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ABSTRACT

INVESTIGATION OF COOPERATIVE SUBRADIANCE IN
DENSE ULTRACOLD RUBIDIUM ENSEMBLES

Brent Michael Jones
Old Dominion University, 2024
Director: Dr. Charles Sukenik

This dissertation presents results of an experimental investigation of the time resolved

fluorescence from a cold and dense ensemble of 87Rb atoms after the sample is illuminated

by a short probe pulse. The goal of the experiment was to investigate cooperative subradiant

behavior, characterized by a much longer decay time compared to the natural lifetime, in-

duced in an off resonant probe regime. Such long lived states, if controllable, would provide

a means to store quantum information. The samples were initially created in a magneto-

optical trap before atoms were loaded into a far off resonance trap to achieve atomic densities

of ≈ 1014 atoms/cm3. The off-resonant temporal response due to a 4 ns probe pulse was

the main focus of the investigation, where the probe was blue-detuned 50 − 295 MHz from

the 5S1/2 F = 2 → 5P3/2 F
′ = 3 transition. Furthermore, by using a short probe pulse, we

were able to probe the response outside of the typically explored steady state regime. Our

results demonstrate subradiant behavior that is well described by the weak field coupled

dipole model.
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CHAPTER 1

INTRODUCTION

The study of the collective and cooperative behavior of many-body atomic systems has

been a rich area of experimental and theoretical exploration over the past several decades.

Many-body systems are interesting because the constituents not only interact with the ex-

ternal environment, but can also interact with each other. The result of these interactions

can lead to a response of the system that diverges significantly from single atom behavior.

Investigation of light scattering is one of the main experimental avenues in the regime

of light-matter interactions. Light scattering theory and experiments have tackled topics in-

cluding, but not limited to, superradiance [1–10], subradiance [11–27], coherent back scatter-

ing [28–38], electromagnetically induced transparency (EIT) [39–46], and multiple scattering

[47–52]. Investigating methods to control and read quantum systems is a common theme

among a majority of these experiments. A controllable long-lived quantum system would be

beneficial to the production of quantum memories and sensors.

An interesting set of topics in the realm of collective and cooperative effects of many-body

systems is superradiance and subradiance, which were originally formulated by Dicke [1] in

1954. Dicke proposed that an ensemble of N two-level atoms separated by a distance much

less than the excitation wavelength can interact cooperatively in such a way that modifies

the decay rate of the system. In the most general sense these effects manifest themselves,

due to the contribution of a set of atoms in a light field, in such a way that the excited

state lifetime is enhanced or suppressed. Enhancement of the decay rate has been given

the name superradiance while the suppression of the decay rate is known as subradiance.

Superradiance has been studied to a much greater extent in comparison to subradiance,

including in our laboratory by previous students [6, 7], due to the fragility of such long-

lived subradiant states. Creating long-lived coherent states is a challenge because they are

typically weakly coupled to excitation channels and highly susceptible to decoherence due

to interaction with the surrounding environment. The experimental endeavour to directly

observe subradiance in a extended, dense atomic sample is the main focus of this dissertation.

Subradiance has been reportedly observed using ions [11], molecular systems [13, 15],

atomic lattices [16, 23], cold dilute atomic samples [17–22, 25, 27], and cold dense atomic
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samples [26], where the authors have used direct and indirect evidence to justify their find-

ings. Our experiment focused on the direct temporal decay behavior of both a cold dilute

and dense atomic sample of 87Rb under experimental conditions that have not yet been

explored by other research groups.

Now a short history of several experiments involving the observation of subradiance in

cold dilute and dense samples of 87Rb will be given to provide context to the experimental

landscape that has been explored in the past. There is one main group that has performed

the bulk of the experimental observations of subradiance in dilute samples in recent years.

The following experiments have all been performed on 87Rb with a linearly polarized probe

pulse where the given detuning is with respect to the 5S1/2 F = 2 → 5P3/2 F = 3′ transi-

tion. Subradiance has been reported to be observed in a cold (T ≈ 100 µK) spatially large

(Gaussian radius R ≈ 1 mm) but dilute (ρ0 ≈ 1010-1011 cm−3) ensemble after a weak probe

pulse is introduced under several different experimental conditions [17, 20, 21, 25]. Probe

pulse lengths were between 10-30 µs with detunings of -60 to 10 MHz. Guerin et al. [17]

reported the first direct evidence of subradiance in a large dilute sample and determined the

decay rate was dependent on optical depth. Weiss et al. [20] investigated subradiant decay

and the significance of the probe beam size with respect to the sample size. Their findings

suggest that radiation trapping, rather than subradiance, may dominate decay dynamics at

large optical depths. Weiss et al. [21] analyzed subradiance over a large temperature range

and discovered that the subradiant decay did not appreciably change until reaching temper-

atures upward of 500 µK. Cipris et al. [25] observed that the subradiant state population

was enhanced by increasing the probe intensity. Within this dilute regime there were two

main consensuses. The first was that the subradiant lifetime scaled with optical depth. Even

at very low optical depth (b0 ≤ 1), the subradiant lifetime was shown to increase as optical

depth was increased by Das et al. [22]. The second was, even though experimental and theo-

retical advances have been made, that the full analytical nature of subradiance is incomplete

and further experimental and theoretical endeavors will be needed to paint a full picture.

Analysis in this regime was typically accompanied with the comparison to the numerical

results of the coupled dipole model. The coupled dipole model, which will be explained in

more detail in a later chapter, requires an important rescaling of spatial parameters due to

computational limitations on the number of atoms. In the dilute regime it was found that

the coupled dipole model predicts the subradiant behavior when rescaling at constant opti-

cal depth. Although in the dense regime (ρ0 ≈ 1013-1014 cm−3), where less work has been

done, Ferioli et al. [26] observed subradiance after a 150 ns probe pulse within a detuning
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range between 0 and 18 MHz. They found the subradiant lifetime was found to scale with

the number of atoms rather than the optical depth as for the dilute case, and was intensity

independent for saturation parameters between 0.125 and 250. The coupled dipole model

was also used during this analysis and the spatial rescaling was performed under constant

density, which is in contrast to the dilute case. In summary, subradiance has been observed

and analyzed in dilute and dense atomic samples due to a near resonant and long probe

pulse. The long duration of the probe pulse, with respect to the natural lifetime, allows the

system to largely achieve steady state and has been analyzed as such within the coupled

dipole model.

Another interesting subradiance observation was attributed to two-body molecular exper-

iments where typically dipole forbidden excited state molecular transitions were populated.

The experiments were performed on Yb by Takasu et al. [13] and Sr by McGuyer et al.

[15] which were able to take advantage of a simplified atomic energy level structure of these

atoms. 87Rb on the other hand has a much more complex molecular structure, described in

more detail in the next chapter, which presents some challenges for populating long lived or

‘forbidden’ molecular transitions. While not the focus of this dissertation, our experiment

explores a regime where many nearby repulsive 87Rb molecular transitions are known to ex-

ist. Therefore, the two-body molecular mechanism was kept in mind. Creation of subradiant

states in this case would likely manifest itself a strong detuning dependence in the subradi-

ant state creation amplitude, thus showing deviations from expected many-body cooperative

behavior. As will be shown, the many-body description models our results well, which leaves

the molecular framework an open topic for future exploration.

The interpretation of subradiance has evolved over the years, which has led to some

ambiguity. Subradiance can be attributed to several effects, which include cooperative many-

body systems, forbidden two-body molecular transitions, and multiple scattering. Interesting

challenges present themselves in attempting to separate these similar behaviors. For instance,

our interpretation of multiple scattering is due to a photon traversing through the sample

one atom at a time and exiting at a much later time than a single scatter. Although both

multiple scattering and cooperative subradiance are attributed to delayed light exits, multiple

scattering is not necessarily a cooperative excitation effect but simply due to the optical

depth of the sample. Subradiance from the two-body molecular system has an entirely

different foundational principle where a typically forbidden excited state that is weakly

coupled to the ground state is populated. A possible avenue to decouple the different long

lived effects is through the polarization dependence of the scattered light. Single scattering



4

events retain polarization information, which is in contrast to the random walk nature of

multiple scattering where the scattered light is depolarized.

Our experiment probes dilute and dense 87Rb ensembles at detunings of 50-295 MHz with

respect to the 5S1/2 F = 2 → 5P3/2 F = 3 transition and for pulse widths of ≈ 4 ns. The

short pulse does not allow for steady state approximations and the full temporal response was

taken into account, which is in contrast to the aforementioned experiments where only the

decay after probe shut off was analyzed. In summary, our experiment explored a new region

of detuning space associated with many overlapping repulsive excited state molecular curves

and analyzed temporal data with methods proven to be viable for many-body cooperative

behavior. One motivation of our investigation was to determine if large deviations from

the expected many-body behavior occur, and if so, can the behavior provide evidence of

subradiance due to the mixing of molecular states. Another key facet of our experiment was

the collection of subradiant decay with a pulse shorter than the natural lifetime, which, to

our knowledge, has not been performed before.

The dissertation is organized as follows: The theory for the applicable atomic systems

explored in this dissertation, from a simple two-level single atom, to multi-level two-body

interactions, to many-body interactions will be discussed in Chapter 2. Most notably, the

derivations and equations will provide insight into the physics involved with atom trapping,

molecular excitations, and many-body cooperative behavior. Building off Chapter 2, atom

trapping and characterization techniques used to create cold atomic ensembles will be pre-

sented in Chapter 3. Chapter 4 discusses the experimental arrangement and data acquisition

techniques used to obtain the temporally resolved scattered light data that is presented and

analyzed in Chapter 5. Finally, we conclude in Chapter 6 with a summary of our results and

prospects for future investigations.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 WIGNER-ECKART THEOREM

The Wigner-Eckart theorem (WET) is a powerful tool used in a significant number of

atomic physics calculations due to its elegant ability to simplify matrix elements dealing with

angular momentum eigenstates. Over the years the Wigner-Eckart theorem has evolved in

such a way that, unfortunately, several different notation schemes which may or may not be

equivalent to each other have been introduced. For clarity, the convention used in this section

is equivalent to that of [53–55]. Similar conventions can also be found in Refs. [56–58]; these

are extremely helpful resources.

The importance of the Wigner-Eckart theorem is that it allows the calculation of a

matrix element of an irreducible tensor operator T k
q where k is the tensor rank and q is the

component. Many important interaction potentials, such as the dipole operator, take the

form of irreducible tensors.

The generalized Wigner-Eckart theorem [54] is

〈
α′j′m′|T k

q |αjm
〉

= (−1)j
′−m′

(
j′ k j

−m′ q m

)〈
α′j′||T k||αj

〉
, (1)

where α represents all other quantum numbers. The double bar matrix element is known

as the reduced matrix element and it is independent of m, m′, and q. The 2 × 3 matrix is

known as the Wigner 3-j symbol. Since rubidium will be studied throughout this dissertation,

namely the 5S1/2 → 5P3/2 transition, only the relevant quantum numbers will be used from

now on. The Wigner-Eckart theorem now reads

〈
J ′IF ′m′

F |T k
q |JIFmF

〉
= (−1)F

′−m′
F

(
F ′ k F

−m′
F q mF

)〈
J ′IF ′||T k||JIF

〉
, (2)

where I is the nuclear spin, J is the electronic angular momentum, F = I + J is the total

atomic angular momentum, and mF is the component of the total angular momentum in z.
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The reduced matrix element can be further reduced to eliminate the F dependence by the

following relation, 〈
J ′IF ′||T k||JIF

〉
= (−1)F+I+J ′+k

√
(2F ′ + 1) (2F + 1)

×

{
F ′ k F

J I J ′

}〈
J ′||T k||J

〉
, (3)

where the 2 × 3 matrix in curly brackets is known as a 6-j symbol. The 3-j and 6-j

symbols represent real numbers which can be calculated via tables or much more easily

using Mathematica. The final matrix element is found by substitution of Eq. (3) into Eq.

(2) which results in〈
J ′IF ′m′

F |T k
q |JIFmF

〉
= (−1)F

′+F+I+J ′+k−m′
F

√
(2F ′ + 1) (2F + 1)

×

(
F ′ k F

−m′
F q mF

){
F ′ k F

J I J ′

}〈
J ′||T k||J

〉
, (4)

where the
〈
J ′||T k||J

〉
reduced matrix elements can be found experimentally.

The Hermitian adjoint of a spherical tensor operator, which acts as a spherical harmonic,

is defined as [55]

T k†
q = (−1)qT k

−q. (5)

Another useful property is〈
FmF |T k

q |F ′m′
F

〉∗
= ⟨FmF |T k†

q |F ′m′
F ⟩. (6)

Utilizing Eq. (5) and Eq. (6) together yields〈
FmF |T k

q |F ′m′
F

〉
= (−1)q⟨FmF |T k†

−q|F ′m′
F ⟩

= (−1)q
〈
F ′m′

F |T k
−q|FmF

〉∗
, (7)

which is used to flip the prime and unprimed values and will be used in future sections.

2.2 SEMI-CLASSICAL ATOMIC THEORY

The discussion in this section will focus on a semi-classical theory where the atomic states

are represented quantum-mechanically and interact with a classical electric field. Taking on

the fully quantum picture also returns the same results, therefore either method is sufficiently

appropriate. Certain results from this section will be referenced in various apparatus theory
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sections. The basic concepts of this section are based primarily on discussions by Refs.

[59, 60].

2.2.1 OPTICAL BLOCH EQUATIONS

The optical Bloch equations utilize the so-called density matrix which will be used to

solve the Schrödinger equation for a two level atom in the interaction representation.

The density operator is defined as

ρ =
∑
i

Pi|ψi⟩⟨ψi|, (8)

where |ψi⟩ is an orthonormal state of the system. Pi is the probability of |ψi⟩ existing in

some arbitrary state. The probability follows the property of
∑

i Pi = 1 since the states |ψi⟩
comprise a complete orthonormal set. Therefore the density operator acts on the state |ψn⟩
as given by

ρ|ψn⟩ =
∑
i

Pi|ψi⟩⟨ψi|ψn⟩ = Pn|ψn⟩. (9)

The state vectors |ψi⟩ can be expanded into a complete orthonormal basis set

|ψi⟩ =
∑
n

ani|n⟩ =
∑
n

|n⟩⟨n|ψi⟩, (10)

where the completeness relation is ∑
n

|n⟩⟨n| = 1. (11)

The amplitude, or projection of the state |ψi⟩ onto the basis state |n⟩, is given by

⟨n|ψi⟩ = ani. (12)

The density operator can be written in the matrix representation in the set of |n⟩ basis states

by substituting Eq. (10) into Eq. (8), which yields

ρ =
∑
i

Pi|ψi⟩⟨ψi| =
∑
i

∑
nm

Pi|n⟩⟨n|ψi⟩⟨ψi|m⟩⟨m|

=
∑
i

∑
nm

ania
∗
miPi|n⟩⟨m|, (13)

where the completeness relation Eq. (11) was inserted from the left and right sides. The

specific matrix elements of the density operator are

ρnm = ⟨n|ρ|m⟩ =
∑
i

Piania
∗
mi, (14)
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where

ρ∗nm = ⟨n|ρ|m⟩∗ = ⟨m|ρ|n⟩ = ρmn. (15)

An important property of the density matrix is the trace, or the sum of the diagonal

matrix elements, is exactly unity, and is given by

Tr [ρ] ≡
∑
n

⟨n|ρ|n⟩ =
∑
ni

Pi⟨n|ψi⟩⟨ψi|n⟩ =
∑
ni

Pi⟨ψi|n⟩⟨n|ψi⟩

=
∑
i

Pi⟨ψi|

(∑
n

|n⟩⟨n|

)
|ψi⟩ =

∑
i

Pi⟨ψi|ψi⟩ = 1. (16)

The Schrödinger equation in the density matrix representation is

ρ̇ = − i

ℏ

[
Ĥ, ρ

]
, (17)

where the Hamiltonian is given by

Ĥ = H0 + V. (18)

A particular matrix element is then given by

ρ̇jk = − i

ℏ

[
⟨j| (H0 + V )

∑
m,n

ρmn|m⟩⟨n|k⟩ − ⟨j|
∑
m,n

ρmn|m⟩⟨n| (H0 + V ) |k⟩

]
. (19)

The unperturbed energies follow

H0|n⟩ = En|n⟩ = ℏωn|n⟩, (20)

which leads to a simplification of the matrix element

ρ̇jk = −iρjk (ωj − ωk) − i

ℏ

[
⟨j|V

∑
m,n

ρmn|m⟩⟨n|k⟩ − ⟨j|
∑
m,n

ρmn|m⟩⟨n|V |k⟩

]
. (21)

The matrix elements further simplify due to orthogonality of the states to

ρ̇jk = −iρjk (ωj − ωk) − i

ℏ
∑
l

(
ρlk⟨j|V |l⟩ − ρjl⟨l|V |k⟩

)
. (22)

In order to get the set of ODEs in a form viable for numerical calculations a rotation must

be made by introducing a new matrix defined as

Cjk = ρjke
i(ωj−ωk)t. (23)



9

Taking the time derivative of Eq. (23) leads to a new set of differential equations given by

Ċjk = ρ̇jke
i(ωj−ωk)t + i (ωj − ωk) ρjke

i(ωj−ωk)t

= ρ̇jke
i(ωj−ωk)t + i (ωj − ωk)Cjk. (24)

Substitution of Eq. (22) into Eq. (24) cancels out the oscillating terms and gives

Ċjk = − i

ℏ
∑
l

(
ρlk⟨j|V |l⟩ − ρjl⟨l|V |k⟩

)
ei(ωj−ωk)t

= − i

ℏ
∑
l

(
Clke

−i(ωl−ωk)t⟨j|V |l⟩ − Cjle
−i(ωj−ωl)t⟨l|V |k⟩

)
ei(ωj−ωk)t

= − i

ℏ
∑
l

(
Clke

−i(ωl−ωj)t⟨j|V |l⟩ − Cjle
−i(ωk−ωl)t⟨l|V |k⟩

)
. (25)

The perturbation matrix elements due to the dipole operator are given by

⟨j|V |k⟩ = −eE0⟨j|ϵ̂ · r|k⟩ cos(ωαt) =
−eE0

2
⟨j|ϵ̂ · r|k⟩

[
eiω

αt + e−iωαt
]
, (26)

where ωα is the frequency of the driving field and α is used to designate multiple lasers

if necessary. The α superscript and sums can be dropped if there is only one laser. The

perturbation is further simplified by the introduction of the Rabi frequency Ωα
jk and the

detuning ∆α
jk of a particular laser ωα from the resonance frequency between the j and k

states

Rα
jk =

eE0

2ℏ
⟨j|ϵ̂ · r|k⟩ =

Ωα
jk

2
(27)

ωα = (ωk − ωj) + ∆α
jk. (28)

It is important to note that a particular Rα
jk is half the Rabi frequency Ωα

jk between states j

and k. The Rabi frequency Ωα
jk is a real value therefore Ωα

kj = Ω∗α
jk = Ωα

jk. If multiple lasers

are used in the calculations many of the Rα
jk can be set to zero if the states are far away

from each other. Substitution of Eq. (28) into Eq. (26) gives a result of

⟨j|V |k⟩ = −ℏ
∑
α

Rα
jk

[
eiω

αt + e−iωαt
]

= −ℏ
∑
α

Rα
jk

[
ei(ωk−ωj+∆α

jk)t + e−i(ωk−ωj+∆α
jk)t
]
. (29)

Substitution of Eq. (29) into Eq. (25) with the appropriate subscripts gives

Ċjk = i
∑
l

Clk

∑
α

Rα
jl

[
ei∆

α
jlt + e−i(2(ωl−ωj)+∆α

jk)t
]

− i
∑
l

Cjl

∑
α

Rα
lk

[
ei∆

α
lkt + e−i(2(ωk−ωl)+∆α

lk)t
]
, (30)
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where the oscillating terms can be removed after invoking the rotating wave approximation

which yields

Ċjk = i
∑
l,α

[
ClkR

α
jle

i∆α
jlt − CjlR

α
lke

i∆α
lkt
]
. (31)

The next appropriate step is to separate Eq. (31) into diagonal and off diagonal terms, which

are given by

Ċjk = i
∑
l,α

[
ClkR

α
jle

i∆α
jlt − CjlR

α
lke

i∆α
lkt
]
− Γj + Γk + ΓL

2
Cjk (32)

Ċjj =
∑
l,α

[
iCljR

α
jle

i∆α
jlt − iCjlR

α
lje

i∆α
ljt + AljCll

]
− ΓjCjj, (33)

where Γj is spontaneous emission/decay and ΓL represents the linewidth of the laser. The

reasoning behind the inclusion of the decay terms in this form can be seen by analyzing Eq.

(32) and Eq. (33) in the absence of an electric field and assuming that the amplitudes decay

exponentially. This can be seen by first defining the matrix elements Cjk in terms of the

amplitudes of the jth and kth state, which is given by

Cjk = aj(t)a
∗
k(t). (34)

In the absence of an electric field the amplitudes are assumed to decay as ai = ai(0)e−
Γi
2
t and

therefore Cjk = aj(0)a∗k(0)e−
Γj+Γk

2
t. This is based on the empirical nature of atomic systems

that exponentially decay at their respective natural decay rate. With the aforementioned

in mind Eq. (32) and Eq. (33) follow the same behavior. The spontaneous decay term is

defined as

Γj =
∑
l=1

Ajl, (35)

where Ajl is the decay rate from state j to state l. Non-zero values of Ajl occur when j > l

for most applications since spontaneous decay happens from an upper state to a lower state,

therefore Γ21 ̸= Γ12 = 0 if state 2 is defined as the upper state and the transition from 2 → 1

is dipole allowed. Depending on the initial labeling of the states this may change and must

be taken care of appropriately.

At this point the Ċjk matrix elements can be determined by Eq. (32) and Eq. (33). The

detuning values ∆α
jk have an important property where

∆α
kj = −∆α

jk. (36)
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The trend of ∆α
jk where j < k is used. For example, if laser 1 is above the resonance energy

between a lower state 1 and upper state 2, then ∆1
12 is taken as a positive value from state

2. Rabi frequencies follow the property where

Rα
kj = Rα

jk. (37)

The matrix elements Eq. (32) and Eq. (33) still have oscillatory behavior due to the

ei∆
α
jkt terms, therefore another rotation must be made to further simplify the equations for

numerical computation. Most texts typically stop at this point because the next rotation

is dependent on the type of system, number of lasers, and number of states. The next

substitutions are typically non-trivial but a method was found that depends on the excitation

path an atom could take from state j → k.

For the next rotation, lets define the following

σα
jk = Cjke

−i∆jk,patht, (38)

where ∆jk,path is the sum of the detunings going from j to k if both j and k are directly

accessed by lasers. There is a small modification for states which are not accessed by lasers,

as in a state which an excited state can decay to and then decay back to a ground state.

The modification is small and still follows the same logic. An example is needed to clarify.

First, assume a system of eight states and two lasers. The first laser connects states 1 → 2

with detuning ∆1
12 and 1 → 3 with ∆1

13. The ground state, state 1, is analogous to 85Rb

5S1/2 F = 3, while states 2 and 3 are analogous to the 5P3/2 F = 3 and F = 4 respectively.

The second laser connects states 2 and 3 to 4,5,6, and 7, which are analogous to the 5D5/2

F = 5, 4, 3, 2 respectively. Finally state 8 is analogous to the 6P3/2 state which the 5D5/2

can decay to. State 8 can then decay to state 1. Therefore the following laser transitions are

allowed. (1 → 2, 3), (2 → 5, 6, 7), and (3 → 4, 5, 6).

After performing the Ċjk sum in Eq. (31), substitutions to go from Cjk → σjk is ap-

proached in the following way. As mentioned in the description of Eq. (38) a path from

state j to k must be obtained and then a direct substitution can be made. For example the

path ∆jk,path for σ12 is simply ∆1
12 because a laser is directly connected to those two states.

A more complex example would be σ47. There is no laser connecting those states directly,

therefore the path must go through the states as (4 → 3 → 1 → 2 → 7). The detuning path

will then be ∆2
43 + ∆1

31 + ∆1
12 + ∆2

27, where after using the property in Eq. (36) becomes

−∆2
34 − ∆1

13 + ∆1
12 + ∆2

27. The substitution, or rotation, is then

σ47 = C47e
−i(−∆2

34−∆1
13+∆1

12+∆2
27)t. (39)
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Continuing the process, the time derivative yields

σ̇47 = Ċ47e
−i(−∆2

34−∆1
13+∆1

12+∆2
27)t − i

(
−∆2

34 − ∆1
13 + ∆1

12 + ∆2
27

)
σ47, (40)

where Ċ47 was obtained by Eq. (31). All other substitutions for states connected by lasers

follow the same simple path method. Now to discuss the aforementioned modification for

states not directly connected by lasers, as in state 8 in this example. Essentially the process

is the same but there is no “path” to 8. For example, σ58 the path must go through the

states (5 → 2 → 1 → 8) which yields ∆2
52 + ∆1

21 + ∆?
18 but ∆?

18 = 0 because no laser connects

the states. The rotation for this element is given by

σ58 = C58e
−i(−∆2

25−∆1
12)t. (41)

There is also another path (5 → 3 → 1 → 8) which is equally correct and is exactly the

same as the previous path. This can be seen because states 2 and 3 are split by a value

S23. The first laser connecting states (1 → 2, 3) is detuned a value of ∆1
13 from state 3,

therefore it is detuned from state 2 by ∆1
12 = ∆1

13 +S23. Similarly for the states (2, 3 → 5, 6),

∆2
25 = ∆2

35 − S23. Substitutions can be made then which show ∆2
25 + ∆1

12 = ∆2
35 + ∆1

13. In

order to add a bit more completeness, it was determined there is no (1 → 8) path, therefore

σ18 = C18.

The possible paths were computationally determined by envisioning the paths from some

j → k with a matrix. The matrix shown in Eq. (42) represents a simple 1/0 (allowed/not

allowed) for a transition between j → k. Selecting a particular j row of the matrix provides

the states in which the j state can transition to.



0 1 1 0 0 0 0 0

1 0 0 0 1 1 1 0

1 0 0 1 1 1 0 0

0 0 1 0 0 0 0 0

0 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0


(42)

For an example j = 5 is chosen,
(

0 1 1 0 0 0 0 0
)

, which opens up two new

paths starting from 2 and 3. The path starting at 2,
(

1 0 0 0 X 1 1 0
)

, opens up
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three new paths. The X is put in to eliminate simply going back to state 5 and signifies a

stop to a particular path. As the process continues a list of paths is created. Some paths

may end at the same value of k while others may end at different values of k. Therefore

specifically searching for a path starting with j = 5 and ending at some k may return several

paths, but the shortest path is always chosen for the substitutions. For states not connected

by a laser the computational process is slightly different due to no path leading to state 8.

The path which is chosen for some σj8 is always the path that goes from j → 1. Again there

is no path from 1 → 8, therefore the path from j → 8 is simply j → 1. The last statement

must be reiterated to avoid confusion. If state 8 is not connected by a laser, then the path

to state 8 is instead defined as the path to state 1. It was found that, if these rules are

followed, the results always agree with know results. With that in mind, the output of this

method will be given for two and three level systems.

A few simple results will be presented since the two level atom approximation will be

utilized in following sections. Solving the σ̇jk terms for a two level system gives the following

expected results.

σ̇11 = −iΩ12

2
(σ12 − σ21) + Γ21σ22 (43)

σ̇12 = −iΩ12

2
(σ11 − σ22) −

(
Γ21

2
+ i∆12

)
σ12 (44)

σ̇21 = i
Ω12

2
(σ11 − σ22) −

(
Γ21

2
− i∆12

)
σ21 (45)

σ̇22 = i
Ω12

2
(σ12 − σ21) − Γ21σ22. (46)

The steady state solutions can be found by setting the l.h.s. of each of the above equations

to zero. After appropriate substitutions the steady state solutions are

σ12 = −
(

Ω12

2

) (
∆12 + i

Γ21

2

)
∆2

12 +

(
Γ21

2

)2

+
1

2
Ω2

12

(47)

σ22 =

(
Ω12

2

)2
1

∆2
12 +

(
Γ21

2

)2

+
1

2
Ω2

12

, (48)

where σ21 = σ∗
12 and σ11 = σ22 − 1. Solving for the original density matrix elements Cjk one

must include the term substituted in Eq. (38), therefore yielding

C12 = σ12e
i∆12t = σ12e

i(ω−ω0)t (49)

C22 = σ22. (50)
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Although most of the upcoming derivations in the following sections rely on the two

level atom approximation, I was also involved with a separate, electromagnetically induced

transparency (EIT) project in our lab that required the optical Bloch equations to handle

multiple lasers interacting with an atom of several levels. For example, the solutions to a

three level atom system in the ladder configuration interacting with two lasers are given

in Eq. (51). Ω1
12 corresponds to the Rabi frequency due to the first laser on the 1 → 2

transition while Ω2
23 corresponds to the second laser on the 2 → 3 transition. The results

given in Eq. (51) are also consistent with previous works on EIT systems utilizing the three

level approach in a ladder configuration [42, 45, 46].

σ̇11 = −iΩ
1
12

2
(σ12 − σ21) + Γ21σ22

σ̇12 = −iΩ
1
12

2
(σ11 − σ22) −

(
Γ21

2
+ i∆1

12

)
σ12 − i

Ω2
23

2
σ13

σ̇13 = −iΩ
2
23

2
σ12 + i

Ω1
12

2
σ23 −

(
Γ32

2
+ i
(
∆1

12 + ∆2
23

))
σ13

σ̇22 = i
Ω1

12

2
(σ12 − σ21) − Γ21σ22 + Γ32σ33 − i

Ω2
23

2
(σ23 − σ32)

σ̇23 = i
Ω1

12

2
σ13 − i

Ω2
23

2
(σ22 − σ33) −

(
Γ21 + Γ32

2
+ i∆2

23

)
σ23

σ̇33 = i
Ω2

23

2
(σ23 − σ32) − Γ32σ33. (51)

The EIT project involved a system of nine levels and three lasers. Although it is not com-

pletely relevant for this dissertation, the research expanded the scope of EIT and its effect

on coherent processes [61], which was built off previous works by [39–46]. The solutions to

the 81 matrix elements are extremely long and cumbersome to present in this dissertation.

Therefore, a Mathematica notebook which utilizes the path algorithm for the nine level

system is available upon request.

2.2.2 TWO LEVEL ATOM

The aforementioned optical Bloch equations are simplified in the two level atom regime.

This section will first discuss the two level atom with no broadening mechanisms and then

include dampening factors to obtain useful experimental parameters and physical behaviors.

