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ABSTRACT 
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Old Dominion University, 2024 
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Presented herein is an experimental and theoretical study of biaxially loaded hollow 

rectangular section steel beam-columns with applied torsion at elevated temperatures. The 

theoretical analysis is based on a system of simultaneous materially nonlinear differential 

equations of equilibrium for which an iterative semi-analytic solution approach is formulated. 

Although the primary goal of this research is to study the influence of elevated temperatures on 

the steel member with the complex loading, rigorous analysis is also conducted of the member at 

ambient temperature for comparison.  The experimental part of the study involves conducting tests 

on the members at both ambient and high temperatures.  A biaxial bending apparatus with a pair 

of gimbals and means to apply an axial load as well as torsion is used to perform the experiments. 

The elevated temperatures are introduced by means of a heat chamber surrounding each test 

specimen.  The theory is validated by a comparison to the experimentally observed behavior and 

strength. A set of general dimensionless interaction expressions are developed that can be used for 

determining the ultimate strength of biaxially loaded beam-columns with applied torsion at 

elevated temperatures.  The substantial reduction of the member strength due to temperature-

dependent nonlinear material properties and second-order effects is also quantified. 
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This dissertation is dedicated to the proposition that success doesn’t come from what you do 
occasionally, but what you do consistently. 
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NOMENCLATURE 

 

A  Area 

B             Section width 

D             Section depth 

dA            Elemental Area 

E, ET            Modulus of elasticity at ambient and elevated temperature 

G              Shear modulus 

Ix, Iy         Moment of inertia about x-axis and y-axis 

Ixy             Product moment of inertia relative to x-axis and y-axis 

Iwx, Iwy     Warping product of inertia relative to x-axis and y-axis 

[T], [T]T      Member global tangent stiffness matrix at ambient and elevated temperature 

kBX , kTX          End rotational stiffness about x-axis 

kBY , kTY          End rotational stiffness about y-axis 

L                  Member length 

mBX, mTX          Restraint moments at bottom and top about x-axis 

mBY, mTY            Restraint moments at bottom and top about y-axis 

MBX, M TX        Applied moments at bottom and top end about x-axis 

MBY, M TY        Applied moments at bottom and top end about y-axis 

Mxp, Myp         Moments due to plastification 

Mxre, Myre         Moments due to residual stress 

Mxthe, Mythe        Moments due to thermal deformation 

Mrz               Torsional moment due to residual stress 



 
 

 vii 

Mzp               Torsional moment due to plastification 

P                   Applied axial load 

Pp                 Plastic load   

Pr                 Residual load 

Pthe              Axial load due to thermal expansion 

T                  Temperature 

Rx, Ry         Reaction at the bottom end of the beam-column 

Sx, Sy          Elastic section modulus about x and y-axis 

Swx, Swy        Warping section modulus about x and y-axis 

T                 Applied Torque 

U                 Total deflection in x-direction 

V              Total deflection in y-direction 

u               Deflection due to applied load in x-direction 

v                Deflection due to applied load in y-direction 

uT              Deflection due to applied load and increased temperature in x-direction 

vT              Deflection due to applied load and increased temperature in y-direction 

uo               Midspan initial member crookedness in x-direction 

vo              Midspan initial member crookedness in y-direction 

uoi              Initial member crookedness in x-direction 

voi             Initial member crookedness in y-direction 

u՚՚             The second order derivative of u 

v՚՚             The second order derivative of v 

Zx,Zy      Plastic section  modulus about x-axis and y-axis 



 
 

 viii 

β               Angle between the column and base plate 

Ɛ               Normal strain 

Ɛr              Residual strain  

ƐO                 Average axial strain 

Ɛth                 Thermal strain 

Ɛw                Normal strain due to warping 

ɸx, ɸy         Bending curvatures 

σy, σyT        Yield normal stress at ambient and elevated temperature 

σrt, σrc        Compressive and tensile residual stress 

τy              Yield shear stress 

F             Angle of twist 
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CHAPTER 1 INTRODUCTION 

 

1.1 Introduction  

The primary focus of the research presented herein is on a theoretical and experimental 

study of the elasto-plastic behavior of biaxially loaded hollow rectangular section steel beam-

columns subjected to biaxial bending, axial load, and applied torsion under elevated temperature 

conditions. A parallel set of analyses and experiments is conducted at ambient temperature for 

the purpose of comparison. The current study is focused on non-sway thin-walled hollow square 

or rectangular section steel members. The study of such members has gained significant 

importance due to the 9/11 events as well as fire hazards which a building can experience. 

The theoretical part of this research is based on an approximated semi-analytic iterative 

solution of a system of coupled nonlinear differential equations of quasi-static equilibrium. 

Closed-form solutions of elasto-plastic stability problems are not possible [1-4]. Hence, a 

theoretical solution procedure based on the semi-analytic method is adopted to iteratively solve 

the governing differential equations. The experimentally verified analysis is used to develop 

expressions relating biaxial bending, axial load, and torsion for various ranges of high 

temperatures for practical use for both square and rectangular section steel members. 

Although a considerable body of literature exists on the elasto-plastic behavior of 

biaxially loaded beam-columns, a rather limited amount of research has been conducted in the 

past when such members are also subjected to applied torsion. Furthermore, to the best of the 

author’s knowledge, the influence of elevated temperatures on such members in the presence of 

applied torsion has not been investigated in the past.  
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1.2 Literature Review 

1.2.1 Review of Beam-Column Behavior under Ambient Temperature 

The behavior of beam-columns under ambient temperatures subjected to varying loads 

have been studied by many researchers in the past. In 1954, Ketter [5] applied the method of 

virtual displacement in his study which was related to the behavior of simply supported wide 

flange beam-columns. The method of solution that was consequently developed was applied to 

determine the critical load value for members which had been subjected to concentric, eccentric 

and lateral loads.  

By applying the Newmark’s method, Galambos and Ketter [6] determined load deflection 

curves of wide-flange columns subjected to combined thrust and bending. The theoretical results 

obtained in the research investigations were later validated with results conducted by popular 

astute researchers Mason, Fisher and Winter [7]. 

Birnstiel [8] as well as Birnstiel and Michalos [9] both developed an analytical procedure 

to investigate the inelastic response of biaxially loaded beam-columns with equal end 

eccentricities. Galambos and Fukumoto [10] conducted experimental research into the inelastic 

lateral-torsional buckling strength of rolled-steel wide flange beam-columns. The beam-columns 

were subjected to axial loads as well as bending moments applied at one end only. Through finite 

difference approximation, the characteristic determinants of the variable coefficients of the 

differential equations were subsequently solved. This research was conducted to serve as the 

framework in providing theoretical background behind the inelastic behavior of beam-columns, 

derivations, and eventual solution of the system of differential equations.  

Beam-columns subjected to axial load and bending moments applied at either one end of 

a member or at both ends of a member were investigated by Galambos et al [11]. Important 
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behaviors such as strength reduction, yield stress, residual stress, cross-sectional size, and its 

effect on lateral torsional buckling strength were determined as part of the experimental study. 

The theoretical solutions were subsequently compared with the empirical reduction formula for 

design purposes. The test results were also compared with the theoretical results using the 

reduction formula approach. 

Milner [12] conducted both theoretical and experimental investigation into the behavior 

of elastic-plastic, elastic restrained and H-section columns (10 in number) that were carefully 

designed to bend in symmetrical single curvature about two axes. Harstead [13] successfully 

succeeded in modifying the analytical approach introduced by Birnstiel [8] by reducing the 

amount of trial and error leading to the computation of the ultimate capacity of the member 

whilst giving considerations to warping strains, shearing stresses and torsional rigidity.  

 Rectangular tubular cross-section beam columns that were biaxially loaded with both ends being 

simply supported as well as axially loaded with a constant increasing moment applied at one end 

were studied by Razzaq [14] at the University of Windsor. The results of the tests predominantly 

showed that the predicted deflections were lower as compared to the actualized experimental 

results.  

Marshall and Ellis [15] also performed tests on thin-walled box sections subjected to 

biaxial bending and compression. The results were found to compare favorably with the results 

obtained through theoretical solutions. 

Sakda [16] conducted a study of biaxially loaded columns by applying the limit theorem 

and tangent stiffness method to determine the elastic-plastic behavior of the cross-sections. This 

led to the derivation of interaction equations that depicted the elastic-plastic behavior of biaxially 

loaded columns. Baseheart [17] investigated the deformational response of biaxially loaded 
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beam-columns using three coupled differential equations that depicted the members behavior. 

The proposed solution procedure was found capable of being extended to cover the 

deformational response of biaxially loaded beam-columns with unequal end eccentricities. 

A designed experimental program to evaluate the load deflection behavior and failure 

modes of rolled, mild steel beams and beam-columns were carried out by Thompson [18]. It was 

observed from the research that short span beam-columns had more reserve strength, and they 

were found to exhibit certain characteristics such as load deterioration, stiffness and dissipated 

energy that correlated the buckling and load deflection trends at large deflections when exposed 

to monotonic loading. Hobbs and Jowharzadeh [19] explored the use of computer based analysis 

to examine the effects of off-diagonal flexibilities in the tangent flexibility matrix of a beam-

column in a frame section. These off-diagonal terms were adopted as increments of bending 

moments and axial load to alterations in both curvature and centroidal strains. As part of research 

observations, small effects of flexural flexibility due to the presence of axial load on the 

maximum load carrying capacity were realized. 

Hollow rectangular non-sway beam-columns were also subsequently studied by both 

Razzaq and McVinnie [20,21]. Both experimental and theoretical studies were performed on 

selected hollow rectangular non-sway beam-columns that were subjected to nonproportional 

loading. It was observed from the tests that twisting was insignificant for either hollow square or 

rectangular section beam-columns. Furthermore, in attempting to investigate and offer 

predictions on the inelastic behavior of steel tubular beam-columns subjected to post-buckling 

and cyclic loading conditions, Han and Chen [22] employed the use of finite segment and 

influence coefficient method. Subsequently, the results of this study led to the successful 

representation of moment-thrust-curvature and moment-thrust-axial strain relations for the post 
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yield behavior of tubular cross-sections. Sugimoto and Chen [23] established a finite segment 

computer-based simulation to study the post-buckling, post-peak and cyclic behavior of beam-

columns. They proposed the application of automatic load control techniques intertwined with 

the generalized cyclic stress-strain relationships. The conclusion of this research led to a 

successful application in tubular beam-columns and frames with large shape factor values and 

various distinct end conditions. 

In 1985, W shaped beam-columns were investigated by Dawe and Kulak [24] for their 

buckling behavior via the application of a computerized based technique. This was done whilst 

taking consideration to the effects of flange, web interaction, inelastic behavior, and the presence 

of residual stresses in beam-columns. The research findings were later found to be conservative 

when compared with the standards stipulated in both the US and Canadian specifications. Chen 

[25] investigated the ultimate strength of beam-columns, secondary effects namely, P-δ and P-Δ 

effects and second-order elastic as well as inelastic analysis based on a simplified computerized 

approach. This research led to the development and consequent ultimate strength design 

interactions which has subsequently been applied in the United States.  

Darbhamulla [1] investigated the elasto-plastic behavior of steel beam-columns under 

combined effects of various imperfections, flexible connections and non-proportional loads. This 

was achieved by applying second order finite difference algorithm to a set of materially 

nonlinear equilibrium equations interconnected with the tangent stiffness approach. Results of 

the study revealed the very important effects of non-proportional loads on the behavior and 

strength of beam-columns. Eidan [4] solved a set of materially nonlinear differential equilibrium 

equations to be used for both biaxially loaded and planar beam-columns with sidesway 

uninhibited. With analysis centered on the effects of initial imperfections and flexible 
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connections, an iterative numerical solution procedure using the central difference approach was 

adopted in solving the problem.  

Hancock and Rasmussen [26] conducted experiments on the interaction buckling 

behavior of beam-columns with thin-walled hollow square and I-shaped sections bent about the 

major and minor principal axes. For the majority of sections tested, local buckling was observed 

to occur before overall buckling. The results of the tests were subsequently found to correlate 

with the AS4100:98, EC3 and AISC LRFD specifications. Torkomani and Sonmez [27] also 

performed a comparative study of two beam-column models for inelastic analysis and large 

deformation of planar steel structural systems. The models proposed were based on the 

derivations of different stiffness matrices.  

Boissonnade et al [28] formulated a new design proposal for beam-column interaction 

formulae based on the theoretical background, physical meaning and consistency with other 

Eurocode 3 formulae. Boissonnade and his team of researchers validated the experimental results 

with more than 15,000 results of finite element simulations. Based on a research investigation 

carried out by Pi and Trahair [29] on steel beam-columns subjected to biaxial bending and 

torsion, a finite element model was developed for the successful nonlinear incremental analysis 

of the biaxial bending and torsion of thin-walled beam columns. Meanwhile, Hasham and 

Rasmussen [30] also studied interaction curves of slender cross-sections of beam-columns. 

Consequently, the experimental interaction curves were found to be closely correlated with the 

design interaction curves stipulated by the Australian, British and European specifications. 

Law and Gardner [31] carried out both experimental and numerical tests on selected 

number of beam-column specimens under various combinations of compressive loadings and 

bending moments acting on the principal axes. The numerical methods were successfully applied 
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in further parametric studies to determine the slenderness and cross-sectional aspect ratios and 

their effects on the overall response of the beam-column member. 

Marques et al [32] also examined the various methodologies used in verifying the 

stability of members and frames using tapered beam-columns. To achieve the research 

objectives, various web tapered beam-columns subjected to in-plane loading were adopted using 

the interaction formulae in EC3-1-1 and subsequently validated against finite element method 

numerical modelling techniques. 

Kucukler, Gardner and Macorini [33] developed a stiffness reduction method for the 

flexural-torsional buckling assessment of steel beam-columns subjected to major axis bending 

and axial compression. In validating the developed method, the proposed stiffness reduction 

method was found to compare favorably with the European 3 design standards.   

Konate [3] presented the results of the highly complex and detailed research investigation 

into the experimental and theoretical inelastic behavior of beam-columns subjected to torsion. In 

this research, the theoretical study revolved around the application of the finite integral method 

used in solving materially non-linear differential equations. The outcome of Mamadou’s research 

led to new load-moment-torsion interaction equations that have been adopted in various 

international steel design specifications. Zhao [34] conducted tests on 48 beam-columns that 

were subjected to both constant bending and various moment gradients to investigate their 

buckling behavior. The results of this test led to the development of new and accurate design 

rules pertaining to the structural performance of stainless steel elements under the action of 

combined axial load and bending moments. 

Ferritic stainless steel beam-column specimens with several contrasting bending moment-

to-axial load rations were tested and compared with developed finite element models to evaluate 
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the beam-column design provisions in practice. Zhao, Gardner and Young [35] later discovered 

that the Australian / New Zealand standards of practice offered the most reliable design 

provisions concurrent with the experimental and numerical procedures. Gizejowski et al [36] 

meanwhile proposed an analytical model to study the inelastic out-of-plane buckling resistance 

of beam-columns subjected to moment gradient. The developed model was consequently 

modified to adhere to the standard European technique of simulating buckling resistance of main 

steel elements subjected to either bending moments or compression loading about the cross-

sectional axis. 

Konate and Razzaq [37] examined and proceeded to present yield limit interaction 

equations for a typical biaxially loaded I-shaped and rectangular shaped non-sway beam columns 

with a torsional moment present at the bottom end. The  analysis involved p-delta and initial 

residual stresses effects. The resultant interaction equations were observed to compare favorably 

with previous experimental tests conducted by Konate [3]. Kucukler et al [38] did investigate the 

flexural buckling of beam-columns whilst considering several ranges of member slenderness and 

differing loading conditions. The test results were later validated by reliability analysis in 

compliance with the European design standards. 

1.2.2 Review of Beam-Column Behavior under Elevated Temperature 

   Liew [39] modeled the inelastic behavior of beam-columns of steel framing members 

when subjected to high temperature conditions. Research results obtained by Real et al [40] and 

Lopes et al [41] validated the accuracy of the beam-column design requirements in the European 

standards. This was achieved by subjecting wide flange steel beam-columns to a supply of 

uniform temperature whilst placing emphasis on lateral-torsional buckling. 

   Knobloch et al [42] analyzed the spatial buckling behavior of steel beam-columns 
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subjected to combined axial loading and biaxial bending moments with both uniform and non-

uniform bending moment distributions. Results of the test led to the development of temperature-

dependent non-dimensional M-N interaction curves. In attempting to validate the results with the 

European design standards, it was realized that the interaction curves as well as plasticity factors 

were inconclusive and required further modifications. 

   Also, Kodur and Dwaikat [43] carried out several numerical tests which were later 

validated against experimental tests on the response of steel beam-columns under real fire load 

and other restraint scenarios. Results of the study showed that the form of fire scenario, 

magnitude of load, end-restraint degrees and high temperature creep had adverse effects on the 

fire performance of steel beam-columns. Chloe et al [44] performed experimental investigations 

on steel beam-columns subjected to high temperature. For the experimental setup, test specimens 

were exposed to various loading conditions in the form of axial, thermal and monotonically 

increasing flexure loading to investigate the fundamental behavior of steel beam-columns. By 

innovative radiant heating and digital imaging processing techniques, the load-moment-curvature 

temperature responses of steel members were subsequently derived and were found to compare 

favorably with 3D finite element models and analyses.  

   Further experimental efforts were made by Chloe et al [45] to determine the behavior of 

steel beam-columns and their responses mainly, moment-curvature and axial load behaviors at 

high temperatures. The method used in the testing process involved the application of thermal 

loads and photogrammetry in connection with digital imaging processing techniques to 

determine the deformations in the heating region of the beam-column. Overall, it was discovered 

that the stiffness of beam-columns was significantly affected when the temperature reached 

500°C and beyond. Also, it was realized that the lateral force-lateral displacement-temperature 
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behavior was non-linear at the beginning stages of loading as temperature was steadily increased. 

The normalized moment capacities were also observed to suffer significant decreases especially 

in the temperature range of 300°C -500°C. 

   Lopes et al [46] investigated the resistance of stainless steel beam-columns under 

combined axial compression and bending moment subjected to high temperature conditions. 

Through the finite element program SAFIR, the numerical analyses for this study were 

performed. After successfully validating the results of the numerical and the interaction curves in 

the Eurocode 3, the results showed the urgent need for specific design approach to be adopted for 

the behavior of stainless steel members in elevated temperature conditions. Zhao [2] investigated 

the behavior of biaxially loaded steel beam-columns subjected to elevated temperatures.  

Upon validating the experimental and numerical study, the results were extended to offer a 

prediction of the beam-columns that were used in the World Trade Center buildings.  

Kucukler et al [47] replicated the structural behavior of stainless steel I-section beam-

columns when subjected to elevated temperatures by creating finite element models that were 

successfully validated against experimental data. Furthermore, by carrying out parametric studies 

the major imperfections such as geometric and material nonlinearity were also validated against 

the finite element models. The design rules that were proposed as part of this research were 

found to offer both consistent and safe resistance predictions than the EN 1993-1-2.  

