s2] &,

CoproductComposition[ThetaMapShift[s1, s2], rules], 1];

If[NumericQ[s2], If[s2 ⩵ 0,

s3 + Sum[TensorCompositionMu[ThetaMap[#, i] &, MuProduct,

TensorComposition[CoproductComposition[#, rules] &, CoproductShuffle[

ThetaMapShift[s1, s2], i], 1]], {i, 1, m}], If[s2 ≠ 0, s3]]],

s3 = TensorComposition2[ThetaMap[#, s2] &, IdentityReplace[#, rules] &,

CoproductComposition[ThetaMapShift[s1, s2], rules]];

If[NumericQ[s2], If[s2 ⩵ 0,

s3 + Sum[TensorCompositionMu[ThetaMap[#, i] &, MuProduct, TensorComposition2[

CoproductComposition[#, rules] &, IdentityReplace[#, rules] &,

CoproductShuffle[ThetaMapShift[s1, s2], i]]], {i, 1, m}], If[s2 ≠ 0, s3]]]]]];

CoproductComposition::nnarg = "Incorrect argument";

Clear[ReducedCoproductComposition]

ReducedCoproductComposition[a_, rules_: 1] :=

ReducedCoproductComposition[a, rules] = CoproductComposition[a, rules] - a ⊗ "1";

(*Antipode of the Hopf algebra applied to the left 1 or right 2*)

Clear[CompositionAntipode]

CompositionAntipode[a_, side_: 1, rules_: 1] :=

CompositionAntipode[a, side, rules] = Outer[CompositionAntipode, a, side, rules];

CompositionAntipode[a_Times, side_: 1, rules_: 1] :=

CompositionAntipode[a, side, rules] = Outer[CompositionAntipode[#, side, rules] &, a]

CompositionAntipode[a_^n_, side_: 1, rules_: 1] := CompositionAntipode[a^n, side, rules] =

Expand[Product[CompositionAntipode[a, side, rules], {i, 1, n}]]

CompositionAntipode[a_, side_: 1, rules_: 1] := CompositionAntipode[a, side, rules] =

CompositionAntipode[a, side, rules] = -a - MuRightTensor[

CompositionAntipode[#, side, rules] &, ReducedCoproductComposition[a, rules], side] ;

4 tensorCode.nb

Printed by Wolfram Mathematica Student Edition

63

64

APPENDIX C

SAMPLE TEST CODE

Quit[](* Ensure a fresh kernel is initialized before next test case is run *)

Tensor Method: Time and Final Memory

<< NCFPS` (* Load package and initialize kernel *)

(* Define dimensions of system *)

m = 1;
l = m;
(* Select coordinate function from list *)

wordNum = 2;
cfs = {a1, a10, a100, a1000, a10000, a100000, a1000000, a10000000}[[wordNum]];

(* Define CompositionAntipode and its

associated functions. Not shown here for brevity. *)

{}

(* Define time constraint on execution *)

t = 60 * 60 * 1;

(* Execute test, obtaining timing and memory needed to store result *)

pre = MemoryInUse[];

TimeConstrained[CompositionAntipode[cfs, 2]; // AbsoluteTiming, t]

post = MemoryInUse[];

post - pre

Quit[] (* Ensure a fresh kernel is initialized before next test case is run *)

Tensor Method: Intermediate Memory

<< NCFPS` (* Load package and initialize kernel *)

(* Define dimensions of system *)

m = 1;
l = m;
(* Select coordinate function from list *)

wordNum = 2;
cfs = {a1, a10, a100, a1000, a10000, a100000, a1000000, a10000000}[[wordNum]];

(* Define CompositionAntipode and its

associated functions. Not shown here for brevity. *)

{}

(* Define time constraint on execution *)

t = 60 * 60 * 1;

(* Execute test, identifying peak memory consumption during execution. *)

TimeConstrained[CompositionAntipode[cfs, 2]; // MaxMemoryUsed, t]

Printed by Wolfram Mathematica Student Edition

65

Quit[](* Ensure a fresh kernel is initialized before next test case is run *)

Derivation Method: Time and Final Memory

<< NCFPS` (* Load package and initialize kernel *)

(* Define alphabet and set letters as noncommuting *)

X = {x0, x1, x2, x3, x4};

SetNonCommutative /@ X;

(* Choose indexing word and define the size of the alphabet used for testing *)

wordNum = 2;

letters = 2;

(* Define index word *)

word = KleeneStar[{x0}, 7][[wordNum]]

x0

(* Define time constraint on execution *)

t = 60 * 60 * 1;

(* Execute test, obtaining timing and memory needed to store result *)

pre = MemoryInUse[];

TimeConstrained[Antipode[A[1, word], X[[1 ;; letters]]]; // AbsoluteTiming, t]

post = MemoryInUse[];

post - pre

Quit[](* Ensure a fresh kernel is initialized before next test case is run *)

Derivation Method: Intermediate Memory

<< NCFPS` (* Load package and initialize kernel *)

(* Define alphabet and set letters as noncommuting *)

X = {x0, x1, x2, x3, x4};

SetNonCommutative /@ X;

(* Choose indexing word and define the size of the alphabet used for testing *)

wordNum = 2;

letters = 2;

(* Define index word *)

word = KleeneStar[{x0}, 7][[wordNum]]

x0

(* Define time constraint on execution *)

t = 60 * 60 * 1;

(* Execute test, identifying peak memory consumption during execution. *)

TimeConstrained[Antipode[A[1, word], X[[1 ;; letters]]]; // MaxMemoryUsed, t]

2 testing_example.nb

Printed by Wolfram Mathematica Student Edition

66

67

VITA

Lance Berlin
Department of Electrical and Computer Engineering
Old Dominion University
Norfolk, VA 23529

EDUCATION

• B. S. Electrical Engineering, Computer Engineering, Old Dominion University, Nor-
folk, Virginia, USA, 2013

PUBLICATIONS

Conference Publications:

1. L. Berlin, W. S. Gray, L. A. D. Espinosa and K. Ebrahimi-Fard, “On the perfor-
mance of antipode algorithms for the multivariable output feedback Hopf algebra,”
51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD,
2017, pp. 1-6.

Typeset using LATEX.

	Computational Analysis of Antipode Algorithms for the Output Feedback Hopf Algebra
	Recommended Citation

	List of Tables
	List of Figures
	LIST OF SYMBOLS
	Introduction
	Motivation
	Problem Statement
	Outline

	Mathematical Preliminaries
	Formal Language
	Formal Power Series
	System Representations Using Fliess Operators
	Composition Inverse

	Antipode Algorithms
	Coproduct Methods
	Derivation Method

	On the Performance of Antipode Methods
	Derivation Implementation in Mathematica
	Performance Analysis

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Software Documentation
	Modified Tensor Code
	Sample Test Code

	VITA