In order to be complete, this section will begin with basic quantum mechanical relations and

wave function definitions before applying the optical Bloch equations that were previously

discussed.
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The basic starting point is the time dependent Schrödinger equation

iℏ
dΨ(r, t)

dt
= ĤΨ(r, t), (52)

where Ĥ = Ĥ0 + V̂ is the full quantum Hamiltonian. Ψ(r, t) is the time dependent wave

function defined as

Ψ(r, t) =
∑
n

an(t)ψn(r, t) =
∑
n

an(t)e−iEnt/ℏφn(r), (53)

where φ(r) is the purely radial portion of the wave function

ψn(r, t) = e−iEnt/ℏφn(r), (54)

and the unperturbed Hamiltonian Ĥ0 acts as

Ĥ0φn(r) = Enφn(r). (55)

In the two atom case that is presented, Eq. (53) simplifies to

Ψ(r, t) = a1(t)ψ1(r, t) + a2(t)ψ2(r, t)

= a1(t)|1(t)⟩ + a2(t)|2(t)⟩, (56)

where the time dependent amplitudes an(t) are the same as the a coefficients first introduced

in Eq. (10). The wavefunctions for the ground and excited state are

ψ1(r, t) = e−iE1t/ℏφ1(r) = e−iE1t/ℏ|1⟩

ψ2(r, t) = e−iE2t/ℏφ2(r) = e−iE2t/ℏ|2⟩. (57)

After this point, the functional dependencies of the particular wavefunctions will be omitted

when not explicitly needed. In the two level regime there is an on resonance energy with

resonant frequency ω0 between the ground state and excited state that is defined as

ℏω0 = E2 − E1. (58)

As a first step to solve for the a1 and a2 coefficients, the wavefunction Eq. (56) is

substituted into Eq. (52). The left hand side is given by

iℏ
(
ȧ1ψ1 + a1ψ̇1 + ȧ2ψ2 + a2ψ̇2

)
= iℏ (ȧ1ψ1 + a1(−iE1/ℏ)ψ1 + ȧ2ψ2 + a2(−iE2/ℏ)ψ2)

= E1a1ψ1 + E2a2ψ2 + iℏ (ȧ1ψ1 + ȧ2ψ2) , (59)
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and the right hand side is given by(
Ĥ0 + V̂

)
(a1ψ1 + a2ψ2) = E1a1ψ1 + E2a2ψ2

+ V̂ (a1ψ1 + a2ψ2) . (60)

Equating Eq. (59) and Eq. (60) yields

iℏ (ȧ1ψ1 + ȧ2ψ2) = V̂ (a1ψ1 + a2ψ2) . (61)

Solving for ȧ1 requires multiplication by ψ∗
1 from the left side of Eq. (61) and then integrated

over all space. The bra-ket notation will absorb the spatial integral.

iℏψ∗
1 (ȧ1ψ1 + ȧ2ψ2) = ψ∗

1V̂ (a1ψ1 + a2ψ2)

iℏ
(
ȧ1⟨1|1⟩ + ȧ2���⟨1|2⟩e−iω0t

)
= a1⟨1|V̂ |1⟩ + a2⟨1|V̂ |2⟩e−iω0t

iℏȧ1 = a1⟨1|V̂ |1⟩ + a2⟨1|V̂ |2⟩e−iω0t (62)

Then solving for ȧ2 in the same way but with multiplication of ψ∗
2 yields

iℏψ∗
2 (ȧ1ψ1 + ȧ2ψ2) = ψ∗

2V̂ (a1ψ1 + a2ψ2)

iℏ
(
ȧ1���⟨2|1⟩eiω0t + ȧ2⟨2|2⟩

)
= a1⟨2|V̂ |1⟩eiω0t + a2⟨2|V̂ |2⟩

iℏȧ2 = a1⟨2|V̂ |1⟩eiω0t + a2⟨2|V̂ |2⟩. (63)

The interaction potential V̂ is that of an atom acting as an electric dipole with dipole

moment d in an electric field with amplitude E0, frequency ω, and polarization ϵ̂ is defined

as

V̂ = ed · E = eE0 cos(ωt)d · ϵ̂ = ĤI. (64)

The potential is defined to be in the dipole approximation regime where the electric field is

near resonant with the atomic transition. The dipole approximation meets the conditions of

∆ ≪ ω + ω0, (65)

where ∆ is the detuning from resonance which is given by

∆ = ω − ω0. (66)
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Taking the electric field as polarized in the x̂ direction Eq. (64) can be substituted into Eq.

(62) and Eq. (63) gives

iℏȧ1 = eE0

(
a1����⟨1|x|1⟩ cos(ωt) + a2⟨1|x|2⟩e−iω0t cos(ωt)

)
= eE0⟨1|x|2⟩e−iω0t cos(ωt)a2

ȧ1 = −ieE0X12

ℏ
e−iω0t cos(ωt)a2

= −iΩ12e
−iω0t cos(ωt)a2 (67)

iℏȧ2 = eE0

(
a1⟨2|x|1⟩eiω0t cos(ωt) + a2����⟨2|x|2⟩ cos(ωt)

)
= eE0⟨2|x|1⟩eiω0t cos(ωt)a1

ȧ2 = −ieE0X
∗
12

ℏ
eiω0t cos(ωt)a1

= −iΩ∗
12e

iω0t cos(ωt)a1, (68)

where only off diagonal elements are non-zero because the dipole operator only couples states

with an allowed transition. This simply means the electric field does not induce a ground

state atom to undergo a transition and remain in the same state. X21 = X∗
12 and Ω∗

12 = Ω21.

The dipole matrix element X12 and the so-called Rabi frequency Ω12 are defined as

X12 = ⟨1|ϵ̂ · r|2⟩ = ⟨1|x|2⟩ =

∫
φ∗
1xφ2dV, (69)

and

Ω12 =
eE0X12

ℏ
, (70)

where they follow the condition of

X21 = X∗
12 ∴ Ω21 = Ω∗

12. (71)

A weak field approximation is used to solve for the a1(t) and a2(t). The atom population

starts in the ground state and a weak field is applied such that the excited state does not

get appreciably populated. The conditions of this approximation are

a1(0) = 1 and a2(0) = 0 (72)

a1(t) ≈ 1 and a2(t) ≈ 0. (73)
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Substituting a1(t) in Eq. (73) into Eq. (68) simplifies ȧ2 to

ȧ2(t) = −iΩ∗
12e

iω0t cos(ωt)a1

≈ −iΩ∗
12e

iω0t cos(ωt)

=
−iΩ∗

12

2
eiω0t

(
eiωt + e−iωt

)
=

−iΩ∗
12

2

(
ei(ω0+ω)t + ei(ω0−ω)t

)
, (74)

which now can be integrated from 0 to t to give∫ t

0

ȧ2(t)dt = a2(t) −�
��a2(0) =

∫ t

0

−iΩ∗
12

2

(
ei(ω0+ω)t + ei(ω0−ω)t

)
dt

a2(t) =
Ω∗

12

2

(
1 − ei(ω0+ω)t

(ω0 + ω)
+

1 − ei(ω0−ω)t

(ω0 − ω)

)
. (75)

The on resonant behavior, when the electric field frequency ω is exactly the resonant fre-

quency ω0, Eq. (75) can be re-written as

a2(t) = lim
ω→ω0

Ω∗
12

2

(
1 − ei(ω0+ω)t

(ω0 + ω)
+

1 − ei(ω0−ω)t

(ω0 − ω)

)
=

Ω∗
12

2

(
−ieiω0t sin(ω0t)

ω0

+ lim
ω→ω0

1 − ei(ω0−ω)t

(ω0 − ω)

)
=

Ω∗
12

2

(
−ieiω0t sin(ω0t)

ω0

− it

)
= −iΩ

∗
12

2ω0

(
eiω0t sin(ω0t) + ω0t

)
, (76)

where L’Hôspital’s rule was used on the second term of the second line.

Further simplification can be achieved by invoking the rotating wave approximation

(r.w.a.) where the highly oscillatory terms (ω0 + ω) can be ignored. Along with the dipole

approximation Eq. (65), the use of the r.w.a. is justified because typical atomic transition

times are in the 10−7s range and the resonant frequencies ω0 are in the 1015 s−1 range.

Therefore the condition

ω0t≫ 1 (77)

is satisfied, which means a significant amount of oscillations of the electric field occur be-

fore the probability of excitation is appreciable. These oscillations average to zero. When

applying this condition to Eq. (76), only the second term would be taken.



19

For the arbitrary ω case the r.w.a. sets the first term on the right hand side of Eq. (75)

to zero and the amplitude of a2(t) is simplified to yield

a2(t) =
Ω∗

2

(
1 − ei(ω0−ω)t

(ω0 − ω)

)
= −Ω∗

2
ei(ω0−ω)t/2

(
ei(ω0−ω)t/2 − e−i(ω0−ω)t/2

(ω0 − ω)

)
= −iΩ∗ei(ω0−ω)t/2 sin ((ω0 − ω) t/2)

(ω0 − ω)
. (78)

At this point all of the factors are needed to utilize the optical Bloch equations. A two

level system simplifies the formulation and symbolism. The density operator Eq. (8) in the

two level notation loses the i subscript and simply becomes

ρ = |Ψ⟩⟨Ψ|, (79)

where |Ψ⟩ is shown in Eq. (53). The individual matrix elements are now represented as

ρnm = ⟨n|ρ|m⟩ = ana
∗
m, (80)

and the full density matrix for a two level atom can be written as

ρ =

(
ρ11 ρ12

ρ21 ρ22

)
=

(
a1a

∗
1 a1a

∗
2

a2a
∗
1 a2a

∗
2

)
. (81)

The trace of the density matrix now provides a relation given by

Tr [ρ] = a1(t)a
∗
1(t) + a2(t)a

∗
2(t) = ρ11 + ρ22 = 1, (82)

and the probability to be in state n at time t is

Pn(t) = ρnn = |an(t)|2. (83)

Therefore, the transition probability of an atom which started in the ground state to be in

the excited state at time t is given by

P2(t) = |a2(t)|2 = |Ω|2 sin2 ((ω0 − ω) t/2)

(ω0 − ω)2
, (84)

and the on-resonance case (ω = ω0) probability is

P2(t) = |a2(t)|2 =
|Ω|2

4
t2. (85)

The results presented in this portion did not include spontaneous emission or power broad-

ening. These effects enter the equations as dampening factors which will be included next.
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2.2.2.1 Spontaneous Emission

This section will include the spontaneous emission process, which is also known as radia-

tive broadening, with the addition of a dampening factor. At this point the approximation

still resides in the weak field limit where power broadening effects are neglected, which will

be addressed in a following section.

The spontaneous emission process includes an electric field acting onto an atom with the

same interaction potential shown in Eq. (64). The electric field is given as

E(t) = E0 cos(ωt) =
1

2
E0

(
e−iωt + eiωt

)
. (86)

The polarization is defined as

P(t) =
1

2
ϵ0E0

(
χ(ω)e−iωt + χ(−ω)eiωt

)
, (87)

where χ(ω) is the frequency dependent susceptibility of the atom which is related to the

electric dipole moment by

P(t) =
N

V
d12(t). (88)

The electric field can be assumed to be polarized in the x̂ direction therefore the electric

dipole moment is given as

d12(t) = −e
∫

Ψ∗(t)XΨ(t) dV. (89)

Substitution of the wavefunction Eq. (56) into the electric dipole moment Eq. (89) yields

d12(t) = −e
∫

(a∗1ψ
∗
1 + a∗2ψ

∗
2)X (a1ψ1 + a2ψ2) dV

= −e
(
a∗1a2

∫
ψ∗
1Xψ2 dV + a∗2a1

∫
ψ∗
2Xψ1 dV

)
= −e

(
a∗1a2e

−iω0t

∫
φ∗
1Xφ2 dV + a∗2a1e

iω0t

∫
φ∗
2Xφ1 dV

)
= −e

(
a∗1a2X12e

−iω0t + a∗2a1X21e
iω0t
)

= −e
(
ρ21X12e

−iω0t + ρ12X21e
iω0t
)
, (90)

where X12 is defined in Eq. (69).

In order to include the spontaneous emission process a modification to Eq. (68) must be

made by the addition of a dampening factor of Γ/2. The equation shown in Eq. (68) then

becomes

ȧ2(t) = −iΩ∗
12e

iω0t cos(ωt)a1 −
Γ

2
a2. (91)
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The choice of Γ/2 is justified by looking at the behavior of the excited state if there was no

applied field Ω = 0. The expectation is that an atom in the excited state decays as e−Γt.

Assuming an atom is in the excited state a2(0) ∝ 1, with no applied field, the solution for

the amplitude would simply be

a2(t) = a2(0)e−Γt/2, (92)

therefore the probability that the atom resides in the excited state decays as expected

|a2(t)|2 = |a2(0)|2e−Γt. (93)

To solve for the amplitude a2(t) in Eq. (91) the ã2 parameter will be introduced as

ã2(t) = a2(t)e
Γt/2 (94)

˙̃a2(t) = ȧ2(t)e
Γt/2 +

Γ

2
a2(t)e

Γt/2

ȧ2(t) = ˙̃a2(t)e
−Γt/2 − Γ

2
a1(t). (95)

Substitution of Eq. (95) in the weak field limit where a1 ≈ 1 into Eq. (91) yields

ȧ2(t) =
1

i
Ω∗

12e
iω0t cos(ωt) − Γ

2
a2(t) = ˙̃a2(t)e

−Γt/2 − Γ

2
a2(t)

ȧ2(t) =
1

i
Ω∗

12e
iω0t cos(ωt) = ˙̃a2(t)e

−Γt/2

˙̃a2(t) =
1

i
Ω∗

12e
iω0t cos(ωt)eΓt/2 =

Ω∗
12

2i

(
ei(ω0+ω−iΓ/2)t + ei(ω0−ω−iΓ/2)t

)
, (96)

where ã2(t) can be solved for by indefinite integration of Eq. (96) and is given by

ã2(t) =
Ω∗

12

2i

(
ei(ω0+ω)t

i(ω0 + ω − iΓ/2)
+

ei(ω0−ω)t

i(ω0 − ω − iΓ/2)

)
eΓt/2 = a2(t)e

Γt/2, (97)

where the definition of ã2 is on the right hand side. Therefore the probability amplitudes in

the weak field limit with the addition of spontaneous emission are the given as

a1(t) ≈ 1 (98)

a2(t) = −Ω∗
12

2

(
ei(ω0+ω)t

(ω0 + ω − iΓ/2)
+

ei(ω0−ω)t

(ω0 − ω − iΓ/2)

)
. (99)

Substituting the amplitudes Eq. (98) and Eq. (99) into Eq. (90) provides the solution for

the electric dipole moment given by

d(t) ≈ −e
(
a2X12e

−iω0t + a∗2X21e
iω0t
)

(100)

=
e2|X12|2

ℏ
E0

2

(
e−iωt

ω0 − ω − iΓ/2
+

e−iωt

ω0 + ω + iΓ/2
+

eiωt

ω0 + ω − iΓ/2
+

eiωt

ω0 − ω + iΓ/2

)
,

(101)
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where the relation for Ω12 in Eq. (70) was substituted. For a sample of atomic gas with

random orientations to the electric field an extra factor of 1/3 comes in due to averaging

|X12|2 over all orientations. The relation is the following |X12|2 → |X12|2 =
1

3
|D12|2. Making

this substitution into Eq. (101) yields the macroscopic dipole moment of the atomic gas or

the average dipole moment per atom. For now it is assumed the dipole, or atom, is aligned

with the electric field.

The susceptibility χ(ω) can now be found by comparing Eq. (101) to the form of the

polarization shown in Eq. (87) which yields

χ(ω) =
N

V

e2|X12|2

ℏϵ0

(
1

ω0 − ω − iΓ/2
+

1

ω0 + ω + iΓ/2

)
. (102)

A value of particular interest, as will be seen in later sections, is the complex polarizability

and is related to the susceptibility by

α(ω) =
V

N
χ(ω)ϵ0. (103)

After substitution the atomic polarizability is

α(ω) =
e2|X12|2

ℏ

(
1

ω0 − ω − iΓ/2
+

1

ω0 + ω + iΓ/2

)
= 3πϵ0c

3 Γ

ω3
0

(
1

ω0 − ω − iΓ/2
+

1

ω0 + ω + iΓ/2

)
, (104)

where the natural decay rate is Γ =
e2ω3

0

3πϵ0ℏc3
|X12|2 [62]. The polarizability takes on the more

common form after invoking the r.w.a. in Eq. (104) given by

α(ω) =
e2|X12|2

ℏ

(
1

ω0 − ω − iΓ/2

)
=
e2|X12|2

ℏ

(
(ω0 − ω) + iΓ/2

(ω0 − ω)2 + (Γ/2)2

)
=

=
3πϵ0c

3Γ

ω3
0

(
(ω0 − ω) + iΓ/2

(ω0 − ω)2 + (Γ/2)2

)
. (105)

The polarizability can be solved for without taking the r.w.a. and is performed in order to

compare results in a later section covering a far-off resonance condition. Starting with Eq.
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(104) the polarizability takes on the form of

α(ω) = 3πϵ0c
3 Γ

ω3
0

(
1

ω0 − ω − iΓ/2
+

1

ω0 + ω + iΓ/2

)
=

= 3πϵ0c
3 Γ

ω3
0

 2ω0

(ω2
0 − ω2) +

(
Γ

2

)2

− iΓω

 =

= 3πϵ0c
3 Γ

ω3
0

(2ω0)


(ω2

0 − ω2) +

(
Γ

2

)2

+ iΓω[
(ω2

0 − ω2) +

(
Γ

2

)2
]2

+ (Γω)2

 . (106)

For light detuned far from resonance the following approximations are made due to the fact

ω is of the order of 1014 and Γ is of the order 106.

|ω0 − ω| ≫ Γ

|ω2
0 − ω2| ≈ ω|ω0 − ω| ≫ Γω ≫ Γ2 (107)

The expression for the complex polarizability takes on a more simple form given by

α(ω) = 3πϵ0c
3 Γ

ω3
0

(2ω0)

(
1

(ω2
0 − ω2)

+
iΓω

(ω2
0 − ω2)

2

)
. (108)

The real and imaginary parts after partial fraction decomposition (pfd) are given by

Re [α(ω)] = 3πϵ0c
3 Γ

ω3
0

(2ω0)

(
1

ω2
0 − ω2

)
=

= 3πϵ0c
3 1

ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
(109)

Im [α(ω)] = 3πϵ0c
3 Γ

ω3
0

(2ω0)

(
Γω

(ω2
0 − ω2)

2

)
=

= 3πϵ0c
3 1

2ω3
0

(
ω

ω0

)(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

, (110)

where the pfd of

1

ω2
0 − ω2

=
1

2ω0

(
1

ω0 − ω
+

1

ω0 + ω

)
, (111)

and the pfd of 1

(ω2
0−ω2)

2 for the imaginary part is obviously just the square of the result in

Eq. (111). The results given by Eq. (109) and Eq. (110) are used in the later discussion of

far-off resonance traps.
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Solving for the absorption cross section, starting with the polarizability α(ω) taken with

the r.w.a. form shown in Eq. (105) yields

σ =
ω0

ϵ0c
Im [α(ω)] =

ω0e
2|X12|2

ℏϵ0c

(
Γ/2

(ω0 − ω)2 + (Γ/2)2

)
. (112)

The optical Bloch equations have not been fully utilized because of the weak field ap-

proximation which simplified the equations. In the following section no such approximation

is made and power broadening is discussed.

2.2.2.2 Power Broadening

Up until this point a weak field approximation has been where a1(t) = 1 in the rate

equations. This corresponds to a linear response of the susceptibility Eq. (102) with respect

to the electric field because the solution is of second order in the dipole matrix element X12.

Increasing the electric field amplitude above the weak field limit allows full use of the optical

Bloch equations. Utilizing this method automatically includes spontaneous emission.

The rate equations that will be used for ȧ1(t) and ȧ2(t) are Eq. (67) and Eq. (91)

respectively. The coefficients are simplified after invoking the r.w.a and are given by

ȧ1 = −iΩ
2
a2(t)e

−i(ω0−ω)t (113)

ȧ2 = −iΩ
∗

2
a1(t)e

i(ω0−ω)t − Γ

2
a2(t). (114)

The equations of motion for the density matrix elements can be written using the property

ρ̇ij = ȧia
∗
j + aiȧ

∗
j . (115)

Substitution of the amplitudes Eq. (113) and Eq. (114) into Eq. (115) give

ρ̇22 =

(
−iΩ

∗

2
a1(t)e

i(ω0−ω)t − Γ

2
a2(t)

)
a∗2 + a2

(
i
Ω

2
a∗1(t)e

−i(ω0−ω)t − Γ

2
a∗2(t)

)
= −iΩ

∗

2
ei(ω0−ω)tρ12 + i

Ω

2
e−i(ω0−ω)tρ21 − Γρ22 (116)

ρ̇12 =

(
−iΩ

2
a2(t)e

−i(ω0−ω)t

)
a∗2(t) + a1(t)

(
i
Ω

2
a∗1(t)e

−i(ω0−ω)t − Γ

2
a∗2(t)

)
= i

Ω

2
e−i(ω0−ω)t (ρ11 − ρ22) −

Γ

2
ρ12, (117)

where ρ̇21 = ρ̇∗12. In order to remove the oscillatory exponentials, the following substitutions

are made into the previous equations

ρ̃12 = ρ12e
i(ω0−ω)t, ρ̃21 = ρ21e

−i(ω0−ω)t, (118)
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which leads to simplified equations given by

ρ̇22 = −iΩ
∗

2
ρ̃12 + i

Ω

2
ρ̃21 − Γρ22 (119)

˙̃ρ12 = i
Ω

2
(ρ11 − ρ22) −

Γ

2
ρ̃12 + i (ω0 − ω) ρ̃12 (120)

˙̃ρ21 = ˙̃ρ∗12. (121)

To solve for the steady state solutions these three rate equations set are to zero along

with the property of the density matrix ρ11 + ρ22 = 1. First solving Eq. (119) for ρ22 as a

function of ρ̃12 and ρ̃21, then substituting in ρ̃12 from Eq. (120) and ρ̃21 from Eq. (121) will

yield the result. The equations needed to solve for ρ22 are given by

ρ̇22 = 0 = −iΩ
∗

2
ρ̃12 + i

Ω

2
ρ̃21 − Γρ22

ρ22 =
i

2Γ
(Ωρ̃21 − Ω∗ρ̃12) (122)

˙̃ρ21 = 0 = i
Ω

2
(1 − 2ρ22) −

Γ

2
ρ̃12 + i (ω0 − ω) ρ̃12

ρ̃12 =
iΩ

2

(1 − 2ρ22)
Γ
2
− i (ω0 − ω)

(123)

ρ̃21 = ρ̃∗12 =
−iΩ∗

2

(1 − 2ρ22)
Γ
2

+ i (ω0 − ω)
, (124)

where Eq. (123) and Eq. (124) are substituted into Eq. (122). To solve for ρ12 similar

substitutions are made with Eq. (122) and Eq. (124) into Eq. (123) along with the relation

in Eq. (118). The results after substitution and a bit of algebra are given by

ρ22 =
|Ω|2

4

1

(ω0 − ω)2 +
(
Γ
2

)2
+ 1

2
|Ω|2

=

(
Ω
Γ

)2
1 +

(
2∆
Γ

)2
+ 2

(
Ω
Γ

)2 (125)

ρ12 = e−i(ω0−ω)t
Ω
2

(
ω0 − ω − iΓ

2

)
(ω0 − ω)2 +

(
Γ
2

)2
+ 1

2
|Ω|2

, (126)

where ∆ ≡ ω − ω0 and the Rabi frequency can be related to the saturation intensity [62] as

2
|Ω|2

Γ2
=

I

Isat
and Isat =

cϵ0Γ
2ℏ2

4e2|ϵ̂ · r|2
. (127)

This is the same result that was given in Eq. (47).

As a reminder ρ22 = a2(t)a
∗
2(t) = |a2(t)|2 is the probability of finding an atom in the

excited state at time t. The choice of setting the time derivatives equal to zero assumes
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steady state over a long period of time which essentially removes the time dependence by

taking t→ ∞. This choice is justified by including the spontaneous emission damping terms

into the density matrix rate equations which dampens the oscillatory behavior, which can

be seen in Eq. (84), after a sufficient amount of time.

The dipole moment in Eq. (90) can be rewritten in terms of the off diagonal density

matrix elements as

d(t) = −e
(
ρ21X12e

−iω0t + ρ12X21e
iω0t
)
, (128)

and the susceptibility χ (ω) can be solved for in the same way as before by substituting Eq.

(126) and its complex conjugate into Eq. (128). The susceptibility is then given by

χ(ω) =
N

V

e2|X12|2

ℏϵ0

(
ω0 − ω + iΓ/2

(ω0 − ω)2 +
(
Γ
2

)2
+ 1

2
|Ω|2

)
, (129)

and the polarizability is

α(ω) =
e2|X12|2

ℏ

(
ω0 − ω + iΓ/2

(ω0 − ω)2 +
(
Γ
2

)2
+ 1

2
|Ω|2

)

= 3πϵ0c
3 Γ

ω3
0

 ω0 − ω + iΓ/2

(ω0 − ω)2 +
(
Γ
2

)2 (
1 + I

Isat

)
 . (130)

The 1
2
|Ω|2 term in the denominator is associated with the saturation intensity Isat and intro-

duces the radiative, or power broadening behavior. The susceptibility and polarizability, for

significant values of I, are no longer linear with respect to the electric field since I = 1
2
ϵ0c|E0|2.

Making the approximations of a weak field where I ≪ Isat and ∆ ≫ Γ, Eq. (130) simplifies

to same form as Eq. (111) without power broadening.

The absorption cross section, defined in Eq. (112), is given by

σ =
ω0

ϵ0c
Im [α(ω)] =

ω0e
2|X12|2

ℏϵ0c

(
Γ/2

(ω0 − ω)2 + (Γ/2)2 + 1
2
|Ω|2

)

=
ω0e

2|X12|2

ℏϵ0c
2

Γ

(
1

1 +
(
2∆
Γ

)2
+ 2 |Ω|2

Γ2

)
=
ω0e

2|X12|2

ℏϵ0c
2

Γ

(
1

1 +
(
2∆
Γ

)2
+ I

Isat

)
=

σ0

1 +
(
2∆
Γ

)2
+ I

Isat

, (131)

where the so-called on resonant cross section, after substitutions shown in Eq. (127), is

defined as

σ0 =
ω0e

2|X12|2

ℏϵ0c
2

Γ
=

ℏω0

Isat

Γ

2
, (132)
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which is the same value obtained without power broadening shown in Eq. (112) with ω = ω0.

2.3 RUBIDIUM ENERGY LEVELS

Rubidium is the 37th element of the periodic table and is classified as an alkali metal.

Natural Rubidium is comprised of two main isotopes which are the nuclear stable 85Rb and

the slightly radioactive 87Rb with a half life of 5 ×1010 years [63]. Natural abundances

of 85Rb and 87Rb are 72% and 28% respectively. Rubidium is a convenient element for

experimental purposes because its absorption spectrum corresponds to wavelengths accessible

with inexpensive, common, and commercially available lasers and the high vapor pressure

of solid rubidium provides a source of atomic gas, even at room temperature. Rubidium is

also theoretically convenient due to only having one electron in its outer shell, which makes

it a hydrogen-like atom.

The atomic states of Rb are denoted by n2S+1LJ where S, L, and J are the spin, orbital,

and total angular momentum quantum numbers respectively. Although the value of L is

replaced by the common spectroscopy notation of s, p, d, f , etc for L = 0, 1, 2, 3, etc. In the

following discussion only the ground state L = 0 and the first excited P states L = 0,1 are

relevant. n is the principle quantum number and only states of n = 5 are relevant to further

discussions. The fine structure energy level of a particular nLJ state is determined by values

given by NIST [64]. For an atom with one valence electron the spin angular momentum is

S = 1/2.

The total angular momentum is given by

J = L + S, (133)

and is allowed to exist in the range of

|L− S| ≤ J ≤ |L+ S|. (134)

Therefore, J = 1/2 for the ground state L = 0 and J = (1/2, 3/2) for the first excited state

L = 1. The L = 0 → L = 1 transition has two components known as the D lines. The
2S1/2 → 2P1/2 transition is called the D1 line and the 2S1/2 → 2P3/2 is the D2 line.

Due to the coupling of J with the total nuclear angular momentum I, the hyperfine

structure appears as the total atomic angular momentum F which is given by

F = J + I, (135)
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where it takes on values of

|J − I| ≤ F ≤ |J + I|. (136)

The hyperfine structure Hamiltonian is

Hhfs = AhfsI · J +Bhfs

3 (I · J)2 + 3
2

(I · J) − I (I + 1) J (J + 1)

2I(2I − 1)J(2J − 1)
, (137)

The energy level shifts due to the hyperfine splitting is given by [62]

∆Ehfs =
1

2
AhfsK +Bhfs

3
2
K(K + 1) − 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
, (138)

where

K = F (F + 1) − I(I + 1) − J(J + 1). (139)

The value obtained from the hyperfine matrix element represents the energy shift relative

to the fine structure level. For states with J = 1/2 the Bhfs constants are zero. The energy

level diagram shown in Fig. 1 utilizes the hyperfine constants listed in Tables 11-12 and

calculated using Eq. (138). The 87Rb ground state is shifted down with respect to the 85Rb

level by the so-called isotope shift.
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F = 2 (-83.836 MHz)0
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F = 3 (+1264.89 MHz)
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F = 1 (-4349.77 MHz)

6834.680 MHz

78.095 MHz

5S1/2

85Rb : I = 5/2 87Rb : I = 3/2

780.241 nm

794.979 nm

FIG. 1: 85Rb and 87Rb hyperfine energy levels for the 52S1/2, 52P1/2, and 52P3/2 states.
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2.3.1 INTERACTION WITH STATIC ELECTRIC FIELD

Although the interaction of atoms with static fields is not directly relevant for the exper-

iment it utilizes a similar formulation to the relevant dynamic case, which gives confidence

to the procedure. The purpose of this section is to introduce and define the scalar α0 and

tensor α2 polarizabilities.

The shift of atomic energy levels due to a static electric field is given by the potential

Vdip = −1

2
p · E = −1

2
α|E0|2, (140)

where α in this case is the static polarizability. Similar to, but different from the frequency

dependent polarizability discussed earlier where the electric field E was oscillating and time

averaging needed to be included. The case of an oscillating electric field will be discussed in

section 3.2.

To obtain the energy shift, known as the quadratic Stark shift, the dipole operator must

be used in second order perturbation theory. The energy shift is given by

δE(a) =
∑
i

⟨a|Vdip|i⟩⟨i|Vdip|a⟩
Ea − Ei

, (141)

where a represents all relevant quantum numbers nlsJIFmF to the state in question and

i represents quantum numbers of intermediate states. Discussions in Ref. [65] provide the

rigor of expanding the dipole operator in such a way that the potential Vdip remains in the

same form Eq. (140) but the polarizability α is given by

α = α0I + α2Q̂, (142)

where I is the identity matrix and Q̂ is a second rank tensor operator. α0 and α2 are

real constants and are known as the scalar and tensor polarizabilities respectively. The Q̂

operator allows for coupling between different F hyperfine levels. In a linearly polarized

electric field in the ẑ direction the Q̂ operator elements take the form of

Q̂FF ′;mFm′
F

= (−1)I+J+F−F ′−mF [(2F + 1) (2F ′ + 1)]
1/2

×
[

(J + 1) (2J + 1) (J + 3)

J (2J − 1)

]1/2
×

(
F 2 F ′

mF 0 −m′
F

){
F 2 F ′

J I J

}
, (143)
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where the last two terms are Wigner (3-j) and {6-j} symbols. The Wigner notation is

derived from angular momentum algebra where the 3-j symbol is essentially a Clebsch-

Gordon coefficient and the 6-j symbol represents the sum of four 3-j’s multiplied together.