1.2.3 Review of Torsion in Steel Members under Ambient Temperature 

   In 1951, Abramyan [48] reported on a given solution to a generalized problem relating to 

torsion and bending of prismatic rods of hollow rectangular sections. In obtaining the solutions, 

the formulae used were indicative of the torsional stiffness and bending as a function of the 

geometric parameters of the selected section. Through upper and lower approximations, the 
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interaction curve of the bending and twisting couples at yielding for the case of a combined 

bending and twisting cylinders of plastic-rigid rectangular, I and box sections were studied in 

detail by Gaydon and Nuttal [49]. They concluded that the method adopted in this study can be 

used for any section in addition to the fact that the excellent upper approximations were 

determined through the use of appropriate warping functions. 

   Imegwu [50] conducted research on prismatic beams to determine the plastic flexure and 

torsion whilst simultaneously loaded by terminal bending and twisting moments to cause full 

plastic flow. The results of this numerical study were determined through the Handelman 

equation for a Levy-Mises material. The results realized were found consistent with previous 

research undertaken by Steele.  

   Furthermore, Imegwu [51] extended his previous research in [50] by introducing the 

loading of a uniform prismatic beam to satisfy the Treca-Levy-Mises hypothesis to a member 

experiencing both bending moments about the two main axes of symmetry and an applied torque 

to cause plastic flow. No deformation was found to exist with any combination of moments Mx, 

My and torque T to result in yielding of the entire beam cross-section. The experimental results 

were successfully validated against the numerical tests. Boulton [52] developed an approximate 

lower bound solution for the fully plastic twisting and bending of I-beams in which warping was 

restrained at the ends of the beam. An increase in twisting moment was also observed for I-

beams twisted in pure torsion beyond the full plasticity point. 

    Nethercot [53] explored the results of torsion tests conducted on the torsional rigidity of 

I-sections. As a result of this study, a simplified formula dependent on a single geometrical 

parameter was proposed to be utilized in torsional rigidity. Research highlighting the use of a 3D 

finite element for the elasto-plastic analysis of beams subjected to both pure and warping torsion 
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was performed by May and Al-Shaarbaf [54]. In order to meet the research objectives, the 

researchers employed the use of a 20- node iso-parametric brick element in their research study. 

The results of the numerical study were seen to provide a correct assessment of the elasto-plastic 

behavior of beams under pure and warping torsion conditions. Furthermore, the results obtained 

from the tests was also found to provide an accurate approximation of the plastic collapse of I-

section beams under warping torsion conditions.    

   Research conducted by Trahair and Bild [55] sought to determine the non-linear elastic 

biaxial bending and torsion of thin-walled open section members. As part of the assumptions of 

this research, shear strain in the mid-section of the member was assumed to be non-existent 

however, effects due to initial deformation, loads, stresses and strains were considered. The 

results of this study led to the development of non-linear equilibrium and tangent stiffness 

equations. 

   Billinghurst et al [56] worked on developing a mitre model for determining the shear 

strain distribution in steel members subjected to uniform torsion. The main emphasis of the 

research was concentrated on the inelastic torsional behavior of steel beams of open cross-

section. The proposed model was found to provide an accurate relationship of both the elastic 

and inelastic torque-twist behavior of selected steel members. A model using Vlasov’s warping 

strain was developed by Chen and Trahair [57] to represent the warping torsion and for 

analyzing the elastic plastic non uniform torsion behavior of thin-walled steel I-beams. In order 

to conduct the elastic-plastic analysis, the incremental theory of plasticity based on the Prandtl-

Reuss flow rule and Von Mises yield criterion was employed. Chen and Trahair’s proposed 

model led to the prediction of more accurate and realistic results at higher rotations than 

previously established models.  
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   Zheng et al [58] also performed a holistic analysis of the variations of the damage 

parameter with the average compressive axial strain at different locations of the steel type SAE 

1020 and 1045. Zheng et al resorted to applying torsion and compressive loads to obtain 

alterations in stress, specimen length and effect strain. The results were found consistent with 

that of the experimental study. Rowan et al [59] subsequently studied the torsional properties of 

stainless steel and nickel-titanium endodontic files subjected to either clockwise or anticlockwise 

torsional load rotations. The clockwise torsional rotations were found to be considerably higher 

in the stainless steel based material whereas the nickel-titanium based material experienced a 

substantially higher anticlockwise torsional rotation.  

   Trahair and Pi [60] carried out a series of investigations into the behavior, analysis and 

design of members subjected to combined bending and torsion. Interaction equations were 

developed for the member behavior as a result of the application of the combined loadings. 

Further research was carried out by Trahair and Pi [61] into the behavior, analysis and design of 

steel members subjected to combined loadings such as torsion and bending. The findings of this 

research led to the development of interaction equations capable of describing the behavior of 

steel beams under combined action of torsion and bending. 

   Wagner and Gruttman [62] developed an unknown warping function through a process of 

performing exact approximations using the isoparametric concept based on variational 

formulation. Subsequently, Wagner and Gruttman were able to determine the ultimate torque of 

the member through a simple single load step. The numerical predictions obtained were found to 

compare favorably with the analytical results. Based on geometric nonlinear analysis, the 

behavior of cold-formed beams under the action of torsion and bending such as local buckling, 

effect of support conditions and magnitude of spring stiffness were also studied by Gotluru, 
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Schafer and Pekoz [63]. Trahair and Teh [64] examined the elastic flexural buckling of structural 

members subjected to torsion whilst considering second order moments.  Ridley-Ellis et al [65] 

carried out full scale torsion tests on rectangular hollow sections to observe their torque-twist 

behavior in comparison with the extended version of Marshall’s simplified thick wall torsion 

theory and finite element analysis. The measured results revealed that both the elastic and plastic 

torsional capacities were lower than both the theoretical and finite element solutions. Lee et al 

[66] carried out a research investigation into 3D finite beam elements that were initially 

formulated to represent the typical behavior of two or three span composite double T-beam under 

the combined action of flexural and torsional loads. Results showed the tendency of the steel 

section originally designed to increase flexural stiffness rather resulted in a maximum increase of 

20% in the torsional stiffness of the composite double T-beam. 

   Through the Laplace transform equations, solutions for determining the distributional 

differential equations of equilibrium for thin-walled structural members in a continuous uniform 

torsion were determined by Gosowksi [67]. The solutions that were derived were in closed 

generalized functions form and were observed to be effective in providing distinctive results for 

both non-uniform torsion displacements and internal forces and their influence lines. Melcher 

and Karmazinova [68] presented results of a study on the torsional analysis of thin-walled open 

cross sections made from steel sections. This research highlighted the beneficial effects of the 

modified torsion analysis and proceeded to offer comparisons with the technical theory and the 

method supplying the torsion by the couple of forces.  

   Mahata et al [69] also conducted torsion tests on selected Titanium modified austenitic 

stainless steels at ambient temperature conditions. The stainless steel used showed periodic 

hardening and softening when strain was considered at low strain rates with considerable shear 
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ductility whilst at higher strain rates, shear ductility was found to be lower. Peterman et al [70] 

developed parameters for torsional stiffness, buckling and yielding by validating experimental 

results with that of commercially available finite element software ABAQUS. With the 

conclusion of this research activity, sufficient results and shell finite elements which predicts the 

torsional behavior of selected cold formed steel type 400s162-54 were established.                       

Wan and Mahendran [71] subjected several selected channels sized to both uniform and 

non-uniform torsion as well as bending. Through this research, it was discovered how torsion 

was seen to reduce the bending strength in short span channel beams whereas long span channel 

beams achieved their design moment capacities irrespective of the effects of applied torsion. 

Bian et al [72] provided benchmark test results for cold formed steel lipped channels that were 

subjected to torsion dominated by warping effects. Through this research, the direct strength 

method provided accurate results for predicting torsion in members with warping effects. 

Aminbaghai et al [73] also investigated the effects of torsional warping of cross-sections of 

twisted beams on eigen vibrations with angle of twist due to secondary deformations. Secondary 

torsion moment in the non-uniform torsional eigen frequency was also studied as part of this 

research investigation. The results were later validated with the torsional eigen frequencies 

obtained by using the standard solid and warping beam finite elements.  

   Lorkowski and Gosowski [74] carried out both numerical and experimental investigations 

to determine the equivalent second moment of area of the uniform torsion of two-chord steel 

single laced members. The setup of the experimental investigation involved arresting two-chord 

steel single span members with rotations at their ends whilst simultaneously loaded by torque at 

their mid-span. The numerical studies were conducted using finite element software ABAQUS 

and SOFiSTik program for sophisticated range of cross-sections.  
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Muhammad et al [75] conducted parametric numerical studies to examine the torsional stiffness 

and strength of wide-flange steel members. Results showed that the basic flexural theory as well 

as the simple empirical relationship were found to offer good predictions which correlated with 

the results of the experimental tests.  

Devi et al [76] worked on sets of perforated and unperforated cold-formed steel hollow section 

members subjected to torsion. Nandhakumar et al [77] also prepared a summary of various 

research efforts related to the behavior of beams under torsion. Main observations from this 

research included that for every significant increase in rotational stiffness a resultant decrease in 

maximum stress was recorded.  

   To determine the actual boundary conditions for the lateral torsional beam effects, 

torsional joints were experimentally investigated by Gil et al [78]. A parametric study was 

conducted after the conclusion of the experimental tests to validate the results of the 

experimental work. Winkler et al [79] also studied the influence of torsion on structural integrity 

of structural members. Through both numerical and experimental methods, the behavior of 

structural members subjected to biaxial bending, axial loading and torsion were investigated with 

consideration given to load-deflection curves, plastic yielding of cross-section, ultimate 

capacities, and failure modes. Furthermore, Devi and Singh [80] performed parametric 

investigation on selected hollow section members under torsion. The research findings were 

subsequently extended to generate design equations for both perforated and unperforated steel 

structural members. 

1.2.4 Review of Torsion in Steel Members under Elevated Temperatures 

An experimental investigation involving AISI 316L stainless steel with a constant 

equivalent strain rate of 0.006/s under the action of high temperatures was undertaken by 
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Angella et al [81].  Other secondary effects such as grain size distribution as well as strain rates 

were investigated. 

Also, Matheron et al [82] investigated the tension-torsion tests on selected steel specimens at 

high temperature conditions ranging from 450°C - 500°C. Observations from the tests led to the 

subsequent definition of the revised efficiency diagram suitable for 9Cr steel. 

A review of the existing literature shows that the problem of biaxially loaded beam-column 

subjected to torsion at elevated temperatures has not been studied in the past. 

1.3 Problem Statement     

     This dissertation is focused on a study of the inelastic stability of biaxially loaded steel 

beam-columns subjected to torsion at elevated temperatures. Figure 1 is a schematic of an 

imperfect steel beam-column member AB which is subjected to an axial load P, biaxial bending 

moments MBX, MBY, MTX, MTY as well as a concentrated torsional moment MZ. The subscripts B 

and T denote the bottom and top ends of the member. The stiffnesses of the end rotational 

restraints are represented by KBX, KBY, KTX and KTY. 

    The theoretical aspect of the research is based on solving a system of materially nonlinear 

and temperature-dependent ordinary differential equations of equilibrium.  An iterative semi-

analytic approach is developed and intertwined with a cross-sectional inelastic tangent stiffness 

procedure with various types of boundary equations. A series of laboratory experiments is 

conducted to study the inelastic behavior of the member at both ambient and elevated 

temperatures in order to verify the theoretical predictions.  Upon validating the theoretical 

solutions, the analysis is then used to formulate ultimate strength interaction expressions to 

capture the combined effects of an axial load, biaxial bending and torsion at elevated 

temperatures. 
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1.4 Objectives and Scope 

The specific objectives of this study are: 

1. To develop a semi-analytic solution procedure to predict the behavior and stability of 

biaxially loaded steel beam-columns with applied torsion at elevated temperatures. 

2. To experimentally investigate the behavior of biaxially loaded steel beam-columns with 

applied torsion at ambient and elevated temperatures and compare the results with 

theoretical predictions. 

3. Develop interaction expressions based on the theory for members subjected to elevated 

temperatures.    

The experimental study is conducted on a 1.5 x 1.5 x 0.125 in. hot-rolled hollow steel section 

member with a clear length of 33.65 in. A total of 30 tests are conducted at both ambient and 

elevated temperatures.   

1.5 Assumptions and Conditions 

The primary assumptions and conditions in this research are outlined below: 

1.  Small deflection theory is implemented in this research. 

2. The steel beam-column material is assumed to have an elastic-perfectly plastic normal and 

shear stress -strain relationship at both ambient and elevated temperatures with material elastic 

loading. 

3.  The stress-strain relationships for either compression or tension remains the same. 

4.  External loads are applied in a quasi-static manner up until ultimate strength is reached. 

5. Axial force is applied to the centroid of the cross-section and its position remains unchanged 

until the member load carrying capacity is achieved. 

6. Local buckling does not occur in the member. 
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7. Effects emanating from creep due to elevated temperature conditions are neglected. 

8. Material unloading is neglected. 

9. A concentrated torsional moment is applied only at the bottom end of the steel beam-column 

member. 

10. Temperature distribution over the cross-section and along the member covered by the electric 

furnace is assumed to be uniform. 

11. Residual stresses are neglected for the theoretical investigations conducted at elevated 

temperatures. 

12. Lateral torsional buckling is not considered in this research. 
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CHAPTER 2 

THEORETICAL FORMULATION AT ELEVATED TEMPERATURES 

The theoretical study of biaxially loaded steel beam-columns with applied torsion under 

elevated temperature conditions is outlined in this chapter.  

2.1 Thrust-Moment-Curvature Relations under Elevated Temperatures  

2.1.1 Material Properties at Elevated Temperatures 

Previous research and design standards [87-93] have proposed material properties 

reduction factors for yield strengths and elastic modulus at high temperatures. The subscript T is 

used to denote high temperature induced material properties. For this proposed research, only the 

reduction factors proposed in the EC3 [87] will be used.  

The yield strength sYT and elastic modulus ET at any given high temperature is shown as 

follows: 

sYT  =  K1T sY                                                                                                                                  (1)  

ET   =  K2T E                                                                                                                                  (2) 

where K1T and K2T  are the yield stress and elastic modulus reduction factors at elevated 

temperature T.  

The reduction factors in the EC3 [87] are as follows: 

K1T    = 1.00                                              20°C < T < 400°C  

K1T  = -0.0022T+1.88                              400°C < T < 500°C  

K1T  = -0.0031T+2.33                             500°C < T < 600°C  

K1T   = -0.0024T+1.91                             600°C < T < 700°C  

K1T   = -0.0012T+1.07                             700°C < T < 800°C                                                       (3) 

K1T   = -0.0005T+0.51                             800°C < T < 900°C  
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K1T = -0.0002T+0.24                               900°C < T < 1200°C  

K1T    = 0.00                                              1200°C < T 

The reduction factors for the elastic modulus are as follows: 

K2T     = 1.00                                             20°C < T < 100°C 

K2T    = -0.001T+1.1                                 100°C < T < 500°C  

K2T     = -0.0029T+2.05                            500°C < T < 600°C                                                      (4) 

K2T    = -0.0018T+1.39                             600°C < T < 700°C 

K2T    = -0.0004T+0.41                             700°C < T < 800°C 

K2T    = -0.000125T+0.15                         800°C < T < 1200°C 

K2T    = 0.00                                              1200°C < T  

Equations 3-4 will be used in this dissertation research to modify both the yield stress and elastic 

modulus at high temperatures. Figures 2-3 also shows the reduction factors for the yield stress 

and elastic modulus. 

2.2 Total Mechanical Strain at Elevated Temperatures 

The beam-column is subjected to a uniformly distributed temperature T, axial load P, 

uniaxial moment My, biaxial bending moments Mx and My as well as torsional moment Mz as 

shown in Figure 4. Unlike the ambient temperature analysis, there are no residual stress 

distribution patterns for the typical hollow rectangular section at high temperatures. This is 

because residual stresses are released during the event of high temperatures [2]. However, since 

this study is being compared to ambient temperature tests, the residual stress distribution pattern 

at ambient temperature is shown in Figure 5. Hence, considering a point (x,y) of the cross-

section subjected to an axial load in addition to bending moments Mx , My and  Mz about both the 

x and y axes, the mechanical strain eT  is given as  
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e T = e0 + ɸx y - ɸy x + eth                                                                                                                                                                     (5a) 

τ = G ϒ                          for -ϒY < ϒ< ϒY                                                                                   (5b) 

in which e0 represents the average strain, ɸx and ɸy represents the bending curvatures about the x 

and y axes respectively, eth denotes the thermal strain.  τ is the shear stress, G is the shear 

modulus, ϒ is the shear strain and ϒY is the shear yield strain. For this research study, an elastic-

perfectly plastic material stress strain relationship will be utilized as shown in Figures 6-7. This 

relationship comprises of both the material loading and unloading segments. Outlined below are 

the material loading relationships [2]: 

sT = ET eT                            -eYT < eT < eYT                                                                                                                (6) 

sT = +sYT                          eT > eYT                                                                                                 (7) 

sT = -sYT                          eT < -eYT                                                                                                   (8) 

The material unloading relationship is as follows: 

sT = sTf – ET (eTf -eT )                                                                                                                               (9) 

where sTf and eTf  represents the strain and stress values of the previous load levels. 

The predictions of the thermal strain based on the EC3[87] are utilized in this research are: 

 eTH = 1.2x10-5T + 0.4x10-8T2 – 2.416x10-4       T<750°C  

 eTH = 1.1x10-2                                                   750°C<T<860°C                                               (10)  

 eTH = 2x10-5T – 6.2x10-3                                   860°C<T<1200°C                                                 

From Equation 10, the thermal strain decreases linearly with an increase in temperature whereas 

thermal strain remains constant for temperature ranges 750°C - 860°C. 

2.3 Elasto-plastic Cross-sectional Equilibrium Conditions 

The equilibrium equations for the member as a function of temperature when subjected to 

axial load, biaxial bending moment and torsion are [2]:         
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P  =  -∫Ae σeT dA - ∫Ap σyT dA                                                                                                                  (11) 

Mx = ∫Ae σeTy dA + ∫Ap σyT y dA                                                                                                   (12) 

My = -∫Ae σeT x dA - ∫Ap σyT x dA                                                                                                      (13) 

MzT = (Cte )Ф՚ - Cwe Ф՚՚՚ + MzpT                                                                                                   (14) 

In this section, σeT  and σYT   represents the normal elastic and yield stress at temperature 

T, ∫Ae and ∫Ap denotes the integrals over the elastic and plastic regions respectively whilst dA is 

the elemental area of the steel beam-column cross-section. Also, a total of 2048 elemental areas 

which contributes to greater convergence (512 elemental areas per plate) will be utilized in this 

theoretical investigation.  

Meanwhile, due to the presence of additional forces caused because of the presence of 

high temperatures the initial applied axial load is altered. This change leads to a modification of 

the equilibrium expressions used previously in equations (11-14). The modified equations then 

are as follows: 

P*  =  -∫Ae ET eTdA - ∫Ap σyT dA                                                                                                    (15) 

Mx*= ∫Ae ET eT dA + ∫Ap σyT y dA                                                                                                 (16) 

My* = -∫Ae ET eTdA - ∫Ap σyT x dA                                                                                                (17) 

MzT = (Cte ) Ф՚ - Cwe Ф՚՚՚ + MzpT                                                                                                 (18) 

2.4 Modified Differential Equations for Elevated Temperature Conditions 

Based on research efforts by Zhao [2], the following equations are modified and applied 

for the elevated temperature conditions in this research study: 

-g11ϵo + g12vT՚՚ + g13 uT՚՚+ g14FT՚՚– Pp  - PT =   P                                                                          (19) 

-g21ϵo + g22vT՚՚ + g23 uT՚՚ + g24FT՚՚ – Mxp  - MxT  = -Mx                                                                                            (20) 

-g31ϵo + g32vT՚՚ + g33 uT՚՚ + g34FT՚՚-  Myp  - MyT     =  My                                                                                             (21) 
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 CweFT՚”- (Cte + K)ФT՚ + vT՚[mBY+ !
"
 ( MTY + mTX – mBX) + uT՚[-mBX+ !

"
 ( MTX- mTX + mBX) 

 - #$
"

 (MTY + mTY – mBY) - %$
"

 (MBX + MTX – mTX – mBX)      = - MRZ +  MzpT                             (22) 

where PT, MxT  and MyT  are the axial, biaxial bending moments about x and y axes as a result of 

thermal strain. Pp, Mxp  and Myp are the axial force and moment parameters for the plastified 

members. The coefficients gij have been defined in Appendix B. ϵo is solved explicitly in order to 

obtain the following differential equilibrium equations: 

Hence, the modified general differential equilibrium equations to be applied for elevated 

temperature conditions are: 

BxxvT՚՚ + BxyuT՚՚+ BxwФT՚՚ - AeMRZuT՚ + AePvT +  AeФT(  mBY+ !
"
 ( MTY – mTY- mBY)   

- AemBX +  Ae !" ( -mTX + mBX ) =  - AePvi -  Ae !" (MTX )  -SxeP + SxePT + AeMxT   

- SxePp  +  AeMxp                                                                                                                          (23) 

ByxvT՚՚ + ByyuT՚՚+ BywФT՚՚ - AeMRZvT՚ + AePuT + AeФT( - mBx+ !
"
 (MTX- mTX+mBX)- AemBY -   

Ae !" ( mTY – mBY ) =  - AePui  + Ae !" (MTY)  -  SyeP - SyePT + AeMyT - SyePp  +  AeMyp               (24) 

 CweFT՚՚՚ - (Cte + K)ФT՚ + vT՚[mBY+ !
"
 ( MTY + mTX – mBX) + uT՚[-mBX+ !

"
 ( MTX- mTX + mBX) 

 - #$
"

 (MTY + mTY – mBY) - %$
"

 (MBX + MTX – mTX – mBX) = - MRZ +  MzpT                                     (25) 

Equations 23-25 can be written as the following system of 3N simultaneous nonlinear 

differential equations and programmed. 

[TT] {ΔT} = {FT}                                                                                                                         (26) 

where [TT] represents the global stiffness matrix of the order 3n x 3n at elevated temperatures; 

the vector {ΔT} comprises of derivatives of vT,uT and FT are :  

{ΔT}T = {v1T  v2T v3T………v(N-2)T v(N-1)T v(N)T u1T u2T u3T………u(N-2)T u(N-1)T  u(N)T ………….. F1T F2T 

F3T…………………. F (N-2)T F (N-1)T F (N)T }                                                                                      (27) 
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The load vector {FT} is determined as follows: 

           {FxT} +  {Fxp} 

{FT}= {FyT} +  {Fyp}                                                                                                                   (28) 

.         {FyT}  +  {Fzp}               

Equation 26 is solved iteratively for each applied load until the member reaches the 

collapse state. The collapse state is reached when the determinant of [TT] matrix becomes zero. 

For the elastic range, the residual and plastic moment vectors are zero whereas for the inelastic 

range, they are computed iteratively. 

2.5 Boundary Conditions 

The moment versus rotation relations for the partial rotational end restraints are shown 

below:  

m = k𝜃                                 for 𝜃 < 𝜃p                                                                                         (29) 

m = mp                                  for 𝜃 > 𝜃p                                                                                         (30) 

where m is spring bending moment, k is the end spring stiffness and 𝜃 is the corresponding end 

slope.  

The geometric boundary conditions for the pinned end boundary conditions only are: 

At z = a;  

u(a) = a x u’(a)                                                                                                                             (31) 

v(a) = a x v’(a)                                                                                                                             (32) 

Ф(a) ≠ 0                                                                                                                                       (33) 

Ф’(a) =0                                                                                                                                       (34) 

At z = L+a;  
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u(L+a) = a x u’(L+a)                                                                                                                   (35) 

v(L+a) = a x v’(L+a)                                                                                                                   (36) 

Ф(L+a) = 0                                                                                                                                  (37) 

Ф’(L+a ) = 0                                                                                                                                (38) 

The natural boundary conditions are as follows:  

mBX    = kBX𝜃BX                                                                                                                           (39) 

mBY    = kBY𝜃BY                                                                                                                           (40) 

mTX    = kTX𝜃TX                                                                                                                            (41) 

mTY    = kTY𝜃TY                                                                                                                            (42) 

kBX, kBY, kTX and kTY are the partial rotational end restraint stiffness values and 𝜃BX, 𝜃BY, 𝜃TX and 

𝜃TY  represents the corresponding end slopes. The end slopes are defined as follows: 

𝜃BX  = u՚ (a)                                                                                                                                  (43) 

𝜃BY  = v՚ (a)                                                                                                                                  (44) 

𝜃TX  = -u՚(L+a)                                                                                                                             (45) 

𝜃TY  = -v՚(L+a)                                                                                                                                         (46) 

If the member end at z = a and z = L+a is flexurally fixed, the geometric boundary conditions to 

be applied are:     

u՚(a) = u(a) / a                                                                                                                              (47) 

v՚(a) = v(a) / a                                                                                                                              (48) 

u՚(L+a) = u(L+a) / a                                                                                                                          (49) 

v՚(L+a) = v(L+a) / a                                                                                                                     (50) 

Ф՚(a) = 0                                                                                                                                      (51) 

Ф՚(L+a) = 0                                                                                                                                  (52) 
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Equations 31 through 52 are used in conjunction with the governing differential equations, 

namely, Equations 23-25. 

2.6 Semi-Analytic Solution Formulation  

The Semi-Analytic solution has been used with great accuracy in the past to determine 

the numerical solutions of non-linear ordinary differential equations. This solution is based on 

determining derivatives which comprises of function values at that point and neighboring points. 

The procedure also involves subdividing a domain into segments. The differential equations are 

then approximated by piecewise trial functions over each of the sub-divided finite elements to 

obtain a solution.  

For this research investigation, the beam-column member will be divided into ten 

segments, therefore Δz =	 &
'(

. The deflection in the y, x and z axis is labelled as v,u  and F 

respectively. By taking into consideration the rigid end fixtures at the bottom and top end of the 

experimental setup, the following assumed solutions were developed: 

u = Aoz(z²-L²) + A1z(z-L) +S*(AK sin()p!
"
) )                                                                             (53) 

v = Boz(z²-L²) + B1z(z-L) +S*(BK sin()p!
"
) )                                                                              (54) 

Ф = Co(L-z)  + S*CK(1-cos*+!
"
)		                              For only Ф(z)                                  (55) 

Ф = Co  + S*CK(1-cos*+!
"
)		                                                For only Ф’(z)                                         (56) 

It is not possible to obtain a single equation that satisfies Ф(z) is not equal to zero and 

Ф’(z) equal to zero because these conditions are contradictory. Hence, a piecewise function is 

used in this case. 

However, for a mixed boundary condition (fixed at the bottom – pinned at the top), the 

following expressions will be used: 
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u = Aoz% '," −
-
,!
+	 '

*!
' + A1z%− '

,"
+ -

,!
−	 '

*!
' +S*(AK sin()p!

"
) )                                             (57) 

v = Boz% '," −
-
,!
+	 '

*!
' + B1z%− '

,"
+ -

,!
−	 '

*!
' +S*(BK sin()p!

"
) )                                             (58) 

where S represents both odd and even numbers ( K=2,3,4,5…) summations made over K. 

Substituting Equations 53 – 56  into the General Equilibrium Equations 23-25, the following 

expressions are obtained: 

Bxx(−B1
p!

"!
sinp!

"
 - B2

,+!

"!
sin*p!

"
	)dz + Bxy(−A1

p!

"!
sinp!

"
 - A2

,+!

"!
sin*p!

"
)dz + Bxw(C ,+

!

"!
cos *+!

"
) dz - 

AeMRZ  ( Ao(z²-L²) + A1(z-L) + A2
p

"
cosp!

"
 + A3

*p
"

cos*p!
"
)dz + AeP(Boz(z²-L²) + B1z(z-L)    

+B2sinp!
"

 + B3
*p
"

sin*p!
"

)dz  -AeC(1-cos*+!
"
)( mBY+ !

"
(MTY+ mTY-mBY)dz - AemBX +Ae !" ( -

mTx+mBX) - AeP "
				'(((

	(Boz(z²-L²) + B1z(z-L)+ B2sinp!
"

 + B3
*p
"

sin*p!
"

)  

-Ae !" ( MTx) – SxeP  = 0                                                                                                               (59) 

Byx(−B1
p!

"!
sinp!

"
 - B2

,+!

"!
sin*p!

"
			)dz +Byy (−A1

p!

"!
sinp!

"
 - A2

,+!

"!
sin*p!

"
  )dz + Byw(C ,+

!

"!
cos *+!

"
) dz + 

AeMRZ ( Ao(z²-L²) + A1(z-L) + B2
p

"
cosp!

"
 + B3

*p
"

cos*p!
"
)dz + AeP( Aoz(z²-L²) + A1z(z-L)    

+A2sinp!
"

 + A3
*p
"

sin*p!
"
+)dz  + AeC(1-cos*+!

"
)( mBX+ !

"
(MTX+ mTX-mBX)dz - AemBX +Ae !" (-mTY 

+mBY) - AeP (Boz(z²-L²) + B1z(z-L)+ B2sinp!
"

 + B3
*p
"

sin*p!
"

)dz 

- SyeP = 0                                                                                                                                     (60) 

 Cwe C(-/+
"

""
sin *p!

"
)dz - (Cte + K)(C(*p

"
sin *p!

"
 	))dz+ ([mBY + 0

1
 ( MTX+mTY-mBY)- ))dz +

'
"
(Ao(z²-L²) + A1(z-L)+ A2

p

"
cosp!

"
 + A3

*p
"

cos*p!
"

 ) dz [-mBX+0
1
 ( MTX-mTX-mBX) - '

"
(Bo(z²-L²) + 

B1(z-L)+ B2
p

"
cosp!

"
 + B3

*p
"

cos*p!
"

 )dz-  '
"
(Aoz(z²-L²) + A1z(z-L)+ A2

p

"
sinp!

"
 + A3

*p
"

sin*p!
"
)dz  - 
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'
"
Boz(z²-L²) + B1z(z-L)+ B2

p

"
sinp!

"
 + B3

*p
"

sin*p!
"
)dz+ MRZ - Mzp    = 0                                            (61) 

Equations 59-61 are the final governing nonlinear differential equations of equilibrium obtained. 

2.7 Proposed Solution Procedure for Biaxially Loaded Beam-Columns with Applied 

Torsion under Elevated Temperatures 

The theoretical solution procedure for the elastic-plastic behavior of biaxially loaded steel 

beam-columns with applied torsion under elevated temperatures is outlined as follows: 

1.  Evaluate the material and geometric properties of the steel beam-column member at the 

designated elevated temperature. 

2.  Specify the external loads to be applied. 

3.  Determine the Tangent Stiffness Matrix [TT]. 

4.  Determine the deformation vector {ΔT} using the General Equation 26. 

5.  Segregate each of the cross-sections N along the length of the member and determine the 

normal stress σi,j  and strain ϵ i,j in which case i,j represents the x and y  coordinate system 

of the elemental area respectively. 

6.  Apply the von Mises yield criterion in determining σp for the N cross-sections whilst 

also determining the shear stresses τi,j and plastic stresses σpi,j for the various N cross-

sections. 

7. Determine whether all the N cross-sections are elastic or plastic. If |σi,j|<|σpi,j|, elasticity 

condition is satisfied whereas in the case of |σi,j|>|σpi,j|, the plasticity condition is satisfied. 

For the case of elasticity, proceed to step 8 whereas for plasticity proceed to step 10. 

8. Apply external loads. 

9. Check for the determinant of the Tangent Stiffness matrix [TT]. If |[TT]| approaches zero, 

proceed to Step 12. 



 
 

 30 

10.  Compute the inelastic coefficients and generate new Tangent Stiffness [TTinelastic]. By 

iteration, determine deformation vectors {ΔT}. Perform the error tolerance check. 

11. If the tolerance check fails, recompute the inelastic coefficients and update the Tangent 

stiffness [TTinelastic] and determine further updated deformation vectors {ΔT}until the error 

tolerance is within limits. 

12.  Stop                                                      

2.8 Structural Load Paths 

Load paths to be implemented to study the biaxially loaded beam-columns with applied 

torsion under elevated temperatures are as follows.  

• HPT : Under elevated temperature conditions, the axial load P is initially applied 

incrementally and then held constant, followed by steadily increasing torsional moment T 

until the load carrying capacity of the member is reached.  

• HUT : Under elevated temperature conditions, the uniaxial moment  MTX  is initially 

applied incrementally and then held constant followed by steadily increasing torsional 

moment T until the load carrying capacity of the member is reached. 

•  HBT : Under elevated temperature conditions, the biaxial end moments MTX and MTY are 

initially applied incrementally and then held constant followed by steadily increasing 

torsional moment T until the load carrying capacity of the member is reached.  

• HPUT : Under elevated temperature conditions, the axial load P and uniaxial end moment 

MTX are initially applied incrementally and then held constant followed by steadily 

increasing torsional moment T until the load carrying capacity of the member is reached.  

• HPBT : Under elevated temperature conditions, the axial load P and biaxial end moments 

MTX and MTY  are initially applied incrementally and then held constant followed by 
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steadily increasing torsional moment T until the load carrying capacity of the member is 

reached. 

2.9 Temperature-Time Curve 

The relationship between the increase in elevated temperature as a function of the time 

duration was also established by observing an increasingly heated beam-column sample.  

A stabilization period of 15 minutes was allowed for uniform temperature distribution 

throughout the specimen. The results of the test have been compared with the ASTM E119 [93] 

and previous research conducted by Zhao [2] as shown in Figures 8-9. 
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CHAPTER 3 

EXPERIMENTAL INVESTIGATION 

This chapter outlines the experimental investigation conducted on biaxially loaded steel 

beam-columns under axial load, biaxial bending moment and torsion. Material property tests 

were initially performed, and the subsequent tests conducted were to determine the elastic and 

inelastic behavior under ambient and elevated temperatures. 

3.1 Test Equipment for Material Property Tests 

A Tinius Olsen Universal Testing machine of 400K capacity is used to conduct 

preliminary tensile and column stub tests. The testing setup used has been shown in Figure 10. 

Residual stresses are also determined using the sectioning method.  

3.2 Test Equipment for Beam-Column Experimental Tests 

The test equipment for the main experimental investigation primarily consisted of 4 main 

components: the gimbals, the setup for applying uniaxial and or biaxial bending moment, the 

setup for applying torsional moment and an electric furnace for generating high temperatures.  

3.2.1 Gimbals 

Razzaq and McVinnie [20,21], Zhao [2] and Konate [3] conducted experimental research 

involving biaxially loaded steel beam-columns using gimbals. For this experimental study, a 

four-sided gimbal outer and inner box supported by a pair of inner bearings and a shaft along the 

x-axis was used. The inner bearings of the gimbal box are situated in two opposite walls of the 

gimbal outer box whilst the opposite walls of the gimbal box are equipped with a pair of shafts 

and outer bearings along the y-axis. The lower end gimbal is attached to a steel plate which has a 

gliding steel chamber beneath it as shown in Figure 11. The gliding steel chamber is also 

equipped with a 55 kips capacity load cell connected to a hydraulic jack. The upper end gimbal 
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on the other hand has been attached to a steel cross-beam which is bolted at its respective ends to 

the steel beam-columns.  

The end columns are fixed to a laboratory test bed to form a large reaction frame whilst 

the upper end gimbals are supported by the presence of a cross-beam element. The gimbal setup 

arrangement enables the application of axial load by using the hydraulic jack whilst measuring 

the load output on a load cell.  The load cell pushes the steel plate whilst transmitting the axial 

load to the lower gimbal outer box through the pair of outer bearings and shafts. Finally, the test 

specimen: steel beam columns receive the load through the gimbal inner box. 

3.2.2 Uniaxial and Biaxial Bending Moment Setup 

To apply either the uniaxial and or biaxial bending moment, a moment arm machined to 

the upper gimbal inner box as shown in Figure 12 is used. The moment arm is a 1.0 x 2.0 x 24.0 

in. solid rectangle steel section. The moment is applied through the presence of two 0.75in 

diameter tie rods. Both rods are 75 inches long and are separated by a 12-inch long 0.5-in thick 

steel plate forming a closed ring at the upper and lower ends. With the aid of a ball and socket 

arrangement, the Top Plate B rests on a machined arm. A bottom placed plate is fitted to a 22-

kips capacity load cell.  The load cell has been attached to hydraulic jack and further bolted to a 

small steel reaction frame in an inverted position. The small steel reaction frame is mounted to 

the laboratory test bed. Applying the moment requires manually adjusting the hydraulic jack. In 

the case of the uniaxial bending moment, angle 0° is adopted between the moment arm and the x-

axis of the gimbal.  By welding a set of steel beam-columns at an angle of 45°, the biaxial 

moments Mx and My can be applied. Hence, MTX and MTY are both equal to M(sin45°) in this 

research. 

3.2.3 Torsional Moment Setup 
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Torsional moment is applied through the bottom end by means of an applied eccentric 

force through a hydraulic jack and conveyed to the test specimen member via a revolving chain 

as shown in Figures 13-15. The torsional moment value equals the load output from the load cell 

multiplied by the eccentricity e.  

3.2.4 High Temperature Furnace 

A 28 x 28 x 18.5in. electric furnace with a maximum heating capacity of 1000°F is used 

to conduct the elevated temperature tests. The electric furnace manufactured in-house is built 

using silica refractory insulation boards and covered by flat-thin aluminum bars. The heating 

elements consists of both flat-thin bronze and stainless-steel bars located inside the chamber of 

the furnace. A controller which is equipped with an optical pyrometer detects, controls, and is 

used to adjust the various temperature gradients generated by the electric furnace. The electric 

furnace together with the controller has been shown in Figure 16. The heating rate of the furnace 

is observed to be 15°F/min.  

3.3 Test Specimen 

For this experimental process, commercially available standardized ASTM 513 Type 1 

hollow steel sections of nominal sizes 1.5 x 1.5 x 0.125in. as shown in Figure 17 are used. The 

standardized ASTM A513 Type 1 steel specimens are ordered in compliance with the 

requirements of EN 10204 type 3.1. The chemical composition of the ASTM A513 Type 1 steel 

specimen is shown in Table 1.  