Wigner 6-j symbols are related to Racah W coefficients. An important property of the Q̂

matrix elements is that the (3-j) symbol points to the fact that mF = m′
F therefore the

operator is block diagonal in mF . In the case of 87Rb where I = 3/2 and the excited state

J = 3/2 the Q̂mF
block matrices are given by

Q̂mF=±3 =
(

1
)

(144)

Q̂mF=±2 =

(
0 ∓1

∓1 0

)
(145)

Q̂mF=±1 =


−3

5
∓
√

2

5

√
6

5

∓
√

2

5
0 ∓

√
3

5√
6

5
∓
√

3

5
−2

5

 (146)

Q̂mF=0 =


−4

5
0

3

5
0

0 0 0 1
3

5
0

4

5
0

0 1 0 0

 , (147)

where each sub-matrix is in the |F,mF ⟩ basis. With the new polarizability defined, the full

Hamiltonian is now given by

H = Vhfs −
1

2
α0E

2I− 1

2
α2E

2Q̂, (148)

where Vhfs is given by Eq. (138).

Since Q̂ is block diagonal in mF , a particular mF can be chosen and then the ensuing

matrix diagonalized to find the eigenvalues which determine the energy level shift as a func-

tion of E2. For example, the matrix to be diagonalized for the case of mF = ±1 is given

by
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hfsF=3 −
E2

2

(
α0 −

3

5
α2

)
−E

2

2

(
∓
√

2

5
α2

)
−E

2

2

(√
6

5
α2

)

−E
2

2

(
∓
√

2

5
α2

)
hfsF=2 −

E2

2
α0 −E

2

2

(
∓
√

3

5
α2

)

−E
2

2

(√
6

5
α2

)
−E

2

2

(
∓
√

3

5
α2

)
hfsF=1 −

E2

2

(
α0 −

2

5
α2

)


, (149)

where Mathematica can be used to easily determine the eigenvalues after substituting in

values of hfs, α0, and α2 but leaving E a variable. Using the static polarizabilities for the

5P3/2 state listed in Table 10 and the hyperfine energies determined previously, the energy

level shifts as a function of the electric field are shown in Fig. 2.

The reason for approaching the energy shifts in this manner is because values of α0 and

α2 have been experimentally determined for the static case and also for relevant dynamic

cases which will be explored in later sections describing optical traps.
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FIG. 2: 87Rb 5P3/2 static quadratic Stark energy shifts.
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2.4 RUBIDIUM TWO-BODY INTERACTION

The Hamiltonian to be used to describe the interaction between two atoms is

H = H0 +HI , (150)

where H0 is the unperturbed term which represents the energy of the atoms at large in-

ternuclear distances. In other words the unperturbed Hamiltonian describes the energy of

individual non-interacting atoms and can be written as

H0 =
∑
i

Ei|ai⟩i i⟨ai| (151)

for i = 1, 2. The state |ai⟩i is an eigenvector of H0 and represents the atomic state ai of

the ith atom. The individual atomic states |ai⟩ are defined by values of n, l, F , J , mF ,

etc. Specifically, the values of H0 are taken as the hyperfine splitting energies relative to the

F = 2 for the ground state and the F ′ = 3 for the excited states.

The two body electric dipole-dipole interaction Hamiltonian HI is defined as [66]

HI ≡ Vdd =
1

R3

(
d1 · d2 −

3 (d1 · r) (d2 · r)
R2

)
= − e2

R3
(2z1z2 − x1x2 − y1y2) , (152)

where the subscripts correspond to the specific atom, R is the internuclear separation, and

the z axis is defined along the internuclear axis. The Cartesian coordinate operators are

rotated into the spherical basis with the following relations

r0 = z

r1 = − 1√
2

(x+ iy)

r−1 =
1√
2

(x− iy) , (153)

which create the components of an irreducible tensor defined generally as T k
q . The k value

represents the rank of the tensor and q is the component. In this case the tensor is of rank

1 and q = 0,±1 which correspond to the operators in Eq. (153). The Hamiltonian in the

spherical basis is

Vdd = − e2

R3
(2r1,0r2,0 + r1,1r2,−1 + r1,−1r2,1) , (154)

where ri,q represents the operator which will act on the ith atom with the qth component.
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The molecular quantum states will be defined as a product state of individual atoms. The

two indistinguishable atoms are coupled by ϕ = |mg+mF | which represents the component of

the total angular momentum of both atoms along the internuclear axis. ϕ is a good quantum

number therefore the molecular states are orthogonal in ϕ. The quantum state must allow

for the interchange of the two atoms since they are indistinguishable. This interchange

introduces the g(u) labels which correspond to the states being even(odd) or +(−) and are

known as gerade(ungerade). The two atom molecular states will use the following notation

|ϕg
uJgGJFmF ⟩ =

1√
2

(|JgGmG; JFmF ⟩ ± |JFmF ; JgGmG⟩)

=
1√
2

(|JgGmG⟩1|JFmF ⟩2 ± |JFmF ⟩1|JgGmG⟩2)

=
1√
2

(|G⟩1|F ⟩2 ± |F ⟩1|G⟩2) . (155)

The left hand side represents the so-called molecule while the right hand side represents the

single atom product states along with their interchange. The ket subscripts correspond to

the specific atom. The bottom line represents convenient shorthand notation since one atom

is always in a ground state G and one in an excited state F .

Taking the matrix elements of Vdd Eq. (154) using the molecular states Eq. (155) yields

⟨ϕg
uJ

′
gG

′J ′F ′m′
F |Vdd|ϕg

uJgGJFmF ⟩ =

=
1

2
(1⟨G′|2⟨F ′| ± 1⟨F ′|2⟨G′|)Vdd (|G⟩1|F ⟩2 ± |F ⟩1|G⟩2)

= ±1

2

[
1⟨G′|2⟨F ′|Vdd|F ⟩1|G⟩2 + 1⟨F ′|2⟨G′|Vdd|G⟩1|F ⟩2

]
= ±

(
− e2

R3

)
1

2

[
2 (1⟨G′|r1,0|F ⟩1 2⟨F ′|r2,0|G⟩2 + 1⟨F ′|r1,0|G⟩1 2⟨G′|r2,0|F ⟩2)

+ (1⟨G′|r1,1|F ⟩1 2⟨F ′|r2,−1|G⟩2 + 1⟨F ′|r1,1|G⟩1 2⟨G′|r2,−1|F ⟩2)

+ (1⟨G′|r1,−1|F ⟩1 2⟨F ′|r2,1|G⟩2 + 1⟨F ′|r1,−1|G⟩1 2⟨G′|r2,1|F ⟩2)
]
. (156)

All elements of ⟨G′|rq|G⟩ = 0 and ⟨F ′|rq|F ⟩ = 0 because the selection rules of dipole operator

require ∆L ̸= 0. Therefore only ground state (5S1/2) to excited state (5P1/2 or 5P3/2)

transitions are non-zero. The omitted quadrupole term of the Hamiltonian would have to be

evaluated in order to calculate the ground state shifts. The subscripts will now be dropped

for the individual atoms i = 1, 2 since they are identical particles. The matrix element is
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now represented as

⟨ϕg
uJ

′
gG

′J ′F ′m′
F |Vdd|ϕg

uJgGJFmF ⟩ =

= ±
(
− e2

R3

)[
2⟨G′|r0|F ⟩⟨F ′|r0|G⟩

+ ⟨G′|r1|F ⟩⟨F ′|r−1|G⟩

+ ⟨G′|r−1|F ⟩⟨F ′|r1|G⟩
]
, (157)

and can be evaluated with the Wigner-Eckart theorem. In order to avoid confusion in the

following calculations, the primed quantum numbers in Eq. (4) correspond to the excited

states while the un-primed correspond to the ground states. This is in contrast to the

matrix element formula Eq. (157) where the excited states are labeled as F , the ground

states labeled as G, and the primed are intermediary.

To simplify the process only one of the three sets of ⟨ |r| ⟩⟨ |r| ⟩ inside the square brackets

of Eq. (157) need to be calculated because they all take a general form of

⟨G′|rq|F ⟩⟨F ′|r−q|G⟩

= (−1)q⟨F |r−q|G′⟩∗⟨F ′|r−q|G⟩, (158)

where second line was transformed with the two identities in Eq. (5) and Eq. (6) in order to

obtain all matrix elements in terms of ⟨J ||r||Jg⟩. The left-most matrix element in Eq. (158)

is

⟨G′|rq|F ⟩ = (−1)q⟨F |r−q|G′⟩

= (−1)q(−1)G
′+F+J+I+1−mF

√
(2G′ + 1) (2F + 1)

×

(
F 1 G′

−mF −q m′
g

){
F 1 G′

J ′
g I J

}
⟨J ||r||J ′

g⟩∗, (159)

and the right-most is

⟨F ′|r−q|G⟩ = (−1)G+F ′+J ′+I+1−m′
F

√
(2G+ 1) (2F ′ + 1)

×

(
F ′ 1 G

−m′
F −q mg

){
F ′ 1 G

Jg I J ′

}
⟨J ′||r||Jg⟩ . (160)
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The general term is found by multiplying Eq. (159) and Eq. (160) together which results in

⟨G′|rq|F ⟩⟨F ′|r−q|G⟩ = (−1)q⟨F |r−q|G′⟩⟨F ′|r−q|G⟩

= (−1)q(−1)G
′+G+F ′+F+2I+J ′+J+2−m′

F−mF

×
√

(2G′ + 1) (2G+ 1) (2F ′ + 1) (2F + 1)

×

(
F 1 G′

−mF −q m′
g

)(
F ′ 1 G

−m′
F −q mg

)

×

{
F 1 G′

J ′
g I J

}{
F ′ 1 G

Jg I J ′

}
× ⟨J ||r||J ′

g⟩∗⟨J ′||r||Jg⟩. (161)

By applying the 3-j identity(
a b c

α β γ

)
= (−1)a+b+c

(
a c b

α γ β

)
, (162)

Eq. (161) becomes

⟨G′|rq|F ⟩⟨F ′|r−q|G⟩ = (−1)q⟨F |r−q|G′⟩⟨F ′|r−q|G⟩

= (−1)q(−1)2I+J ′+J−m′
F−mF

×
√

(2G′ + 1) (2G+ 1) (2F ′ + 1) (2F + 1)

×

(
F G′ 1

−mF m′
g −q

)(
F ′ G 1

−m′
F mg −q

)

×

{
F 1 G′

J ′
g I J

}{
F ′ 1 G

Jg I J ′

}
× ⟨J ||r||J ′

g⟩∗⟨J ′||r||Jg⟩. (163)

The matrix element of Vdd can be determined by applying to Eq. (163) to each set of terms

in Eq. (157) and yields
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⟨ϕg
uJ

′
GG

′J ′F ′m′
F |Vdd|ϕg

uJGGJFmF ⟩ =

= ±
(
− e2

R3

)
⟨J ||r||J ′

g⟩∗⟨J ′||r||Jg⟩(−1)J+J ′+2I−mF−m′
F

×
√

(2G′ + 1) (2G+ 1) (2F ′ + 1) (2F + 1)

×

{
F 1 G′

J ′
g I J

}{
F ′ 1 G

Jg I J ′

}

×
[
2

(
F G′ 1

−mF ϕ−m′
F 0

)(
F ′ G 1

−m′
F ϕ−mF 0

)

−

(
F G′ 1

−mF ϕ−m′
F −1

)(
F ′ G 1

−m′
F ϕ−mF −1

)

−

(
F G′ 1

−mF ϕ−m′
F 1

)(
F ′ G 1

−m′
F ϕ−mF 1

)]
. (164)

Since the 5S1/2 →5P3/2 transitions are being evaluated Jg = J ′
g = 1/2 and J = J ′ = 3/2,

the matrix element simplifies to

⟨ϕg
uJ

′
gG

′J ′F ′m′
F |Vdd|ϕg

uJgGJFmF ⟩ =

= ±
(
−C3

R3

)
2(−1)2J+2I−mF−m′

F

×
√

(2G′ + 1) (2G+ 1) (2F ′ + 1) (2F + 1)

×

{
F 1 G′

J ′
g I J

}{
F ′ 1 G

Jg I J ′

}

×
[
2

(
F G′ 1

−mF ϕ−m′
F 0

)(
F ′ G 1

−m′
F ϕ−mF 0

)

−

(
F G′ 1

−mF ϕ−m′
F −1

)(
F ′ G 1

−m′
F ϕ−mF −1

)

−

(
F G′ 1

−mF ϕ−m′
F 1

)(
F ′ G 1

−m′
F ϕ−mF 1

)]
, (165)

where the new parameter C3 is defined as [67]

C3 =
1

2
⟨J ||er||Jg⟩2, (166)
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and has usually been given in units of either (eV Å3) or (MHz nm3). C3 must be divided by

4πϵ0 to obtain value in standard units. The reduced dipole matrix element can be calculated

by the definition for the lifetime [53]

1

τ
=

e2ω3
0

3πϵ0ℏc3
|⟨J ||r||Jg⟩|2

2J + 1

=

(
2π

λ

)3
1

3πϵ0ℏ
|⟨J ||er||Jg⟩|2

2J + 1
, (167)

where ⟨J ||er||Jg⟩ is in units of ea0, λ is the wavelength of the transition, and τ is the natural

lifetime. Solving for the reduced dipole matrix element and substituting in the latest values

[62] yields

⟨J ||er||Jg⟩ =

√(
λ

2π

)3
3πϵ0ℏ
τ

(2J + 1)

= 5.9785 ea0. (168)

The value of C3 is determined by substituting Eq. (168) into Eq. (166) along with dividing

by 4πϵ0. The calculated value is C3 = 72.064 eVÅ
3

but the value used in the upcoming

matrix diagonalization is 1.7425×107 MHz nm3 because the values of H0 are also taken in

MHz.

The matrix describing the interaction for each value of ϕ can now be determined. For

example, the matrix for 5g molecular state for 87Rb is only a 1×1 matrix because the only

molecular state consisting of |5g2
3

2
33⟩ contribute since ϕ = |mg + mF |. For a non-trivial

example, the matrix for the 4g molecular states corresponds to the following 4 × 4 matrix
0 C3√

6R3

C3

2
√
6R3 0

C3√
6R3 − C3

3R3
C3

3R3 0
C3

2
√
6R3

C3

3R3 − C3

3R3
C3

2
√
2R3

0 0 C3

2
√
2R3 0

 . (169)

This matrix along with H0 can be diagonalized to obtain eigenvalues associated with the

energy shift due to the dipole-dipole potential at a particular value of R. The 4g molecular

states are linear combinations of |4g2
3

2
33⟩, |4g2

3

2
32⟩, |4g2

3

2
22⟩, and |4g1

3

2
33⟩. Diagonalizing

is performed numerically by Mathematica while iterating R over a specified range. The
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matrix for the 3g molecular states is

0 0 C3√
10R3 0 C3

4R3
C3

4
√
15R3 0 0 0

0 C3

3R3 −2
√

2
5
C3

3R3
C3

6R3
C3

6R3
C3

2
√
15R3 0 0 0

C3√
10R3 −2

√
2
5
C3

3R3
C3

30R3

2
√

2
5
C3

3R3 − C3

6
√
10R3

C3

10
√
6R3 0 0 0

0 C3

6R3

2
√

2
5
C3

3R3
C3

12R3 − C3

6R3 − C3

2
√
15R3 0 C3

2
√
3R3

C3

4
√
3R3

C3

4R3
C3

6R3 − C3

6
√
10R3 − C3

6R3
C3

12R3 − C3

4
√
15R3

C3

4R3 − C3

2
√
3R3

C3

2
√
3R3

C3

4
√
15R3

C3

2
√
15R3

C3

10
√
6R3 − C3

2
√
15R3 − C3

4
√
15R3

C3

20R3

√
5
3
C3

4R3

√
5C3

6R3 −
√
5C3

6R3

0 0 0 0 C3

4R3

√
5
3
C3

4R3 0 0 0

0 0 0 C3

2
√
3R3 − C3

2
√
3R3

√
5C3

6R3 0 0 0

0 0 0 C3

4
√
3R3

C3

2
√
3R3 −

√
5C3

6R3 0 0 C3

4R3



,

(170)

which correspond to the molecular states of |3g2
3

2
33⟩, |3g2

3

2
32⟩, |3g2

3

2
31⟩, |3g2

3

2
22⟩,

|3g2
3

2
21⟩, |3g2

3

2
11⟩, |3g1

3

2
33⟩, |3g1

3

2
32⟩, and |3g1

3

2
22⟩. The matrices for the 2g (16×16),

1g (22×22), and 0g (24×24) molecular states will be omitted due to their size. The only

difference between the g and u molecular states is an extra a factor of (-1).

The diagonalization was performed in Mathematica utilizing the Old Dominion University

High Performance Computing hardware where 200,000 values of R were evaluated for each

ϕ. The resulting energy shifts of the 87Rb 5P3/2 F = 3 state are shown in Fig. 3.
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FIG. 3: 87Rb two-body 5P3/2 F = 3 dipole-dipole energy shifts. (a-f) correspond to ϕ =

(0 − 5) respectively. The black(red) lines represent the gerade(ungerade) states.

An initial inspiration for our experiment was based on previous works involving the

creation of subradiant molecular states in an optical lattice [13, 15]. The main idea was

to excite a molecule, where a pair of atoms separated by a distance d interact with each
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other and the light field, in such a way to populate a typically forbidden molecular dipole

transition. The molecule would then be in an excited state that would live much longer

due to being weakly coupled to the ground state. In the typical molecular nomenclature,

violation of the symmetry rules regarding gerade and ungerade states must occur to populate

the subradiant states where only gerade → ungerade optical dipole transitions are allowed.

Therefore, subradiant states were to be created by populating an excited state with gerade

→ gerade symmetry. Systems of Yb and Sr were used in these lattice experiments which

offer a simple system with a nondegenerate ground state and well defined excited states

where the energy level shifts are smaller than the excited state fine structure splitting.

However, our 87Rb system does not have such a simplified structure. Alkali dimers have

a complicated structure due to ground state gerade-ungerade mixing [68] and excited state

hyperfine mixing. For example, Fig. 4 shows a comparison between the energy level structure

in the Yb system [13] and our Rb system. Due to the visual complexity, it must also be

noted that curves that originate at −6.8 GHz, which are associated with the ground state

hyperfine splitting, are also involved with the structure shown in Fig. 4(b). Characterizing

the mixing of molecular states induced by the long-range interaction between two 87Rb atoms

in a dense cloud, rather than a lattice, is a much more complex endeavour. A lattice provides

the ability to individually control pairs of atoms separated by a known distance, while pairs

in an atomic ensemble carry a distribution of separation distances. Therefore, randomly

separated atomic pairs throughout the sample would essentially remove the ability to single

out a particular molecular state. With that in mind, a pivot was made to directly analyze

the temporal atomic decay of an ensemble due to a short probe pulse, where results would

be compared to previous experiments in a similar regime. A decision was made to explore in

a detuning range of 150-295 MHz with respect to the 5S1/2 F = 2 → 5P3/2 F = 3 transition

where many repulsive molecular states reside. Therefore, the idea was to analyze our results

with methods known to be valid for large atomic samples near resonance, and compare those

results against the expected cooperative subradiant behavior.
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FIG. 4: Molecular excited state energy levels of 174Yb and 87Rb. Black(red) represent

gerade(ungerade) states. (a) corresponds to 0g/u and 1g/u excited states in a 174Yb molecule.

The attractive curves are 0u and 1g while the repulsive are 0g and 1u. (b) corresponds to

the only the 0g/u set of molecular states and the asymptotic values are associated with the

single atom 5P3/2 F = 0, 1, 2, 3 energy levels. Increased complexity is associated with the

F and mF quantum numbers.

2.5 COUPLED DIPOLE MODEL

The coupled dipole model will be an important tool during the analysis of experimental

data. This model utilizes a quantized scalar photon field that interacts with atomic systems.

Although this formulation does not include polarization effects or the multi-level energy

structure, the results agree well with experimental data. The presented formulas will be

limited to key points which are applicable to the experiments here while the full mathematical

rigor has been preformed by [6, 69–72] and is known as the Wigner-Weisskopf theory for many

atoms [73].

The system that will be described is an ensemble of N two-level atoms with positions

rj that are driven by a plane wave with wave vector k. Calculations are performed with

the scalar form of the interaction Hamiltonian, which assumes linear polarized light and the

atomic dipoles are aligned with the electric field. Within this framework, and considering a

weak probe, the change in the excited state amplitude is written as [70, 74]

β̇j = −iΩ0

2
eik0·rj +

(
i∆ − Γ

2

)
βj −

Γ

2

∑
m ̸=j

βm
eik0rjm

ik0rjm
, (171)
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where Ω0 is the Rabi frequency, ∆ is the detuning from resonance, and rjm = |rj − rm| is the

separation between atom j and m. The first term in Eq. (171) corresponds to the external

field driving the system and imparts a unique phase on each atom based on the atom location

rj and field direction k0. The second term describes the single atom decay behavior of atom

j. The final term represents scattered light, real and virtual photons, from all other atoms

in the ensemble onto atom j. The third term is what couples the individual atoms together

and allows for cooperative effects to emerge. It can also be seen that the cooperative term

will be highly dependent on the spatial configuration of the ensemble.

When the interaction term is neglected one should expect agreement with the single atom

result given by the optical Bloch equations under the same approximations. Starting with

Eq. (120) and taking the complex conjugate yields

˙̃ρ21 = ˙̃ρ∗12 = −iΩ
2

(ρ11 − ρ22) −
Γ

2
ρ̃21 − i (ω0 − ω) ρ̃21

= −iΩ
2

(ρ11 − ρ22) +

(
i∆ − Γ

2

)
ρ̃21, (172)

and then applying the property of Eq. (115) results in

˙̃ρ21 = a2ȧ
∗
1 + a∗1ȧ2 = −iΩ

2
(a1a

∗
1 − a2a

∗
2) +

(
i∆ − Γ

2

)
a2a

∗
1. (173)

Now making the weak field approximation of a1 ≈ 1 yields

ȧ2 = −iΩ
2

+

(
i∆ − Γ

2

)
a2, (174)

which is equivalent to Eq. (171) when the multi-body coupling is neglected.

In consideration with the experiment, the scattered light from the sample will be col-

lected, therefore the time dependent excited state amplitude must be calculated to obtain

the radiated intensity. The time dependent radiated intensity is given by [6, 69]

⟨I(rs, t)⟩ =
ℏω0Γ

8πr2s

∣∣∣∣∣∑
j

βj(t)e
−iks·rj

∣∣∣∣∣
2

, (175)

where ks corresponds to the scattered photon wave vector, which points towards the detector,

and rs is the distance to the detector. Emergent cooperative behavior will be dependent on

the relative phases of each atom as well as the detection angle with respect to the initial

probe direction. It must be noted that the result given in Eq. (175) is only valid under

the weak excitation regime and the ensemble must have small enough spatial parameters for

which retardation effects are neglected.
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2.5.1 NUMERICAL SOLUTION

In order to obtain solutions of the radiated intensity given in Eq. (175), the solution to

the time dependent amplitudes βj(t) for each atom must be obtained. The amplitudes are

determined by numerically solving Eq. (171). First, Eq. (171) will be put into dimensionless

form by converting the time scale to units of 1/Γ and the length scale to units of 1/k0

yielding,

β̇j = −iΩ0

2
eik̂0·r̃j +

(
i∆ − 1

2

)
βj +

i

2

∑
m̸=j

βm
eir̃jm

r̃jm
, (176)

where ∆ ≡ ∆/Γ, Ω0 ≡ Ω0/Γ, r̃jm ≡ k0rjm, r̃j ≡ k0rj, and the unit vector k̂0 points in the

direction of beam propagation. Equation (176) can be put into matrix form defined as,

β̇ = Ω + M̂β, (177)

where Ωj = −iΩ0

2
eik̂0·r̃j and M̂jm =

(
i∆ − 1

2

)
δjm +

i

2

eir̃jm

r̃jm
(1 − δjm). The driving pulse

characterized by Ω0 is technically time dependent based the pulse shape and pulse length,

but a short square pulse will be used in later simulations.

The 4th-order Runge-Kutta method will be used numerically solve for the amplitudes

βj(t) from Eq. (177) in discrete time-steps h. Typical equations using the Runge-Kutta

method are in the form of y′ = Ay + b(t) and the solution is given by

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4) , (178)

where

k1 = h [Ayi + b(ti)] (179)

k2 = h

[
A

(
yi +

k1
2

)
+ b

(
ti +

h

2

)]
(180)

k3 = h

[
A

(
yi +

k2
2

)
+ b

(
ti +

h

2

)]
(181)

k4 = h [A (yi + k3) + b(ti + h)] . (182)

After substituting y → β, A→ M̂ , and b→ Ω one may obtain the value of all the βj at all

times. Once the time dependence of the βj are known, the sum given in Eq. (175) can be

performed for a specific scattering angle to obtain the time dependent scattered intensity.

The simulation was written in Mathematica and it was found to be relatively fast for atom
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numbers N ≤ 100 with a time-step h = 0.001. Unfortunately for N > 1000, memory issues

would arise and the duration of the simulation would take several days. Simulations were

performed with the initial condition that all βj(0) = 0 and averaged over a number of random

atom distributions.

Experimental conditions were modelled by choosing Gaussian spatial distributions for the

atomic ensembles. The spatial parameters for the experimental ensembles will be presented

in the next chapter but there are two geometries, spherically and cylindrically symmetric,

that will be utilized in the coupled dipole model are

ρ(r) = ρ0e
−r2/2r20 , (183)

and

ρ(r, z) = ρ0e
−r2/2r20−z2/2z20 , (184)

where an example of the distributions are shown in Fig. 5.

FIG. 5: Randomized ensemble distributions for the coupled dipole simulation at N = 1000.

Axes are in units of λ/2π. (a) corresponds to the distribution given in Eq. (184) with r0 = 1.3

and z0 = 127.3. (b) corresponds to the distribution given in Eq. (183) with r0 = 14.7.
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The angle of the probe with respect to the ensemble as well as the detection angle are

important to calculating the scattered light. Previous experiments in our lab, performed

by Stetson Roof [6], examined the forward scattered light due to a probe aligned with the

long axis of the distribution shown in Fig. 5(a). The angular intensity distribution can be

determined from Eq. (175) by iterating the direction of detection k̂s. The angular intensity

distribution for the on axis probe geometry is shown in Figs. 6(a) and (b) for N = 10 and

100. For our experiment however, as shown in Figs. 6(c) and (d), the probe is off axis and the

detection is perpendicular to the long axis of the sample geometry. An interesting result of

our geometry under experimental rescaling conditions is the prediction of a reflected scattered

lobe which can be attributed to Bragg scattering [71, 72]. Unfortunately, our apparatus does

not allow for further study of this or characterization of the angular distribution, therefore

it may be an interesting topic for future research.

To add a bit of clarity, the angular distribution that is depicted in Fig. 6 can be attributed

to superradiance due to the inherently low amplitude of subradiance. As will be shown later,

the subradiant amplitude is typically more than 5 orders of magnitude smaller than the peak

of the signal. The angular dependence of the subradiant fluorescence, shown as the red line

in Figs. 6(c) and (d), was calculated by only considering the fluorescence after 10 τ and

depicted with arbitrary normalization. This computational result suggests, as expected,

that subradiant behavior is more isotropic than the superradiant dominated total signal due

to the dephasing of longer lived modes of the system.
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FIG. 6: Intensity of the scattered light from an extended sample as a function of detection

angle from the coupled dipole model simulation. The long axis of the ensemble lays along

the horizontal plane. The arrow represents the propagation direction of the probe laser.

(a-b) correspond to the previous experimental alignment where the forward scattered light

was collected at 0◦ for N = 10 and N = 100 respectively [6]. (c-d) correspond to the

experimental orientation of this dissertation where the scattered light was collected at 270◦

for N = 10 and N = 100 respectively. Red lines represent fluorescence collected after 10 τ .

The ensembles spatial parameters were rescaled to maintain constant density at each N .
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CHAPTER 3

ATOM TRAPPING

This chapter introduces the concepts of laser cooling and trapping of atomic ensembles

in magneto-optical traps (MOT) and far-off resonance traps (FORT). A MOT utilizes laser

cooling techniques within a magnetic field gradient to exploit the atomic Zeeman splittings

to create relatively large dilute atomic ensembles. A FORT on the other hand utilizes optical

dipole forces created by a high intensity beam which spatially confines atoms at the focus

for red-detuned light. The main advantage of a FORT is that it can have a density several

orders of magnitude larger than a MOT, but is much smaller in both size and number of

atoms. Further discussions in this chapter will go over the theoretical basis, experimental

setup, and characterization of the MOT and FORT. Although the basis of understanding

how the traps work is relatively straightforward, it can not be understated how complex

the application of such knowledge in the laboratory can be. Dozens of mechanical, optical,

and electrical systems must work together flawlessly to provide a reliable, controllable, and

stable environment for the experimental apparatus.

3.1 MAGNETO-OPTICAL TRAP

A magneto-optical trap is an incredibly important tool in the field of ultracold atomic

physics [75]. The introduction of the MOT has directly led to an abundant amount of

research topics including but not limited to laser cooling, laser trapping, trap loss mechanics,

and cross sections [76–84]. Recently, even complex polyatomic molecular MOTs have been

created [85]. Today, MOTs are a very common and simple tool to cool and spatially confine

atomic samples due to the exhaustive research devoted to laser cooling. This section will

discuss the foundational mechanisms for creating a MOT, the experimental arrangement,

and characterization techniques.

3.1.1 MAGNETO-OPTICAL TRAP THEORY

In order to cool atoms a force must be applied in the opposite direction to which the atom

is travelling. Lasers are used to apply such a force by means of absorption. The absorbed

photon is then spontaneously emitted in a random direction which equates to zero force due
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to emission over many cycles. Therefore, for a two level system, the average force due to

absorption and spontaneous emission of a photon is [86]

Fabs = ℏkΓρ22 =
ℏks0Γ/2

1 + 4

(
∆

Γ

)2

+ s0

, (185)

where s0 = I/Isat is known as the saturation parameter. The value of ρ22 is given by Eq.

(125) and derived in a previous section. An atom in motion with velocity v will observe

the detuning of the incident photons to be Doppler shifted by ωD = k · v. Taking a look

at the one dimensional case where an atom is moving within counter-propagating beams at

velocity v, the force felt by the atom is FTotal = F+ + F− where

F± =
±ℏks0Γ/2

1 + 4

(
∆ ∓ ωD

Γ

)2

+ s0

. (186)

In the regime of kv ≪ Γ the total force on the atom is

FTotal =
8ℏk2s0∆v

Γ

[
1 + 4

(
∆

Γ

)2

+ s0

] . (187)

It is clear to see that for detunings to the red of resonance ∆ < 0 the force dampens the

atomic motion. What is known as an optical molasses is created when three orthogonal sets

of counter-propagating beams cool a sample of atoms. Although this describes a method to

rapidly cool atoms within a six beam geometry, it does not take into account the behavior of

an optical molasses in steady state where the atoms obtain diffusive properties which heat

the sample [86, 87]. The cooling limit is

TD =
ℏΓ

2kB
, (188)

and is known as the Doppler temperature. Sub-Doppler cooling can be achieved via a method

called polarization gradient cooling where the counter-propagating beams have opposite cir-

cular polarization. Polarization gradient cooling along with extensive derivations for several

optical molasses properties are presented in Ref. [88] and references within.

At this point atoms can be cooled within the overlapping beams but are not spatially

confined due to the aforementioned diffusive behavior and the fact that the force, as shown

in Eq. (187), only depends on velocity. The Zeeman structure of the atom can be taken

advantage of to spatially confine the ensemble due to the presence of a magnetic field. The
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magnetic field for a MOT is provided by two N turn coils of radius R, each with current

flowing the opposite direction and separated by R, which is known as an anti-Helmholtz

configuration. The magnetic field along the axis (z) of the anti-Helmholtz coils is given by

B(z) =
µ0NI

2R

[
1

(1 + (z/R− 1/2))3/2 − (1 + (z/R + 1/2))3/2

]
. (189)

The magnetic field strength around the center of the trap becomes approximately linear,

which can be seen by expanding Eq. (189) around z = 0. The atomic hyperfine levels split

linearly in the presence of a weak magnetic field. If the magnetic field is taken in the z

direction the energy levels split as [62]

∆E = µBgFmFBz, (190)

where µB is the Bohr magneton. gF is the hyperfine Landé g-factor given by

gF ≃
(

1 +
J (J + 1) + S (S + 1) − L (L+ 1)

2J (J + 1)

)(
F (F + 1) + J (J + 1) − I (I + 1)

2F (F + 1)

)
.

(191)

Utilizing the Zeeman splitting is visualized in Fig. 7 where the mF levels are shifted

with respect to the center of the trap in the presence of a magnetic field B(z) = B0z. The

mF = 1 energy level of an atom on the left (−z) will be shifted downward closer to the laser

frequency ωL with circular polarization σ+ but further from resonance on the right (+z) side.

Likewise, the mF = −1 energy level of an atom on the right (+z) will be shifted downward

closer to the laser frequency ωL with circular polarization σ− but further from resonance on

the left (−z) side. Therefore, by counter-propagating circular polarized beams of opposite

circular polarization in the presence of a magnetic field, the atoms are spatially selected to

preferentially interact with only one beam. That concept is what defines the basic spatial

confinement property of a MOT.
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FIG. 7: Zeeman splitting diagram of an atom in the presence of a magnetic field B(z) = B0z.

An atom on the left (−z) of the trap has a higher transition probability to scatter a σ+ photon

and be forced towards the center. Likewise and opposite for an atom on the right (+z) side

of the trap. For purposes of clarity, this figure represents a F = 0 → F = 1 transition but

is perfectly applicable for atoms with a more complex structure.

A MOT can be realized by combining the concept of an optical molasses with the addition

of a magnetic field gradient. The optical molasses properties introduce a dampening or

cooling force on the atoms while an applied magnetic field gradient results in a spatial

dependence to the atom’s interaction with counter-propagating, oppositely circular polarized

light. Putting these concepts to practice will now be discussed.

3.1.2 MOT EXPERIMENTAL SETUP

The optical, mechanical, and electrical components utilized to create a MOT in the

laboratory will now be addressed. Important components will be briefly described as they

are introduced into the apparatus explanation.

The creation of a 87Rb MOT in the lab is straightforward but comes with a nuance which

introduces the need for a second laser. The preceding section described the laser cooling

process under the assumption of a simple closed two-level cycling system, but rubidium is

a slightly more complex system with multiple ground and excited states. Under the right
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circumstances atoms will be pumped out of the cycling transition and lost from the trap. A

second laser is required to re-introduce these atoms into the cooling cycle before it can leave

the confines of the trap. To address a technicality and for clarity, a second physical laser is

not necessarily required. Sidebands at the correct frequency may be added to the MOT laser

and achieve the same effect. Although adding sidebands may reduce the complexity of the

apparatus in some respects, the ability to directly control the frequency, power, and timing

of the second laser is lost. With that said, further discussions utilize two different lasers.

The MOT trapping laser utilizes the 87Rb 5S1/2 F = 2 → 5P3/2 F
′ = 3 nearly closed

transition to cool and trap the atomic ensemble, but due to off resonant scattering there is

a small probability for the F ′ = 2 state to become populated and then decay to the F = 1

ground state. A second laser is needed on the 5S1/2 F = 1 → 5P3/2 F
′ = 2 transition in

order to repump the atoms back into the cooling cycle and is called the repumper laser. The

aforementioned hyperfine energy levels and splittings were shown in Fig. 1.

The MOT trapping beam is derived from a laser diode (Thorlabs DL7140-201S) arranged

in the so-called Littrow configuration, which is a type of external cavity diode laser (ECDL).

The laser diode is housed in a home-built mount designed and created by Salim Balik [89].

The linewidth of the laser was measured to be roughly 500 kHz by Stetson Roof [6]. The

laser is driven and temperature stabilized by a SRS LDC501 laser controller. The tem-

perature stabilization utilizes a 50 kΩ thermistor (Digi-Key RL0503-27.53K-120-MS) and a

thermo-electric cooler (Marlow Industries DT12-6-01L) installed in the ECDL housing. The

frequency of the laser is tuned by adjusting the current, temperature, and diffraction grating

angle of the ECDL. The grating angle is adjustable by applying a voltage to a piezo-electric

transducer (PZT) located on the grating mount. Locating the correct parameter space can

be laborious due to the home-built nature of the ECDLs. Daily adjustments were typically

needed due to fluctuating building temperatures. It cannot be understated how much the

lasers are coupled to the building environment. Temperature, humidity, and even the cir-

cuitry the building had to be taken into account to minimize adverse effects to the laboratory.

Throughout this dissertation it will be clear that steps were taken at every opportunity to

improve consistency of the apparatus.

The frequency of the laser is stabilized by utilizing Doppler-free saturated absorption

(SA) spectroscopy [90], laser current modulation, and an electronic feedback loop. SA is

a very common technique which outputs the absorption spectrum as the laser scans over

an atomic transition. The laser is frequency modulated (FM) by modulating the current

delivered to the diode via a function generator (BK Precision 4003A) connected to the SRS
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LDC501. The FM then causes amplitude modulation of the SA output. The modulation

frequency and SA signal are sent to a lock-in amplifier (SCITEC 410) which outputs a so-

called derivative-like signal. The derivative-like signal is used to lock the laser at a zero

crossing via a home-built lock box that corrects for frequency drifts by applying appropriate

voltage to the PZT. The SA and derivative signal for the MOT laser is shown in Fig. 8,
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FIG. 8: Saturated absorption and derivative signal for the MOT laser. The saturated ab-

sorption signal represents the 5S1/2 F = 2 → 5P3/2 transitions. The laser is locked on the

F ′ = 3 transition.

where the MOT trapping laser is usually locked on the F ′ = 3 peak. The trapping laser

may also be referenced simply as the MOT laser throughout this text. Additional frequency

tuning is required due to the limitation of the SA locking scheme which requires a zero

crossing of the derivative signal. A device known as an acousto-optic modulator (AOM) is

used for further frequency tuning.

An AOM is an important tool used not only for frequency tuning but also for switching a

beam on/off. An AOM is a device that propagates sound waves through a crystal launched
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by a piezoelectric transducer. Light passing through the crystal will then diffract into spa-

tially separated orders that are frequency shifted in multiples of the frequency applied to

the transducer. Essentially the photon energy is shifted either by gaining or losing multiples

of the crystal phonon energy. Also, the photon direction is changed due to the momentum

imparted by the orthogonally travelling crystal phonons. The most commonly used diffrac-

tion orders are ±1st and the unchanged 0th is also still available to be utilized. The 1st order

beam is always deflected in the direction of sound wave propagation which is away from the

transducer, while the −1st is deflected the opposite direction. Turning an AOM on/off can

be used as a switch by coupling a diffracted order of the laser into an optical fiber. The basic

electronics to drive the AOMs will be described later.

The optical setup for the MOT beam is shown in Fig. 9 and the description can be

broken up into two main parts, namely the left and right side. The left side is responsible for

locking and frequency tuning while the right side provides laser power for several purposes.

All of the optical element graphics that are used throughout this dissertation are defined in

Fig. 103 in Appendix C.

Staring with the left side of Fig. 9, the MOT ECDL beam measures roughly 26 mW after

the first optical isolator (ISO1). Optical isolators are important to eliminate reflections back

into the laser which cause unwanted instabilities and sidebands. At the first polarizing beam

splitter cube (PBS) 2 mW is sent towards AOM1 (Brimrose TEM-200-50-780) in a double-

pass (DP) configuration while the rest continues through. The yellow optics represent half-

wave plates control how much power is split at the PBS. The DP setup reflects the diffracted

−1st order beam directly back along its trajectory where it returns through AOM1. On the

return pass through AOM1 the −1st order beam is diffracted again where its propagation

direction is opposite to the initial beam and is frequency shifted twice. The red optic

represent a quarter-wave plate which when double passed through rotate the polarization

90◦. The doubly frequency shifted beam is sent to the SA cell for locking the laser. The

balanced photodiode (PD) is a home-built device which outputs the difference between the

two SA beams. The portion of the beam which initially passed through the first PBS goes

to the AOM2 (Brimrose TEM-200-50-780) DP configuration and towards the right side of

the optics setup through ISO2 where it is used to injection lock the distributed feedback

laser (DFB Eagleyard EYP-DFB-0780-00080-1500-TOC03-0000). The DFB is driven by a

Vescent D2-105 laser controller and D2-005 power supply. Injection locking causes the DFB

to follow the frequency of the MOT ECDL. The DFB then passes through AOM3 (Gooch

& Housego R23080-1) where the 1st order beam is sent to the vacuum chamber as the MOT
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beam via a polarizing preserving fiber (OZ Optics PMJ-3A3A-850-5/3-2.5-1). A portion 0th

order of the beam is sent to a spectrum analyzer (Thorlabs SA200-5B 1.5 GHz FSR) and

to probe beam optics which will be discussed later. AOM3 is also used as a switch to turn

on/off the MOT beam. The spectrum analyzer is used to ensure proper injection locking and

single mode operation due to the extreme sensitivity of the DFB to reflections. A special

note must be made that reflections from every optical element in the path of the DFB have

to be taken into consideration. For instance, optics directly in front of the DFB must be

rotated slightly to ensure surface reflections do not make it back into the laser.
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FIG. 9: MOT laser optics diagram. The MOT ECDL (Thorlabs DL7140-201S) is used to

lock the laser and to provide a frequency shift from the lock point before injection locking into

the DFB (EYP-DFB-0780-00080-1500-TOC03-0000). The DFB provides power for the MOT

beam, a spectrum analyzer, and a future probe beam. Optical components are L1 (LA1509-

B), ISO1 (OFR IO-3-780-LP), ISO2 (Thorlabs IO-3D-780-VLP), ISO3 (Thorlabs IO-8-780-

PBS), ISO4 (OFR IO-3-780-VLP), AOM1 (Brimrose TEM200-50-780), AOM2 (Brimrose

TEM200-50-780), and AOM3 (Gooch & Housego R23080-1).
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The frequency of the MOT laser with respect to the F ′ = 3 locking point can now be

determined with the MOT optics setup in mind and typical AOM settings. The AOM1 is

set at 175 MHz, therefore the beam entering the SA is -350 MHz from the ECDL output.

Locking on the F ′ = 3 now means that the frequency of the beam entering AOM2 is +350

MHz of the transition. AOM2 is set at 219 MHz, therefore the DFB will be injection locked

-84 MHz from the F ′ = 3. Finally, AOM3 is set at 66 MHz which puts the MOT beam at

-18 MHz (-3Γ) from the F ′ = 3. This detuning value is a common set point for the 87Rb

MOT beam. The frequency of AOM2 can be adjusted electronically between 160-240 MHz

in order to change the detuning of the MOT and probe beams. The frequency tuning range

is limited due to the efficiency of the AOM changing as a function of applied frequency.

The repumper laser is derived from the same model diode, mounting components, and

laser controller that was listed for the MOT laser and utilizes the same locking technique.

The SA and derivative signal for the repumper is shown in Fig. 10,
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FIG. 10: Saturated absorption and derivative signal for the repumper laser. The saturated

absorption signal represents the 5S1/2 F = 1 → 5P3/2 transitions. The laser is locked on the

1′ − 2′ crossover.
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where the laser is locked on the 1′ − 2′ crossover peak. The optical setup for the repumper

beam is shown in Fig. 11. The AOM (Gooch & Housego R23080-1) is set at 78.47 MHz

which puts the repumper frequency on resonance with the F = 1 → F = 2′ transition.

FIG. 11: Repumper laser optics diagram. The optical isolator ISO (OFR IO-3-780-LP) is

used to prevent feedback into the laser. The AOM (Gooch & Housego R23080-1) is used

to put the beam on resonance and acts as a switch to turn the beam on and off. ECDL

(Thorlabs DL7140-201S).

The MOT and repumper beams are sent to a nearby optics table where the vacuum

chamber is located. The optics setup for the MOT is shown in Fig. 12 where the MOT

and repumper beams are combined before being directed into the chamber. The MOT beam

has a power of approximately 24 mW while the repumper has about 1 mW. The first cube

directs a portion of the beam upward but the vertical MOT beam is omitted to reduce visual

clutter of the diagram. The beams are expanded and collimated to ≈ 1 cm2 by lenses that

are also omitted from the figure. The half-wave plates (yellow) allow for power control of

each arm of the apparatus. The quarter-wave plates (red) transform the linearly polarized
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light into circular and cause the counter-propagating beam to be of the opposite polarization.

Although they will be discussed later, the PIXIS CCD is used for fluorescence imaging and

the Thorlabs PD is used for recording the behavior of a probe beam. A photo of an atomic

ensemble of 87Rb cooled and spatially confined in the MOT is shown in Fig. 13.

FIG. 12: MOT chamber optics diagram. The shutters (Uniblitz LS6Z2) in front of the MOT

and repumper beams are used to fully extinguish any residual light leak through the fiber.

The vertical MOT beams are omitted form the diagram for visual clarity. Yellow optics are

half-wave plates. Red optics are quarter-wave plates.
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FIG. 13: Photo of an ensemble of confined atoms in a MOT.

The ultrahigh vacuum chamber is shown in Fig. 14 and was re-created in Fusion 360 with

dimensions provided by Salim Balik [89]. Having a 3D model of the chamber was extremely

useful for testing optical arrangements before purchasing and implementing real life changes.

The vacuum chamber consists of 12 viewports, an electrical feedthrough, and an ion pump

(VacIon 20 l/s 911-5036). Of the 12 viewports, 8 are 2-3/4” Del-Seal conflat (CF) flanges

with 780 nm antireflection (AR) coated windows, 2 are 4-1/2” CF with 1064 nm AR coated

windows, and the 2 off axis are 2-1/8” CF with no AR coating. The electrical feedthrough is

connected to rubidium alkali dispensers, known as ‘getters’ (SAES Rb/NF/3.4/12FT10+10).

Running current through the getters supplies the chamber with rubidium atoms. The ion

pump is driven by a Varian 921-0062 controller and maintains the chamber at a pressure of

≈ 10−9 Torr.
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FIG. 14: Vacuum chamber assembly 3D model created in Fusion 360.
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The magnetic field is provided by the anti-Helmholtz coils placed above and below the

chamber which are supplied with 10 A. The coils can be seen in Fig. 14 and are clearly

pointed out in Fig. 15. The coils create a field gradient of ≈ 10 Gauss/cm with respect to

the center of the chamber.

FIG. 15: MOT chamber sideview highlighting the anti-Helmholtz coil positions.

Additional shim coils are also needed to cancel out external magnetic fields. Initially the

chamber had three shim coils mounted on the input ports for the MOT beams. A small

upgrade project was undertaken to replace the old shim coil arrangement with six that are

individually adjustable. The new coils are made from ribbon cables (3M 3365/16) and are

shown in Fig. 16. Inside the shim coil control box are 2 PCBs, shown in Fig. 17, which

connect the power supplies to the six ribbon cables. The PCB was designed to make each

ribbon cable act as one long wire instead of 16 individual wires. The X and Y coils consist of

7 wraps (112 turns) and the Z coils are 5 wraps (80 turns). Optimal current values delivered

to each of the six shim coils were painstakingly determined by observing the quality of the

optical molasses as the anti-Helmholtz coils were turned off.



64

FIG. 16: New magnetic shim coil arrangement and control box housing.

FIG. 17: Magnetic shim coil PCB created by Josh Frechem. Three shim coils can be con-

nected on each PCB.

3.1.3 MOT CHARACTERIZATION

The following will describe techniques and results to obtain the number of atoms, spatial
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parameters, and temperature of the MOT.

3.1.3.1 Atom Number

Absorption imaging and optical pumping are two techniques that can be used to deter-

mine the number of atoms in a MOT. Even though the optical pumping method was used

in the final calculation of the atom number, both techniques will be discussed. Absorption

imaging along with fluorescence detection is a common method to determine the number of

atoms in an atomic ensemble. Once the number of atoms in the MOT are determined from

absorption imaging, fluorescence detection can be used to calibrate the number of atoms per

count on a CCD. This calibration factor can then be used to determine the number of atoms

in a FORT where absorption imaging cannot be applied. The number of atoms can also be

determined with an optical pumping technique which also can be paired up with fluorescence

detection to determine a calibration. The optical pumping method was investigated over a

large parameter space and therefore is described in a separate chapter.

Absorption imaging is a method that analyzes the intensity of a probe beam through the

MOT over a range of detunings. Using Beer’s Law, the amount of light transmitted through

a medium is

IT (r,∆) = I0e
−b(r,∆), (192)

where I0 is the initial intensity before the medium and b is known as the optical depth. The

MOT has a Gaussian spatial distribution defined by

ρ(r) = ρ0e
−
r2

2r20 , (193)

where ρ0 is the peak density and r0 is the Gaussian radius. The optical depth b is a unitless

parameter given by

b(r,∆) = − ln (IT/I0) =
√

2πr0ρ(r)σ(∆)

=
√

2πr0ρ(r)
σ0

1 +

(
2∆

Γ

)2 =
b0

1 +

(
2∆

Γ

)2 e
−
r2

2r20 , (194)

where b0 =
√

2πr0ρ0σ0 is the peak optical depth, σ0 is the on resonant cross section, ∆ is

the detuning from resonance, and Γ is the natural decay rate. The total number of atoms is
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found by integrating Eq. (193) over all space which yields

N = (2π)3/2 ρ0r
3
0 = 2π

r20
σ0
b0. (195)

Therefore, the number of atoms can be determined from extracting the peak optical depth

in the center of the MOT along with the Gaussian radius. Experimentally this is performed

by recording CCD (Princeton Instruments PIXIS 1024 7520-00 13) images of the probe

transmission with (IT (r,∆)) and without (I0) the MOT present over a range of detunings

around the F = 2 → F ′ = 3 transition. Figure 18 shows an example of an absorption

imaging data set with the probe on resonance without (left) and with (right) the MOT

present. The probe pulse was roughly 10 µW for a duration of 50 − 100 µs and attenuated

before the CCD to prevent saturation if needed. The 1/e2 radius r0 can be determined by

fitting a cross section of either the absorption image or a fluorescence image of the MOT to

a Gaussian line shape. A fluorescence image is obtained by flashing the MOT and repumper

beams for 100µs and recorded by the same CCD used for absorption imaging. A fluorescence

image will provide a more accurate representation of the size of the MOT if b > 1.
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FIG. 18: Absorption imaging of a MOT. The left is the probe profile (I0) while the right is

with the MOT present with the probe on resonance (IT ). The cross-section profiles displayed

on the bottom and right of the figures are with respect to the center pixel. The axis labels

represent the number of pixels. (13x13 µm per pixel)
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The peak optical depth is determined by dividing the two images and taking the natural

logarithm as given by Eq. (194) over a range of detunings. A central 5×5 pixel area (b

around r = 0) is typically averaged over for each detuning and then fit to a Lorentzian.

There is an unfortunate downside to this method due to the spectral line shape deviating

from a true Lorentzian when b > 1. Allowing the MOT to expand before probing may help

this issue as long as the probe beam is large enough. The number of atoms can then be

obtained once b0 and r0 are determined. A calibration factor can then be determined by

associating the number of atoms to the number of counts from the fluorescence image.

In summary, under the proper conditions, the number of atoms can be determined with

the absorption imaging method but requires a multitude of CCD images to be taken. The

aforementioned two absorption profiles and one fluorescence image must be obtained along

with their corresponding background images for every detuning, which is rather time con-

suming. If the optical depth is > 1 the MOT must be allowed to expand. Therefore, the

temperature of the MOT must be determined in order to extrapolate backwards to the un-

expanded MOT size. Temperature measurements, described later, would add several more

steps to this process.

This method was determined to be nonviable due to the limited viewports of the vacuum

chamber in the final experimental arrangement. A solid foundation of laboratory knowledge

was formed during this introductory experience where important skills in optimizing optical

arrangements, timing procedures, RF electronics, data acquisition, and creating data ana-

lyzing tools were obtained. A more direct method involving optical pumping was used to

determine the atom number and will be described next.

The following text describes an optical pumping atom counting technique that benefits

from being experimentally simple to apply and has a rather straightforward theoretical back-

ground. The technique also claims to be independent of detuning and intensity of the probe

beam, which was found to not always be the case and will be discussed more thoroughly

towards the end of this section. This atom counting project was initially intended to be

simply a characterization technique but after obtaining interesting results much more time

was spent investigating a larger parameter space as well as creating a simulation to compare

with experimental results. With that said, the following text will first discuss the straight-

forward implementation of the optical pumping method and then present interesting data

that diverges from the detuning independent behavior that is claimed.

An optical pumping technique [91] was used to determine the atoms in the MOT by

analyzing absorption from a probe beam. The idea is to prepare the 87Rb MOT in the
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F = 2 ground state and apply a probe beam on the 5S1/2 F = 2 → 5P3/2 F
′ = 2 transition

where the atom can decay back to either the F = 2 or the F = 1 ground state. Once an atom

falls into the F = 1 it will not interact with the probe. The relative probability that an atom

will decay from a particular excited state to any specific allowed ground state transition is

known as the branching ratio. The branching ratio can be determined by the normalized

line strength factor of a F ′ → F decay, which is given by [62]

SFF ′ = (2J ′ + 1)(2F + 1)

{
J F I

F ′ J ′ 1

}2

. (196)

Conveniently, the values for the F ′ = 2 → F = 2 and F ′ = 2 → F = 1 decay channels are

both 1/2. The expected value for the number of photons an atom absorbs in order to decay

to the F = 1 ground state is

⟨Np⟩ =
∞∑
n=1

n(1 − p)n−1p =
1

p
, (197)

where p is the probability decay to the F = 1. Therefore, it will take an average of two

photons to optically pump an atom from the F = 2 to F = 1 ground state. The result

obtained by Eq. (197) converges for small atom numbers (⪆ 20) therefore it is perfectly

valid assumption for typical MOT values of 107 − 108 atoms. The number of atoms in a

MOT can then be determined by recording the amount of photons absorbed from a probe

and dividing by two.

The optical pumping experiment is preformed by introducing a probe laser on resonance

with the F = 2 → F ′ = 2 transition. The probe enters the chamber through the viewport

labeled in Fig. 12 and is recorded by a photodetector (Thorlabs PDB450A). Probe transmis-

sion data is recorded with and without the MOT present in order to determine the amount

of light absorbed by the atoms. The timing diagram is shown in Fig. 19. The repumper

was kept on for 100 µs after extinguishing the MOT beam to ensure a maximum amount of

atoms in the F = 2 ground state before probing. The typical duration of the probe was 600

µs but can be changed depending on the intensity and detuning. Figure 20 presents probe

transmission data with and without the MOT (a) while the subtracted signal (b) represents

the amount of light absorbed by the MOT. Data were taken and averaged over 128 cycles

on an oscilloscope (Tektronix MDO4054C). The number of atoms can be determined by

integrating the subtracted signal and therefore is given by

NA =
λ

2hc
χ

∫ tf

t0

V (t)dt, (198)
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where χ is the conversion factor of the Thorlabs PDB450A in W/V and the factor of 1/2

corresponds to the process taking an average of two photons for each atom. The error for the

number of atoms due to the oscilloscope and detector is determined by taking the standard

deviation per data point of a segment of the subtracted signal at a much later time when

the absorption process has finished. The error was then applied to the number of points

used to calculate the atom number, therefore signals which take longer will have a larger

error. The error value is typically on the order of 105 atoms and is also in line with the

approximate output noise amplitude provided in the photodetector documentation. Error

analysis was performed on the averaged oscilloscope signal and not on a shot by shot basis.

An error on the order of 105 was also found by performing the same measurement several

times and taking the standard deviation of the calculated number of atoms. The optical

pumping method can improve the accuracy of the number of atoms counted in a MOT by

at least an order of magnitude in comparison to absorption imaging while also being less

complex to implement.
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FIG. 19: Optical pumping timing diagram.
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FIG. 20: Optical pumping signal from a 0.25 mW probe on resonance to the F = 2 → F ′ = 2

transition. (a) represents the absorption signal with (red) and without (black) the MOT

present. (b) represents the amount of light absorbed by the MOT. The number of atoms

determined from this signal is 2.484 ± 0.002 × 108.

As mentioned in the introduction to the optical pumping method, the technique claims

to be detuning and intensity independent. At first glance this claim appears to be obvious

because the optical pumping process will simply take longer if the detuning is off resonance

due to the detuning dependent scattering cross-section. Similarly, the process will take more

time if the intensity of the probe is reduced. In both cases the atom number, or amount of

light absorbed by the sample, should remain the same. Since this was found to not always be

the case, a large parameter space was explored in order to understand and possibly introduce

a model to explain the results. Data were analyzed from probe absorption, fluorescence, and

simulation results.

Several techniques were used in order to explore different experimental regimes by chang-

ing the optical depth, density, and atom number. Probing at different expansion times al-

lowed for the number of atoms to remain the same while changing the optical depth and

density, while reducing the current to the getters decreased the amount of atoms available

to be trapped in the MOT.

Typical detuning-dependent results obtained from the optical pumping experiment at

different optical depths are shown in Fig. 21. The approximate magnitude of the detuning

dependent behavior can be found by dividing each set of data by the number of atoms found

at ± 12 MHz and will be called overcounting. The magnitude of overcounting was found to
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be an optical depth b0 effect rather than dependent on purely density or atom number. The

optical depth dependence can be seen in Figs. 22-23 where the overcounting is the same at

different atom number and density regimes as long as the optical depth is the same. The

data in Fig. 22 was taken where the larger atom number corresponds to the smaller density

while the opposite is the case for Fig. 23. The overcounting error bars were omitted to

reduce visual clutter but have a typical value of approximately ± 0.025.
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FIG. 21: Number of atoms calculated using the optical pumping technique at several de-

tunings and under different conditions. The probe power was 0.25 mW and detuned around

the F = 2 → F ′ = 2 transition. The optical depth b0 values were determined by using the

number of atoms calculated at ± 12 MHz along with r0 obtained from fluorescence imaging.
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FIG. 22: Atom number and overcounting results for b0 = 1.7 ± 0.3. The density of the

samples are 0.7 ± 0.1 (circles) and 1.2 ± 0.2 (open circles) in units of 1010 atoms/cm3. (a)

represents the atom number while (b) corresponds to overcounting.
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FIG. 23: Atom number and overcounting results for b0 = 4.5 ± 0.3. The density of the

samples are 3.7 ± 0.2 (circles) and 2.4 ± 0.2 (open circles) in units of 1010 atoms/cm3. (a)

represents the atom number while (b) corresponds to overcounting.

The attributed reason for the occurrence of the overcounting effect is due to the depump-

ing of atoms which have already been counted, therefore re-introducing them to be counted

again. The atoms are excited from the 5S1/2 F = 2 → 5P3/2 F
′ = 2 and decay to either
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the F = 2 (Rayleigh scattering) or F = 1 (Raman scattering) ground state. An atom is

considered counted once it decays to the F = 1 ground state, but the photon that is released

can cause an already counted atom to optically pump back to the F = 2 where it will inter-

act with the probe again. While the explanation is simple, the process is very dynamic and

non-trivial. It is dependent on the optical depth and the populations of the atoms in their

respective ground states at a particular time.

An optical pumping simulation was created that allowed for pumped atoms to be

depumped via the Raman scattered photons within the sample. The simulation tracked

the amount of photons that were absorbed and the number of photons that exited the sam-

ple each time step. Each photon that exited the sample retained information on its trajectory

and whether it was Rayleigh or Raman scattered. Figure 24 shows an example of the trajec-

tories of several photons which exited the sample at the end of a particular time step. The

simulated atomic ensembles were randomly generated with N atoms in a Gaussian spatial

distribution. Each atom acted as a hard target with an approximated cross sectional area

based on the atomic cross section. The optical depth of the simulated sample cannot be

calculated simply with the number of atoms and the Gaussian radius due to this approxi-

mation. Therefore, a phenomenological approach was taken to extract an effective optical

depth and will be explained further in the text.
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FIG. 24: Photon trajectories from the optical pumping simulation. The red lines denote the

incoming photons while the black represent the scattered trajectories. All photons that do

not interact are ignored.

A few simple checks and comparisons were made between the simulation results and

experimental data to analyze the behavior. First and foremost, the simulation reproduced

the expected result of taking an average of two photons to pump a single atom from the

F = 2 to F = 1 ground state. This result was independent of all parameters when the Raman

scattered photons were not allowed to interact. The comparison between the simulation and

experimental time resolved fluorescence at similar optical depth and probe intensity is shown

in Fig. 25. The pump rates were then determined by fitting the time dependent fluorescence

data to a decaying single exponential. It must be noted that the behavior of the fluorescence

begins to depart from a true single exponential as the optical depth increases. The on

resonant pump rates as a function of probe intensity is shown in Fig. 26 where it was found

that the pump rates increase linearly as the probe intensity increases. The linear behavior

of the pump rates as a function of probe intensity hold for all detuning values.
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FIG. 25: Time resolved fluorescence from the (a) optical pumping simulation and (b) exper-

imental data. The optical depth for both data sets was approximately 2.3. The data were

taken at two detunings and the probe intensity was 0.125 mW/cm2.
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FIG. 26: On resonant pump rate from the (a) optical pumping simulation and (b) exper-

imental data. The simulation reproduces the expected linear behavior within the same

optical depth and probe intensity regime as the experimental data. The simulation shows

a slower(faster) rate at a larger(smaller) optical depth compared to the experimental data,

which is an expected result.

The overcounting effect as a function of detuning is shown in Fig. 27. The simulation



76

overcounting value was directly determined since the simulation tracks the amount of photons

absorbed and the number of atoms is a user input. The experimental overcounting values

were determined by dividing the atom number data shown in Fig. 21 by the values at

±12 MHz. An interesting result is that the simulation data noticeably overcounts even at

±12 MHz as b0 increases. The simulation also provides results that show the magnitude

of overcounting was only dependent on b0 and independent of probe intensity, number of

atoms, and sample density.
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FIG. 27: Optical pumping overcounting vs detuning from the (a) optical pumping simula-

tion and (b) experimental data. The experimental overcounting values were determined by

dividing the atom number data shown in Fig. 21 by the values at ±12 MHz. A value of 1

corresponds to two photons absorbed per atom in the sample.