The steel specimens are made from low carbon steel produced by the hot rolling process.  A total 

of 30 specimens will be tested. 15 will be used for ambient temperature tests whilst the 

remaining 15 will be for elevated temperature tests.  
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The measured length of the specimen is 33.65 inches including the end plates thickness. 

In addition, the distance measured from the center lines of the upper and lower fixtures is 

included in the total length of specimen. Hence, the total length of the specimen is 37.4 inches as 

seen in Figure 18. The minimum yield strength for this type of steel is 72 kips.  

Samples of the ASTM A513 Type1 hollow steel specimens as shown in Figure18 are also 

fabricated into 6 coupon specimens based on the EN 10002-5 [94] to determine the stress-strain 

curves, the shear modulus G and shear yield stress τY. Each coupon specimen had a circular 

section with a diameter of 6mm. The gauge length for the coupon specimen is 30mm.The details 

of the coupon specimens have been shown in Figures 19 and 20. Stub columns are also cut off 

from the steel specimen to conduct compression tests to determine the young’s modulus and 

yield stress. The specifications, details and results of the stub-column tests have been shown in 

Figures 21 and 22. 

3.4 Test Procedure 

Four dial gages are set up at the midspan of the specimen to measure both the deflections 

in the x and y axes for the ambient temperature tests. To measure the temperature of the 

specimens for the elevated temperature tests, the optical pyrometer located in the electric furnace 

will be used. Dial gages will also be placed at both the top and bottom ends of the specimens to 

measure the deflections that occur when the specimen is subjected to elevated temperatures.  

The axial loads, biaxial bending moment as well as torsional moments will be applied gradually 

and incrementally with intermittent stops to manually record test data. Further increase in 

deformations without any increase in load, bending moments and temperature results in 

achieving the load-carrying capacity of the steel specimen member. The various tests conducted 

are outlined in Table 2. 
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3.5 Test Results 

3.5.1 Material Property Tests 

From the tests conducted, the average yield stress sY and elastic modulus E are 58.64 ksi 

and 29988 ksi respectively. Also, the shear modulus G, shear yield stress tY and residual stress sr 

are also found to be 11236 ksi, 32.56 ksi and 23.33 ksi respectively. These properties are utilized 

especially in the ambient temperature theoretical studies and modified by reduction factors for 

use in the high temperature theoretical studies. 

3.5.2 Member Tests  

Table 2 outlines the details of the tests such as boundary conditions and structural load 

paths. Figures 23-79 show the various load deflection curves, comparisons involving both 

ambient and elevated temperature results. The following symbols are used to define the various 

load types in this research: 

P = Axial load 

U = Uniaxial Bending Moment 

B = Biaxial Bending Moment 

T = Torsional Moment 

A = Ambient Temperature 

H = High Temperature 

Table 3 presents the results for Tests 1 through 5. The first column shows the load type 

namely APT, AUT, ABT, APUT and APBT for a pinned boundary condition. The second 

column shows the ultimate axial load applied. The third column shows the maximum bending 

moment whilst the fourth column shows ultimate torsional moment applied. The maximum mid-

span deflections and angle of twist are shown in the fifth and sixth column respectively.  
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Table 4 summarizes the results for Tests 6 through 10. The first column shows the load 

type namely APT, AUT, ABT, APUT and APBT for a fixed boundary condition. The second 

column shows the ultimate axial load applied. The third column shows the maximum bending 

moment whilst the fourth column shows ultimate torsional moment applied. The maximum mid-

span deflections and angle of twist are shown in the fifth and sixth column respectively.  

In Table 5, the results for Tests 11 through 15 are shown. The first column shows the 

load type namely APT, AUT, ABT, APUT and APBT for a mixed boundary condition. The 

second column shows the ultimate axial load applied. The third column shows the maximum 

bending moment whilst the fourth column shows ultimate torsional moment applied. The 

maximum mid-span deflections and angle of twist are shown in the fifth and sixth column 

respectively.  

Table 6 summarizes the results for Tests 16 through 20. The first column shows the load 

type namely HPT, HUT, HBT, HPUT and HPBT for a pinned boundary condition. The second 

column shows the ultimate axial load applied. The third column shows the maximum bending 

moment whilst the fourth column shows ultimate torsional moment applied. The maximum mid-

span deflections and angle of twist are shown in the fifth and sixth column respectively. 

Table 7 shows the results for Tests 21 through 25. The first column shows the load type 

namely HPT, HUT, HBT, HPUT and HPBT for a fixed boundary condition. The second column 

shows the ultimate axial load applied. The third column shows the maximum bending moment 

whilst the fourth column shows ultimate torsional moment applied. The maximum mid-span 

deflections and angle of twist are shown in the fifth and sixth column respectively.  

Table 8 presents the results for Tests 26 through 30. The first column shows the load type 

namely HPT, HUT, HBT, HPUT and HPBT for a mixed boundary condition. The second column 
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shows the ultimate axial load applied. The third column shows the maximum bending moment 

whilst the fourth column shows ultimate torsional moment applied. The maximum mid-span 

deflections and angle of twist are shown in the fifth and sixth column respectively.  

From the tests conducted, it was observed that for APT & HPT, AUT & HUT, ABT & 

HBT, APUT & HPUT and APBT & HPBT for a pinned boundary condition, the reduction in 

strength of the member is 50 percent, 7 percent, 36 percent, 53 percent, and 36 percent 

respectively.  

For tests involving APT & HPT, AUT & HUT, ABT & HBT, APUT & HPUT and APBT 

& HPBT for a fixed boundary condition, the strength reduction of the member is 39 percent, 45 

percent, 27 percent, 62 percent, and 29 percent respectively.  

For tests such as APT & HPT, AUT & HUT, ABT & HBT, APUT & HPUT and APBT 

& HPBT for a mixed boundary condition, the strength reduction of the steel member is 39 

percent, 53 percent, 32 percent, 43 percent, and one percent respectively. 
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CHAPTER 4 

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS 

This Chapter presents the results of the theoretical formulation of the semi-analytic 

solution under both ambient and elevated temperature conditions as well as comparison with 

experimentally obtained results. 

4.1. Combined Axial Load and Torsion under Ambient Temperature 

Figures 80-88 present the results of the combined axial load and torsion for the boundary 

conditions used in this research. Tables 9-11 summarize theoretical results of load type APT for 

pinned, fixed and mixed boundary conditions. The first column shows the load type whilst the 

second column and third column are showing the ratio of the theoretical peak load to the 

experimental peak of the axial load and torsional moment respectively.  

The fourth column shows also shows the ratio of the maximum theoretical mid-span deflections 

to the maximum experimental mid-span deflection whereas the fifth column also shows ratio for 

the angle of twist. 

It was observed that the theoretical peak loads for the load type APT for pinned,  

fixed and mixed boundary condition was three percent,6 percent and 8 percent respectively lower 

than the experimental peak loads. The maximum theoretical mid-span deflection was found to be 

17 percent higher than the experimental mid-span deflection for APT with pinned boundary 

condition. The theoretical mid-span deflection for the same load type under fixed and mixed 

boundary condition was 8 percent and three percent lower than the maximum mid-span 

deflection obtained experimentally. The maximum theoretical angles of twist for the load type 

APT were 7 percent and 6 percent greater than the maximum experimental angles of twist for the 

pinned and fixed boundary conditions respectively. 
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However, for the mixed boundary condition the maximum theoretical angle of twist was 8 

percent lower than the maximum experimental angle of twist. 

4.2 Combined Uniaxial Moment and Torsion under Ambient Temperature 

Figures 89-97 summarize the results of the combined uniaxial moment and torsion for  

the boundary conditions used in this research. Tables 9-11 also shows the theoretical results of 

load type AUT for pinned, fixed and mixed boundary conditions.  

The first column shows the load type whilst the second column and third column are showing the 

ratio of the theoretical peak load to the experimental peak of the biaxial and torsional moment 

respectively. The fourth column shows also shows the ratio of the maximum theoretical mid-

span deflections to the maximum experimental mid-span deflection whereas the fifth column 

also shows ratio for the angle of twist. 

It was observed that the theoretical peak loads for the load type ABT for pinned, fixed  

and mixed boundary condition was 8 percent,6 percent and one percent lower than the 

experimental peak loads. The maximum theoretical mid-span deflection was found to be two 

percent and one percent higher than the experimental mid-span deflection for ABT with pinned 

and fixed boundary condition. The theoretical mid-span deflection for the mixed boundary 

condition was four percent lower than the maximum experimental mid-span deflection. 

However, the maximum theoretical angles of twist were 14 percent and 43 percent higher than 

the maximum experimental angles of twist for the load type AUT under pinned and mixed 

boundary conditions. The maximum theoretical angle of twist for the fixed boundary condition 

for the AUT was five percent lower than the maximum experimental angle of twist. 

4.3 Combined Biaxial Moment and Torsion under Ambient Temperature 
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Figures 98-106 show the results of the combined biaxial moment and torsion for the  

boundary conditions used in this research. Tables 9-11 present theoretical results of load type 

ABT for pinned, fixed and mixed boundary conditions. The first column shows the load type 

whilst the second column and third present the biaxial moment and torsional moment 

respectively. The fourth column shows the mid-span deflections whereas the fifth column shows 

the angle of twist. 

Results showed that the difference between the experimental and theoretical peak  

loads for the load type ABT for pinned, fixed and mixed boundary condition was 8 percent,6 

percent and one percent respectively. The maximum theoretical mid-span deflections were one 

percent and two percent higher than the maximum experimental mid-span deflections for ABT 

with fixed and pinned boundary conditions. The maximum theoretical mid-span deflection for 

the same load type with fixed boundary condition was four percent lower than the maximum 

mid-span deflection measured experimentally. The ratios of the theoretical maximum angles of 

twist to the maximum experimental angles of twists were also 1.125, 1.29 and 1.09 for the 

pinned, fixed and mixed boundary conditions respectively. 

4.4 Combined Axial Load, Uniaxial Moment and Torsion under Ambient Temperature 

Figures 107-118 show the results of the combined axial load, uniaxial moment  

and torsion for the boundary conditions used in this research. Tables 9-11 present theoretical 

results of load type APUT for pinned, fixed and mixed boundary conditions. The first column 

shows the load type whilst the second, third and fourth present the axial loading, uniaxial 

moment and torsional moment respectively. The fourth column shows the mid-span deflections 

whereas the fifth column shows the angle of twist. 

The ratios for the theoretical peak loads to experimental peak loads were 0.97, 1.02  
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and 0.99 for the pinned, fixed, and mixed boundary conditions. The maximum theoretical mid-

span deflection was 7 percent and 13 percent lower than the experimental mid-span deflection 

for APUT with pinned and mixed boundary conditions. The maximum theoretical mid-span 

deflection for the same load type with fixed boundary condition was 7 percent higher than the 

maximum experimental mid-span deflection. Meanwhile, the ratios for the maximum theoretical 

angles of twist to maximum experimental angles of twist were 0.98, 0.93 and 0.92 for the pinned, 

fixed and mixed boundary conditions respectively. 

4.5 Combined Axial Load, Biaxial Moment and Torsion under Ambient Temperature 

Figures 119 -130 summarize the results of the combined axial load, biaxial moment and 

torsion for the boundary conditions used in this research. Tables 9-11 present theoretical results 

of load type APBT for pinned, fixed, and mixed boundary conditions. The first column shows 

the load type whilst the second, third and fourth present the axial loading, biaxial moment and 

torsional moment respectively. The fourth column shows the mid-span deflections whereas the 

fifth column shows the angle of twist. 

The ratio for the theoretical peak loads to experimental peak loads were 0.93, 0.99 and 

1.03 for the pinned, fixed, and mixed boundary conditions. The maximum theoretical mid-span 

deflections were 34 percent and two percent lower than the maximum experimental mid-span 

deflections for APBT with pinned and mixed boundary conditions. The maximum theoretical 

mid-span deflection for APBT with fixed boundary condition was three percent higher than the 

maximum experimental mid-span deflection. The ratios for the maximum theoretical angles of 

twist to experimental angles of twist were 0.94,1.02 and 1.08 for the pinned, fixed and mixed 

boundary conditions respectively.  

4.6 Combined Axial Load and Torsion under Elevated Temperature 
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Figures 131 -139 present the results of the combined axial load and torsion for the 

boundary conditions used in this research. Tables 12-14 summarize theoretical results of load 

type HPT for pinned, fixed and mixed boundary conditions. The first column shows the load 

type whilst the second column and third present the axial load and torsional moment 

respectively. The fourth column shows the mid-span deflections whereas the fifth column shows 

the angle of twist. The ratio for the theoretical peak loads to experimental peak loads were 0.97, 

1.02 and 0.97 for the pinned, fixed and mixed boundary conditions. 

The maximum theoretical mid-span deflections were four percent, 8 percent and 11  

percent lower than the experimental mid-span deflections for HPT with pinned, fixed and mixed 

boundary conditions. Meanwhile, the ratios of the maximum theoretical angle of twists to the 

experimental angles of twist were 1.08,1.03 and 1.10 for the pinned, fixed and mixed boundary 

conditions respectively.  

4.7 Combined Uniaxial Moment and Torsion under Elevated Temperature 

Figures 140 -145 present the results of the combined uniaxial moment and torsion  

for the boundary conditions used in this research. Tables 12-14 show the theoretical results of 

load type HUT for pinned, fixed and mixed boundary conditions. The first column shows the 

load type whilst the second column and third present the uniaxial moment and torsional moment 

respectively. The fourth column shows the mid-span deflections whereas the fifth column shows 

the angle of twist. The ratios for the theoretical peak loads to experimental peak loads were 1.03, 

0.88 and1.08 for the pinned, fixed and mixed boundary conditions. The maximum theoretical 

mid-span deflections were 13 percent and 11 percent lower than the experimental mid-span 

deflection for HUT with pinned and fixed boundary conditions.  

The maximum theoretical mid-span deflection with mixed boundary condition was  
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8 percent higher than the maximum experimental mid-span deflection. Meanwhile, the ratios of 

the maximum theoretical angles of twist to the experimental angles of twist were 0.93,0.95 and 

1.12 for the pinned, fixed and mixed boundary conditions respectively. 

4.8 Combined Biaxial Moment and Torsion under Elevated Temperature 

Figures 146 -151 summarize the results of the combined biaxial moment and torsion  

at elevated temperatures for the boundary conditions used in this research. Tables 12-14 show 

theoretical results of load type HBT for pinned, fixed and mixed boundary conditions. The first 

column shows the load type whilst the second column and third present the biaxial moment and 

torsional moment respectively. The fourth column shows the mid-span deflections whereas the 

fifth column shows the angle of twist. 

The ratio for the theoretical peak loads to experimental peak loads were 0.92, 1.11  

and 1.01 for the pinned, fixed and mixed boundary conditions. The maximum theoretical mid-

span deflections were 14 percent and five percent lower than the experimental mid-span 

deflections for HBT with fixed and mixed boundary conditions respectively. The theoretical 

mid-span deflection with pinned boundary condition was two percent higher than the mid-span 

deflection measured experimentally. Also, the ratios of the maximum theoretical angles of twist 

to the experimental angles of twist were 1.05,1.22 and 1.09 for the pinned, fixed and mixed 

boundary conditions respectively.  

4.9 Combined Axial Load, Uniaxial Moment and Torsion under Elevated Temperature 

Figure 152 -162 present the results of the combined axial load, uniaxial moment and  

torsion at elevated temperatures for the boundary conditions used in this research. Tables 12-14 

show theoretical results of load type HPUT for pinned, fixed and mixed boundary conditions. 

The first column shows the load type whilst the second, third and fourth present the axial 
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loading, uniaxial moment and torsional moment respectively. The fourth column shows the mid-

span deflections whereas the fifth column shows the angle of twist. 

The ratios for the theoretical peak loads compared to the experimental peak loads were 

0.98, 1.00 and 0.94 for the pinned, fixed and mixed boundary conditions. The maximum 

theoretical mid-span deflections were 14 percent lower than the experimental mid-span 

deflection for both the pinned and mixed boundary conditions. The theoretical mid-span 

deflection with fixed boundary condition was 6 percent higher than the mid-span deflection 

measured experimentally. Also, the ratios of the maximum theoretical angles of twist to the 

maximum experimental angles of twist were 0.99,1.25 and 1.10 for the pinned, fixed and mixed 

boundary conditions. 

4.10 Combined Axial Load, Biaxial Moment and Torsion under Elevated Temperature 

Figures 163 -174 present the results of the combined axial load, biaxial moment, 

and torsion for the boundary conditions used in this research. Table 12-14 show theoretical 

results of load type HPBT for pinned, fixed and mixed boundary conditions. The first column 

shows the load type whilst the second, third and fourth present the axial loading, biaxial moment 

and torsional moment respectively. The fourth column shows the mid-span deflections whereas 

the fifth column shows the angle of twist. The ratios for the theoretical peak loads to 

experimental peak loads were 0.97, 0.92 and 0.89 for the pinned, fixed and mixed boundary 

conditions.  

The maximum theoretical mid-span deflection was 2% lower than the experimental  

mid-span deflection with pinned boundary conditions. The maximum theoretical mid-span 

deflections with fixed and mixed boundary condition were both 1% higher than the maximum 

experimental mid-span deflections. Also, the ratios of the maximum theoretical angle of twist to 
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the experimental angles of twist were 1.08,1.03 and 1.10 for the pinned, fixed and mixed 

boundary conditions. 
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CHAPTER 5 

INTERACTION EXPRESSIONS FOR ELEVATED TEMPERATURE CONDITIONS 

Presented in this chapter are interaction expressions for a biaxially loaded steel beam-

columns with applied torsion at various elevated temperature conditions. 

5.1 Ultimate Limit Load-Moment-Torsion Interaction Expressions 

In this research, the beam-column interaction expressions are derived by using a non-

linear load contour approximation approach to curve fit theoretical dimensionless interactions for 

HPUT and HPBT at elevated temperatures. The general form of the interaction expression is as 

follows [3]: 
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where Pu is the applied axial load, Mux and Muy being the flexural moments about x and y-axis 

respectively, Tu is the applied torque. Also, fcPn is the design compressive strength, fbMnx is the 

design flexural strength about the x-axis, fbMny is the design flexural strength about the y-axis 

and ftTn is the design torsional strength.  

For elevated temperatures, 

fcPn = Fcr(T) x Ag                                                                                                                         (63) 

where Fcr(T) is the flexural buckling stress at elevated temperatures and Ag is the gross cross-

sectional area of the member. 

The flexural buckling stress at elevated temperatures Fcr(T) is calculated based on the provisions 

of the AISC [89] as: 

Fcr(T) = 0.42(
4
(&(*)
(,(*))Fy(T)                                                                                                            (64) 

Fy(T) and Fe(T) are the specified yield strength and the actual measured yield strength of the 
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member at elevated temperatures. 

Fe(T) = p2E(T)/l2                                                                                                                          (65) 

Both Fy(T) and E(T) are the temperature dependent yield strengths and elastic modulus obtained 

from Table A-4.2.1in the AISC [89]. l represents the slenderness ratio (KL/r) in which K=1 for a 

pinned end member, L is the length of the member and r is the radius of gyration.  

For a 1.5 x 1.5 x 0.125in. steel member of length 33.65in. with both ends pinned, the 

slenderness ratio is found to be 60.  