Previous discussions on the topic of scattering from a Gaussian sample on the 5S1/2 F =

2 → 5P3/2 F
′ = 3 cycling transition have found that the total scattering cross section, and

therefore the amount of scattered photons, scale as Ein(b)/b [49–52]. The Ein(b)/b scaling

was found to break down when analyzing the optical pumping process due to the dynamic

behavior of the open transition, therefore a different direction was taken. A phenomenological

approach was derived to obtain the optical depth b0 from the detuning dependent optical

pumping rate of the fluorescence. Using a simple model with the use of the Beer-Lambert
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law, the transmitted light through a sample of optical depth b and probe intensity I0 is

IT (∆) = I0e
−b(∆), (199)

where b(∆) = b0/(1+(2∆/Γ)2). This is a steady state solution and is used as an initial value.

The measurements are taken with a PMT which record the incoming intensity, or rate, at

which the photons exit the sample. The measurements record the fluorescence, which is the

light that is not transmitted, namely

IF (∆, 0) = I0(1 − e−b(∆)). (200)

The PMT records a signal that decays at some constant rate RF (∆) over time. This sin-

gle exponential decay is an approximation that is used. The approximate time dependent

fluorescence is then given by

IF (∆, t) = I0(1 − e−b(∆))e−RF (∆)t. (201)

The total fluorescence, or number of photons per area, given off by the sample will then be

given by

NF (∆) =

∫ ∞

0

I0(1 − e−b(∆))e−RF (∆)t =
I0

RF (∆)
(1 − e−b(∆)). (202)

At this point both sides of the equation are simply constant values and the total amount of

fluorescence depends on the sample itself and should not depend on I0. Therefore, in this

approximation RF (∆) ∝ I0 since I0/RF (∆) = constant. The linear proportionality behavior

of the rate as a function of probe intensity was shown in Fig. 26 for the simulated and

experimental data. Applying this proportionality to Eq. (200) yields

RF (∆) ∝ I0(1 − e−b(∆)). (203)

Finally, taking the ratio of Eq. (203) at some detuning ∆ and on resonance gives

RF (∆) = RF (0)
(1 − e−b0/(1+( 2∆

Γ
)2))

(1 − e−b0)
. (204)

The line shape flattens out around resonance as b0 increases, while the expected single

atom Lorentzian behavior returns as b0 goes to zero. Equation 204 was used to fit the

fluorescence rate vs detuning data of the simulation to obtain the b0 values listed in previous

figures. Applying this fitting procedure to experimental data also provided predictions to b0

comparable to the values obtained by using the optical pumping atom number and spatial

parameter r0. Simulation and experimental data fit to Eq. (204) is shown in Fig. 28.
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The behavior of the simulation is consistent to that of the experimental data under similar

conditions. The predicted optical depth of the experimental data obtained from the fit to

Eq. (204) is displayed in the legend as the second value in Fig. 28b.
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FIG. 28: Fluorescence rate vs detuning from the (a) optical pumping simulation and (b)

experimental data. The first b0 value in the legend for the the experimental data (b) corre-

sponds to the original method while the second value was obtained from the fit to Eq. (204).

The dashed lines correspond to the fit with a 95% confidence band.

In an effort to maintain clarity and consistency with presenting the comparison of the

experimental data to simulation results, the same three experimental data sets were used

in Figs. 21, 27, and 28. The predictive analysis was performed on several data sets that

were acquired under a multitude of different conditions and is presented in Fig. 29, where

the calculated value is compared to the predicted value of b0. Even though the predicted b0

values are in line with the calculated values, it must be noted that data could only be taken

over a limited optical depth regime, therefore the validity of the phenomenological approach

at greater optical depths is unknown a this time.
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FIG. 29: Calculated vs predicted optical depth. The predicted optical depth b0 was obtained

by fitting the fluorescence rates as a function of detuning to Eq. (204). The dashed line

represents where calculated is equal to predicted. Experimental data were acquired under

several different conditions at a probe intensity of 0.125 mW/cm2.

●
●

●

●●

●

●

●●
●

● ●●
●

●

● Experimental Data
Simulation

0 2 4 6 8 10

1.0

1.2

1.4

1.6

1.8

Predicted b0

O
ve
rc
ou
nt
in
g

FIG. 30: Overcounting vs predicted optical depth comparison between simulation (open

circles) and experimental (circles) data. The predicted optical depth b0 was obtained by

fitting the fluorescence rates as a function of detuning to Eq. (204). Experimental data were

acquired under several different conditions at a probe intensity of 0.125 mW/cm2.

The final interesting pieces of simulation information that will be presented are related
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to the separated time resolved fluorescence of the Rayleigh and Raman scattered photons.

This type of data cannot be experimentally obtained in the current apparatus because the

difference between the two photons is only around 6.8 GHz or 0.0139 nm. Separating the

two frequencies and detecting them independently is non-viable because typical filters used

in the lab have a FWHM of 1 nm around the central wavelength. Figure 31 presents the on

resonance simulation fluorescence associated with the b0 = 4.86 data set shown in Fig. 28

for the Raman (black) and Rayleigh (red) photons. The two signals overlap for samples with

b0 < 1 and diverge from each other as b0 increases. The detuning dependent pump rates

for the Raman and Rayleigh fluorescence, shown in Fig. 32, also have their own behavior

that differs as b0 increases. Namely, the Rayleigh fluorescence line shape broadens and ends

up flattening out as b0 increases. The FWHM of the detuning dependent pump rates as a

function of b0 is shown in Fig. 33. The FWHM of the Raman and Rayleigh fluorescence

differ from another as b0 increases and converges to the natural decay rate at b0 ≪ 1. The

FWHM was determined computationally from the fit to detuning dependent pump rates

using Eq. (204).
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FIG. 31: Time resolved fluorescence of the Rayleigh and Raman scattered photons from

the optical pumping simulation. The Raman (black) scattered photons correspond to atoms

decaying from the F ′ = 2 → F = 1 while the Rayleigh (blue) represent F ′ = 2 → F = 2

decay. This data is associated with the on resonance simulation data point for b0 = 4.86 in

Fig. 28.
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FIG. 32: Detuning dependent pump rates of the Raman and Rayleigh fluorescence from the

optical pumping simulation. The Raman (circles) scattered photons correspond to atoms

decaying from the F ′ = 2 → F = 1 while the Rayleigh (open circles) represent F ′ = 2 →
F = 2 decay. This data is associated with the simulation data points for b0 = 4.86 in Fig.

28.
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FIG. 33: Full width at half max vs b0 of the Raman, Rayleigh, and total fluorescence from

the optical pumping simulation. The Raman (circles) scattered photons correspond to atoms

decaying from the F ′ = 2 → F = 1, the Rayleigh (open circles) represent F ′ = 2 → F = 2

decay, and the combined (squares) is the total fluorescence.
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In summary, this phenomenological approach utilized the Beer-Lambert law with a single

exponential temporal decay behavior to obtain the optical depth of the sample. It is impor-

tant to note that the Beer-Lambert law does not take into account multiple scattering and

the real decay behavior is not a simple single exponential, especially at larger optical depths.

Multiple scattering, optical pumping, and saturation effects were not directly included in this

derivation. The resulting fits to fluorescence rates of experimental data predicted, within

reason, the previously calculated values of b0. Depending on the validity of this approach,

b0 can be determined directly from the detuning dependence of the fluorescence rates. That

is in contrast to the typical method of requiring atom number and the sample Gaussian

radius r0. A simulation was then created to analyze the optical pumping process and pro-

vided results consistent with multiple scattering induced de-pumping of the atomic sample.

The simulation also provided predictions of the fluorescence that is outside the capabilities

of the current apparatus to confirm. At larger optical depths the simulation time resolved

fluorescence data diverges further from single exponential behavior. Therefore, this may be

an interesting area of continued exploration where modifications to the phenomenological

approach will be required for a more complete description of the multiple scattering process.

3.1.3.2 Temperature

The temperature of the MOT was obtained by recording the density distribution of the

atoms after being released from the trap as a function of time. The spatial profile of the

MOT was approximated by

ρ (x, y, z) = ρ0e
− x2

2r2x(t) e
− y2

2r2y(t) e
− z2

2r2z(t) . (205)

where the squared Gaussian radii expand as

r2i (t) = r2i (0) + v2i t
2. (206)

The atomic cloud is assumed to have a Maxwell-Boltzmann velocity distribution, therefore

the velocity is related to the temperature by v2i =
kBT

m
.

The observation of the expansion of the MOT was performed by turning off the MOT

and repumper beams, allowing the MOT to expand for some given time, and then flashing

the MOT and repumper beams. The fluorescence of the atoms during the flash was recorded

on a cooled CCD (PIXIS 1024BR) with 13×13 µm pixel size. The beams were flashed for

50 µs for 10 accumulations over several expansion times. Figure. 34 shows the MOT images
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at different expansion times. A cross section of each image was then fit to a Gaussian to

obtain the horizontal rx and vertical ry at several expansion times.

FIG. 34: Spatial profile of MOT at various expansion times. Expansion times from left to

right are 3, 4, 5, and 6 ms. Each square is 3393×3393 µm.

The temperature of the MOT can now be determined by fitting the evolution of the

squared Gaussian radii as a function of t2 as shown in Fig. 35. A compressed MOT will be

described during the FORT loading procedure but the temperature was determined in the

same way as for the regular MOT. Typical MOT temperatures are around 150 µK while the

compressed MOT is around 50 µK. The temperature uncertainties shown in Fig. 35 are the

standard errors given the Mathematica.
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FIG. 35: Temperature measurements of the MOT (squares) and compressed MOT (circles)

were determined from fit parameters using Mathematica 10.4. The horizontal(vertical) MOT

temperature was found to be 160 ± 4(160 ± 3) µK while the compressed MOT was found

to be 66.2 ± 1.4(66.5 ± 0.9) µK.

The initial density of the MOT can also be determined from the temperature fit by eval-

uating the Gaussian radii at t = 0. The number of atoms can be determined by integrating

Eq. (193) over all space

N =

∫
ρ0e

− x2

2r2x(t) e
− y2

2r2y(t) e
− z2

2r2z(t)dxdydz = ρ0

(√
2π
)3
rx(t)ry(t)rz(t). (207)

Solving for initial peak density simply yields

ρ0 =
N(√

2π
)3
rx(0)ry(0)rz(0)

, (208)

where rx and ry will be defined as the horizontal and vertical Gaussian radii. The value of

rz = rx since the MOT shape is slightly pancaked in the horizontal direction. Typical MOT

parameters under experimental conditions are shown in Table 1 where the given uncertainties

were extracted from 95% mean prediction bands calculated in Mathematica. Increasing

the amount of Rubidium in the chamber allows for larger MOTs with upwards of 4×108
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atoms with r0 around 600 µm but doing so increases the amount background gas without

significantly improving the loading of the dipole trap.

TABLE 1: Typical MOT characteristics during experimental runs.

Parameter MOT Compressed MOT

N(×106) 74.9 ± 1.5 37.3 ± 0.8

T (µK) 160 ± 4 66.2 ± 1.4

rx(0) (µm) 480 ± 16 335 ± 9

ry(0) (µm) 384 ± 14 287 ± 7

ρ0 (1010 cm−3) 5.4 ± 0.4 7.4 ± 0.5

3.2 DIPOLE TRAPS

In contrast to the magneto-optical trap which utilizes forces from scattered photons to

produce a cold dilute sample, an optical dipole trap spatially confines atoms in a potential

well with the dipole force with minimal scattering. Dipole trap depths are usually in the

mK range therefore atoms must be pre-cooled by a MOT.

This section will describe the theory from a classical and semi-classical point of view.

Specifically with approximations for far-off resonance traps (FORT). The derivations pre-

sented in this section are primarily based on discussions in Refs. [59, 60, 92]. A multi level

atom approach will also be taken to calculate the polarizabilities to compare to accepted

and experimental results. The experimental arrangement and characterization of the FORT

will also be discussed in similar fashion as the MOT.

3.2.1 THEORY OF DIPOLE TRAPS

3.2.1.1 Classical Approach

An external electric field E acting on a polarizable atom induces an atomic dipole moment

p which is given by [66, 92, 93]

p(t) = qx(t) = αE(t), (209)
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where q = −e is the charge of an electron and α is the complex polarizability. The

electric field can be put in the following form E(t) = |E0| cos(ωt)ϵ̂ = Re [E0e
−iωt] ϵ̂ =

1

2
[E0e

−iωt + E∗
0e

iωt] ϵ̂, where E0 is generally a complex amplitude with a phase factor.

The potential of the induced dipole moment p in the external driving field E is given by

Udip = −1

2
⟨p · E⟩T = − 1

2ϵ0c
Re(α)I(r), (210)

where ⟨..⟩T denotes the time average which picks a factor of 1/2 and I = 1
2
ϵ0c|E|2. The

factor of 1/2 in front of the equation is due to the dipole being induced.

The power absorbed by the oscillating dipole from the driving field is

Pabs = ⟨ṗ · E⟩T =
ω

ϵ0c
Im(α)I(r). (211)

The power absorbed must then be emitted by the dipole by photons with energy ℏω, therefore

the scattering rate is given by

Γsc =
Pabs

ℏω
=

1

ℏϵ0c
Im(α)I(r). (212)

The interaction potential Eq. (210) and the scattering rate Eq. (212) as a function of

the polarizability α(ω) and intensity I(r) are the two important quantities which govern

the physics for dipole traps. At this point, the previous equations are valid for polarizable

neutral particles in an oscillating electric field.

The classical approach of the Drude-Lorentz oscillator model will be used to determine

the polarizability [92]. In this model an electron is bound to an atomic core with a resonant

frequency ω0. The electron is driven by an external field at frequency ω and radiates at the

rate Γω. x(t) and α can be derived by solving the following equation of motion knowing that

p(t) is in the same form as E(t).

ẍ(t) + Γωẋ(t) + ω2
0x(t) = − e

me

E(t) (213)

The resulting polarizability is

α =
e2

me

1

ω2
0 − ω2 − iωΓω

, (214)

where

Γω =
e2ω2

6πϵ0mec3
→ e2

me

=
6πϵ0c

3Γω

ω2
. (215)

The polarizability can be put into a different form by substituting the r.h.s. of Eq. (215)

and introducing the on resonance damping rate, or the excited state spontaneous decay
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rate, Γ ≡
(
ω0

ω

)2
Γω into Eq. (214). The justification for using Eq. (215) substitution is the

spontaneous decay rate Γ for the D lines of alkali atoms only differs from Γω by only a few

percent. Specifically 4.3% for Rb. The result after substitutions is given by,

α = 6πϵ0c
3 Γ/ω2

0

ω2
0 − ω2 − i (ω3/ω2

0) Γ

= 6πϵ0c
3 Γ

ω2
0

 (ω2
0 − ω2)

(ω2
0 − ω2)

2
+
(

ω3

ω2
0
Γ
)2 + i

(
ω3

ω2
0
Γ
)

(ω2
0 − ω2)

2
+
(

ω3

ω2
0
Γ
)2
 (216)

The denominator of the polarizability can be further simplified the factor (ω2
0−ω2)2 is on the

order of 1057 while the
(

ω3

ω2
0
Γ
)2

factor is on the order of 1041, therefore (ω2
0 −ω2)2 ≫

(
ω3

ω2
0
Γ
)2

and it can be neglected.

α = 6πϵ0c
3 Γ

ω2
0

 1

(ω2
0 − ω2)

+ i

(
ω3

ω2
0
Γ
)

(ω2
0 − ω2)

2

 (217)

The real and imaginary components of the polarizability, after partial fraction decomposition,

are given by

Re(α) = 6πϵ0c
3 1

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
(218)

Im(α) = 6πϵ0c
3

(
ω3

ω3
0

)
1

4ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

. (219)

Therefore in the classical representation the potential Eq. (210) and the scattering rate Eq.

(212) are given by,

Udip = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) (220)

Γsc =
3πc2

2ℏω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r) (221)

The rotating wave approximation can be used in this particular case because the detuning

∆ ≡ ω − ω0 ≪ ω0 and ω/ω0 ≈ 1. This simplifies the above expressions to the following,

Udip ≈ 3πc2

2ω3
0

Γ

∆
I(r) (222)

Γsc ≈
3πc2

2ℏω3
0

(
Γ

∆

)2

I(r) (223)
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Equations Eq. (222) and Eq. (223) show the two important features and the basic physics

that are taken advantage for far-off resonance trapping. The first is that the potential scales

as I
∆

while the scattering rate goes as I
∆2 . Therefore dipole traps with very large detunings

and large intensity create a strong spatially confined trapping potential with minimal radi-

ation trapping due to scattering. The second is sign of the potential which is determined

by the detuning of the driving field. The potential is negative for a red-detuned trap ∆ < 0

and attracts atoms into positions of maximum intensity. In cases where ∆ is on the order of

ω0, such as in an quasi-electrostatic trap (QUEST), the forms shown in Eq. (220) and Eq.

(221) must be used.

It must be noted that the validity of the polarizability shown in Eq. (217) does not hold

where saturation effects are significant. There should technically be a saturation term in the

denominator which is omitted due to the far-off resonance condition.

3.2.1.2 Semiclassical Approach

In the semiclassical approach the polarizability is calculated by considering a quantum

two-level atom interacting with a classical radiation field. The basis of this approach was

performed rigorously in Section 2.2.2 where saturation effects are neglected.

The potential and scattering rate are given by the same relations in Eq. (210) and Eq.

(212) but can be derived using the semi-classical results for the polarizability. Starting with

the polarization presented in Eq. (87)

P(t) =
1

2
ϵ0E0

(
χ(ω)e−iωt + χ(−ω)eiωt

)
,

where the susceptibility χ(ω) can be written as a sum of its real an imaginary parts given

by

χ(ω) = χr(ω) + iχi(ω). (224)

Considering the form of the susceptibility shown in Eq. (102) it is easily seen that

χr(−ω) = χr(ω) (225)

χi(−ω) = −χi(ω), (226)

therefore the polarization can be rewritten as

P(t) = ϵ0E0 (χr(ω) cos(ωt) + χi sin(ωt)) , (227)
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and the dipole moment is then given by

p(t) = E0 (αr(ω) cos(ωt) + αi sin(ωt)) . (228)

The potential of an induced dipole due to an electric field in the form of E = E0 cos(ωt)

is given by

Udip = −1

2
p · E

= −|E0|2

2

(
αr(ω) cos2(ωt) + αi(ω) sin(ωt) cos(ωt)

)
. (229)

After time averaging the first term picks up a factor of 1/2 while second term vanishes to

give

Udip = −1

4
αr(ω)|E0|2 = − 1

2ϵ0c
αr(ω)I(r) (230)

To solve for the potential the polarizability value given in Eq. (109) is substituted into Eq.

(230) to give

Udip = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) (231)

which is the exact result as the classical approach.

The power absorbed by the dipole, which will be re-emitted, is given by

Pabs = ṗ · E = |E0|2
(
−ωαr(ω) sin(ωt) cos(ωt) + ωαi(ω) cos2(ωt)

)
, (232)

where the first term vanishes while the second term picks up a factor of 1/2 after time

averaging and yields

Pabs =
1

2
ωαi(ω)|E0|2 =

ω

ϵ0c
αi(ω)I(r). (233)

The scattering rate is simply the amount of power absorbed, which equals the power emitted,

divided by the energy of a photon with frequency ω. Therefore the scattering rate is

Γsc =
Pabs

ℏω
=

1

ℏϵ0c
αi(ω)I(r). (234)

To solve for the scattering rate the imaginary part of the polarizability obtained in Eq. (110)

is substituted into Eq. (234) to give

Γsc =
3πc2

2ℏω3
0

(
ω

ω0

)(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r) (235)

which is similar to the classical method.

The significant result of either approach reveals that the strength of the potential scales

as I/∆ and the scattering rate as I/∆2. Therefore, with the appropriate intensity, the

potential is strong in the far off resonance regime while the scattering rate is diminished

allowing for tight spatial confinement when ∆ < 0.
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3.2.1.3 Multilevel Atoms - Quantum Mechanical

The previous two level approximation provided an expected behavior of an optical dipole

trap but a multilevel atom approach must be taken in order to calculate realistic energy level

shifts. The approach will be the same as discussed in section 2.3.1 but with an oscillating

electric field and is based on discussions in [65, 92].

The dipole potential for the multilevel case in an oscillating electric field is the same as

given in Eq. (140) but now the time average must be taken to become what was shown in

Eq. (210) namely

Udip = −1

2
⟨p · E⟩T = − 1

2ϵ0c
Re(α)I(r),

where now

Re(α) = α0I + α2Q̂. (236)

The polarizability for a particular state ν can be approximated as the sum of the ionic

core and valence electron polarizabilities given by [94],

αν ≈ αcore + αν
val (237)

where the state is represented by ν = nL. The atomic core polarizability is taken as αcore =

9.1 for Rubidium [95]. The scalar portion of the valence polarizability is given by

αν
0(ω) =

2

3 (2Jν + 1)

∑
k

|⟨k||d||ν⟩|2 (Ek − Eν)

(Ek − Eν)2 − ω2
, (238)

where k is an intermediate state, ⟨k||d||ν⟩ is the reduced dipole matrix element, and ω is the

laser frequency. The tensor portion of the valance polarizability is given by

αν
2(ω) = −4C

∑
k

(−1)Jν+Jk+1

{
Jν 1 Jk

1 Jν 2

}
|⟨k||d||ν⟩|2 (Ek − Eν)

(Ek − Eν)2 − ω2
, (239)

where

C =

(
5Jν (2Jν − 1)

6 (Jν + 1) (2Jν + 1) (2Jν + 3)

)1/2

. (240)

The polarizabilities given in Eq. (238) and Eq. (239) are in atomic units. Multiply α by

4πϵ0a
3
0 to convert to standard units. The reduced dipole matrix element is in units of ea0

and the energies Ei and laser frequency ω in terms of the Hartree energy Eh. Values for the

Hartree energy are given in Table 9.
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The energy levels are obtained from NIST [64] which are essentially the value of 1/λ

relative to the lowest ground state (5S1/2) and are in units of cm−1. The energies are

converted to atomic units with the Hartree energy. To be clear, an energy Ei =
ℏωi

Eh

, where

the substitution goes as

Ei =
ℏωi

Eh

=
ℏωi

ℏωh

=
ωi

ωh

=
2πc

ωhλi
, (241)

therefore

Ek − Eν =
2πc

ωh

(
1

λk
− 1

λν

)
, (242)

where 1/λi is the value given by NIST.

The standard procedure to calculate the polarizabilities is to sum over the first several n

states which connect to the state of interest. Therefore to calculate the 5S1/2 ground state

polarizability, both the nP1/2 and nP3/2 states must be taken into account over several values

of n. The contributions to the static (α0,S) and dynamic polarizabilities at 1064 nm (α0,D)

of the 5S1/2 state from each nP1/2,3/2 state are shown in Table 2. Static polarizabilities are

found by setting the laser frequency ω to zero in Eq. (238) and Eq. (239). λres is determined

by the difference in energy values given by NIST between the k and ν states. All reduced

dipole matrix elements used in calculations have been obtained from Safronova et al. [94–98]

and are given in the symmetric convention in the J basis. Steck [62] uses the asymmetric

convention which differs by a factor of
√

2J + 1.
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TABLE 2: 5S1/2 ground state static and 1064 nm dynamic polarizability contributions.

Contribution λres RDME α0,S α0,D

5S1/2 → 5P1/2 794.979 4.227 103.618 235.230

5S1/2 → 6P1/2 421.673 0.342 0.361 0.4280

5S1/2 → 7P1/2 359.260 0.118 0.0366 0.0413

5S1/2 → 8P1/2 335.177 0.059 0.0085 0.0095

5S1/2 → 9P1/2 323.009 0.046 0.0050 0.0055

5S1/2 → 5P3/2 780.241 5.977 203.913 441.126

5S1/2 → 6P3/2 420.299 0.533 0.9403 1.114

5S1/2 → 7P3/2 358.807 0.207 0.1125 0.1269

5S1/2 → 8P3/2 334.966 0.114 0.0318 0.0353

5S1/2 → 9P3/2 322.891 0.074 0.0129 0.0142

αcore 9.1 9.1

Total 318.435 687.231

In order to calculate the 5P3/2 polarizabilities the nS1/2, nD3/2, and nD5/2 state contri-

butions are taken. The contributions to the polarizabilities of the 5P3/2 excited state are

shown in Table 3. The calculations were performed in Mathematica and the basic functions

are presented in Appendix B. The calculated values for the 5S1/2 ground state and 5P3/2

excited state agree well within 0.1% of the accepted and experimental values listed in Table

13. The dynamic polarizabilities at 1064 nm were also calculated using the ARC python

package [99] and a small compendium of values are listed in Table 14 of Appendix A.
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TABLE 3: 5P3/2 excited state static and 1064 nm dynamic polarizability contributions.

Contribution λres RDME α0,S α2,S α0,D α2,D

5P3/2 → 5S1/2 -780.241 5.977 -101.957 101.957 -220.563 220.563

5P3/2 → 6S1/2 1366.87 6.047 182.822 -182.822 -281.117 281.117

5P3/2 → 7S1/2 741.021 1.350 4.9399 -4.9399 9.5928 -9.5928

5P3/2 → 8S1/2 616.133 0.708 1.1297 -1.1297 1.6996 -1.6996

5P3/2 → 9S1/2 565.531 0.466 0.4492 -0.4492 0.6261 -0.6261

5P3/2 → 10S1/2 539.206 0.341 0.2293 -0.2293 0.3086 -0.3086

5P3/2 → 4D3/2 1529.26 3.633 73.830 59.064 -69.2744 -55.4195

5P3/2 → 5D3/2 776.157 0.665 1.255 1.004 2.6834 2.1467

5P3/2 → 6D3/2 630.097 0.506 0.590 0.472 0.9088 0.7271

5P3/2 → 7D3/2 572.621 0.370 0.2867 0.2294 0.4036 0.3229

5P3/2 → 8D3/2 543.334 0.283 0.1592 0.1273 0.2153 0.1723

5P3/2 → 9D3/2 526.169 0.225 0.0974 0.0779 0.1290 0.1032

5P3/2 → 4D5/2 1529.37 10.899 664.515 -132.903 -623.347 124.669

5P3/2 → 5D5/2 775.979 1.983 11.161 -2.232 23.843 -4.769

5P3/2 → 6D5/2 630.007 1.512 5.268 -1.054 8.112 -1.6225

5P3/2 → 7D5/2 572.571 1.104 2.553 -0.5105 3.593 -0.7186

5P3/2 → 8D5/2 543.304 0.845 1.419 -0.2838 1.919 -0.3839

5P3/2 → 9D5/2 526.149 0.672 0.8691 -0.1738 1.150 -0.2301

αcore 9.1 9.1

Total 858.718 -163.795 -1130.02 554.452

The same approach which was taken in Section 2.3.1 will be used determine the atomic

energy level shifts due to the interaction of a linearly polarized 1064 nm FORT beam. The

main difference is the time averaged term shown in Eq. (210), therefore the matrix element

for a particular state is given by

⟨F ′m′
F |Udip|FmF ⟩

= ⟨F ′m′
F |Vhfs −

I (r)

2ϵ0c

(
α0 + α2Q̂

)
|FmF ⟩

= ⟨F ′m′
F |Vhfs|FmF ⟩ − ⟨F ′m′

F |
I (r)

2ϵ0c

(
α0 + α2Q̂

)
|FmF ⟩, (243)
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where ⟨F ′m′
F |Vhfs|FmF ⟩ is defined by Eq. (138) and ⟨F ′m′

F |Q̂|FmF ⟩ by Eq. (143) and is

block diagonal in mF .

The FORT beam is Gaussian in nature with an intensity profile given by

I (r) = I (ρ, z) = I0

(
w0

wz

)2

e−2ρ2/w2
z , (244)

where w0 is the 1/e2 radial beam radius at z = 0, wz = w0

√
1 + (z/zR)2, zR =

πw2
0

λ
is

the Rayleigh length, λ is the FORT beam wavelength, and the peak intensity is defined as

I0 = 2P
πw2

0
. The power P is in units of watts. Determining values of w0, wz, and zR will be

discussed in Section 3.2.3.

At this point it is useful to define the units of the dynamic α0 and α2 values in a.u. listed

in Table 13. Therefore to correctly coincide with the units of Vhfs, the second term in Eq.

(243) becomes

I (r)

2ϵ0c
⟨F ′m′

F |
4πϵ0a

3
0

h

(
α0 + α2Q̂

)
|FmF ⟩

=
1

2

(
4πa30
hc

)
I (r) ⟨F ′m′

F |
(
α0 + α2Q̂

)
|FmF ⟩

=
1

2

(
8a30P

hcw2
0

)
1

1 + (z/zR)2
⟨F ′m′

F |
(
α0 + α2Q̂

)
|FmF ⟩, (245)

where the final line represents the energy level shift as a function of z at ρ = 0 at some power

P and 1/e2 beam radius w0. Mathematica was used to diagonalize the matrix and obtain

eigenvalues which represent the energy level shift of a particular |F,mF ⟩ state as a function of

z. The resulting shifts for the 5P3/2 hyperfine manifold under typical experimental conditions

are shown in Fig. 36.
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FIG. 36: 87Rb 5P3/2 hyperfine manifold energy level shifts due to a 1064 nm FORT beam

with P = 2.8 W and w0 = 14.6 µm.

The spatially dependent shifts for the 5S1/2 ground state and 5P3/2 excited state are

shown Fig. 37. All mF values are degenerate for the ground state because α2(5S1/2) = 0

and therefore unable to couple to other states. The shifts are only degenerate in | ±mF | for

the 5P3/2. The peak depth of the ground state is also known as the well or trap depth U0.



96

The trap depth is a parameter usually given in units of MHz or mK and will be determined

via parametric resonance in the FORT characterization section.
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FIG. 37: Energy level shifts of the (a) 87Rb 5S1/2 and (b) 5P3/2 states due to a 1064 nm

FORT beam with P = 2.8 W and w0 = 14.6 µm.

Although the physics behind creating a FORT have been well studied, out of curiosity,

a simple experiment was devised to directly show the atomic resonance shift while in the

presence of the FORT beam. An experimental example of this effect can be easily shown

by first creating a FORT and then analyzing the response when probing the sample over a

range of detunings around the 87Rb 5S1/2 F = 2 → 5P3/2 F
′ = 3 transition. The result is

shown in Fig. 38 where the peak is shifted to higher frequency. This was consistent with

the calculated behavior of the ground state and excited states shifting in opposite directions

of one another. CCD images were recorded when flashing the detunable MOT beam for 50

µs with and without the FORT beam present. Ten accumulations were recorded for each

detuning and the total counts from a 81×13 pixel area around the center of the FORT

was calculated after background subtraction. While this may possibly be used as a tool to

analyze FORT parameters or atomic responses, the experiment was only performed to show

a shift and was not scrutinized any further.
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FIG. 38: Response of a 87Rb FORT with (open circles) and without (circles) the FORT

beam on while probing. The broadness of the data points when the FORT beam was off

might be explained due to the fact that the FORT was only allowed to expand for ≈ 10 µs

before being probed, therefore the sample maintained a large optical depth. The on resonant

light then may not have fully penetrated the sample and therefore scattered less light. The

FORT beam power was 2.8 W.

3.2.2 FORT EXPERIMENTAL SETUP

The beam used to create the FORT is from a fiber laser (IPG, YLR-30-1064-LP

PL1211875) running at 1064 nm. The FORT beam is focused approximately at the cen-

ter of the MOT as shown in Fig. 39. The L1 lenses are f = 300 mm (Thorlabs, LE1929-C),

L2 are f = 40 mm (Thorlabs, LBF254-040-C), L3 is f = -100 mm (Thorlabs, LF1822-C),

L4 is f = 100 mm (Unknown model), L5 is f = 150 mm (Thorlabs, AC508-150-B), BS1

is a 1064 nm polarizing beam splitter cube (Newport, 05BC16PC.9), and BS2 is essentially

a dichroic mirror (CVI, SWP RS1064/TU780) which reflects 1064 nm and allows 780 nm

through to the CCD (Sanyo VCB-3524). The AOM (Gooch & Housego, I-M080-1.5C10G-

4-AM3) is used to switch the FORT beam on and off. The RF driver (Gooch & Housego,

QC080-15DC-m05-24V) allows for on/off control via a TTL, max RF power delivered to the

AOM via a DC power supply, and a RF power modulation input.
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FIG. 39: FORT beam optics diagram. L1 and L2 reduce the size and recollimate the beam

for the AOM. The lenses after the AOM are the same as L1 and L2. The half wave plate

WP is aligned to optimize transmission through the beam splitter BS1. L3 and L4 resize

and focus the beam onto the MOT. L5 is positioned at 2f from the MOT. BS2 is a dichroic

beam splitter which reflects 1064 nm and allows 780 nm to pass. The CCD is placed 2f

from L5 and is used to monitor the MOT on a TV as well as a FORT beam alignment tool.

Initially the FORT AOM RF driver was affixed to the optics table via a metal slab. This

allowed for ample heat dissipation but had a side effect of causing electrical noise throughout

the lab. Simply turning on the RF amplifier would change VCO frequencies several meters

away. The RF amplifier was removed from the table and housed in a box in order to alleviate

this issue. A large heat sink and fan had to be installed to manage heat while in operation.
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The new RF amplifier housing and improved control box are shown in Fig. 40. A FLIR

camera was used to ensure the amplifier maintained an operating temperature below 50◦C

and is shown in Fig. 41.

FIG. 40: New FORT AOM RF amplifier and electronics housings. Gooch & Housego QC080-

15DC-m05-24V RF amplifier housing and control electronics.

FIG. 41: Gooch & Housego QC080-15DC-m05-24V RF amplifier heat sink FLIR image.
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Now that the optical arrangement and basic electronics have been discussed, the next

step is to align the 1064 nm beam with the MOT. An earlier method of aligning the FORT

involved overlapping the 1064 nm beam with a 780 nm tuned to an atomic resonance and

observing the distortion of the MOT due to the 780 nm. This method is straightforward but

is extremely time consuming due to the second laser requirement which had to be perfectly

overlapped. A new alignment procedure was implemented which utilized the MOT monitor

CCD behind BS2 that was shown in Fig 39. A very small amount of 1064 nm (≪ 1%)

is transmitted through the dichroic mirror which is more than enough to be detectable on

the CCD. There is also a ND filter wheel, short pass filter (Thorlabs, FGL850SP), and a

bandpass filter (Thorlabs, FB780-10) in front of the CCD for further attenuation of the

FORT beam. The FORT beam is aligned when the beam appears to be a small point on

the TV while also appearing to be centered on the MOT due to the 2f -2f configuration

of L5. The beam itself was aligned with the MOT by translating L4. A home built x-y-z

translation stage was created, shown in Fig 42, in order to align and optimize the FORT

precisely. This new method was extremely easy, fast, and reproducible without the need of

a second laser.
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FIG. 42: FORT beam alignment x-y-z translation mount. The three translators provide

very precise adjustment for alignment of the 1064 nm fiber laser with the MOT. Two of the

translators are Edmund Optics model 3161 and the third is a Parker 4046 series.

The beam waist, or 1/e2 radius, at the focus of the FORT was determined by first

obtaining the size of the beam before the L3 lens with a beam profiler (Thorlabs, BC106N-

VIS). Appropriate attenuation was required to avoid damaging the device. The beam waist

was found to be ≈ 1.3 mm before the diverging L3 lens. The L3 and L4 lenses are separated

by 183 mm which corresponds to a calculated focused beam waist of 14.24 µm located 155

mm from L4.

The process of creating a FORT starts with a MOT. When the FORT beam turns on the

MOT enters the compression phase which is done to increase the density and to further cool
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the atoms. The compression phase is performed by detuning the MOT beam from −3 Γ to

about −6 Γ while the repumper beam power is reduced from 1 mW to about 3 µW at the

same time. The duration of the compression phase is usually between 50-100 ms but can

be a variable for FORT optimization. At the end of the compression phase the repumper

beam is shut off 5 ms before the MOT beam to optically pump the atoms into the F = 1

ground state. Even though the well depths created by the FORT beam for the F = 2 and

F = 1 ground states are the same, two-body collisions are much more likely in the upper

F = 2 ground state which can lead to trap loss [92]. Once the MOT and repumper beams

are extinguished, via switching off their respective AOMs, the atoms are held in the FORT

usually between 100-200 ms which allows the atomic ensemble to thermalize. The general

timing diagram is shown in Fig. 43 where both the compression time and FORT hold time

can be varied.

0 50 100 150

Compression

MOT

Repumper

FORT

Shutters

0 50 100 150

t (ms)

FIG. 43: FORT loading timing diagram. The compression phase represents when the MOT

detuning and repumper power change. The shutters fully extinguish any light leak of the

MOT and repumper beams.
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3.2.3 FORT CHARACTERIZATION

3.2.3.1 Temperature

The temperature of the FORT was obtained with the same method that was used for

the MOT. The FORT was allowed to expand for some amount of time and then flashed the

MOT and repumper lasers while recording a CCD image. Figure 44 presents such images at

different expansion times.

FIG. 44: Spatial profile of the FORT at various expansion times. Expansion times from left

to right are 0.1, 1, 2, and 3 ms. Each image is 3393 × 3393 µm.

The spatial profile of the FORT is represented by the following bi-Gaussian

ρ(r, z) = ρ0e

−
r2

2r20
−
z2

2z20


, (246)

and similarly to the MOT, the sample radii expand as

r2 = r20 +
kBT

m
t2

z2 = z20 +
kBT

m
t2. (247)

The fits to r2 and z2 vs t2 are shown in Fig. 45 where the temperature was obtained from

the resulting slopes. Typical FORT temperatures were around 100-150 µK at a FORT beam

power of 2.8 W. The temperature of the FORT will always be some percentage of the well

depth, which is dependent on the trap geometry and beam power. Unlike the MOT, the
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Gaussian radii cannot be determined by extrapolating to t = 0 due to the small size of the

FORT. A different method will be used to determine the spatial parameters in the following

section.
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FIG. 45: Temperatures of the FORT in the horizontal and vertical directions. The horizontal

is 150 ± 4 µK and vertical is 126 ± 4 µK. The FORT beam power was 2.8 W which

corresponds to a trap depth of ≈ 1.3 mK.

3.2.3.2 Spatial Parameters

The spatial parameters of the MOT were obtained by extrapolating the time dependent

Gaussian radii to t = 0 from the temperature fits. The extrapolation method fails when

applying it to the FORT due to the high density and small size. A technique called parametric

resonance will be used to obtain the important spatial parameters. Parametric resonance

involves modulating the well depth at a particular frequency, which is related to the sample

size, to thermally induce loss in the trap.

The dynamics of an atom moving within a modulated harmonic trap follow

ẍ+ ω2
0(1 + h cos(ωt))x = 0, (248)
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where h is the modulation amplitude. This is known as Mathieu’s equation and has reso-

nances at ω =
2ω0

n
where n is any integer and the amplitude of the resonance decreases as n

increases [100]. Solving Eq. (248) begins by analyzing the region around ω = 2ω0 + ϵ, where

ϵ < 1. After substitution the equation becomes

ẍ+ ω2
0(1 + h cos[(2ω0 + ϵ)t])x = 0, (249)

where the general solution takes the form of

x(t) = a(t) cos[(ω0 +
ϵ

2
)t] + b(t) sin[(ω0 +

ϵ

2
)t]. (250)

Substituting Eq. (250) into Eq. (249) yields

ω0 cos[(ω0 +
ϵ

2
)t]

(
1

2
ahω0 − ϵa+ 2ḃ

)
− ω0 sin[(ω0 +

ϵ

2
)t]

(
1

2
bhω0 + ϵb+ 2ȧ

)
= 0, (251)

where only first order terms in ϵ were taken. ä, b̈, and
ϵ

ω0

terms were also omitted. The

terms in parenthesis must be zero in order to satisfy the equation, therefore(
1

2
ahω0 − ϵa+ 2ḃ

)
= 0(

1

2
bhω0 + ϵb+ 2ȧ

)
= 0. (252)

Solutions of the amplitudes are taken to be increasing exponentials a(t) = aest and b(t) =

best. Substituting these amplitudes into Eq. (252) yields

as+
1

2

(
hω0

2
+ ϵ

)
b = 0

1

2

(
hω0

2
− ϵ

)
a+ bs = 0, (253)

where the parameter s can be solved for giving

s2 =
1

4

[(
hω0

2

)2

− ϵ2

]
. (254)

The sign of s determines the stability of the system. The parametric resonance condition

occurs when the system is unstable, namely when s is real and positive, or when s2 > 0. For

this condition to hold

−1

2
hω0 < ϵ <

1

2
hω0. (255)
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Under the first order assumptions made, the concept of parametric resonance can be used to

obtain the oscillation frequencies of the dipole trap by modulating the intensity of the beam

with an amplitude of h at 2ω0 of the trap. As the amplitude h of modulation increases, the

width ϵ of the resonance will become larger.

The shape of the beam defines the potential of the FORT and defined as

U(r, z) = − U0

1 +

(
z

zR

)2 e
−

2r2

w2
0 , (256)

where U0 is the well depth, zR =
πw2

0

λ
is the Rayleigh range, and w0 is the 1/e2 beam radius.

For a Gaussian beam U0 =
2P

πw2
0

where P is the power of the laser. The atoms do not

completely fill the trap since the temperature of the atoms (≈ 150) µK is smaller than the

typical well depth (≈ 1) mK. Therefore, the radial and axial extensions of the atomic sample

will be smaller than the beam waist and Rayleigh range respectively. The potential can then

be approximated as a cylindrically symmetric harmonic oscillator [92]. Taylor expanding

Eq. (256) around r = 0 and z = 0 yields

U(r, z) ≈ −U0

(
1 −

(
z

zR

)2

− 2

(
r

w0

)2
)
. (257)

The harmonic potential can also be written in terms of the oscillation frequencies

U(r, z) ≈ −U0 +
1

2
mω2

rr
2 +

1

2
mω2

zz
2. (258)

The resonant oscillation frequencies as a function of beam parameters can be determined by

comparing Eq. (257) and Eq. (258) which yield

ωr =

√
4U0

mw2
0

ωz =

√
2U0

mz2R
. (259)

The sample is approximated as a Maxwell-Boltzmann distribution in thermal equilibrium

and can be approximated by

ρ(r, z) = ρ0e
−
U(r, z)

kBT . (260)
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The unexpanded spatial parameters of the FORT as a function of trap frequency can be

determined by substituting Eq. (258) into Eq. (260) and comparing to the spatial profile

given in Eq. (246). The resulting radii are

r0 =

√
kBT

mω2
r

z0 =

√
kBT

mω2
z

. (261)

With this formulation in mind, the resonant trap frequencies can be determined by mod-

ulating the FORT beam with power P with amplitude h. The sample radii can then be

determined once the temperature is obtained from ballistic expansion.

In order to realize the parametric resonance method in the lab, a function generator (BK

Precision, 4084) adds a sinusoidal signal to a DC voltage via a bias tee which is connected to

the MOD In Analog of the FORT AOM RF amplifier control box. This in turn modulates the

power of the FORT beam while the function generator is triggered. After the FORT loading

procedure takes place, the modulation was triggered for 100 ms at a set amplitude and

frequency. The duration of modulation was chosen to match later experimental timings but

extending the modulation time will produce better results. The FORT beam was turned off

after the modulation duration and the sample was allowed to expand for 2 ms before flashing

the MOT and repumper beams for 50 µs. A fluorescence image was taken during the flash

and the process was repeated over a range of frequencies. The atoms in the FORT will be at

a minimum when the frequency of the modulation is twice the resonant trap frequency. The

parametric resonance response of the FORT under typical experimental conditions is shown

in Fig. 46. The FORT spatial parameters are given in Table 4 and the trap parameters

are in Table 5. It is important to note that the beam waist w0 obtained from parametric

resonance agrees with the previously calculated value presented in the description of the

optical arrangement of the FORT. Going forward however, the value that will be used in

later calculations for axial radius will be obtained by ballistic expansion (z0 = 250 µm) rather

than from parametric resonance. The harmonic oscillator was a very good approximation

for the radial extension but does not fully represent the axial extension. The recalculated

density ρ0 = 1.9 × 1014 cm−3 is different by less than a factor of two of the value obtained

by parametric resonance.
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FIG. 46: Parametric resonance of the FORT. The dip corresponds to a function generator

frequency of f = 2f0, where f0 is the radial resonance frequency of the FORT. Fitting the

data to a Gaussian yields ωr = 2π × 7.69 ± 0.04 kHz. With the FORT beam at 2.8 W, this

translates to r0 = 2.3 ± 0.1 µm and z0 = 151 ± 2 µm.

TABLE 4: Typical FORT sample characteristics during experimental runs with 2.8 W beam

power. Uncertainties derived from fitting parameter errors given by Mathematica.

N 4.0 ± 0.1 (×106)

T 138 ± 4 µK

r0 2.3 ± 0.1 µm

z0 151 ± 2 µm

ρ0 3.3 ± 0.3 (×1014 cm−3)
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TABLE 5: Typical FORT trap characteristics during experimental runs with 2.8 W beam

power. Uncertainties derived from fitting parameter errors given by Mathematica.

ωr 2π × (7.69 ± 0.04) kHz

ωz 2π × (126 ± 1) Hz

w0 14.57 ± 0.04 µm

zR 627 ± 4 µm

U0/kB 1300 ± 7 µK

Parametric resonance was also performed on a sample with a lower FORT beam power,

shown in Fig. 47, in an effort to ensure consistency with the process. As expected, the trap

frequency decreases as the FORT power decreases.
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FIG. 47: Parametric resonance of the FORT at 1.1 (blue) and 2.8 W (black) beam power.

The resonant frequency of the trap decreases as the power of the FORT beam decreases.
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A possible topic for further investigation of parametric resonance is the rate of expan-

sion of the FORT as a function of modulation frequency. Although no deep analysis was

performed, after 2 ms of expansion, the Gaussian radii of the sample increase around 2f0 as

the counts decrease due to parametric heating. The data in Fig. 48 shows an example of

the heating effect.
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FIG. 48: Parametric resonance effect on FORT expansion at 3.1 W beam power. (a) corre-

sponds to the total counts while (b) corresponds to the Gaussian radii. The Gaussian radii z0

(horizontal) and r0 (vertical) increase around the parametric resonance window. The dashed

line provides reference to the same frequency on both graphs.
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CHAPTER 4

EXPERIMENTAL ARRANGEMENT

This chapter will present both the optical and electronic experimental arrangements as

well as the acquisition methods used for the collection of temporally-resolved fluorescence

data. A photo of the experimental vacuum chamber can be seen in Fig. 49.

FIG. 49: Overhead image of the vacuum chamber and fluorescence collection optics.
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4.1 EXPERIMENTAL SETUP

A straightforward but complex optical arrangement was created in order to optimize the

available laser power provided by the DFB instead of introducing another laser into the

apparatus. This approach was taken to ensure consistency and stability of the probe.

The beam for the probe pulse originates from the 0th order MOT beam that was shown

in Fig. 9 where the detuning of the beam is controlled by the DP AOM setup described

in the MOT experimental setup section. Since the probe pulse occurs when the MOT

is off, it is advantageous to utilize the 0th order MOT beam which would otherwise be

wasted. The optics diagram for creating the probe pulse is shown in Fig. 50. The optical

isolator (ISO) was required to remove optical sidebands on the DFB caused by various

reflections. Due to power and detuning limitations of the apparatus, two optical paths

were used to cover the desired frequency range. The solid path corresponds to a detuning

range of approximately 50-195 MHz while the dotted path corresponds to 150-295 MHz with

respect to the 5S1/2 F = 2 → 5P3/2 F
′ = 3 transition. The frequency of both AOMs in the

arrangement were determined by optimizing the power of the 1st order beams. The AOM

frequencies were static in order to maintain consistency of the experiment. Flip mirrors were

used in order to switch from one path to the other. The polarizers are required to ensure

proper coupling and transmission stability of the polarization preserving fiber input to the

electro-optic modulator (EOM). The EOM acts as a fast optical switch and the photodiode

(PD) was used as a monitoring tool. Specifics dealing with EOM operation and optimization

will be described later.
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FIG. 50: Probe pulse optics diagram. The beam originates from the 0th order MOT beam as

shown in Fig. 9 and can be directed along two different paths. The solid line describes the

beam trajectory when the flip mirrors are out of the beam path. The dashed line describes

the trajectory with the flip mirrors redirecting the beam through both AOMs. Optical

components are ISO (Thorlabs IO-3-780-HP), AOM1 (Brimrose TEM200-50-780), AOM2

(Gooch & Housego R23080-1), POL1 (3” Unknown Model), POL2 (Thorlabs LPNIRE 100-

B), EOM (EOSpace AZ-0S5-10-PFU-PFU-780), and PD (Thorlabs DET36A).

In the experiment, the fluorescence due to the short probe pulse will be collected, focused

into a fiber, and sent to a photomultiplier tube (PMT). The collection optics, while simple,

were designed to minimize light leakage and maximize the amount of collected fluorescence

into an optical fiber. A diagram of the collection optics is shown in Fig. 51. Creating a 3D

rendering of the chamber and collection optics was vital in optimizing the lens arrangement

in the limited space. Not only does the shutter block light when needed, it acts as an iris

while open. The position of the shutter blocks essentially all of light that may scatter off the

walls of the chamber while allowing all light from the probing region to pass. The resulting

focus of the scattered light at the location of the fiber, after optimizing the lens system and

shutter position, is shown in Fig. 52 where the large yellow circle represents the 1500 µm

diameter fiber tip. The image was recorded with the beam profiler at the future location of

the optical fiber. A photo of the collection optics in the lab is shown in Fig. 53. During data

acquisition the collection optics are also surrounded by blackout foil to further decrease the
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probability of unwanted light entering into the system.

FIG. 51: Experimental fluorescence detection optics. The lenses L1 and L2 are f = 59.8

mm (Thorlabs LA1401-B-ML) and L3 is f = 25.3 mm (Thorlabs LA1951-B-ML). The fiber

has a 1500 µm core diameter (Thorlabs M107L02). Omitted is a 780 nm line filter which

was located between L3 and the fiber. 3D render made in Fusion360.

FIG. 52: Size of MOT fluorescence in comparison to optical fiber tip (yellow circle).
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FIG. 53: Experimental fluorescence detection optics associated with Fig. 51. During opera-

tion blackout foil also surrounds the train of optics in this photo.

Preliminary experimental attempts were performed simply by using an AOM (Brimrose

TEM200-50-780) as an optical switch to create the probe pulse. The determination to instead

use an EOM for a switch was due to several factors. The rise and fall time of an AOM is

about 15 ns which is longer than the desired pulse length. Switching the AOM on and off

also depends on the TTL controlled electronic switch and the response of the RF amplifier.

Most importantly, pulse widths of less than 50 ns were not viable due to the various response

limitations. Example pulses from the EOM and AOM are shown in Fig. 54 where it is clear

the EOM out performs the AOM in terms of pulse shape and width.
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FIG. 54: Example pulses produced by the EOM (black) and AOM (red).

The type of EOM (EOSpace LiNbO3 AZ-0S5-10-PFU-PFU-780) that was used is es-

sentially a Mach-Zehnder interferometer where the index of refraction along one path is

controlled by an applied voltage. Changing the index of refraction controls the relative

phase between the two paths inside the device. The EOM is controlled by a DC bias and a

RF input. The DC bias provides the means to balance the interferometer and the RF input

accepts pulses which allow light to pass through depending on the amplitude of the pulse.

Balancing the device is important to ensure maximum extinction when no pulses are present.

Figure 55 presents the optimal voltage settings for optical extinction and transmission of the

EOM. The basic idea is to extinguish the transmission with the DC bias and introduce a fast

pulse to the RF input at an appropriate voltage for maximum transmission. It is important

to note that the behavior shown in Fig. 55 is specific to when the polarization of the light

was perpendicular to the input fiber key of the EOM. If the polarization is in line with the

fiber key, the EOM will go through roughly nine cycles over the same voltage range, which

is consistent with the data sheet provided by EOSpace. The perpendicular arrangement was

chosen because it is less susceptible to voltage and temperature drifts.
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FIG. 55: Optical transmission through the EOM as a function of DC Bias.

The EOM is quite sensitive to the typical laboratory temperature fluctuations which

cause significant shifts in the optimal DC bias voltage. Simply opening and closing the lab

doors would change the temperature enough to cause the unwanted drifts. In the quest for

experimental consistency, this was a problem which was addressed in a couple ways. The

original method involved creating a LabVIEW feedback loop program that adjusted the DC

bias in order to minimize the output of the EOM. While this was still an improvement over

the AOM pulse method, the amount of light leak and pulse height would fluctuate over the

course of several minutes leading to inconsistent experimental conditions. A heating module

was then designed and created in order to improve the performance of the EOM. The module

consisted of a thermoelectric cooler (TEC Marlow DT12-6L) sandwiched between two plates

of aluminum and a thermistor installed into a hole drilled into the top plate. The EOM

was lightly secured to the top plate and the entire module was covered by an aluminum

laser housing to further increase temperature stability. The temperature controller of a SRS

LDC501 was used to set and maintain the temperature of the unit at 49.000 ◦C. Care was

taken to slowly warm the EOM at a rate of about 3 ◦C per minute until reaching the target

temperature. The module required a roughly 24 hour period to completely stabilize which

was determined by logging the light leakage through the EOM. Heating and temperature
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controlling the EOM increased the stability so substantially that DC bias adjustments only

had to be made every few days. It can not be understated how significant this improvement

was for obtaining consistent pulses for the experiment.

The DC bias and the RF input are controlled by two separate systems to create a fast

pulse with maximal amplitude. Firstly, the previously mentioned LabView program which

controls the DC bias is ran on a PXI crate with a NI PXI-8108 controller unit and multi-

function I/O module (NI PXI-6229). The I/O module output is connected to a terminal block

(NI BNC-2120) which has several available analog I/O BNC connections. An analog out port

of the terminal block is connected to the EOM DC bias input. The photodiode (Thorlabs

DET36A) shown in Fig. 50 is connected to an analog input port on the terminal block in

order to monitor the output of the EOM. The LabView program provides direct control of

the analog out voltage while reading the photodiode signal. Although the equipment used

may be over-kill for the task of maintaining a voltage, this system increases confidence in

the experimental apparatus due to its stability and ability to immediately provide an alert

to non-optimal behavior with its real time monitoring.

The RF input requires several other electronic devices in order to create a fast pulse

with proper shape and amplitude. The pulse originates from a function generator (Quantum

Composers 9520) with 50 ps jitter and sent to a fast voltage comparator (Analog Devices,

ADCMP606 Evaluation Board) that has a rise/fall time of ≈ 200 ps and an output of 2 V.

Although the function generator is capable of driving the EOM alone, it suffers from ringing

and proper amplitude control. The comparator circuit shown in Fig. 56, originally created

by Stetson Roof [6] and slightly modified, alleviates those issues and outputs a fast pulse

with minimal noise and ringing. Eliminating the ringing entirely however was a tedious task

of trial and error. Simply touching the resistors and capacitors would substantially change

the magnitude of the ringing. The output of the comparator is connected to a variable

attenuator (Kay Elemetrics, 1/839) before being amplified by a 1 ns response time pulse

amplifier (Mini-Circuits, ZPUL-30P). The attenuator allows for control of the pulse height

and the pulse width is determined by the original function generator pulse.
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FIG. 56: Comparator circuit diagram for short pulses. A pulse from the function generator

is sent to a bias-tee which has the DC input grounded to remove any offset the function

generator may have as well as reducing noise. The comparator sends a high signal to Output

1 when the voltage at Vp is greater Vn.

Time resolved fluorescence detection via a photomultiplier tube (PMT) was used for data

acquisition. A cooled Hamamatsu R9110P PMT rated for single photon counting was used

along with a multi-channel scalar (SR430 MCS) to record fluorescence. Due to the semi-

archaic nature of the SR430, a GPIB to USB converter (NI GPIB-USB-HS) was required

to transfer acquired data efficiently and was controlled with a custom LabVIEW program.

The timing resolution of the experiment is limited to 5 ns, which is the smallest bin size of

the MCS and larger than the aforementioned jitter from the PMT, function generator, and

pulse electronics.

Control of the experimental apparatus was mainly performed by utilizing LabVIEW

programs on two PCs. The first PC controlled the overall apparatus timing while the second

PC acquired data and controlled a voltage for a specific VCO. The experimental apparatus

timing and control diagram is shown in Fig. 57. Each system will now be described in detail.
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FIG. 57: Experimental timing and electronic control diagram. A LabVIEW program on PC

#1 controls the main timing for the experiment. The pulse generator (QC 9520) was used

for more precise timing. A LabVIEW program on PC #2 communicates with the SR430 for

data acquisition and the NI myDAQs for electronic control of the MOT DP AOM frequency.

The digital level boxes (DLB) are used to allow different input voltages to pass depending

on the logic level of the TTL. The EOM pulse comparator circuit was shown in Fig. 56.

PC #1, running on Windows XP, performs the main timing loop for the apparatus

via a LabVIEW program communicating with a data acquisition card (NI PCI-DIO-32HS)

with 16 digital output channels. Unfortunately, National Instruments does not support
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this particular device any further and therefore transferring the card to a newer PC was

not viable. Hence, the need for two PC stations. The list of PCI-DIO-32HS channels and

each of their usual functions are shown in Table 6. Depending on the specific experiment

or characterization procedure, some channels were used for different purposes. The front

panel of the LabVIEW timing control program is shown in Fig. 58 and corresponding block

diagram in Fig. 59. The logic level of a specific channel is controlled by entering either a 0

(low) or 1 (high) at a specific time step entered into the left most column. Memory issues

limit the minimum time step depending on the number of entries and the total required time

of a loop. The minimum usable time step of the DAQ card is 1 µs but was set at 10 µs for

the main experiment due to the aforementioned issue. The reason that channel 9 goes to

the bias tee (DG535 OPT-04C) was to keep the probe AOM on as much as possible while

also allowing precise timing by the QC 9520. The efficiency of the AOM increases as it was

warmed up, which increases the available power during the probing phase. Allowing the

probe AOM to remain on outside of the probing phase also aided in the EOM monitoring

process.

TABLE 6: NI PCI-DIO-32HS channels and channel functions.

Channel Function

3 MOT Shutter

4 Fiber Laser AOM (MOD IN VAR)

5 CCD Camera Shutter

6 Repumper AOM

7 MOT AOM

8 Probe Frequency (DLB MOT VCO TTL1)

9 Probe AOM (Via DG535 OPT-04C bias-tee)

10 CCD Camera Trigger

11 R9110P PMT Shutter

12 Magnetic Field

13 Compression Phase (DLB MOT VCO TTL2, MOT/Repumper VCA TTL)

14 Repumper Shutter

15 Trigger for Quantum Composers 9520
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FIG. 58: LabVIEW timing program front panel for the NI PCI-DIO-32HS DAQ card. The

displayed values represent a sequence that is 5 s long and each integer number corresponds

to 10 µs. The sequence repeats until the user hits the stop button. Increasing the sample

clock rate by an order of magnitude will cause each integer number to correspond to 1 µs

but suffers from memory issues. The t0 an dt values can be ignored.
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FIG. 59: LabVIEW timing program block diagram for the NI PCI-DIO-32HS DAQ card.

The false case simply allows the paths of both input wires to pass through.

The digital level boxes (DLB) consist of one or more analog switches (Maxim DG419)

and two or more voltage sources. The DG419 switches between two input voltages depending

on the logic level. This creates a TTL controlled voltage selector to change the voltage to

either a VCO or a VCA. The original design [89] uses a combination of voltage reference

chips (Maxim REF01) and appropriate potentiometers to supply the DG419 with adjustable

voltage sources. The downside to this design is that it is extremely inefficient because a

potentiometer must be adjusted by hand to change an input voltage. A new circuit was

built on the same concept but utilizes external analog sources instead of using internal

voltage reference chips and potentiometers. The basic wiring diagram for the new DLB is

shown in Fig. 60. The external analog voltage sources are provided from the analog outputs

of NI myDAQs which are computer controlled by PC #2. As shown in Fig. 57, the DLB for

the MOT DP VCO requires three voltage sources, therefore two NI myDAQs were required

due to only having two analog outputs each. The MOT and repumper VCA DLBs use the
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FIG. 60: Digital level box diagram for external voltage sources. Two NI myDAQs are used

to control the three input voltages. If TTL1 and TTL2 are low the DLB outputs the voltage

set by myDAQ1 AO1. If TTL1 is high and TTL2 is low the DLB outputs the voltage set by

myDAQ1 AO2. If TTL2 is high the DLB outputs the voltage set by myDAQ2 AO1.

original design because adjustments to their voltages are uncommon.

In order to utilize the new DLB and myDAQs combination efficiently, a calibration was

performed by a LabVIEW routine that iterated through the myDAQ voltage range and

recorded the output frequency of the MOT DP VCO via a serial RS232 connection to fre-

quency counter (BK Precision 1856D). The calibration routine was performed on the three

analog outputs used on the DLB. Control of the VCO is now performed by entering the

desired frequency into the LabVIEW front panel and a voltage is interpolated from the

calibration data. The frequency is typically accurate to the kHz level. To put that in per-

spective, temperature fluctuations in the lab affect the VCO frequency much more than any
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voltage instability in the myDAQ units.

The AOMs in the apparatus are all controlled and driven in a similar fashion. The basic

setup is shown in Fig. 61. The VCOs that were used are the Mini-Circuits ZOS-100 for

the Gooch & Housego R23080-1 AOMs and the ZOS-300 for the Brimrose TEM200-50-780

AOMs. The RF switches are Mini-Circuits ZYSWA-2-50DR. The VCAs are Mini-Circuits

ZX73-2500 and only used on the MOT and repumper electronics. The RF amplifiers are

either home built using CA2832C (32 dBm max output, 35.5 dB gain) or MHW1345 (31

dBm max output, 34.5 dB gain) chips, or Mini-Circuits ZHL-3A (29.5 dBm max output, 34

dB gain).