In determining the design compressive strength at 900°F, the yield strength and elastic 

modulus at 900°F is found using the AISC [89]; 

Fy(900°F) = 0.82 Fy                                                                                                                        (66) 

E(900°F)  = 0.62 E                                                                                                                         (67) 

The yield strength and elastic modulus at ambient temperature Fy and E are 58.64 ksi and 29988 

ksi respectively. 

Hence, Fy(900°F) and E(900°F) are computed to be 48.08 ksi and 18592.56 ksi using Equations 66 

and 67. 

From Equation (65), the actual measured yield strength Fe(900°F) is found to be 50.97 ksi. 
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	=  0.94                                                                                                            (68) 

Also, the flexural buckling stress at high temperatures is determined from Equation 64 as 

Fcr(900°F )  = 0.42(=((.;,))	x 48.08 ksi                                                                                          (69) 

Fcr(900°F )  = 20.73 ksi                                                                                                                   (70) 

The compressive strength at elevated temperatures is also determined from Equation 63: 

Pn(900°F )  =  20.73 x 0.6875 in2                                                                                                     (71) 
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Pn(900°F )  = 15.14 kips                                                                                                                 (72) 

Finally, the design compression strength fcPn(900°F ) is computed as: 

fcPn(900°F ) = 0.90 x 15.14 , where fc = 0.90 (LRFD)                                                                  (73) 

fcPn(900°F ) = 13.6 kips                                                                                                                 (74) 

Figure 175 shows the comparison of the design compressive strength, fcPn, and various 

slenderness ratios at ambient temperature, elevated temperatures of 900°F and 1650°F for both 

theoretical data and results obtained from the AISC equations [89]. 

Meanwhile, the design flexural and torsional strengths at elevated temperatures, fbMn and  

ftTn are determined from [89]: 

fbMnx = 0.90 Fy(T) Zx                                                                                                                   (75) 

fbMny = 0.9 Fy(T)  Zy                                                                                                                   (76) 

ftTn     = 0.90  Fcr(T)  CM                                                                                                              (77) 

where Zx , Zy are the plastic section modulus about x and y axes whereas CM is the HSS torsional 

constant. 

From Figure 175, the effect of elevated temperatures on the design compressive, flexural 

and torsional strengths can be expressed in the following form: 

fcPn(700°F) = 0.0011l2 – 0.3763l + 35.28                                                                                    (78) 

fbMn(700°F) = 0.347l                                                                                                                     (79) 

ftTn(700°F)  =  0.2457l                                                                                                                   (80) 

fcPn(900°F) = 0.0007l2 – 0.2476l + 26.338                                                                                  (81) 

fbMn(900°F) = 0.2848l                                                                                                                   (82) 

ftTn(900°F)  =  0.2015l                                                                                                                   (83)  
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fcPn(1650°F) = 0.0004l2 – 0.0147l + 1.4646                                                                                 (84) 

fbMn(1650°F) = 0.0208l                                                                                                                 (85) 

ftTn(1650°F) = 0.0147l                                                                                                                   (86) 

where l is the slenderness ratio of the structural member subjected to elevated temperatures.   

Lateral torsional buckling is not considered in this research. 

Figure 176 shows the theoretical dimensionless interaction curve, experimental curve and a 

nonlinear approximation for APBT. The interaction expression for APBT is as follows: 
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where ( 2#
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Figure 177 shows the theoretical dimensionless interaction curve, experimental curve and 

a nonlinear approximation for HPBT at the temperature of 700°F. The interaction expression is: 
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The theoretical dimensionless interaction curve and the nonlinear approximation for 

HPBT at the temperature of 900°F is shown in Figure 178. The interaction expression is: 
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 + Muy
fbMny

 )3.30+ ( $%
f@$A

	)0.90   < 1.00                                                                                 (91) 

where ( 2#
f$2%

+	 !!"
f#!$"

 +	 3#&

fbMny
 )3.30   = G3                                                                                                 (92) 

Figure 179 shows the theoretical dimensionless interaction curve and a nonlinear 

approximation for HPBT at the temperature of 1650°F. The interaction expression developed is: 
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( 2#
f$2%

 + 	 !!"
f#!$"

 + Muy
fbMny

 )2.90+ ( $%
f@$A

	)1.1   < 1.00                                                                                  (93) 

where ( 2#
f$2%

+	 !!"
f#!$"

 +	 3#&

fbMny
 )2.90   = G4                                                                                                 (94) 

The interaction expressions above are used to predict the interaction between the elevated 

temperature dependent strengths and design strengths. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

6.1 Conclusions 

The semi-analytical solution presented in this dissertation is in good agreement with the 

experimental results, with peak loads found to be within five percent of each other. Based on the 

materially nonlinear analysis and experiments conducted at both the ambient and high 

temperature conditions, the following conclusions are drawn: 

A. Related to experimentally obtained member strength reduction at 700 degrees F in 

comparison with that at the ambient temperature: 

1. The strength of members subjected to combined axial and torsional loading was reduced 

by 42 percent. 

2. The strength of members subjected to combined biaxial moment and torsional loading 

was reduced by 33 percent. 

3. The strength of members subjected to combined uniaxial moment and torsional loading 

decreased by 51 percent. 

4. The strength of members subjected to combined axial loading, uniaxial moment and 

torsional moment decreased by 53 percent. 

5. The strength of members subjected to combined axial loading, biaxial moment and 

torsional moment was reduced by 32 percent. 

B. Related to the theoretical interaction curve in comparison with the interaction expressions at 

both ambient and elevated temperatures: 
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6. The theoretical interaction curve is within three percent of the interaction expression 

while the experimental interaction curve is within four percent of the interaction 

expression at ambient temperature. 

7. The theoretical interaction curve is within five percent of the interaction expression while 

the experimental interaction curve is within seven percent of the interaction expression at 

700 degrees F. 

8. The theoretical interaction curve is within four percent of the interaction expression at 

900 degrees F.  

9. The theoretical interaction curve is within six percent of the interaction expression at 

1650 degrees F. 

C. Related to the theoretically predicted ultimate strength at 900 degrees F (referred to as Case 1 

below), and 1650 degrees F (Case 2 below), respectively compared to that at the ambient 

temperature: 

10. The strength of members subjected to combined axial and torsional loading was reduced 

by 54 percent, and 81 percent, respectively, for Cases 1 and 2.  

11. The strength of members subjected to combined biaxial moment and torsional loading 

was reduced by 70 percent, and 88 percent, respectively, for Cases 1 and 2.  

12. The strength of members subjected to combined uniaxial moment and torsional loading 

decreased by 72 percent, and 79 percent, respectively, for Cases 1 and 2. 

13. The strength of members subjected to combined axial loading, uniaxial moment and 

torsional moment decreased by 66 percent, and 82 percent, respectively, 

for Cases 1 and 2. 
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14. The strength of members subjected to combined axial loading, biaxial moment and 

torsional moment was reduced by 72 percent, and 83 percent, respectively,  

for Cases 1 and 2. 

The methodology presented in the dissertation is applicable to practical structural 

analysis or design of biaxially loaded beam-columns with applied torsion and subjected to high 

temperatures such as those encountered during a fire. 

6.2 Future Research 

Future studies can be conducted on the effect of post-fire conditions notably: cooling in 

air and water based methods on the behavior of biaxially loaded steel beam-columns with 

applied torsion. The effect of elevated temperatures on biaxially loaded steel members with 

singly symmetric and unsymmetric cross-sections with applied torsion will also need to be 

studied.  
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APPENDIX A: LIST OF FIGURES 

 

 

Figure 1.Biaxially Loaded Beam-Column Subjected to Applied Torque 

 
From reference [2,3] 
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Figure 2.Yield Strength Reduction Factors at High Temperatures 

 

 

                       

Figure 3.Elastic Modulus Reduction Factors at High Temperatures 
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Figure 4.Discretized Hollow Rectangular Cross-section 

From reference [2,3] 
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Figure 5.Residual Stress Distribution 

From reference [2,3] 
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Figure 6.Stress Strain Relationship 

From reference [3] 
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Figure 7.Shear-Stress-Shear Strain Relationship 

From reference [2]  
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Figure 8.Temperature-Time Relationship 

 

 

                

Figure 9.Temperature-Time Relationship 
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Figure 10.400K Capacity Tinius Olsen 
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Figure 11.Lower Fixture Simulating Load and Moment Application 

From reference [2] 
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Figure 12.Upper Fixture Connected to a Moment Arm to Simulate Uniaxial and Biaxial Moment 

From reference [2] 
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Figure 13.Biaxial and Torsional Moment Setup 

From reference [3] 
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Figure 14.Schematic Diagram of Lower part of Axial and Bending Moment Setup 

From Reference [3] 
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Figure 15.Axial, Bending and Torsion Setup Schematic Diagram 

From reference [3] 
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Figure 16.Electric Furnace and Controller 

From reference [2] 

 
 

 

Figure 17.A513 Type -1 Beam-Column Specimens 
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Figure 18.Schematic of Specimen End Fixtures 
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Figure 19.Tensile Coupon Specification 

From reference [2] 

 

 

  

Figure 20.Tensile Coupon Specimens 
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Figure 21.Stub Column Specimen 

 

 

                           

 

Figure 22.Stress-Strain Relationship for Stub Column Test 
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Figure 23. Experimental Curves for Axial load vs. Deflection (APT & HPT-Fixed-Pinned) 

 

 

 

     

Figure 24. Experimental Curves for Torque vs. Deflection (APT & HPT-Fixed-Pinned) 

0

1

2

3

4

5

6

7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
xi

al
 lo

ad
 (p

, k
ip

s)

Deflection ( in)

Ambient Temperature

Elevated Temperature

0

5

10

15

20

25

0 0.2 0.4 0.6

To
rs

io
n 

(k
ip

-in
)

Deflection (in)

Ambient Temperature

Elevated Temperature



 
 

 83 

 

 

Figure 25. Experimental Curves for Torque vs. Angle of Twist (APT & HPT-Fixed-Pinned) 

 

 

 

Figure 26. Experimental Curves for Axial load vs. Deflection (APT & HPT-Fixed-Fixed) 
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Figure 27. Experimental Curves for Torque vs. Deflection (APT & HPT-Fixed-Fixed) 

 

 

 

 

Figure 28. Experimental Curves for Torque vs. Angle of Twist (APT & HPT-Fixed-Fixed) 
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Figure 29. Experimental Curves for Moment vs. Deflection (AUT & HUT-Fixed-Pinned) 

 

 

 

 

Figure 30. Experimental Curves for Torque vs. Deflection (AUT & HUT-Fixed-Pinned) 

0

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4 0.5 0.6

U
ni

ax
ia

l m
om

en
y 

(M
x,

 K
ip

-in
)

Deflection (in)

Ambient Temperature

Elevated Temperature

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5

To
rs

io
n 

(T
,k

ip
-in

)

Deflection (in)

Ambient Temperature

Elevated Temperature



 
 

 86 

 

 

Figure 31. Experimental Curves for Torque vs. Angle of Twist (AUT & HUT-Fixed-Pinned) 

 

 

 

Figure 32. Experimental Curves for Moment vs. Deflection (AUT & HUT-Fixed-Partially Fixed) 
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Figure 33. Experimental Curves for Torque vs. Deflection (AUT & HUT-Fixed-Partially Fixed) 

  

 

 

Figure 34. Experimental Curves for Torque vs. Angle of Twist (AUT & HUT-Fixed-Partially 
Fixed) 
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Figure 35. Experimental Curves for Moment vs. Deflection (ABT & HBT-Fixed-Partially Fixed) 

 

 

 

Figure 36. Experimental Curves for Torsion vs. Deflection (ABT & HBT-Fixed-Partially Fixed) 
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Figure 37. Experimental Curves for Torsion vs. Angle of Twist (ABT & HBT-Fixed-Partially 
Fixed) 

 

 

 

Figure 38. Experimental Curves for Biaxial Moment vs Deflection (ABT & HBT-Fixed-Partially 
Fixed) 
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Figure 39. Experimental Curves for Torsion vs. Deflection (ABT & HBT-Fixed-Partially Fixed) 

 

 

 

Figure 40. Experimental Curves for Torsion vs. Angle of Twist (ABT & HBT-Fixed-Partially 
Fixed) 

  

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8

To
rs

io
n 

(T
,K

ip
-in

)

Deflection (in)

Ambient Temperature

Elevated Temperature

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1 1.2

To
rs

io
n 

(T
,k

ip
-in

)

Angle of twist (Degrees)

Ambient Temperature

Elevated Temperature



 
 

 91 

 

Figure 41. Experimental Curves for Axial load vs. Deflection (APT & HPT-Pinned-Pinned) 

 

 

 

Figure 42. Experimental Curves for Torsion vs. Deflection (APT & HPT-Pinned-Pinned) 
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Figure 43. Experimental Curves for Torsion vs. Angle of Twist (APT & HPT-Pinned-Pinned) 

 

 

 

Figure 44. Experimental Curves for Biaxial Moment vs. Deflection (ABT & HBT-Pinned-
Pinned) 
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Figure 45. Experimental Curves for Torsion vs. Deflection (ABT & HBT-Pinned-Pinned) 

 

 

 

 

Figure 46. Experimental Curves for Torsion vs. Angle of Twist (ABT & HBT-Pinned-Pinned) 
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Figure 47. Experimental Curves for Moment vs. Deflection (AUT & HUT-Pinned-Pinned) 

 

 

 

Figure 48. Experimental Curves for Torsion vs. Deflection (AUT & HUT-Pinned-Pinned) 
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Figure 49. Experimental Curves for Torsion vs. Angle of Twist (AUT & HUT-Pinned-Pinned) 

 

 

 

Figure 50. Experimental Curves for Axial Load vs. Deflection (APUT & HPUT-Pinned-Pinned) 
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Figure 51. Experimental Curves for Uniaxial Moment vs. Deflection (APUT & HPUT-Pinned-
Pinned) 

 

 

 

Figure 52. Experimental Curves for Torsion vs. Deflection (APUT & HPUT-Pinned-Pinned) 
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Figure 53. Experimental Curves for Torsion vs. Angle of Twist (APUT & HPUT-Pinned -
Pinned) 

 

 

 

Figure 54. Experimental Curves for Axial load vs. Deflection (APUT & HPUT-Fixed-Pinned) 
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Figure 55. Experimental Curves for Uniaxial Moment vs. Deflection (APUT & HPUT-Fixed-
Pinned) 

 

 

 

Figure 56. Experimental Curves for Torsion vs. Deflection (APUT & HPUT-Fixed-Pinned) 
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Figure 57. Experimental Curves for Torsion vs. Angle of Twist (APUT & HPUT-Fixed-Pinned) 

 

 

 

Figure 58. Experimental Curves for Axial Load vs. Deflection (APBT & HPBT-Fixed-Pinned) 
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Figure 59. Experimental Curves for Biaxial Moment vs. Deflection (APBT & HPBT-Fixed-
Pinned) 

 

 

 

 

Figure 60. Experimental Curves for Torsion vs. Deflection (APBT & HPBT-Fixed-Pinned) 
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Figure 61. Experimental Curves for Torsion vs. Deflection (APBT & HPBT-Fixed-Pinned) 

 

 

 

 

Figure 62. Experimental Curves for Axial Load vs. Deflection (APBT & HPBT-Fixed-Partially 
Fixed) 
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Figure 63. Experimental Curves for Biaxial Moment vs Deflection (APBT & HPBT-Fixed- 
Partially Fixed) 

 

 

 

Figure 64. Experimental Curves for Torsion vs. Deflection (APBT & HPBT-Fixed-Partially 
Fixed) 

 

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8

Bi
ax

ia
l M

om
en

t (
M

, k
ip

-in
)

Deflection (in)

Ambient Temperature
Elevated Temperature

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8

To
rs

io
n 

(T
,k

ip
-in

)

Deflection (in)

Ambient Temperature

Elevated Temperature



 
 

 103 

 

Figure 65. Experimental Curves for Torsion vs. Angle of Twist (APBT & HPBT-Fixed-Partially 
Fixed) 

 

 

 

Figure 66. Experimental Curves for Axial load vs. Deflection (APBT & HPBT-Pinned-Pinned) 
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Figure 67. Experimental Curves for Biaxial Moment vs. Deflection (APBT & HPBT-Pinned-
Pinned) 

 

 

 

Figure 68. Experimental Curves for Torsion vs. Deflection (APBT & HPBT-Pinned-Pinned) 
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Figure 69. Experimental Curves for Torsion vs. Angle of Twist (APBT & HPBT-Pinned-Pinned) 

 

 

 

Figure 70. Experimental Curves for Axial load vs. Deflection (APUT & HPUT-Fixed-Partially 
Fixed) 
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Figure 71. Experimental Curves for Uniaxial Moment vs. Deflection (APUT & HPUT-Fixed-
Partially Fixed) 

 

 

 

Figure 72. Experimental Curves for Torsion vs. Deflection (APUT & HPUT-Fixed-Partially 
Fixed) 

 

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2

U
ni

ax
ia

l M
om

en
t (

M
x,

 k
ip

-in
)

Deflection (in)

Ambient Temperature

Elevated Temperature

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8

To
rs

io
n 

(T
,k

ip
-in

)

Deflection (in)

Ambient Temperature

Elevated Temperature



 
 

 107 

 

Figure 73. Experimental Curves for Torsion vs. Angle of Twist (APUT & HPUT-Fixed-Partially 
Fixed) 

 

 

 

Figure 74. Experimental Curves for Biaxial Moment vs. Deflection (ABT & HBT-Pinned -
Pinned) 
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Figure 75. Experimental Curves for Torsion vs. Deflection (ABT & HBT-Pinned -Pinned) 

 

 

 

Figure 76. Experimental Curves for Torsion vs. Deflection (ABT & HBT-Pinned -Pinned) 

 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0 0.2 0.4 0.6 0.8

To
rs

io
n 

(T
,k

ip
-in

)

Deflection (in)

Ambient Temperature
Elevated Temperature

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0 2 4 6 8 10

To
rs

io
n 

(T
,k

ip
-in

)

Angle of Twist (Degrees)

Ambient Temperature

Elevated Temperature



 
 

 109 

 

Figure 77. Experimental Curves for Biaxial Moment vs Deflection (ABT & HBT-Pinned -
Pinned) 

 

 

 

Figure 78. Experimental Curves for Torsion vs. Deflection (ABT & HBT-Pinned -Pinned) 
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Figure 79. Experimental Curves for Torsion vs. Angle of Twist (ABT & HBT-Pinned -Pinned) 

 

                       

 

Figure 80. Axial Load vs. Deflection (APT- Pinned-Pinned) 
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Figure 81. Torque vs. Deflection (APT- Pinned-Pinned) 

 

 

 

Figure 82. Torque vs. Angle of Twist (APT- Pinned-Pinned) 
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Figure 83. Axial Load vs. Deflection (APT- Fixed-Fixed) 

 

 

 

Figure 84. Torque vs. Deflection (APT- Fixed-Fixed) 
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Figure 85. Torque vs. Angle of Twist (APT- Fixed-Fixed) 

 

 

 

                                                                                                                                                           

Figure 86. Axial Load vs. Deflection (APT- Fixed-Pinned) 
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Figure 87. Torque vs. Deflection (APT- Fixed-Pinned) 