FIG. 61: AOM driving and control electronics diagram.

The RF electronics originally suffered from a strange grounding issue which needed to be

addressed. When adjusting the control voltage to a particular VCO, the frequency of other

VCOs would slightly change as well. An RF electronics housing was designed in Fusion360,

shown in Figs. 62-63, and fabricated to hold six VCOs. The ±12 and +5 V power supplies

for the various electronics are connected via the banana jacks towards the top. The 5 kΩ

potentiometers (Digikey, 3540S-1-502L) are used to control the first five VCO frequencies

while the sixth is controlled by the aforementioned myDAQ setup via a DLB. The frequencies

of each of the first five VCOs can be monitored via the SMA bulkheads (Amphenol, 132170)

under the respective potentiometer. The monitor outputs are shown on the left side of Fig.

63 while the switch TTL BNC connections and RF output SMA bulkheads are shown on

the right hand side. The RF amplifiers were then placed on top of the housing.
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FIG. 62: New RF electronics housing top view with AOM control electronics. All VCO, VCA,

attenuators, and switch models were personally created. Many connections are omitted to

reduce visual clutter. The two unmarked rectangles represent Schottky diodes (Digikey,

CMPSH-3SE TR) which eliminate TTL ringing and protect the PCI-DIO-32HS card from

unwanted reflections. Designed in Fusion360.

FIG. 63: New RF electronics housing. The potentiometers allow for frequency tuning of the

individual VCOs. The frequency of each VCO can be monitored via the SMA output below

each potentiometer. The BNC connectors are for the TTLs that drive the RF switches. The

SMA connectors on the right output the desired frequency that is send to the appropriate

RF amplifier. Designed in Fusion360.
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The data acquisition LabVIEW program utilized the so-called producer/consumer archi-

tecture [101] which was found to be extremely robust. A typical use for this architecture is

dealing with the situation when acquiring data is much faster than processing the data. The

producer loop can continue to take data by queuing up previous data for the consumer to

process. Of course this process is limited to how much data can be buffered but allows two

processes to happen without limiting the program to the slowest. The main point is that

the producer buffers information via a queue that the consumer will process.

The producer/consumer architecture was utilized in a slightly different manner for the

data acquisition and instrument control required in the lab. The basic block diagram is

shown in Fig. 64. The producer loop houses an event structure where each event is tied to a

button press on the front panel. In this case, pressing a button enters a word into a queue.

The consumer loop houses a case structure in which each case is given a unique name. Each

case will be a set of instructions for the consumer loop to perform. In order to activate a

particular case, the same word must be entered into the queue. A major benefit of utilizing

case structures is that new cases may be added at any time without fear of interfering with

the operation of the rest of the program.
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FIG. 64: LabVIEW basic producer/consumer loop block diagram [101]. Pressing the connect

button on the front panel will cause the producer loop to queue the command Connect. The

consumer loop has a case also named Connect, therefore the consumer loop removes the

Connect command from the queue and then activates the Connect structure case.

The queue system can now be taken advantage of in order to create loops in this archi-

tecture. The case shown in Fig. 65 represents a simple example of a loop that is formed by

a consumer case queuing itself after performing a desired action. Although this continues to

enter the LoopMe case into the queue, commands originating from button presses also will

be entered into the queue at the time of the press. Therefore, once a button press command

enters the queue, it will perform the associated action and then continue the LoopMe case.

Although this stripped down example is extremely basic, complex routines that communicate

with several experimental instruments can be created with this basic idea in mind.
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FIG. 65: LabVIEW basic producer/consumer architecture block diagram loop example. This

particular case would queue simply re-queue itself.

The final program allows for voltage control of the two myDAQs, data acquisition and

control of the MCS, data acquisition and control of an oscilloscope, and the ability to con-

figure an experimental run that acquires data over a set of different parameters at the touch

of a button. The latter significantly increases efficiency of an experiment because once a

run is initiated, only periodic check-ins are required with little or no human interaction and

the acquired data is saved in a systematic fashion allowing for straightforward data analysis.

User defined runs are completely customizable within the program.

To simply summarize the laboratory control scheme, PC #1 controls the timing of the

experiment while PC #2 acquires data and changes the MOT DP VCO frequency. At this

point the two systems are independent but need to work together to obtain data correctly.

During a typical experimental run PC #1 goes through its timing loop until the user presses

the stop button. PC #1 triggers the QC 9520 pulse generator which in turn triggers the

SR430 MCS to start taking data for a specified amount of time. The MCS defines this

as acquiring a record. PC #2 communicates with the MCS and retrieves the number of

accumulated records several times a second. Once the number of records reaches a user

defined value the accumulated data is saved, the MCS is cleared, and another set of records

begins. Voltages to the MOT DP VCO can be changed automatically while data is being

acquired. This allows for a user defined experimental run over several detunings at the press

of a button. Data acquisition from an oscilloscope was performed in the same way and was

used in the optical pumping atom counting experiment.
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4.2 DATA ACQUISITION

Daily experimental conditions were exponentially more consistent after all of the labora-

tory troubleshooting, upgrades, and the implementation of a much more automated experi-

mental apparatus. Although making these changes consumed a lot of time, the improvements

to the apparatus increased data acquisition capabilities by orders of magnitude. The only

uncontrollable variable was the building HVAC system. The typical laboratory temperature

fluctuations of 1◦C were offset by the improvements to the apparatus. Data acquisition

would not be performed when larger fluctuations would occur. Monitoring the frequency

of a VCO was found to be the best indicator of temperature fluctuations. Data acquisition

sessions were typically 8-12 hours during stable environmental conditions.

The time resolved fluorescence emitted by the FORT due to a short pulse was the desired

information to collect. The data were acquired by coupling the collected fluorescence into

a fiber, sent to a PMT, and the output of the PMT recorded by a MCS. The MCS records

when a PMT pulse arrives after a trigger. The data is placed into a bin with a width of

5 ns, which is the smallest setting. The MCS can only record one event, or photon, per

bin per trigger at this setting. Although this limitation restricts the data acquisition to the

single photon regime, the typical amount fluorescence emitted per pulse under experimental

conditions was significantly below any threshold which would require either attenuation or

corrections due to pulse pile-up. The specific arrangement and devices used were described

in the previous section.

The typical timing for the experimental apparatus during data acquisition is shown in

Fig. 66. The MCS is triggered 420 ns before the first pulse and records data for 81.92 µs.

Each of the 50 pulses are separated by 1.6 µs. The cycle of MOT formation, compression,

and FORT creation then must happen again, which takes about 5 seconds. Thousands of

records had to be collected over the course of several hours for each data point, therefore the

previously mentioned improvements to the stability of the apparatus were key to obtaining

consistent data.
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FIG. 66: Experimental timing diagram. (a) corresponds to the typical timing for FORT

loading and probing. Data were acquired in the shaded region which corresponds to (b).

Each of the 50 pulses are separated by 1.6 µs.

The LabView program automatically acquires and saves the MCS data once a set number

of records have been accumulated. The MCS is then reset and the process repeats several

times. All the acquired sets would then be combined in post processing. The purpose of

acquiring many smaller data sets was to ensure consistency over the course of several hours.

The theme of ensuring consistency, which has been mentioned numerous times throughout

this text, was applied in every reasonable situation. Although obvious, this theme was an

important ideal that gives confidence in the acquired data.

A program was created in Mathematica for post processing of the acquired data. The

data sets were split into 50 equal segments. Each segment contained the data for each of

the individual pulses. The segments were then summed together to create one time resolved

signal. The time resolved data were typically the accumulation of the fluorescence from

1.3×105 pulses.

Before delving into the results, the choice of performing 50 pulses for each FORT realiza-

tion will be briefly discussed. As previously mentioned, data from 50 pulses were combined

in an effort to efficiently record data with the available electronics. Each of the 50 pulses

were separated by 1.6 µs, which technically means that each pulse corresponds to a slightly

different optical depth. The optical depth of the FORT along the axis of the probe evolves

in time, as shown in Fig. 67, for the on resonant case and the off resonant regime of the

experiment. The angle of the probe with respect to the orientation of the FORT along with
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typical FORT spatial parameters were taken into account in the calculation. The optical

depth of the MOT on the other hand does not appreciably change over the same time period.

The temporal data from each of the individual 50 pulses were evaluated and no recognizable

change was found between the first and last pulses. Therefore, the choice to sum the pulses

together was deemed appropriate. To provide contrast, a completely different data acqui-

sition method involving a time to amplitude converter (TAC) could have been used. The

acquired data would correspond to the length of time between a trigger and the first photon

signal. The upside to this method would have increased the number of pulses per FORT

realization from 50 to upwards of 3000 by recapturing the FORT after each pulse. Unfor-

tunately, the TAC setup only records the first photon event after a trigger. Photons that

come much later will have a high chance to be ignored because the TAC already triggered.

Furthermore, the MCS can not be used at such a high repetition rate because it requires

about 1 ms to acquire and process data before accepting the next trigger.
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FIG. 67: FORT optical depth as a function of free expansion time along the axis of probe

propagation. (a) corresponds to the on resonance case and (b) represents the typical ex-

perimental detuning regime. Probing typically begins 20 µs after the FORT beam is extin-

guished. The expansion corresponds to a FORT temperature of 138 µK.
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CHAPTER 5

RESULTS AND COMPARISON

This chapter will present the results of the investigation into the fluorescence collected

due to the introduction of a short pulse onto the FORT as well as onto a a MOT. Pre-

liminary data will be presented first to show typical experimental behaviors under different

input polarizations. Next, the complete set of temporal data at each probe detuning will

be presented. Decay lifetimes from different temporal regions will be extracted from the

temporal data and presented as a function of probe detuning. After the experimental data is

provided, a comparison between the experimental data and numerical results obtained from

the coupled dipole model will be discussed. This discussion will cover comparisons to the

temporal and lifetime behavior under different spatial re-scaling.

5.1 EXPERIMENTAL RESULTS

Data were typically taken with the probe laser detuned 50-295 MHz from the 5S1/2

F = 2 → 5P3/2 F
′ = 3 transition in 25 MHz intervals. The probe pulses are approximately

Gaussian shaped in the time domain with a FWHM of 4.04 ± 0.08 ns. The FWHM was

determined by fitting a trace of the pulse shape to a Gaussian and the error corresponds

to the standard error given by Mathematica. The temporal width of the probe pulse was

also corroborated with the fluorescence detection system by placing a mirror at the output

viewport which redirected the probe back into the chamber. The mirror was aligned in such

a way that some of the light was directed into the fluorescence collection optics. The MCS

recorded data under typical experimental conditions but with no MOT present and the MOT

and repumper beams blocked. A singular bin of the MCS accumulated data corresponding

to a pulse width of 5 ns or less. The size of the probe in the interaction region has a Gaussian

radius of ≈ 300 µm, which is larger than the size of the FORT and comparable to the size

of the MOT. The power of the probe was 1 mW.

An example of the temporal data recorded by the MCS, along with the associated natural

log plot, is shown in Fig. 68. The bulk of the data that will be presented in this section will

be parameters obtained from fits to the temporal signals in the three regions shown in Fig.

68b. Region 1 will always consist of the first 6 MCS bins after the peak, region 2 begins
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at MCS bin 7 and varies in length depending on the detuning, and region 3 will only be

analyzed on datasets with substantial signal at later times. Only region 1 and 2 will be fit

for a majority of the datasets due to low signal amplitudes at later times. The temporal

datasets that will be presented will be displayed with the y-axis on a log scale to show

possible multi-exponential behavior more clearly. The error bars of the fitting parameters

will be associated with the standard error to the fit.
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FIG. 68: Fluorescence recorded by the MCS (a) and the same data represented on a log

scale (b) with the three fitting regions highlighted. Presented data were obtained from the

accumulation of fluorescence from 52000 pulses onto the FORT at a detuning of 50 MHz.

The data were normalized to the peak value.

5.1.1 PRELIMINARY DATA

Before several laboratory optimizations, preliminary data were taken at two orthogonal

probe polarizations and fluorescence was collected with an analyzing polarizer over several

angles. During the preliminary stage a probe rate of only 5 pulses per FORT realization

was performed. Data were collected to investigate the polarization dependence of the total

scattered light and compare the behavior to the a theoretical model of the angular dependence

of fluorescence intensity [102]. This simple model describes single scattering and does not

take into effect cooperative behavior. Preliminary data were also taken with different input



135

polarizations and over a range of detunings where lifetimes were extracted.

The general experimental geometry that is utilized to obtain the the total scattered

light is shown in Fig. 69. The unprimed coordinate frame corresponds to the excitation,

or collision frame, while the primed coordinates represent the detector frame. The z axis

is chosen to be the axis of symmetry. Assuming the system has cylindrical symmetry the

z axis corresponds to the polarization vector for linearly polarized light while representing

the propagation direction for circularly polarized light. The Euler angles θ, ϕ, χ represent

rotations in the order of z-y-z. The z′ axis is chosen to point towards the detector. Therefore,

in the detector frame, the polarization vector of a detected photon resides in the x′y′ plane

and is given as

ε̂ = (cos β, i sin β, 0). (262)

Detection of linearly polarized light along x′ corresponds to β = 0, while circularly polarized

light corresponds to β = π/4. The angle χ then represents the rotation of an analyzing

polarizer initially aligned with x′.

FIG. 69: Excitation frame x, y, z and detector frame x′, y′, z′. The Euler angles θ, ϕ, χ

represent rotations around z-y-z. The z axis represents the polarization direction for linear

polarized light while representing the propagation direction for circular. The z′ axis points

towards the detector.
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Within this framework, the total scattered intensity can be written as [102]

I =
I0
3

(
1 − 1

2
h(2)(Fi, Ff )

[
Adet

0 − 3Adet
2+ cos 2β

]
+

3

2
h(1)(Fi, Ff )Odet

0 sin 2β

)
, (263)

where Adet
0 , Adet

2+ , and Odet
0 are expectation values of excited state multipole moment oper-

ators, while h(1,2)(Fi, Ff ) are geometrical factors that only depend on the initial and final

state quantum numbers. After choosing linear input polarization (β = 0), which is the case

the preliminary experiment, Eq. (263) simplifies to

I =
I0
3

(
1 − 1

2
h(2)(Fi, Ff )

[
Adet

0 − 3Adet
2+

])
, (264)

where the relevant multipole moments are given as

Adet
0 = A0P2(cos θ)

Adet
2+ = A0

(
1
2

sin2 θ cos 2χ
)
, (265)

where the constants for linearly polarized light are

A0 = (−1)
2Fi + 3

5Fi

h(2) (Fi, Ff ) = − Fi + 1

2Fi − 1
. (266)

The transition of interest is Fi = 3, but without loss of generality for purposes of fitting data

and determining general behavior, Eq. (264) further simplifies to

I(θ, χ) = a

(
1 − b

[
P2(cos θ) − 3

2
sin2 θ cos 2(χ− c)

])
, (267)

where the a, b, and c values are left as fitting parameters. Within this framework, Eq. (267)

can be used to evaluate the angle dependent fluorescence. Although it will not be used in

this preliminary analysis, the polarization degree is a typical parameter than can be obtained

by analyzing the fluorescence at the orthogonal detection channels, and is given by

P =

(
I∥ − I⊥

)(
I∥ + I⊥

) , (268)

where I∥ and I⊥ correspond to χ = 0 and π/2 respectively. The polarization degree can

be used to determine the amount of depolarization that occurs. Typical behavior of the

collected fluorescence and polarization degree, as a function of the Euler angle θ, is shown

in Fig. 70. With this framework in mind, the preliminary angle dependent data will be

presented.
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FIG. 70: Angle dependent fluorescence amplitude and polarization degree. The angle θ

corresponds the Euler angle between the polarization vector and detection axis. (a) corre-

sponds to the detected fluorescence due to a linearly polarized probe (β = 0). The solid line

corresponds to detection of the same polarization (χ = 0) while the dashed line represents

detection of the orthogonal polarization (χ = π/2). (b) shows the polarization degree as a

function of θ.

Data were taken at two orthogonal probe polarizations and fluorescence was collected

with an analyzing polarizer over several angles. The total fluorescence as a function of

analyzer angle is shown in Fig. 71. Rotating the input polarization 90◦ is equivalent to a

rotation of χ by 90◦ and can be seen by the shift. The Euler angle θ for our detection scheme

was determined to be 109.6◦. Data were also collected for several detuning values which all

exhibited the same behavior. The same procedure was also performed on the MOT where

similar behavior occurred. Since no abnormal behavior was apparent in the preliminary data,

later data runs which utilize the analyzing polarizer were only be performed at orthogonal

extremes of 0◦ and 90◦.
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FIG. 71: Total FORT fluorescence as a function of analyzer angle. Rotating the input

polarization from vertical (black) to horizontal (blue) is equivalent to rotating the analyzer

by 90◦. The data corresponds to the fluorescence due to a probe detuning of 90 MHz. The

shaded region corresponds to a 95% confidence band from the fit to Eq. (267).

During this preliminary period, a singular data run at a particular detuning and polar-

ization required around an entire day of stable conditions to accumulate fluorescence from

13000 pulses. Over several weeks, data were acquired over four input polarization channels

at ten detunings each. The detuning dependent lifetime results for all four input channels

are shown in Fig. 72 for regions 1 and 2. The dip in lifetime around 200-250 MHz was an

initially unexpected result and suggests the ensemble decays faster than the natural lifetime

of 26.24 ns in region 1. The region 2 results suggest that the sample decays slower than the

natural lifetimes. A possible explanation for this will be discussed later during the analysis.

Since there was no substantial deviation between the four input channels a choice was made

to focus on collecting data with linear input polarization to remain consistent with previous

works.
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FIG. 72: Lifetime as a function of detuning from preliminary data over four input polariza-

tions. (a) is the fast decay associated with region 1. (b) is associated with region 2. The

missing data points are due to the lack of signal at long times. Error bars correspond to the

standard error given by the fit.

5.1.2 TEMPORAL DATA

After several improvements to the experimental apparatus, two important features, al-

luded to in the preliminary stage, were focused on during final data acquisition. The first

was to reproduce the detuning dependent lifetime results and the second was to observe the

long lived behavior at larger detunings by accumulating more data. Before the lifetimes are

addressed, the following discussion will first present all of the collected temporal datasets for

both the FORT as well as the MOT. Including a dataset from the MOT allows for compar-

ison to previous results in other research groups as well as to the FORT under the same, or

similar, experimental conditions. All data were acquired with linear probe polarization.

The unpolarized temporal data, from the FORT, after 52000 probe pulses and over

a detuning range of 150-295 MHz is presented in Fig. 73. The dashed line represents

the natural lifetime and will be shown with every figure. In an effort to further increase

signal at detunings between 150-295 MHz, a follow-up dataset was taken consisting of the

accumulation of 208000 pulses under the same experimental conditions as previously stated

and is shown in Fig. 74. The error bars simply correspond to the square root of the number

of counts.

Polarization dependent data were also accumulated with an analyzing polarizer in the



140

detection channel at 0◦ and 90◦ for both the FORT and the MOT for 52000 probe pulses.

Although the lifetimes will be presented for both polarization channels in the following

section, Figs. 75 and 76 represent the sum of both polarization channels for the FORT and

MOT respectively. The reason for presenting the sum of the detection channels is because

the difference between the two is visually indiscernible at later times. For purposes of clarity,

a singular example of temporal data obtained from the FORT at both analyzer positions is

shown in Fig. 77, where the signal amplitude at later times is visually indiscernible. Even

though the horizontal channel amplitude was smaller, as alluded to by Fig. 71, the temporal

behavior showed no appreciable difference between polarization channels, which was in line

with findings by Ref. [26]. The ratio of total fluorescence between the orthogonal detection

channels also remained relatively the same (1.60 ± 0.12).

Finally, the polarization degree of the FORT and MOT fluorescence, in two temporal

zones, was also extracted from the polarization dependent data. The initial 30 ns of data

were used to determine the first zone, since single scattering events will happen the fastest,

and the polarization degree was found to be 0.3±0.03 for both the FORT and the MOT. This

result is in line with the theoretical value of 0.296, which was calculated with the application

of Eq. (268) with θ = 109.6◦. Defining a later zone as t > 250 ns, the polarization degree

was found to decrease to a value of 0.10 ± 0.04 and 0.13 ± 0.03 for the FORT and MOT

respectively. Although this result shows evidence of depolarization at later times, which can

be attributed to multiple scattering and dephasing effects due to the coupling of many atoms,

some polarization dependence still exists. The observation of the polarization dependence

of the light at later times presents evidence that strongly suggests that the subradiant effect

cannot be completely attributed to multiple scattering.

It will become more clear in the following section, but all of the presented temporal data

has shown two similar behaviors. First, a later temporal region where the lifetime is much

longer than the natural lifetime of 26.24 ns. Second, a region which decays faster than the

natural lifetime seems to exist in the ≈ 150-295 MHz region.
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FIG. 73: Temporal data of FORT fluorescence with no analyzing polarizer. The presented

data comprised of the accumulation of 52000 probe pulses and normalized to the peak value

at 50 MHz which corresponds to 6233 counts. The normalization places the approximate

noise floor between 10−3-10−4. The vertical axis is on a log scale. The dashed red line

represents the single atom lifetime.
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FIG. 74: Temporal data of FORT fluorescence with no analyzing polarizer. Although the

presented data corresponds to the same experimental conditions to those in Fig. 73, in an

effort to increase signal at larger detunings, a second data acquisition session was performed.

The presented data comprised of the accumulation of 208000 probe pulses and normalized to

the peak value at 150 MHz which corresponds to 5083 counts. The normalization places the

approximate noise floor between 10−3-10−4. The vertical axis is on a log scale. The dashed

red line represents the single atom lifetime.
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FIG. 75: Temporal data of the combined polarization dependent FORT fluorescence for

50-295 MHz detuning. The presented data comprised of the accumulation of 52000 probe

pulses from each analyzer polarization and normalized to the peak value at 50 MHz which

corresponds to 6233 counts. For clarity, this data represents the fluorescence collected in the

vertical and horizontal detection channels combined. The normalization places the approxi-

mate noise floor between 10−3-10−4. The vertical axis is on a log scale. The dashed red line

represents the single atom lifetime.
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FIG. 76: Temporal data of the combined polarization dependent FORT fluorescence for

50-295 MHz detuning. The presented data comprised of the accumulation of 52000 probe

pulses from each analyzer polarization and normalized to the peak value at 50 MHz which

corresponds to 65551 counts. For clarity, this data represents the fluorescence collected

in the vertical and horizontal detection channels combined. The normalization places the

approximate noise floor between 10−4-10−5. The vertical axis is on a log scale. The dashed

red line represents the single atom lifetime.
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FIG. 77: FORT fluorescence signal at orthogonal analyzer positions. (a) corresponds to the

temporal data while (b) corresponds to the natural log of the data. The input polarization

was vertical and data were collected with an analyzing polarizer in the detection channel at

0◦ (Vertical) and 90◦ (Horizontal). The probe detuning was 50 MHz. Data were accumulated

from 52000 probe pulses.

5.1.3 LIFETIME MEASUREMENTS

The following text will present lifetime measurements extracted from the temporal

datasets from the three regions described in Fig. 68. The FORT lifetimes will be pre-

sented first and then the data associated with the MOT. Extracting fits from region 3 were

only able to be performed on a few datasets, therefore all region 3 lifetimes will be combined

into a single plot and presented at the end.

The extracted lifetimes associated with the unpolarized temporal FORT data, shown

in Figs. 73 and 74, are given in Figs. 78 and 79 respectively. The polarization dependent

lifetimes for the FORT are shown in Fig. 80, while the lifetimes associated with the combined

temporal data, shown in Fig. 75, are presented in Fig. 81. Results are consistent between

the unpolarized and polarized datasets.

The extracted lifetimes associated with the polarization dependent temporal MOT data

are shown in Fig. 82, while the lifetimes associated with the combined temporal data, shown

in Fig. 76, are presented in Fig. 83. It can be seen that the region 1 and 2 behavior do

not significantly differ between detection channels for the FORT or the MOT. There also is

evidence of a spectral feature in region 2 for both cases as well. Therefore, at least under the
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current experimental conditions, no polarization dependence was found for either the FORT

or the MOT with respect to the lifetimes. The important take-aways are the region 1 fast

decay behavior and the consistent region 2 slow decay for both the FORT and the MOT.
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FIG. 78: FORT fluorescence lifetime vs detuning from 52000 probe pulses for (a) region 1

and (b) region 2 associated with the temporal data from Fig. 73. No analyzing polarizer

was used. Error bars represent the standard error of the fitting parameter.
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FIG. 79: FORT fluorescence lifetime vs detuning from 208000 probe pulses for (a) region 1

and (b) region 2 associated with the temporal data from Fig. 74. No analyzing polarizer

was used. Error bars represent the standard error of the fitting parameter.
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FIG. 80: FORT fluorescence lifetime vs detuning at orthogonal analyzer positions for (a)

region 1 and (b) region 2. Data were collected with an analyzing polarizer in the detection

channel at 0◦ (Vertical) and 90◦ (Horizontal). Error bars represent the standard error of the

fitting parameter.
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FIG. 81: FORT fluorescence lifetime vs detuning of the combined polarization results for

(a) region 1 and (b) region 2. The associated temporal data is shown in Fig. 75. Error bars

represent the standard error of the fitting parameter.
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FIG. 82: MOT fluorescence lifetime vs detuning at orthogonal analyzer positions for (a)

region 1 and (b) region 2. Data were collected with an analyzing polarizer in the detection

channel at 0◦ (Vertical) and 90◦ (Horizontal). Error bars represent the standard error of the

fitting parameter.
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FIG. 83: MOT fluorescence lifetime vs detuning of the combined polarization results for (a)

region 1 and (b) region 2. The associated temporal data is shown in Fig. 76. Error bars

represent the standard error of the fitting parameter.

Up until this point region 3 has been omitted due to the lack of signal above the noise

floor at much larger times for a majority of the datasets. Since only a small handful of



149

datasets had significant signal above the noise floor in region 3, the lifetimes were combined

into one plot and are shown in Fig. 84. Although the region 1 and 2 results were shown to

be similar between the FORT and the MOT, region 3 presents a clear separation of decay

behavior.
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FIG. 84: All region 3 lifetime vs detuning data points. The circle, square, and open circle

plot markers are associated with FORT data represented in Figs. 73, 74, and 75 respectively.

The triangles are associated with the MOT data from Fig. 76.

5.1.4 TAIL RATIO

The tail ratio is a parameter that was used in previous works to quantify the subradiant

behavior of the long-lived tail and is defined as
∫∞
4τ
I(t)dt/

∫∞
0
I(t)dt [26]. This is a ratio of

the fluorescence given after ≈ 100 ns to the total throughout the process. Although their

analysis was only performed near resonance on a FORT after steady state conditions were

met, our tail ratio at 50 MHz was found to only differ by ≈ 2% at a similar density. We also

present the MOT tail ratio and it can be seen that the ratio follows similar behavior at large

detunings with a possible divergence as detuning decreases. The polarization dependent tail

ratios are shown in Fig. 86 for both the FORT and the MOT. The behavior is similar to

that of the unpolarized tail ratios, the results suggest a possible polarization dependence.

Although a full polarization analysis was outside the scope of this dissertation, the presented
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tail ratios obtained from the two experimental regimes open a new door of questions for future

research.
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FIG. 85: Tail ratio vs detuning for the FORT (circles) and MOT (open circles). The tail

ratio is associated with Figs. 73 and 76 for the FORT and MOT respectively. Error bars

are omitted but on the order of 1%.
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FIG. 86: Polarization dependent tail ratio vs detuning for the (a) FORT and (b) MOT.

Circles represent detection of vertically polarized light while open circles represent horizontal.

Error bars are omitted but on the order of 1%.
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5.2 COUPLED DIPOLE MODEL COMPARISON

The observed temporal signals and spectral dependent decay of the scattered light was

shown to exhibit multi-exponential behavior that deviates from the single atom response in

the unpolarized and polarized detection channels for both the FORT and the MOT. Decays

faster than the natural lifetime, around 225 MHz detuning, of 26.24 ns were found in region

1 for both the FORT and the MOT. Similarly, region 2 decay exhibited longer decay times

while still maintaining a feature around 225 MHz detuning.

Decay behavior of many-body systems has been analyzed previously in a MOT [17–21]

and FORT [26], where the authors have claimed to observe subradiance from their respective

systems, utilized the coupled dipole model. Although there is confidence in the coupled dipole

model because it has been shown to be consistent with previous experimental works, it must

be noted that the main differences between the aforementioned studies and our experiment

is the pulse length and detuning range. The pulse lengths range in previous works from

several µs for the MOT and 150 ns for the FORT, which allow the sample to reach steady

state conditions before analyzing the decay after the probe was turned off. However, in

our experiment, steady state conditions are not achieved with a pulse length of < 5 ns and

the radiated field was analyzed during and after probe shut off. The coupled dipole model

will now be used to offer an explanation of experimental behavior by analyzing simulated

temporal and spectral results.

A simulation was written in Mathematica which numerically solves for the radiated in-

tensity using the framework given in Chapter 2. To ensure consistency with previously

published works, results were reproduced under the same conditions and spatial parameters

given in [19]. It must be noted that the aforementioned group also includes a so-called

exclusion volume where atom pairs separated by a distance k0r ≤ 3 were moved until all

atom pairs fulfilled a condition of k0r > 3. Since rescaling the spatial parameters to achieve

the same optical depth with a fewer number of atoms increases the density, the purpose of

the exclusion volume was to artificially reduce the amount of strong two-body super and

subradiant decay by reducing the density. In an effort to not introduce any bias and to

maintain consistency between spatial rescaling in both the MOT and FORT regimes, the

exclusion volume procedure will not be used in our analysis. Instead, the rescaling of spatial

parameters for both the FORT and the MOT will be performed under regimes of constant

optical depth and at constant density to compare with experimental results. It will be shown

that, in context to the coupled dipole model, the MOT and FORT behavior follow opposite

re-scaling regimes.



152

Before delving into the temporal decay analysis, a comparison between the coupled dipole

model and typical experimental behavior will be examined to provide confidence in the

approach. It will be shown that the coupled dipole model predicts four different behaviors

that were found to be consistent with experimental data. The first is the peak height

of fluorescence comes one MCS bin later at 50 MHz than the data collected at detunings

greater than 150 MHz, the second is the total fluorescence as a function of detuning, the third

describes the thermal expansion behavior, and finally, and most interesting, the lifetime dip

around 200-250 MHz. An example of each of the aforementioned behaviors will be shown.

As a reminder this model does not take into account the multi-level structure of the atom,

the polarization of the fluorescence, retardation effects, or saturation effects, but offers a

guide to the expected overall behavior of the decay. The simulations were performed under

the same configuration of probe direction and detection angle as done in the experiment.