 

 

 

Figure 88. Torque vs. Angle of Twist (APT- Fixed-Pinned) 
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Figure 89. Uniaxial Moment vs. Deflection (AUT- Pinned-Pinned) 

 

 

 

Figure 90. Torque vs. Deflection (AUT- Pinned-Pinned) 
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Figure 91. Torque vs. Angle of Twist (AUT- Pinned-Pinned) 

 

 

 

Figure 92. Uniaxial Moment vs. Deflection (AUT- Fixed-Fixed) 
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Figure 93. Torque vs. Deflection (AUT- Fixed-Fixed) 

 

 

 

Figure 94. Torque vs. Angle of Twist (AUT- Fixed-Fixed) 
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Figure 95. Uniaxial Moment vs. Deflection (AUT- Fixed-Pinned) 

 

 

 

Figure 96. Torque vs. Deflection (AUT- Fixed-Pinned) 
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Figure 97. Torque vs. Angle of Twist (AUT- Fixed-Pinned) 

 

 

 

Figure 98. Biaxial Moment vs. Deflection (ABT- Pinned-Pinned) 
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Figure 99. Torque vs. Deflection (ABT- Pinned-Pinned) 

 

 

 

Figure 100. Torque vs. Angle of Twist (ABT- Pinned-Pinned) 
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                               Figure 101. Biaxial Moment vs. Deflection (ABT- Fixed-Fixed) 

 

 

           

                               Figure 102. Torque vs. Deflection (ABT- Fixed-Fixed) 
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Figure 103. Torque vs. Angle of Twist (ABT- Fixed-Fixed) 

 

 

 

Figure 104. Biaxial Moment vs. Deflection (ABT- Fixed-Pinned) 
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Figure 105. Torque vs. Deflection (ABT- Fixed-Pinned) 

 

 

 

Figure 106. Torque vs. Angle of Twist (ABT- Fixed-Pinned) 
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Figure 107. Axial Load vs. Deflection (APUT- Pinned-Pinned) 

 

 

 

Figure 108. Uniaxial Moment vs. Deflection (APUT- Pinned-Pinned) 
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Figure 109. Torque vs. Deflection (APUT- Pinned-Pinned) 

 

 

 

Figure 110. Torque vs. Angle of Twist (APUT- Pinned-Pinned) 
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Figure 111. Axial Load vs. Deflection (APUT- Fixed-Fixed) 

 

 

 

Figure 112. Axial Load vs. Deflection (APUT- Fixed-Fixed) 
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Figure 113. Torque vs. Deflection (APUT- Fixed-Fixed) 

 

 

 

Figure 114. Torque vs. Angle of Twist (APUT- Fixed-Fixed) 
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Figure 115. Axial Load vs. Deflection (APUT- Fixed-Pinned) 

 

 

 

Figure 116. Uniaxial Moment vs Deflection (APUT- Fixed-Pinned) 
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Figure 117. Torque vs. Deflection (APUT- Fixed-Pinned) 

 

 

 

Figure 118. Torque vs. Angle of Twist (APUT- Fixed-Pinned) 
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Figure 119. Axial Load vs. Deflection (APBT- Pinned-Pinned) 

 

 

 

Figure 120. Biaxial Moment vs. Deflection (APBT- Pinned-Pinned) 
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Figure 121. Torque vs. Deflection (APBT- Pinned-Pinned) 

 

 

 

Figure 122. Torque vs. Angle of Twist (APBT- Pinned-Pinned) 
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Figure 123. Axial Load vs. Deflection (APBT- Fixed-Fixed) 

 

 

 

Figure 124. Biaxial Moment vs. Deflection (APBT- Fixed-Fixed) 
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Figure 125. Torque vs. Deflection (APBT- Fixed-Fixed) 

 

 

 

Figure 126. Torque vs. Angle of Twist (APBT- Fixed-Fixed) 
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Figure 127. Axial Load vs. Deflection (APBT- Fixed-Pinned) 

 

 

 

Figure 128. Biaxial Moment vs. Deflection (APBT- Fixed-Pinned) 
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Figure 129. Torque vs. Deflection (APBT- Fixed-Pinned) 

 

 

 

Figure 130. Torque vs. Angle of Twist (APBT- Fixed-Pinned) 
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Figure 131. Axial load vs. Deflection (HPT- Pinned-Pinned) 

 

 

 

Figure 132. Torque vs. Deflection (HPT- Pinned-Pinned) 
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Figure 133. Torque vs. Angle of Twist (HPT- Pinned-Pinned) 

 

 

 

Figure 134. Axial Load vs. Deflection (HPT- Fixed-Pinned) 
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Figure 135. Torque vs. Deflection (HPT- Fixed-Pinned) 

 

 

 

       Figure 136. Torque vs. Angle of Twist (HPT- Fixed-Pinned) 
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Figure 137. Axial load vs. Deflection (HPT- Fixed-Fixed) 

 

 

 

Figure 138. Torque vs. Deflection (HPT- Fixed-Fixed) 
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Figure 139. Torque vs. Angle of Twist (HPT- Fixed-Fixed) 

 

 

 

Figure 140. Uniaxial Moment vs. Deflection (HUT- Pinned-Pinned) 
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Figure 141. Torque vs. Deflection (HUT- Pinned-Pinned) 

 

 

 

Figure 142. Torque vs. Angle of Twist (HUT- Pinned-Pinned) 
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Figure 143. Uniaxial Moment vs. Deflection (HUT- Fixed-Pinned) 

 

 

 

Figure 144. Torque vs. Deflection (HUT- Fixed-Pinned) 
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Figure 145. Torque vs. Angle of Twist (HUT- Fixed-Pinned) 

 

 

 

Figure 146. Biaxial Moment vs. Deflection (HBT- Pinned-Pinned) 
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Figure 147. Torque vs. Deflection (HBT- Pinned-Pinned) 

 

 

 

Figure 148. Torque vs. Angle of Twist (HBT- Pinned-Pinned) 
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Figure 149. Biaxial Moment vs. Deflection (HBT- Fixed-Pinned) 

 

 

 

Figure 150. Torque vs. Deflection (HBT- Fixed-Pinned) 
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Figure 151. Torque vs. Deflection (HBT- Fixed-Pinned) 

 

 

 

Figure 152. Axial Load vs. Deflection (HPUT- Pinned-Pinned) 
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Figure 153. Uniaxial Moment vs. Deflection (HPUT- Pinned-Pinned) 

 

 

 

Figure 154. Torque vs. Deflection (HPUT- Pinned-Pinned) 
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Figure 155. Torque vs. Angle of twist (HPUT- Pinned-Pinned) 

 

 

 

Figure 156. Torque vs. Angle of twist (HPUT- Fixed-Pinned) 
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Figure 157. Uniaxial Moment vs. Deflection (HPUT- Fixed-Pinned) 

 

 

 

Figure 158. Torque vs. Deflection (HPUT- Fixed-Pinned) 
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Figure 159. Torque vs. Angle of Twist (HPUT- Fixed-Pinned) 

 

 

 

Figure 160. Axial Load vs. Deflection (HPUT- Fixed-Fixed) 
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Figure 161. Uniaxial Moment vs. Deflection (HPUT- Fixed-Fixed) 

 

 

 

Figure 162. Torque vs. Angle of twist (HPUT- Fixed-Fixed) 
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Figure 163. Axial Load vs. Deflection (HPBT- Pinned-Pinned) 

 

 

 

Figure 164. Biaxial Moment vs. Deflection (HPBT- Pinned-Pinned) 
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Figure 165. Biaxial Moment vs. Deflection (HPBT- Pinned-Pinned) 

 

         

 

Figure 166. Biaxial Moment vs. Deflection (HPBT- Pinned-Pinned) 
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Figure 167. Axial Load vs. Deflection (HPBT- Fixed-Pinned) 

 

 

 

Figure 168. Biaxial Moment vs. Deflection (HPBT- Fixed-Pinned) 
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Figure 169. Torque vs. Deflection (HPBT- Fixed-Pinned) 

 

 

 

Figure 170. Torque vs. Angle of Twist (HPBT- Fixed-Pinned) 

 

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2 0.25 0.3

To
rq

ue
(T

,k
ip

-in
)

Deflection (in)

Experimental

Theoretical

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2

To
rq

ue
 (T

,k
ip

-in
)

Angle of twist (radians)

Experimental

Theoretical



 
 

 156 

 

Figure 171. Axial Load vs. Deflection (HPBT- Fixed-Fixed) 

 

 

 

Figure 172. Biaxial Moment vs. Deflection (HPBT- Fixed-Fixed 
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Figure 173. Torque vs. Deflection (HPBT- Fixed-Fixed) 

 

 

 

Figure 174. Torque vs. Angle of Twist (HPBT- Fixed-Fixed) 
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                   Figure 175. Design strength vs Slenderness ratio 

 

 

 

Figure 176. Comparison of Theoretical and Experimental Interaction Curves for APBT 
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Figure 177. Comparison of Theoretical and Experimental Interaction Curves for HPBT (700°F) 

 

 

 

 

Figure 178. Comparison of Theoretical and Experimental Interaction Curves for HPBT (900°F) 
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Figure 179. Comparison of Theoretical and Experimental Interaction Curves for HPBT (1650°F) 
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APPENDIX B: LIST OF TABLES 

Table 1. Chemical Composition of A513 Type-1 Specimens 

 C Mn P S Si Al C

u 

Cb Mo Ni Cr V Ti B N Cn 
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Table 2. List of Experimental Tests 

Item Load 
case 

Load Type Boundary Conditions Temperature 

1. APT Axial load + Torsion Pinned - Pinned Ambient 
2. AUT Uniaxial Bending + Torsion Pinned - Pinned Ambient 
3. ABT Biaxial Bending + Torsion Pinned - Pinned Ambient 
4. APUT Axial load + Uniaxial Bending + 

Torsion 
Pinned - Pinned Ambient 

5. APBT Axial load + Biaxial Bending + 
Torsion 

Pinned - Pinned Ambient 

6. APT Axial load + Torsion Fixed - Pinned Ambient 
7. AUT Uniaxial Bending + Torsion Fixed - Pinned Ambient 
8. ABT Biaxial Bending + Torsion Fixed - Pinned Ambient 
9. APUT Axial load + Uniaxial Bending + 

Torsion 
Fixed - Pinned Ambient 

10. APBT Axial load + Biaxial Bending + 
Torsion 

Fixed - Pinned Ambient 

11. APT Axial load + Torsion Fixed - Fixed Ambient 
12. AUT Uniaxial Bending + Torsion Fixed – Fixed on y-

axis 
Ambient 

13. ABT Biaxial Bending + Torsion Fixed – Fixed on y-
axis 

Ambient 

14. APUT Axial load + Uniaxial Bending + 
Torsion 

Fixed – Fixed on y-
axis 

Ambient 

15. APBT Axial load + Biaxial Bending + 
Torsion 

Fixed – Fixed on y-
axis 

Ambient 

16. APT Axial load + Torsion Pinned - Pinned 700°F 
17. AUT Uniaxial Bending + Torsion Pinned - Pinned 700°F 
18. ABT Biaxial Bending + Torsion Pinned - Pinned 700°F 
19. APUT Axial load + Uniaxial Bending + 

Torsion 
Pinned - Pinned 700°F 

20. APBT Axial load + Biaxial Bending + 
Torsion 

Pinned - Pinned 700°F 

21. APT Axial load + Torsion Fixed - Pinned 700°F 
22. AUT Uniaxial Bending + Torsion Fixed - Pinned 700°F 
23. ABT Biaxial Bending + Torsion Fixed - Pinned 700°F 
24. APUT Axial load + Uniaxial Bending + 

Torsion 
Fixed - Pinned 700°F 

25. APBT Axial load + Biaxial Bending + 
Torsion 

Fixed - Pinned 700°F 

26. APT Axial load + Torsion Fixed - Fixed 700°F 
27. AUT Uniaxial Bending + Torsion Fixed – Fixed on y-

axis 
700°F 

28. ABT Biaxial Bending + Torsion Fixed – Fixed on y-
axis 

700°F 
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Table 3. List of Experimental Tests Continued 

Item Load 
case 

Load Type Boundary Conditions Temperature 

29.  
 

APUT Axial load + Uniaxial Bending + 
Torsion 

Fixed – Fixed on y-
axis 

700°F 

30. APBT Axial load + Biaxial Bending + 
Torsion 

Fixed – Fixed on y-
axis 

700°F 

 

 

 

Table 4. Experimental Results for Ambient Temperature Tests (Pinned Boundary Condition) 

Load 
Type 

Maximum 
Axial Load 
(kips) 

Maximum 
Bending 
Moment 
(kip-in) 

Maximum 
Torsional 
Moment 
(kip-in) 

Maximum 
Deflection 
(in) 

Maximum 
Angle of Twist 
(radians) 

APT 6.63 0 11.70 0.118 0.029 
AUT 0 8.66 16.09 0.442 0.007 
ABT 0 12.11 10.81 0.208 0.004 
APUT 7.58 11.33 24.70 0.506 0.048 
APBT 6.01 15.80 19.67 0.247 0.049 

 

 

 

Table 5. Experimental Results for Ambient Temperature Tests (Fixed Boundary Condition) 

Load 
Type 

Maximum 
Axial Load 
(kips) 

Maximum 
Bending 
Moment 
(kip-in) 

Maximum 
Torsional 
Moment 
(kip-in) 

Maximum 
Deflection 
(in) 

Maximum 
Angle of Twist 
(radians) 

APT 8.57 0 27.78 0.25 0.069 
AUT 0 22.29 29.49 0.53 0.084 
ABT 0 14.13 16.23 0.30 0.010 
APUT 8.79 21.41 27.00 0.27 0.069 
APBT 6.62 4.47 17.39 0.151 0.021 
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Table 6.Experimental Results for Ambient Temperature Tests (Mixed Boundary Condition) 

Load 
Type 

Maximum 
Axial Load 
(kips) 

Maximum 
Bending 
Moment 
(kip-in) 

Maximum 
Torsional 
Moment 
(kip-in) 

Maximum 
Deflection 
(in) 

Maximum 
Angle of Twist 
(radians) 

APT 7.20 0 19.98 0.11 0.051 
AUT 0 14.27 28.60 0.24 0.069 
ABT 0 16.50 26.49 0.27 0.079 
APUT 6.66 21.41 19.42 0.64 0.024 
APBT 6.65 14.47 20.23 0.26 0.091 

 

 

 

Table 7.Experimental Results for Elevated Temperature Tests (Pinned Boundary Condition) 

Load 
Type 

Maximum 
Axial Load 
(kips) 

Maximum 
Bending 
Moment 
(kip-in) 

Maximum 
Torsional 
Moment 
(kip-in) 

Maximum 
Deflection 
(in) 

Maximum 
Angle of Twist 
(in) 

HPT 6.63 0 11.70 0.144 0.029 
HUT 0 18.21 11.46 0.31 0.04 
HBT 0 12.11 10.81 0.21 0.04 
HPUT 5.52 7.41 11.46 0.31 0.035 
HPBT 6.18 9.64 12.59 0.27 0.037 

 

 

 

Table 8.Experimental Results for Elevated Temperature Tests (Fixed Boundary Condition)  

Load 
Type 

Maximum 
Axial Load 
(kips) 

Maximum 
Bending 
Moment 
(kip-in) 

Maximum 
Torsional 
Moment 
(kip-in) 

Maximum 
Deflection 
(in) 

Maximum 
Angle of Twist 
(radians) 

HPT 6.76 0 18.25 0.37 0.05 
HUT 0 20.27 15.28 0.28 0.06 
HBT 0 10.32 10.09 0.39 0.009 
HPUT 6.26 11.21 10.24 0.24 0.024 
HPBT 7.35 13.49 20.23 0.135 0.087 
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Table 9. Experimental Results for Elevated Temperature Tests (Mixed Boundary Condition) 

Load 
Type 

Maximum 
Axial Load 
(kips) 

Maximum 
Bending 
Moment 
(kip-in) 

Maximum 
Torsional 
Moment 
(kip-in) 

Maximum 
Deflection 
(in) 

Maximum 
Angle of Twist 
(radians) 

HPT 6.62 0 11.62 0.28 0.016 
HUT 0 11.32 13.57 0.131 0.062 
HBT 0 14.22 19.25 0.228 0.075 
HPUT 5.48 8.06 20.31 0.636 0.020 
HPBT 7.33 13.49 20.23 0.135 0.059 

 

 

 

Table 10.Comparison of Experimental and Theoretical Results for Ambient Temperature Tests 
(Pinned Boundary Condition) 

Load 
Type 

Theo/Exp 
 Axial 
Load 

Theo/Exp 
Bending 
Moment 

Theo/Exp 
Torsional 
Moment 

Theo/Exp 
Deflection 

Theo/Exp 
Angle of 
Twist 

APT 1.21 0 0.97 1.17 1.07 
AUT 0 1.00 0.89 1.01 1.14 
ABT 0 0.96 0.92 1.02 1.13 
APUT 1.00 1.00 0.97 0.93 0.98 
APBT 1.00 1.00 0.93 0.66 0.94 

 

 

 

Table 11.Comparison of Experimental and Theoretical Results for Ambient Temperature Tests 
(Fixed Boundary Condition) 

Load 
Type 

Theo/Exp 
Axial 
Load 

Theo/Exp 
Bending 
Moment 

Theo/Exp 
Torsional 
Moment 

Theo/Exp 
Deflection 

Theo/Exp 
Angle of 
Twist 

APT 1.00 0 0.94 0.92 1.04 
AUT 0 1.00 0.97 1.04 0.95 
ABT 0 1.11 0.94 1.01 1.29 
APUT 1.00 1.00 1.02 1.07 0.93 
APBT 1.00 1.00 0.99 1.03 1.02 
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Table 12.Comparison of Experimental and Theoretical Results for Ambient Temperature Tests 
(Mixed Boundary Condition) 

Load 
Type 

Theo/Exp 
Axial 
Load 

Theo/Exp 
Bending 
Moment 

Theo/Exp 
Torsional 
Moment 

Theo/Exp 
Deflection 

Theo/Exp 
Angle of 
Twist 

APT 1.01 0 0.92 0.97 0.92 
AUT 0 1.00 1.14 0.96 1.43 
ABT 0 1.00 0.99 0.96 1.09 
APUT 1.00 1.00 0.99 0.87 0.92 
APBT 1.00 1.00 1.03 0.98 1.08 

 

 

 

Table 13.Comparison of Experimental and Theoretical Results for Elevated Temperature Tests 
(Pinned Boundary Condition) 

Load 
Type 

Theo/Exp 
Axial 
Load 

Theo/Exp 
Bending 
Moment 

Theo/Exp 
Torsional 
Moment 

Theo/Exp 
Deflection 

Theo/Exp 
Angle of 
Twist 

HPT 1.20 0 0.97 0.96 0.93 
HUT 0 0.99 1.03 0.87 0.93 
HBT 0 0.96 0.92 1.02 1.05 
HPUT 1.00 1.00 0.98 0.86 0.99 
HPBT 1.00 1.00 0.97 0.98 1.08 

 

 

 

Table 14.Comparison of Experimental and Theoretical Results for Elevated Temperature Tests 
(Fixed Boundary Condition) 

Load 
Type 

Theo/Exp 
Axial 
Load 

Theo/Exp 
Bending 
Moment 

Theo/Exp 
Torsional 
Moment 

Theo/Exp 
Deflection 

Theo/Exp 
Angle of 
Twist 

HPT 0.90 0 1.02 0.92 1.02 
HUT 0 1.00 0.88 0.89 0.95 
HBT 0 1.00 1.11 0.86 1.22 
HPUT 1.00 1.00 1.00 1.06 1.25 
HPBT 1.00 0.71 0.92 1.01 1.03 
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Table 15. Comparison of Experimental and Theoretical Results for Elevated Temperature Tests 
(Mixed Boundary Condition) 

Load 
Type 

Theo/ Exp 
Axial 
Load 

Theo/Exp 
Bending 
Moment 

Theo/Exp 
Torsional 
Moment 

Theo/Exp 
Deflection 

Theo/Exp 
Angle of 
Twist 

HPT 1.00 0 0.97 0.89 1.01 
HUT 0 1.00 1.02 1.08 1.12 
HBT 0 1.00 1.01 0.95 1.09 
HPUT 1.00 1.00 0.94 0.86 1.1 
HPBT 1.01 1.00 0.89 1.01 1.1 

 

 

 

Table 16. Dimensionless Interactions for Axial Load, Biaxial Moment and Torsion at 900°F 
(HPBT) 

  Load Type P Mx My T 
  HPBT 0 0 0 1 
  HPBT 0.2 0.2 0.2 0.96 
  HPBT 0.4 0.4 0.4 0.73 
  HPBT 0.6 0.6 0.6 0.52 
  HPBT 0.8 0.8 0.8 0.31 
  HPBT 1.0 1.0 1.0 0.00 

 

 

 

Table 17. Dimensionless Interactions for Axial Load, Biaxial Moment and Torsion at 1650°F 
(HPBT) 

  Load Type P Mx My T 
  HPBT 0 0 0 1 
  HPBT 0.2 0.2 0.2 0.87 
  HPBT 0.4 0.4 0.4 0.63 
  HPBT 0.6 0.6 0.6 0.41 
  HPBT 0.8 0.8 0.8 0.20 
  HPBT 1.0 1.0 1.0 0.00 
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APPENDIX C: LOAD AND MOMENT COEFFICIENTS 

The coefficients gij used in this dissertation proposal are stated as follows: 

g11 = EAe                                                                                                                                                     (C-1) 

g12  = ESx                                                                                                                                                     (C-2) 

g13   = ESy                                                                                                                                   (C-3) 

g14   = ESwx                                                                                                                                 (C-4) 

g21 =  ESx                                                                                                                                                   (C-5) 

g22  = EIx                                                                                                                                                    (C-6) 

g23   = EIxy                                                                                                                                  (C-7) 

g24   = EIwy                                                                                                                                 (C-8) 

g31 =  ESy                                                                                                                                             (C-9) 

g32  = EIxy                                                                                                                                                   (C-10) 

g33   = EIy                                                                                                                                  (C-11) 

g34   = EIwx                                                                                                                                (C-12) 

g41   = ESwx                                                                                                                               (C-13)   

g42   = EIwy                                                                                                                                (C-14) 

g43   = EIwx                                                                                                                                (C-15) 

g44   = ESwy                                                                                                                               (C-16) 

Ae = ∫Ae dA                                                                                                                               (C-17) 

Sx = ∫Ae ydA                                                                                                                              (C-18) 

Sy = ∫Ae xdA                                                                                                                              (C-19) 

Swx = ∫Ae ωn dA                                                                                                                         (C-20) 

Ix =  ∫Ae y2 dA                                                                                                                            (C-21) 
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Iy = ∫Ae x2 dA                                                                                                                             (C-22) 

Iwx = ∫Ae ωx dA                                                                                                                         (C-23) 

Iwy = ∫Ae ωydA                                                                                                                          (C-24) 

Ixy =  ∫Ae xy dA                                                                                                                          (C-25) 

Pr     =  ∫Ae σrdA                                                                                                                          (C-26) 

Pp    =  ∫Ap σydA                                                                                                                         (C-27) 

Mxre  =  ∫Ae σr ydA                                                                                                                      (C-28) 

Myre  =  ∫Ae σr xdA                                                                                                                      (C-29) 

Mxp   =  ∫Ap σy ydA                                                                                                                     (C-30) 

Mxp   =  ∫Ap σy ydA                                                                                                                     (C-31) 

The bending stiffnesses are defined as follows: 

Bxx = ( B''B**	–	B'*B*'
B''

)                                                                                                         (C-32) 

Bxy = ( B''B*-	–	B*'B'-
B''

 )                                                                                                        (C-33) 

Bxw = ( B''B*,	–	B'*B',
B''

 )                                                                                                        (C-34) 

Byx = ( B''B-*	–	B'*B-'
B''

)                                                                                                         (C-35)                                       

Byy = ( B''B--	–	B'-B-'
B''

)                                                                                                         (C-36) 

Byw = ( B''B-,	–	B',B-'
B''

)                                                                                                             (C-37) 

The inelastic load and moment parameters are stated as follows: 

Pep* = Pr   + Pp                                                                                                                                  (C-38) 

Pep   = P + Pep*                                                                                                                            (C-39) 

Mxx(ep)  = Mxre + Mxp                                                                                                              (C-40) 

Myy(ep)  = Myre + Myp                                                                                                                 (C-42) 
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APPENDIX D: DERIVATION OF GOVERNING NONLINEAR DIFFERENTIAL 

EQUATIONS  

APPENDIX D.1 Moment-Thrust-Curvature Relationship at Ambient Temperature 

A discretized hollow rectangular section with width B, depth D and elemental area Ai is 

shown in Figure 2. The stress-strain as well as the shear stress-shear strain relationship for this 

experimental research follows the elastic-perfectly-plastic model including elastic unloading 

have also been shown in Figure 3 and 4 respectively. The residual stress distribution pattern 

[1,3,83] for the hollow rectangular section is shown in Figure 5. Considering a point (x,y) of the 

cross-section subjected to an axial load in addition to bending moments Mx and My about both 

the x and y axes, the normal strain ϵ is given by [1-4,14,16,83,84] as  

ϵ = ϵ0 + ɸx y - ɸy x + ϵr + ϵw                                                                                                                                                            (D-1) 

in which ϵ0 represents the average strain, ɸx and ɸy represents the bending curvatures about the x 

and y axes respectively, ϵr denotes the residual strain and ϵw is the warping strain. For this research 

study, the normal stress-strain (σ-ϵ) relationships outlined below is applied: 

σ = Eϵ                                          for -ϵy < ϵ < ϵy                                                                                                           (D-2) 

σ = +σy                                                            for  ϵ  > ϵy                                                                                        (D-3) 

σ = -σy                                                 for   ϵ  <  ϵy                                                                                                                      (D-4)               

in which E is Young’s modulus, σy is the normal yield stress and ϵy  is the normal yield strain. 

Furthermore, the elastic normal stress at any point (x,y) on the selected cross-section is given as  

 σ = 2
D
 + (3E)F

GE
 - (3F)E

GF
 + σr + σw                                                                                                                    (D-5) 

where P denotes axial load, Mx and My are the bending moments about the x and y axes, A is the 

cross-sectional area, Ix and Iy represents the moment of inertia of the member cross-section about 

the x and y axis, σr is the residual stress and σw is the warping normal stress. It is worth noting 
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that in the inelastic range, the normal stresses are determined iteratively and thus equation (D-5) 

is not applicable in that phase. The elastic-perfectly-plastic stress-strain relation is shown in 

Figure 3 and hence both the axial and biaxial moment equilibrium equations for the typical 

cross-section are expressed as follows [1,3,4,83-84]: 

P  =  -∫Ae σe dA - ∫Ap σy dA                                                                                                         (D-6) 

Mx = ∫Ae σe y dA + ∫Ap σy y dA                                                                                                   (D-7) 

My = -∫Ae σe x dA - ∫Ap σy x dA                                                                                                   (D-8) 

In the above equations, σe represents the normal elastic stress, ∫Ae and ∫Ap denotes the integrals over 

the elastic and plastic regions respectively whilst dA is the elemental area of the steel beam-column 

cross-section. A total of 2048 elemental areas which contributes to greater convergence (512 

elemental areas per plate) was selected for each cross-section in this theoretical investigation. 

APPENDIX D.2 Inelastic Differential Equation of Torsion under Ambient Temperature  

The inclusion of torsion means that the influence of shear stresses cannot be ignored 

because without shear stresses an unsafe solution is obtained [3,16]. In the current study, an 

elastic-perfectly-plastic shear stress-strain relationship is implemented. The shear stress τ and 

shear strain ϒ relationship utilized in this research investigation is as shown below: 

τ = G ϒ                          for -ϒY < ϒ< ϒY                                                                                 (D-9) 

τ = τY                             for ϒ > ϒY                                                                                                  (D-10) 

From the above, G represents the shear modulus, ϒY is the shear yield strain whereas τY 

represents the shear yield stress. Meanwhile, τ represents the elastic shear stress and this is 

shown by the general equation. 

  τ = HDFI
	JGE

 - HDEI
JGF

 + τw + τsv                                                                                                                                                         (D-11) 
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Ax and Ay represent the shear forces about the x and y axis in the above equation whereas 

Q stands for the statical area moment, h in this context refers to the cross-sectional plate thickness.  

Also, τw is the warping shear stress and τsv is the Saint Venant shear stress. For this research 

investigation, the internal resisting torsional moment Mzint is revised to include inelastic behavior 

[3,15].  

Mzint  = (Cte )F՚ - CweF՚՚՚ + Mzp                                                                                               (D-12) 

From the above equation, Cte  and Cwe are the Saint Venant torsional stiffness and 

warping stiffness for the elastic section of the beam-column cross-section respectively, F 

represents the angle of twist,  F”’ is the third derivative of the angle of twist whereas Mzp is the 

internal torsional moment for the plastic section of the beam-column cross-section. Warping 

effects have been ignored in the above analysis because of their minimal effects on both hollow 

and rectangular beam-column sections. 

Subsequently, the Von Mises yield criterion [3,16,84-85] is utilized in the research investigation: 

σ2 + 3τ2 <    σY2                                                                                                                         (D-13) 

For a typical hollow rectangular cross-section, the internal resisting elastic-plastic torsional 

moment Mzint using Marshall’s simplified equations [15] can be expressed in the following 

forms:                                                                                 

Mzint  =  τYCMt                                                                      for yield limit                                                     (D-14) 

Mzint  =  τY ( CMte + CMtp )                             for inelastic                                                         (D-15) 

Mzint   = 2t AE τy                                                                 for plastic                                                             (D-16) 

where:  
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CMt =   JKG@
JJKL*DM

                                                                                                                            (D-17) 

CMte  =  
			(	'H	N)JK,MPQ8@9K	(/01,

!,,345'6$
0$,,345'6$ L(78	:)²0³0$,,345'6$" )

(	'H	N)JJK,MPQ8@9KL*DM,MPQ8@9K                                                                                                        (D-18) 

CMtp =  2βh(b − βh)(d − βh) − (,H+)(*RSHN(RSHR9)
,

                                                                  (D-19) 

where: 

hc = 2(((b-h) + (d-h))- (4-π)(ro + ri)                                                                                           (D-20) 

It = J³JK
-
+ ,JDM²

JK
                                                                                                                        (D-21) 

 Ae = (b-h)(d-h)- (,H+)(RS	L	R9)²
,

                                                                                                 (D-22) 

hc,elastic  = 2(b+d-2h-2βh) − (4-π)(ro + ri - β(ro + ri))                                                                (D-23) 

Ae,elastic = ( b-h-βh)(d − h − τY	h) − (,H+)(*RSHN(RSHR9)²
,

                                                        (D-24) 

β = '
*
+ VW

JJK
− XF"

*YFZJ
               for 0 < β < 1                                                                            (D-25) 

ФM = "XF[3
YG@

                                                                                                                              (D-26) 

From the above equations, CMt  represents the torsion modulus constant, It  equates to the torsion 

inertia constant, hc is the mean perimeter, Ae is the enclosed area defined by the wall midline as 

figuratively shown in Figure 3, h is the cross-sectional wall thickness, CMte is the torsional modulus 

constant for the plastified section of the cross-section, β stands for the partial yielded portion of 

the beam-column cross-sectional area, FM also stands for the angle of twist, CM becomes equal to 

CMt for the yield limit and subsequently equal to (CMte + CMtp) for the inelastic phase. Meanwhile, 

the internal and external corner radii ro and ri represents the minute correction for the corner 

roundness of the rectangular hollow beam-column section. However, in this research investigation, 

the semi-analytical method applied ignores the effects of the inner and external corner radii in 

formulating the solution procedure. 
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APPENDIX D.3 Inelastic Equilibrium Equations for Biaxially Loaded Beam-Columns with 

Applied Torsion under Ambient Temperature  

For the biaxially loaded steel beam-column with applied torque as shown in Figure 1, the 

displacements of the cross-section are as follows: 

uQ = u + aFsina                                                                                                                      (D-27) 

vQ = v- aFcosa                                                                                                                        (D-28) 

sina = (yo-y)/a                                                                                                                        (D-29) 

cosa = (xo-x)/a                                                                                                                        (D-30) 

uQ = u + F(yo-y)                                                                                                                     (D-31) 

vQ = v - F(xo-x)                                                                                                                       (D-32) 

The displacements of the centroid become zero (x=y=0) and for doubly symmetric members xo 

and yo are equal to zero 

uC = u                                                                                                                                       (D-33) 

vC = v                                                                                                                                       (D-34) 

The equilibrium equations based on the internal resisting moments at a distance z is as follows: 

Mx = -MBX + RYZ + PvC                                                                                                          (D-35) 

My = -MBY + RXZ – PuC                                                                                                          (D-36)  

However, in the case of this biaxial setup, moments are only applied at the top end of the 

member. This makes MBX and MBY equal to zero.                                                   

where RXL = MTY                                                                                                                   (D-37) 

RYL = MTX                                                                                                                              (D-38) 

Hence, Mx =  z/L(MTX )+ Pv                                                                                                  (D-39) 

My=  z/L(MTY)- Pu                                                                                                                 (D-40) 
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MZ = MRZ                                                                                                                                (D-41) 

Through translating and rotating the cross-section, a new set of rectilinear coordinates are 

obtained: 

Mx = MX + FMY                                                                                                                      (D-42) 

Mh = MY -FMX                                                                                                                       (D-43) 

MV = MXu’ + MYv’+ PYOu’-PXOv’-`KF’-v/L(MTY)-u/L(MTX)                                                 (D-44) 

Induced moments due to the presence of partial rotational end restraints in the member are 

introduced as follows: 

mBX = kBXqBX                                                                                                                          (D-45) 

mBY = kBYqBY                                                                                                                          (D-46) 

mTX = -kTXqTX                                                                                                                          (D-47) 

mTY = -kTYqTY                                                                                                                          (D-48) 

where kBX, kBY, kTX, kTY, qBX, qBY, qTX and qTY represent the partial rotational stiffnesses and 

corresponding end slopes respectively. 

qBX = v’(0)                                                                                                                               (D-49) 

qBY = u’(0)                                                                                                                               (D-50) 

qTX = -v’(L)                                                                                                                             (D-51) 

qTY  = -u’(L)                                                                                                                            (D-52) 

Therefore, the induced moments are introduced into the new rectilinear coordinates x,h and V of 

the displaced cross section as follows: 

Mx =  -mBX+ z/L(MTX- mBX + mBX)+ PV+F( mBY + z/L(MTY +mTY - mBY)) - MRZu’            (D-53)  

Mh =   mBY+ z/L(MTY – mTX + mBX)- PU+F( -mBX + z/L(MTX +mTY - mBY)) - MRZv’          (D-54) 
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MV = u’(-mBX+ z/L(MTX – mTX + mBX) + v’(mBY + z/L(MTY +mTY - mBY)-`KF’-v/L(MTY + mTY- 

mBY)-u/L(MTX-mTX- mBX) + MRZ                                                                                            (D-55) 

From the above equations, 

K = ∫A σa²dA                                                                                                                            (D-56) 

where a2 is defined as follows: 

a2 = (xo – x)2 + (yo – y)2                                                                                                          (D-57) 

where a is defined as the distance between the point where σ acts and the shear center. By 

applying the fundamental rule of substituting equation 46 into equation 45, the resulting equation 

obtained is as follows: 

K = -Pr2 + βxMBX – βYMBY                                                                                                     (D-58) 

From the above equation: 

βx = 		∫ D	F]E
!LF!^_D
GE

− 2yo                                                                                                                          (D-59) 

βy =  	∫ D	E]E
!LF!^_D
GF

− 2xo                                                                                                                    (D-60) 

Meanwhile, by introducing the curvature about x and y axes Фx and Фy  as well as warping 

strain ϵw into equation   

Фx    = -v՚՚                                                                                                                                (D-61) 

Фy    = u՚՚                                                                                                                                 (D-62) 

ϵw       = -ωn Ф                                                                                                                            (D-63) 

Hence, by substituting equations B-61 through B-63 into the general equation 1 we obtain the 

following as a result: 

ϵ = ϵo -v՚՚y - u՚՚x + ϵr - ωn Ф՚՚                                                                                                  (D-64)     

By applying equations 2 through to 4 with equations D-38 into general equations 6 to 8, we obtain 

the underlisted following equations:                                                                                                          
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-g11ϵo + g12v՚՚ + g13 u՚՚+ g14Ф՚՚- Pr – Pp   = P                                                                            (D-65) 

-g21ϵo + g22v՚՚ + g23 u՚՚ + g24Ф՚՚- Mxre – Mxp   = -Mx                                                                                                 (D-66) 

-g31ϵo + g32v՚՚ + g33 u՚՚ + g34Ф՚՚- Myre – Myp   =  My                                                                   (D-67) 

(Cte )Ф ՚ - CweФ՚՚՚ + Mzp    =  Mz                                                                                               (D-68)           

Equation 1 is used to solve for   ϵo               

ϵo  =  𝟏
𝐠𝟏𝟏

(-P-Pp-Pr +g12v՚՚+g13 u՚՚+ g14Ф՚՚)                                                                                   (D-64) 

By substituting equation (D-64) into equations (D-66) and (D-67), the resulting equations are as 

follows:                                                      

-g21
𝟏
𝐠𝟏𝟏

(-P-Pp-Pr +g12v՚՚+g13 u՚՚+ g14Ф՚՚) + g22v՚՚ + g23 u՚՚ + g24Ф՚՚- Mxre – Mxp   = -Mx                    (D-69)   

-g31
𝟏
𝐠𝟏𝟏

(-P-Pp-Pr +g12v՚՚+g13 u՚՚+ g14Ф՚՚) + g32v՚՚ + g33 u՚՚ + g34Ф՚՚- Myre – Myp   =  My               (D-70) 

v՚՚(-g21g12+g11g22)/g11 + u՚՚(-g21g13+g11g23)/g11+ Ф՚՚(-g21g12+g11g24)/g11- g21(-P-Pp-Pr)/g11 – Mxre-

Mxp = -Mx                                                                                                                                (D-71) 

v՚՚(-g31g13+g11g32)/g11 + u՚՚(-g31g13+g11g33)/g11+ Ф՚՚(-g31g13+g11g34)/g11- g31(-P-Pp-Pr)/g11 – Myre-

Myp = My                                                                                                                                 (D-72) 

By substituting in the bending stiffnesses, load and moment parameters from equation (D-44)-

(D-47), the resulting equation becomes: 

Bxxv՚՚+ Bxyu՚՚+ BxwФ՚՚ + SxePep  - AeMxx(ep)  = - AeMxx                                                                (D-73) 

Byxv՚՚ + Byyu՚՚+ BywФ՚՚ + SyePep  - AeMyy(ep)  =   AeMyy                                                               (D-74) 

CteF՚ - CweF՚՚՚ + Mzp  = Mz                                                                                                              (D-75) 

Hence by applying the second order approach, the equilibrium equations for the biaxial bending 

moments and torsional equations in this research investigation is expressed as follows: 

Mξ = PV – mBX + !
"
	(MTX – mTX  + mBX ) + F( mBY + !

"
 ( MTY + mTY – mBY ))– MRZ u՚            (D-76) 
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Mŋ = - PU – mBY + !
"
	(MTY– mTX  + mBX ) + F( -mBX+ !

"
 ( MTX+ mTY – mBY ))– MRZ v՚          (D-77) 

Mς= -KF՚+v՚[ mBY + 
!
"
 (MTY + mTY – mBY)  + u՚[ -mBX+ !

"
 ( MTX – mTX- mBX)  - #

"
 ( MTY + mTY – 

mBY ) - %" (MTX – mTX – mBX) + MRZ                                                                                                       (D-78) 

Substituting equations (D-73 -D-75) into (D-76 – D-78), we obtain the governing general 

nonlinear differential equations : 

Bxxv՚՚ + Bxyu՚՚+ BxwФ՚՚ - AeMRZu՚ + AePv +  AeФ(  mBY+ !
"
 ( MTY – mTY- mBY)   

- AemBX +  Ae !" ( -mTX + mBX ) =  - AePvi   - Ae !" ( MTX )  -SxeP + SxePre + AeMxre   

- SxePp  +  AeMxp                                                                                                                      (D-79) 

Byxv՚՚ + Byyu՚՚+ BywФ՚՚ - AeMRZv՚ + AePu + AeФ( - mBx+ !
"
 (MTX- mTX+mBX) - AemBY -   

Ae !" ( mTY – mBY ) =  - AePui  + Ae !" (MTY)  -  SyeP - SyePre + AeMyre - SyePp  +  AeMyp         (D-80) 

 CweF՚՚՚ - (Cte + K)Ф՚ + v՚[mBY+ !
"
 ( MTY + mTX – mBX) +u՚[-mBX+ !

"
 (MTX- mTX + mBX)  - #

"
 (MTY 

+ mTY – mBY) - %
"
 (MTX – mTX – mBX) = - MRZ + Mzp                                                                     (D-81) 
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APPENDIX E: COMPUTER PROGRAM 

clear all 
clc 
n = 64; 
m = 1/8*n; 
A = zeros(m,n); 
X = zeros (m,n);     
Y = zeros(m,n); 
NA = n*m; 
NB = m*n; 
L = 33.75; 
a = 1.5; 
b = 1.5; 
d = 1.5; 
t = 0.125; 
tf = 0.125;     
tw = 0.125;  
As = a*b-(a-2*tw)*(b-2*tf); % area of section 
G= 11236; 
Sigmay = 58.64; 
Sigmar = 23.33; 
tauy   = 32.56; 
E = 29988; 
ey = Sigmay/E; 
Py = As*Sigmay; 
Zx =  a*b^2/4-(a-2*tw)*(b-2*tf)^2/(4);             
Zy =  b*a^2/4-(b-2*tf)*(a-2*tw)^2/(4);   
Mpx = Zx*Sigmay; 
Mpy = Zy*Sigmay; 
Sx = 0.29125; 
Sy = 0.29125; 
xo = 0; 
yo = 0; 
Sx1 = 0.0039;         % Elastic section modulus about x-axis 
Sx2 = 0.0352;         % Elastic section modulus about x-axis 
Sx3 = 0.0352;         % Elastic section modulus about x-axis 
Sx4 = 0.0039;         % Elastic section modulus about x-axis 
Sy1 = 0.0039;         % Elastic section modulus about y-axis 
Sy2 = 0.0352;         % Elastic section modulus about y-axis 
Sy3 = 0.0352;         % Elastic section modulus about y-axis 
Sy4 = 0.0039;         % Elastic section modulus about y-axis 
Ix1 = 0.00024;        % Moment of inertia about x-axis 
Ix2 = 0.0203;         % Moment of inertia about x-axis 
Ix3 = 0.0203;         % Moment of inertia about x-axis 
Ix4 = 0.00024;        % Moment of inertia about x-axis 
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Iy1 = 0.00024;        % Moment of inertia about x-axis 
Iy2 = 0.0203;         % Moment of inertia about x-axis 
Iy3 = 0.0203;         % Moment of inertia about x-axis 
Iy4 = 0.00024;        % Moment of inertia about x-axis 
Iw = (b^3*t^3)/36;    % warping constant 
Iwy1 = (b^3*t^3)/36;  %  
Iwy2 = (b^3*t^3)/36;  %  
Iwy3 = (b^3*t^3)/36;  %  
Iwy4 = (b^3*t^3)/36;  %  
Iwx1 = (b^3*t^3)/36;  %  
Iwx2 = (b^3*t^3)/36;  %  
Iwx3 = (b^3*t^3)/36;  %  
Iwx4 = (b^3*t^3)/36;  %  
Ixy1 = 0.000; 
Ixy2 = 0.000; 
Ixy3 = 0.000; 
Ixy4 = 0.000; 
Swx1 = 0;          % Warping statical moment about x-axis 
Swx2 = 0;          % Warping statical moment about x-axis 
Swx3 = 0;          % Warping statical moment about x-axis 
Swx4 = 0;          % Warping statical moment about x-axis 
Swy1 = 0;          % Warping statical moment about y-axis 
Swy2 = 0;          % Warping statical moment about y-axis 
Swy3 = 0;          % Warping statical moment about y-axis 
Swy4 = 0;          % Warping statical moment about y-axis 
p  = 0; 
p1 = 0; 
p2 = 0;  
p3 = 16; 
pM = 100; 
MxM= 100*sin(45); 
MzM = 50; 
e  = 8.125; 
di = 24; 
Mx = p3*sin(45)*di; 
My = p3*sin(45)*di; 
Mz = 0; 
ho = L/10; 
y = d/2; 
x = b/2; 
z= L; 
MTx = Mx;               % moment at the top end of the column about x-axis 
MTy = My;               % moment at the top end of the column about y-axis 
MBx = 0;                % moment at the bottom end of the column about x-axis 
MBy = 0;                % moment at the bottom end of the column about y-axis 
mTx = 0;                % moment due to springs at the top end of the column about x-axis 
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mTy = 0;                % moment due to springs at the top end of the column about y-axis 
mBx = 0;                % moment due to springs at the bottom end of the column about x-axis 
mBy = 0;                % moment due to springs at the top end of the column about y-axis 
Pr  =  Sigmar*As;       % residual axial load 
Pp  =  Sigmay*As;       % internal plastic load 
Pep = p1+Pr;   
Pepstar = Pr; 
Mxr = 0;                % residual bending moment about x-axis 
Mxp = 0;                % internal plastic moment about x-axis 
Myr = 0;                % residual bending moment about y-axis 
Myp = 0;                % internal plastic moment about y-axis 
Mxx = Mxr + Mxp; 
Myy = Myr + Myp; 
Mrz = Mz;           % reacting torsional moment  
Mzp = 0;                % torsional moment due to plastification%%  
AE1 = (b*tf);  
AE2 = (b*tf); 
AE3 = ((d-2*tf)*tw ); 
AE4 = ((d-2*tf)*tw ); 
Zx =  a*b^2/4-(a-2*tw)*(b-2*tf)^2/(4);            % Plastic section modulus about x-axis. 
Zy =  b*a^2/4-(b-2*tf)*(a-2*tw)^2/(4);            % Plastic section modulus about y-axis. 
% sigmay = sqrt((sigma)^2 + 3*(tauy^2));          % Shear yield stress. 
ey     = Sigmay/E ;                               % Yield strain. 
p1p    = p1/Py; 
Mpy    = Zy*Sigmay ;                              % Plastic My. 
Mpx    = Zx*Sigmay ;                              % Plastic Mx. 
Mpz    = tauy*2*tf*As; 
Ri     = 1.5*tf;                                  % External corner radii 
Ro     = 1.0*tf;                                  % Internal corner radii 
Ap     = (b-tf)*(d-tf)- (Ro^2+Ri^2*(4-pi))/4;     % Area enclosed by mean perimeter 
pm     = 2*[(b-tf)+ (d-tf)] - (Ri-Ro)*(4-pi);     % Mean perimeter length 
It     = (4*Ap^2*tf)/pm + (tf^3*pm)/3;            % Torsional constant 
Cw     = E*Iw;                                    % Warping stiffness 
Kt     = (4*Ap^2*tf)/pm; 
Ct     = G*Kt; 
Cmt    = (pm*It)/(tf*pm + 2*Ap);                  % Torsional modulus constant 
Mzy    = tauy*Cmt;                                % Internal resisting moment for yield limit 
phim   = (L*tauy*Cmt)/(G*It);                     % angle of twist 
Beta   = 0.5+(Ap/tf*pm)-(tauy*L)/(2*G*phim*tf);   % partial yielded cross-sections 
pme    = 2*(b+d-2*tf-2*Beta*tf-(4-pi)*(Ro+Ri)-(Beta*Ro)+ (Beta*Ri));       % mean perimeter 
elastic 
Ape    = (b-tf-Beta*tf)*(d-tf-Beta*tf)-((4-pi)*(Ro^2+Ri^2-Beta^2*Ro^2+Ri^2))/4;              %   
ACmte  = ((1-Beta)*pme*(4*pm*Ape^2/(pme) + (1-Beta)^2*tf^3*pme/3)); 
Cmte   = ACmte /(1-Beta*tf*pme + 2*Ape); 
Cmtp   = 2*Beta*tf*(b-Beta*tf)*(d-Beta*tf)-((4-pi)*(2*Ro-Beta*Ro+Beta*Ri))/4; 
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Mzi    = tauy*(Cmte + Cmtp);                                               % Internal resisting moment for 
inelastic limit 
Mzp    = 2*0.125*Ap*tauy;                                                  % Internal resisting moment for plastc 
limit  
voi    = L/10000;   
uoi    = L/10000;   
Vi     = voi*sin(pi*z/L); 
Ui     = uoi*sin(pi*z/L); 
Limit2  = Sigmay/E; 
 
                                       %% CROSS-SECTIONAL ANALYSIS %% 
%% CALCULATION OF INTERNAL STRAINS AND STRESES 
%% HORIZONTAL PLATES 
for i = 1:m*n 
    A(i) = (1.5/n)*(0.125/m); 
    A2 = A; 
end 
Q1 = 0.5:1:n/2; 
Q2 = (-n/2 + 0.5):1:n/2; 
for i = 1:n 
    j = 1:m; 
    if i<(1+n/2) 
        X(j,i)= -0.75+ Q1(i)*(1.5/n); 
    else 
        X(j,i)= Q2(i)*(1.5/n); 
    end 
    X2(j,i) = X(j,i); 
end 
 
Q3= 0.5:1:m; 
for i = 1:m 
    j = 1:n; 
    Y(i,j)= 0.75-Q3(i)*(0.125/m); 
    Y2(i,j)= -Y(i,j); 
end 
 
%% VERTICAL PLATES 
 
A3 = zeros(n,m); 
X3 = zeros(n,m); 
Y3 = zeros(n,m); 
for i = 1:m*n 
    A3(i) = (0.75-2*0.125)/(n)*(0.125/m); 
    A4 = A3; 
end 
Q4 = 0.5:1:m; 
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Q5 = (-m/2+0.5):1:m/2; 
for i = 1:m 
    j = 1:n; 
    X3(j,i)= 0.75-Q4(i)*(0.125/m); 
    X4(j,i)= -X3(j,i); 
end 
     
for i = 1:n 
    j = 1:m; 
    if i<(1+n/2) 
    Y3(i,j)= (-0.625+Q1(i)*(1.25/n)); 
    else  
    Y3(i,j)= -Q2(i)*(1.25/n); 
    end 
    Y4(i,j) = Y3(i,j); 
end  
Ae1 = A(1,1); 
Ae2 = A2(1,1); 
Ae3 = A3(1,1); 
Ae4 = A4(1,1); 
 
 
%% TANGENT STIFFNESS FORMULATION BASED ON PLATES 
%% PLATE 1 
g11P1  = E*Ae1; 
g12P1  = E*Sx1; 
g13P1  = E*Sy1; 
g14P1  = E*Swx1; 
g21P1  = E*Sx1; 
g22P1  = E*Ix1; 
g23P1  = E*Ixy1; 
g24P1  = E*Iwy1; 
g31P1  = E*Sy1; 
g32P1  = E*Ixy1; 
g33P1  = E*Iy1; 
g34P1  = E*Iwx1; 
g41P1  = E*Swx1; 
g42P1  = E*Iwy1; 
g43P1  = E*Iwx1; 
g44P1  = E*Swy1; 
%% PLATE 2 
g11P2  = E*Ae2; 
g12P2  = E*Sx2; 
g13P2  = E*Sy2; 
g14P2  = E*Swx2; 
g21P2  = E*Sx2; 
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g22P2  = E*Ix2; 
g23P2  = E*Ixy2; 
g24P2  = E*Iwy2; 
g31P2  = E*Sy2; 
g32P2  = E*Ixy2; 
g33P2  = E*Iy2; 
g34P2  = E*Iwx2; 
g41P2  = E*Swx2; 
g42P2  = E*Iwy2; 
g43P2  = E*Iwx2; 
g44P2  = E*Swy2; 
%% PLATE 3 
g11P3  = E*Ae3; 
g12P3  = E*Sx3; 
g13P3  = E*Sy3; 
g14P3  = E*Swx3; 
g21P3  = E*Sx3; 
g22P3  = E*Ix3; 
g23P3  = E*Ixy3; 
g24P3  = E*Iwy3; 
g31P3  = E*Sy3; 
g32P3  = E*Ixy3; 
g33P3  = E*Iy3; 
g34P3  = E*Iwx3; 
g41P3  = E*Swx3; 
g42P3  = E*Iwy3; 
g43P3  = E*Iwx3; 
g44P3  = E*Swy3; 
%% PLATE 4 
g11P4  = E*Ae4; 
g12P4  = E*Sx4; 
g13P4  = E*Sy4; 
g14P4  = E*Swx4; 
g21P4  = E*Sx4; 
g22P4  = E*Ix4; 
g23P4  = E*Ixy4; 
g24P4  = E*Iwy4; 
g31P4  = E*Sy4; 
g32P4  = E*Ixy4; 
g33P4  = E*Iy4; 
g34P4  = E*Iwx4; 
g41P4  = E*Swx4; 
g42P4  = E*Iwy4; 
g43P4  = E*Iwx4; 
g44P4  = E*Swy4; 
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Ta = [ E*Ae1  E*Sx1 E*Sy1 E*Swx1 ; E*Sx1 E*Ix1 E*Ixy1 E*Iwy1; E*Sy1 E*Ixy1 E*Iy1 
E*Iwx1; E*Swx1 E*Iwy1 E*Iwx1 E*Swy1]; 
Tb = [ E*Ae2  E*Sx2 E*Sy2 E*Swx2 ; E*Sx2 E*Ix2 E*Ixy2 E*Iwy2; E*Sy2 E*Ixy2 E*Iy2 
E*Iwx2; E*Swx2 E*Iwy2 E*Iwx2 E*Swy2]; 
Tc = [ E*Ae3  E*Sx3 E*Sy3 E*Swx3 ; E*Sx3 E*Ix3 E*Ixy3 E*Iwy3; E*Sy3 E*Ixy3 E*Iy3 
E*Iwx3; E*Swx3 E*Iwy3 E*Iwx3 E*Swy3]; 
Td = [ E*Ae4  E*Sx4 E*Sy4 E*Swx4 ; E*Sx4 E*Ix4 E*Ixy4 E*Iwy4; E*Sy4 E*Ixy4 E*Iy4 
E*Iwx4; E*Swx4 E*Iwy4 E*Iwx4 E*Swy4]; 
 
TA = repmat(Ta,n*m); 
TB = repmat(Tb,m*n); 
TC = repmat(Tc,m*n); 
TD = repmat(Td,n*m); 
NA = n*m; 
 
f = [p1;Mx;My;Mz]; 
EsA = pinv(Ta)*f; 
EsB = pinv(Tb)*f; 
EsC = pinv(Tc)*f; 
EsD = pinv(Td)*f; 
 
for i = 1:m 
    j = 1:n; 
    Esp1(i,j) = -Y(i,j)*EsA(1,1)+EsA(2,1); 
    Sigma1(i,j) = Esp1(i,j)*E; 
    if Esp1(i,j)> Sigmay/E 
        Sigma1(i,j) = Sigmay; 
    end  
    if Esp1(i,j)<-Sigmay/29998 
        Sigma1(i,j)= -Sigmay; 
    end 
Px1(i,j) = -Sigma1(i,j)*A(1,1); 
Mx1(i,j) =  Sigma1(i,j).*Y(i,j)*A(1,1); 
My1(i,j) =  Sigma1(i,j).*X(i,j)*A(1,1); 
 
Esp2(i,j) = -Y2(i,j)*EsB(1,1)+EsB(2,1); 
    Sigma2(i,j) = Esp2(i,j)*E; 
    if Esp2(i,j)> Sigmay/E 
        Sigma2(i,j) = Sigmay; 
    end  
    if Esp2(i,j)<-Sigmay/29998 
        Sigma2(i,j)= -Sigmay; 
    end 
Px2(i,j) = -Sigma2(i,j)*A2(1,1); 
Mx2(i,j) =  Sigma2(i,j).*Y2(i,j)*A2(1,1); 
My2(i,j) =  Sigma2(i,j).*X2(i,j)*A2(1,1); 
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end 
 
for i = 1:n 
    j = 1:m; 
Esp3(i,j) = -Y3(i,j)*EsC(1,1)+ EsC(2,1); 
    Sigma3(i,j) = Esp3(i,j)*E; 
    if Esp3(i,j)> Sigmay/E 
        Sigma3(i,j) = Sigmay; 
    end  
    if Esp3(i,j)<-Sigmay/29998 
        Sigma3(i,j)= -Sigmay; 
    end 
Px3(i,j) = -Sigma3(i,j)*A3(1,1); 
Mx3(i,j) =  Sigma3(i,j).*Y3(i,j)*A3(1,1); 
My3(i,j) =  Sigma3(i,j).*X3(i,j)*A3(1,1); 
 
 
Esp4(i,j) = -Y4(i,j)*EsD(1,1)+EsD(2,1); 
    Sigma4(i,j) = Esp4(i,j)*E; 
    if Esp4(i,j)> Sigmay/E 
        Sigma4(i,j) = Sigmay; 
    end  
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