5.2.1 SPATIAL RESCALING ANALYSIS

The following discussion will examine several behaviors of the coupled dipole model under

constant density and constant optical depth spatial rescaling. The purpose is to determine

the significance, if any, between the vastly different geometrical atomic distributions of the

FORT and MOT. As a reminder, experimental ensembles cannot be fully simulated due

to the computational limitations to the number of atoms. Therefore, a proper rescaling of

the spatial parameters must be performed. The rescaled spatial parameters for the FORT

that will be used during the following analysis are given in Table 7. Likewise, the rescaled

spatial parameters for the MOT are given in Table 8. The first row of values in both tables

corresponds to the experimental parameters before rescaling.
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TABLE 7: FORT rescaling parameters under constant b0 and ρ0.

N r0/k0 z0/k0 b0 ρ0 (cm−3)

4 × 106 20.7043 2021.3 145.016 1.53×1014

10 0.0327 3.196 145.016 9.68×1016

10 0.281 27.4332 1.968 1.53×1014

100 0.1035 10.1065 145.016 3.06×1016

100 0.6054 59.10 4.24 1.53×1014

500 0.23148 22.5988 145.016 1.37×1016

500 1.035 101.065 7.25 1.53×1014

1000 0.32736 31.9595 145.016 9.68×1015

1000 1.30429 127.334 9.135 1.53×1014

TABLE 8: MOT rescaling parameters under constant b0 and ρ0.

N r0 z0 b0 ρ0 cm−3

7.5×107 4026.5 4026.5 6.48 3.8×1010

100 4.65 4.65 6.48 3.3×1013

100 44.32 44.32 0.07 3.8×1010

500 10.4 10.4 6.48 1.48×1013

500 75.78 75.78 0.12 3.8×1010

1000 14.7 14.7 6.48 1.04×1013

1000 95.48 95.48 0.15 3.8×1010

An example of the resulting coupled dipole data in the time domain is shown in Fig. 87

for both constant density and constant optical depth rescaling for the FORT. The temporal

data were rebinned to simulate the experimental detection limitations of the MCS. It can

be seen that, after the rebinning procedure, the peak is one bin further at 50 MHz than at

200 MHz which mimics the experimental behavior of the FORT. It is also important to note

the difference in temporal behavior between the constant density and constant optical depth
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signals. Albeit there are similarities with this specific example, it will become clear that the

choice of spatial rescaling is vital for predicting experimental behavior.

The total fluorescence as a function of detuning is shown in Fig. 88, where both rescal-

ing regimes follow a very similar trend to that of experimental data from the FORT and

MOT. The datasets were normalized to the value at 50 MHz. The important feature shown

here is that the total fluorescence reaches a minimum, near 225 MHz, and then begins to

increase. Simulations under spatial re-scaling for 500 and 1000 atoms were also performed

and produced total fluorescence results consistent to that shown in Fig. 88.
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FIG. 87: Time dependent output of the coupled dipole model before and after rebinning. By

rebinning the data into 5 ns widths, the peak is shown to be one bin further at 50 MHz than

at 200 MHz. (a)-(b) correspond to spatial rescaling of the FORT under constant density

where r0 = 0.61 and z0 = 59.1. (c)-(d) correspond to spatial rescaling under constant optical

depth where r0 = 0.1 and z0 = 10.1 in units of 1/k0. Data averaged over 1000 random

ensembles for N = 100.
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FIG. 88: Total fluorescence as a function of detuning of the coupled dipole model compared

to (a) FORT and (b) MOT experimental data. Open circles correspond to spatial rescaling

under constant density where r0 = 0.61 and z0 = 59.1 for the FORT and r0 = 44.3 for

the MOT. Diamonds correspond rescaling under constant optical depth where r0 = 0.1 and

z0 = 10.1 for the FORT and r0 = 4.6 for the MOT in units of 1/k0. Data averaged over

1000 random ensembles for N = 100. The data were normalized to the value obtained at 50

MHz. The experimental data in (a) corresponds to the FORT data shown in Fig. 73 while

(b) corresponds to the MOT data shown in Fig. 76.

Even though the total simulated fluorescence from the coupled dipole model was found

to be relatively consistent with experimental data, the full temporal behavior was somewhat

different between the constant density and optical depth scalings, which an example is shown

in Fig. 89 for the FORT and Fig. 90 for the MOT. It can be seen that experimental FORT

behavior is modelled well under constant density while the MOT follows constant optical

depth scaling. The FORT experiment performed by Ref. [26] analyzed their data using

a coupled dipole simulation by keeping the value ρ0/k
3 = 0.3 constant, which is the same

as keeping density constant, for N = 200. Their result provides confidence, although their

experiment involves different detection angles, pulse length, and detuning, that the coupled

dipole model under constant density scaling captures the expected behavior of the FORT.

On the other hand, the MOT experiments performed by Refs. [17–19] kept the optical

depth constant in their simulations, which was also consistent with our MOT results. This

apparent dichotomy may be attributed to the vastly different trap geometries and density

of atomic pairs, but more work would have to be done to investigate and determine exactly
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why the rescaling regime differs between the FORT and the MOT.
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FIG. 90: Coupled dipole model temporal result under MOT rescaling with N = 100, 500,

and 1000 at 50 MHz detuning. (a) corresponds to rescaling at constant density while (b)

corresponds to constant optical depth. Experimental data corresponds Fig. 76 at 50 MHz.
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Further evidence of density scaling for the FORT can be seen by simulating the effect of

thermal expansion. The spatial parameters were recalculated for the FORT after 1 ms of

expansion at 138 µK in both rescaling regimes and is shown in Fig. 91 with comparison to

experimental data. The constant density rescaling continues to describe FORT behavior.
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FIG. 91: Comparison of the decay behavior of the FORT before and after 1 ms of expansion

time at 138 µK. The detuning is 50 MHz. (a) corresponds the coupled dipole model at

constant density while (b) corresponds to constant optical depth. (c) is experimental data

taken at the same expansion times and agrees with the constant density scaling results shown

in (a). The coupled dipole result was obtained from a simulation with N = 100 scaling and

averaged over 100 random ensembles. The dashed red line is the single atom lifetime.
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As of now, it has been shown that the coupled dipole model results agree with our

experimental data and previous works under their respective rescaling regimes. With that

in mind, the detuning dependent temporal decay behavior of the coupled dipole model will

be presented for both rescaling regimes.

5.2.2 LIFETIME MEASUREMENTS

The extraction of the lifetimes from the coupled dipole temporal data will now be pre-

sented. The fitting procedure was the same as for the experimental data. In an effort to

maintain consistency during the comparison of simulated data to experimental, the simulated

data will be fit using the same bins that were used to fit experimental data and the corre-

sponding datasets will be noted. This also applies to region 3 when applicable, otherwise

the fit was performed after the last bin in region 2 until bin 200. Although it was previously

determined that the FORT and MOT follow constant density and constant optical depth

rescaling respectively, the extracted lifetimes for both regimes will be presented.

Coupled dipole fit results for the FORT associated with the same regions and bins as

that were used for Fig. 78 is shown in Fig. 92 for constant density and Fig. 93 for constant

optical depth. The legend in Fig. 92 applies for all lifetime measurement figures throughout

this section. Similarly, the extracted lifetimes associated with the FORT data in Fig. 79 is

given in Fig. 94 for constant density and Fig. 95 for constant optical depth. Finally, the

extracted lifetimes associated with the MOT data in Fig. 83 is given in Fig. 96 for constant

density and Fig. 97 for constant optical depth.

It is clear to see that the extracted lifetimes of the simulation under FORT conditions

and constant density rescaling qualitatively agree with experimental results in all 3 regions.

Although the dip in lifetime in region 1 is apparent even for the constant optical depth

case, region 2 lifetimes are inconsistent for different atom numbers. Likewise, results are

similar for the MOT but under constant optical depth rescaling. Again, the region 1 dip in

lifetime occurs in both regimes but the region 2 behavior converges to the natural lifetime

under constant density. These results provide further evidence that the coupled dipole

model qualitatively describes experimental FORT and MOT behavior under their respective

rescaling regimes.
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FIG. 92: Constant density rescaled couple dipole model fluorescence lifetime vs detuning

under the same fitting conditions to that of FORT given in Fig. 78. (a), (b), (c), repre-

sent regions 1, 2, and 3 respectively. Error bars represent the standard error of the fitting

parameter.
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FIG. 93: Constant optical depth rescaled couple dipole model fluorescence lifetime vs de-

tuning under the same fitting conditions to that of FORT given in Fig. 78. (a), (b), (c),

represent regions 1, 2, and 3 respectively. Error bars represent the standard error of the

fitting parameter.
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FIG. 94: Constant density rescaled couple dipole model fluorescence lifetime vs detuning

under the same fitting conditions to that of FORT given in Fig. 79. (a), (b), (c), repre-

sent regions 1, 2, and 3 respectively. Error bars represent the standard error of the fitting

parameter.
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FIG. 95: Constant optical depth rescaled couple dipole model fluorescence lifetime vs de-

tuning under the same fitting conditions to that of FORT given in Fig. 79. (a), (b), (c),

represent regions 1, 2, and 3 respectively. Error bars represent the standard error of the

fitting parameter.
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FIG. 96: Constant density rescaled couple dipole model fluorescence lifetime vs detuning

under the same fitting conditions to that of MOT given in Fig. 83. (a), (b), (c), repre-

sent regions 1, 2, and 3 respectively. Error bars represent the standard error of the fitting

parameter.
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FIG. 97: Constant optical depth couple dipole model fluorescence lifetime vs detuning under

the same fitting conditions to that of MOT given in Fig. 83. (a), (b), (c), represent regions

1, 2, and 3 respectively. Error bars represent the standard error of the fitting parameter.

Another interesting result emerges if one ignores the experimental regions and examines

the long-lived behavior predicted by the coupled dipole model far beyond the noise floor.

Two new fitting regions, defined temporally between 21-57 τ (550-1500 ns) and 57-190 τ

(1500-5000 ns) respectively, were fit and the results are shown in Fig. 98. This result defies

the claim that there should be no detuning dependence of the long-lived tail, albeit the

claim was made under the assumption of a system in steady state. Under our experimental

conditions, where the pulse length is associated to a minimum in the intensity oscillation
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around 225 MHz, the long-lived lifetimes are predicted to diverge from constant behavior.

Although the lifetimes are much longer at 225 MHz the amplitude of the signal is several

orders of magnitude smaller, essentially offering a means to suppress long-lived signals with

a detuned probe and specific pulse lengths.
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FIG. 98: Coupled dipole model fluorescence lifetime vs detuning for timescales outside of

experimental detection capabilities. Rescaling was performed for constant density to that

of FORT for N = 100. (a) represents the decay between 21-57 τ (550-1500 ns) while (b)

corresponds to 57-190 τ (1500-5000 ns).

5.2.3 TAIL RATIO

The tail ratio, as defined in the experimental data section, for the simulated coupled

dipole data is presented in Fig. 99. The exact procedure which was used to calculate the

experimental tail ratio was used on the associated simulated datasets. The tail ratio for

the simulation data shows good consistency with experimental results for the FORT. The

simulated MOT data differs from the experimental results by ≈ 5% for the detunings closer

to resonance while showing consistency at larger detunings.
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FIG. 99: Coupled dipole model tail ratio vs detuning for the FORT (circles) and MOT (open

circles). The FORT simulation was performed under constant density rescaling while the

MOT was performed under constant optical depth. Values were obtained using the same

number of bins that were used for the experimental data shown in Fig. 85.

5.2.4 SINGLE ATOM COMPARISON

The last comparison that will be made will be against the optical Bloch equations to

directly show single atom behavior. As the coupled dipole model is essentially a multi-

body optical Bloch equation, one would expect similarities and differences that arise can be

attributed to multi-body physics. Comparing the outputs between the coupled dipole model

and optical Bloch equations are shown in Fig. 100 for detunings of 50 and 200 MHz. The

coupled dipole signal corresponds to constant density rescaling of the FORT with N = 100.

It is clear to see that the cooperative behavior of the coupled dipole model diverges to that

of a single atom. Not only does the coupled dipole model exhibit much longer lived behavior,

there is an amplitude enhancement at short times. To go along with this, the optical Bloch

data were rebinned in the same way as the coupled dipole data, and then fit to the same three

regions associated with experimental FORT data given in Fig. 73. The lifetimes associated

with the three regions are shown in Fig. 101. It can be seen that the region 1 decay behaves

similarly around a detuning of 225 MHz where the probe shuts off at a minimum of an

oscillation. Region 2 and 3 however show the expected single atom natural lifetime result

for all detunings. With this in mind, it is clear that the experimental results show behavior

far from single atom dynamics.
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FIG. 100: Signal comparison between the coupled dipole model and the single atom optical

Bloch solution. (a)-(b) correspond to 50 MHz detuning where (b) is the log plot of the data

with an extended time scale. (c)-(d) correspond to 200 MHz detuning where (d) is the log

plot of the data. The coupled dipole data corresponds to constant density rescaling of the

FORT at N = 100.
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FIG. 101: Fluorescence lifetime vs detuning calculated from the optical Bloch equations

compared to the coupled dipole model and experimental data. (a), (b), and (c), represent

regions 1, 2, and 3 respectively. The optical Bloch lifetimes in regions 2 and 3 are all exactly

the natural lifetime. The coupled dipole data is associated with the lifetimes given in Fig.

92 for N = 100. Error bars represent the standard error of the fitting parameter.

5.3 DISCUSSIONS

This section will start with further discussion of the coupled dipole model and offer a

qualitative explanation for why a detuning dependent result, within the parameters of the

experiment, should be expected. Then the possible significance of the polarization of the

scattered light will be discussed.

The coupled dipole model has been shown to qualitatively reproduce experimental tem-

poral and spectral decay dynamics, therefore it will continue to be used to offer a rather
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straightforward explanation as to why a detuning dependence in the lifetime results should

be expected. A example of the temporal behavior of the radiated fluorescence is shown in

Fig. 102 for three different detunings and under constant density rescaling for the FORT.

The dashed lines represent the behavior if the probe pulse was left on, while the solid lines

represent experimental probe shut off conditions. It can be seen that the probe was shut

off where the minimum occurs at 225 MHz. Therefore, almost all of the fluorescence will

be radiated within the first oscillation and very little afterwards. Applying the previously

mentioned rebinning procedure to the coupled dipole model, that was shown in Fig. 87,

clearly demonstrates why a shorter lifetime would be extracted for a probe duration at a

detuning associated with a minimum of an oscillation. Although this was consistent with

experimental data, the oscillatory behavior was outside the capabilities of our apparatus to

observe since the MCS is limited to 5 ns bins.
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FIG. 102: Time dependent output of the coupled dipole model at various detunings. The

solid line represents the fluorescence due to the short pulse while the dashed lines represent

the behavior if the driving pulse were left on. (a) is normalized to the maximum of the first

peak at each detuning for illustrative purposes. (b) represents the log plot of the same data in

(a) where the normalization is to the max value of the 50 MHz peak. The legend corresponds

to both plots. Data averaged over 100 random ensembles for N = 100. The simulation was

performed under rescaled spatial parameters, where r0 = 0.605 and z0 = 59.10, in order to

keep ρ0 the same the experimental conditions.
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In summary, experimental region 1 decay lifetimes were found to be shorter than the

natural lifetime with a spectral feature associated with the length of the pulse. Region 2

decays were found to be around 2.3 - 2.7 times longer than the natural lifetime, which is in

line with the average decay time of ≈ 3 τ found in a similar FORT system [26]. Region 3

decays, although limited due to signal size, were found to be 7.5-11.5 times longer than the

natural lifetime for the FORT and 21-23 τ for the MOT. Therefore, it can be said that region

1 can be associated with superradiant modes, region 2 as a collection of many shorter lived

subradiant modes that decay slower than the natural lifetime, and region 3 as the longest

lived subradiant modes [70]. With reference to the temporal data shown in Fig. 68(b), it

can be seen that the region 2 behavior is not necessarily modeled by a single exponential,

which aligns aforementioned interpretation of many shorter subradiant modes decaying at

intermediate times. Although the coupled dipole model predicts subradiant behavior for all

detunings, the amplitude of the expected signal was below the noise floor of much of the

experimental detuning regime.

One of the more important pieces of evidence of cooperative subradiance was found

while analyzing the polarization dependence. It was shown that the dynamic behavior of the

scattered light carried no distinguishable polarization dependence, for a linearly polarized

probe pulse, in all fitting regions. Although the decay behavior did not change between

detection channels, the amount of total fluorescence did, which means that the scattered

light was not completely depolarized. The change in amplitude between detection channels

was expected and shown in Fig. 70(a) of the preliminary experimental section. Furthermore,

the polarization degree of the scattered light at later times was shown to strongly suggest

that the subradiant effect cannot be completely attributed to multiple scattering. This result

is in contrast to the Guerin et al. [27] interpretation that subradiance can be completely

explained by multiple scattering. The significance of a long-lived cooperative decay that

continues to hold onto information, e.g., the polarization of the probe, may provide an

avenue for the production of quantum memories. Continued exploration of the polarization

dependence may lead to better understanding on how to decouple multiple scattering from

cooperative decay.
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CHAPTER 6

CONCLUSIONS

The behavior associated with many-body interactions from a cooled atomic ensemble of
87Rb during and after a blue-detuned short laser pulse were investigated in this dissertation.

Temporal fluorescence measurements exhibited multi-exponential decay behavior typically

involving an initially fast decay followed by a much slower decay, with respect to the natural

lifetime. The detuning dependent measurements showed a decrease in the initial lifetime

at and around 225 MHz which was found to be associated with the length of the pulse

and the effective Rabi frequency. The experimental results were explained and replicated

using the coupled dipole model. Although the initial oscillatory behavior was found to be

similar to the single atom optical Bloch solutions, the coupled dipole model painted a more

detailed picture of the cooperative decay dynamics at later times. The rescaling of spatial

parameters was found to be dependent on density for the FORT and optical depth for the

MOT, which was found to be consistent with previous experiments in the same regime by

other research groups. The polarization degree measurements provided evidence that the

long lived behavior cannot be entirely explained by multiple scattering. Although recent

advancements in theory have significantly aided in understanding the behavior of many-

body cooperative systems, much more work must be done to fully understand the complex

intertwining of dynamic effects that occur. Beyond the theoretical improvements that need

to occur, computational methods must also improve and evolve to meet the requirements of

a more complex model.

Expertise in a plethora of laboratory instrumentation was required in order to perform

the experiments described. Precision timing between several control systems was required to

create the atomic samples, introduce a fast pulse, detect the scattered light, and acquire data

in a consistent systematic manner. Several control programs were written to monitor, acquire

data, and provide instruction for the experimental apparatus. Temperature stabilization of

the fast pulse generating EOM exponentially increased the ability to run the experiment

uninterrupted for several hours. With the introduction of the many apparatus improvements,

it was made possible to run the experiment completely hands free.

The experimental ensembles were created using optical forces to cool and trap atoms.

A MOT was used to initially cool and confine the atoms before loading into a FORT. The
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MOT utilizes radiation pressure and magnetic field gradients to confine and cool a dilute

cloud of 87Rb atoms to ≈ 100 µK. The FORT however, takes advantage of the dipole force to

substantially increase the confinement of the sample while reducing the scattering rate. The

spatial characteristics of the samples were calculated and measured experimentally using

techniques such as parametric resonance and ballistic expansion while the number of atoms

were determined by optical pumping.

An aside was presented where experimental data for the optical pumping atom number

technique was shown over a large range of parameters. Detuning-dependent results were

modelled with a simulation that included depumping effects that lead to over-counting due

to multiple scattering. A phenomenological explanation was given that scaled with optical

depth and agreed with experimental and simulation results within the explored parameter

space. Further investigation into multiple scattering during the optical pumping process,

both experimentally and theoretically, will be needed to offer a full, clear, and concise picture

of the complex dynamics.

An interesting future endeavour of continued study would be to characterize the sub-

radiant behavior in a geometry where the optical depth and density rescaling regimes are

equivalent within the coupled dipole model. If such a regime is fragile, the behavior of the

subradiant decay could be used as a type of precision sensor. Single photon production may

also be an avenue of continued exploration. A single photon source has been created by [103]

utilizing an intense, on resonant, short pulse which causes intensity dependent Rabi oscilla-

tions. We have shown that in the weak field regime, at a detuning frequency corresponding

to the length of the pulse, similar effective Rabi oscillations occur. Not only does all of the

excitation happen within the first oscillation, the resulting long lived portion was shown to

be suppressed. Therefore, our work provides the groundwork to explore single photon pro-

duction simply by detuning the laser rather than increasing the intensity. Another intriguing

prospect for future research would be to analyze superradiance, not in the forward direction,

but in the reflected lobe that was depicted in Fig. 6(c). Collecting superradiance off axis

would eliminate the many pitfalls that plague forward scattering experiments.
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[69] T. Bienaimé, M. Petruzzo, D. Bigerni, N. Piovella, and R. Kaiser, J. Mod. Opt. 58,

1942 (2011).
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APPENDIX A

USEFUL CONSTANTS AND VALUES

The constants given in Tables 9 and 10 were used throughout this dissertation in many

calculations. The hyperfine constants given in Tables 11 and 12 were used to calculate the

energy level diagram shown in Fig. 1 as well as for the static and dynamic Stark shifts.

The polarizabilities given in Table 13 were needed to calculate the static and dynamic Stark

shifts. The dynamic polarizabilities are with respect to 1064 nm light. Finally, a small

compendium of 87Rb dynamic polarizabilities (1064 nm) are given in Table 14. These values

were calculated using the ARC-Alkali python package. It must be noted that the dynamic

polarizabilities listed in Table 14 for the 5S1/2 and 5P3/2 differ from the values presented in

Tables 2 and 3 because ARC uses slightly different RDMEs.

TABLE 9: Useful Constants.a

Permittivity of Vacuum ϵ0 8.854 187 8128(13)×10−12 F/m

Electron Mass me 9.109 383 7015(28)×10−31 kg

Speed of Light c 2.997 924 58×108 m/s

Bohr Radius a0 5.291 772 109 03(80)×10−11 m

Boltzmann’s Constant kB

1.380 649×10−23 J/K

2.083 661 912... ×1010 Hz/K

8.617 333 262... ×10−5 eV/K

Planck Constant h 6.626 070 15×10−34 Js

Hartree Energy
Eh

ωh

4.349 744 722 2071(85)×10−18 J

4.134 118 709 5917×1016 Hz

aReference [104].
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TABLE 10: 87Rb Physical Properties and Useful Values.a

87Rb Atomic Mass m 1.443 160 648(72)×10−25 kg

Nuclear Spin I 3/2

87Rb D2 (52S1/2 →52P3/2) Properties

Resonant Frequency ω0 2π · 384.230 484 468 5(62) THz

Wavelength (Vacuum) λ 780.241 209 686(13) nm

Wavelength (Air) λair 780.032 700 9(78) nm

Isotope Shift ω0(
87Rb) − ω0(

85Rb) 2π · 78.095(12) MHz

Lifetime τ 26.2348(77) ns

Decay Rate

Natural Line Width (FWHM)
Γ

38.117(11)×10−6 s−1

2π · 6.06656(178) MHz

aReference [62].

TABLE 11: 87Rb Hyperfine Structure Constants. A represents the magnetic dipole constant

while B represents the electric quadrupole constant.

Structure Constant Value

A52S1/2 h · 3.417 341 305 452 145(45)a GHz

A52P1/2
h · 407.25(63)a MHz

A52P3/2
h · 84.7185(20)a MHz

B52P3/2
h · 12.4965(37)a MHz

A52D3/2
h · 14.5080(6)b MHz

B52D3/2
h · 0.9320(17)b MHz

A52D5/2
h · -7.4923(3)b MHz

B52D5/2
h · 1.2713(20)b MHz

aReference [62].
bReference [105].
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TABLE 12: 85Rb Hyperfine Structure Constants. A represents the magnetic dipole constant

while B represents the electric quadrupole constant.

Structure Constant Value

A52S1/2 h · 1.011 901 813 0(20)a GHz

A52P1/2
h · 120.527(56)a MHz

A52P3/2
h · 25.0020(99)a MHz

B52P3/2
h · 25.790(93)a MHz

A52D3/2
h · -4.2221(2)b MHz

B52D3/2
h · 1.9105(8)b MHz

A52D5/2
h · -2.1911(12)b MHz

B52D5/2
h · 2.6804(200)b MHz

aReference [62].
bReference [105].
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TABLE 13: 87Rb Static and Dynamic Polarizabilities. Obtained values presented from

sources converted, if necessary, to both Hz/(V/cm)2 and atomic units (a.u.).

87Rb Static Polarizabilities

Ground State Polarizability α0(5
2S1/2)

h · 0.0794(16)a Hz/(V/cm)2

319.091(6.430) a.u.

h · 0.079432(35) Hz/(V/cm)2

318.791(1.417) a.u.

47.24(21)b 10−24 cm3

D2 Scalar Polarizability α0(5
2P3/2)

h · 0.2134(18)a Hz/(V/cm)2

857.607(7.189) a.u.

D2 Tensor Polarizability α2(5
2P3/2)

−h · 0.0406(8)a Hz/(V/cm)2

−163.162(3.215) a.u.

87Rb Dynamic Polarizabilities (1064 nm)

Ground State Polarizability α0(5
2S1/2)

h · 0.17102(13) Hz/(V/cm)2

687.3(5)c a.u.

D2 Scalar Polarizability α0(5
2P3/2)

−h · 0.2859(55) Hz/(V/cm)2

−1149(22)d a.u.

D2 Tensor Polarizability α2(5
2P3/2)

h · 0.1401(55) Hz/(V/cm)2

563(22)d a.u.
aReference [62].
bReference [106].
cReference [96].
dReference [107].
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TABLE 14: 87RB Dynamic Polarizabilities at 1064 nm from ARC. Sum over first n=30

states. Values given in a.u. To convert to standard units, multiply by 4πϵ0a
3
0.

State α0 α2 State α0 α2 State α0 α2

5S1/2 687.9931 0 5P1/2 -1185.1487 0 4D3/2 404.0961 -287.3365

6S1/2 -113.4664 0 5P3/2 -1077.7955 598.1909 4D5/2 373.2297 -362.9142

7S1/2 -590.6137 0 6P1/2 -634.3448 0 5D3/2 -521.6150 15.3594

8S1/2 -527.0148 0 6P3/2 -540.3885 -200.3582 5D5/2 -529.5412 34.1981

9S1/2 -519.5515 0 7P1/2 -427.3119 0 6D3/2 -389.1748 -37.4995

10S1/2 -517.4495 0 7P3/2 -419.2217 -39.5477 6D5/2 -392.2215 -49.9661

8P1/2 -530.5798 0 7D3/2 -423.3979 -26.4847

8P3/2 -530.7321 12.8572 7D5/2 -423.5073 -37.4494

9P1/2 -471.3418 0 8D3/2 -434.7171 -29.1001

9P3/2 -469.8773 -17.5189 8D5/2 -434.3610 -41.7723

10P1/2 -480.5100 0 9D3/2 -445.8772 -29.6086

10P3/2 -478.6897 -17.3607 9D5/2 -445.4646 -42.5783

10D3/2 -454.5882 -29.7161

10D5/2 -454.2300 -42.6069
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APPENDIX B

CODES

B.1 MATHEMATICA

Full Mathematica notebooks are available upon request.

B.1.1 ENERGY LEVEL DIAGRAM

This is the basic Mathematica version 10.4 code to calculate the hyperfine shifts and was

simply put into a loop to make the energy level diagrams. Output is in units of MHz.

Mathematica functions for hyperfine energy levels.

KVal[J , I , F ] := F (F + 1) − I (I + 1) − J (J + 1);

WfES[A , B , K , I , J ] := (1/2) A∗K + B
3
2 (K(K+ 1)− 2I(I+ 1)J(J + 1))

2I(2I− 1)2J(2J − 1)
;

WfGS[A , B , K , I , J ] := (1/2) A∗K;

In[1]:= WfES[84.7185, 12.4965, KVal[3/2, 3/2, 2], 3/2, 3/2]

Out[2]= −72.9113

B.1.2 POLARIZABILITY

These are the polarizability functions which are defined by Eq. (238) and Eq. (239).

EDiff is the difference obtained from the NIST values which must be converted to atomic

units using the Hartree energy as described in Section 3.2.1.3.

Basic Mathematica functions for polarizability calculations.

Alpha0[J , ω , EDiff , RDME ] :=

(2/(3(2J + 1)))∗( (RDMEˆ2∗(EDiff))/((EDiff)ˆ2 − ωˆ2) );

Alpha2[J , ω , EDiff , RDME , Jk ] :=

(−4)∗Sqrt[( (5J(2J − 1))/(6(J + 1)(2J + 1)(2J + 3)) )]∗

(−1)ˆ(J + Jk + 1)∗( (RDMEˆ2∗(EDiff))/((EDiff)ˆ2 − ωˆ2) )∗

SixJSymbol[{J, 1, Jk}, {1, J, 2}];
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B.1.3 COUPLED DIPOLE MODEL - RUNGE KUTTA

Mathematica version 10.4 code to calculate the coupled dipole model time dependent

scattered intensity at a particular detection angle. The basic loop performs the 4th order

Runge-Kutta method to obtain the excited state amplitudes βj.

Coupled dipole model simulation using 4th order Runge-Kutta.

(*Define Runge-Kutta functions∗)

yiPlusOne[ yi ,k1 ,k2 ,k3 ,k4 ]:=yi+(k1+2∗k2+2∗k3+k4)/6;

k1[h ,A ,b , yi , ti , pulselength ]:=h(A.yi+If[ ti>pulselength ,0,b]) ;

k2[h ,A ,b , yi ,k1 , ti , pulselength ]:=h((A.(yi+k1/2))+If[(ti+h/2)>pulselength,0,b]);

k3[h ,A ,b , yi ,k2 , ti , pulselength ]:=h((A.(yi+k2/2))+If[(ti+h/2)>pulselength,0,b]);

k4[h ,A ,b , yi ,k3 , ti , pulselength ]:=h((A.(yi+k3))+If[(ti+h)>pulselength,0,b]) ;

(*Initialize Simulation Parameters∗)

{numOfEnsembles,tEnd,ss}={100,200,0.001};
{numOfAtoms,pulselength,numOftimesteps}={100,0.17,tEnd/ss};
{thetaValk,phiValk}={(180+(45+22.33)),0}∗\[Pi]/180;(*Laser angle∗)
{thetaVal ,phiVal}={90,0}∗\[Pi]/180;(*Detection angle∗)

{detuningVal, rabiVal}={0,0.01};(*Units of Natural Decay Rate∗)

scatteredIntens =0;

Do[(*Loop for many random ensembles∗)

(*Create Random Atom Distribution∗)

While[Length[atomPositions] < numOfAtoms,

{xVal, yVal, zVal} =

Flatten[{RandomVariate[NormalDistribution[0, r0prob ], 2],

RandomVariate[NormalDistribution[0, z0prob ], 1]}];
atomPositions = Append[atomPositions, {xVal, yVal, zVal}];

];

(*M Matrix function∗)

Mjm[\[CapitalDelta] , j ,m ,atomPositions ]:= If [ j==m,(I∗\[CapitalDelta]−(1/2)), (I/2)∗Exp[I∗

EuclideanDistance[atomPositions [[ j ]], atomPositions [[m]] ]] /EuclideanDistance[atomPositions [[ j ]],

atomPositions [[m]] ] ];

(*Create the M matrix, calling it A here∗)

A=Table[Table[Mjm[detuningVal,j,m,atomPositions],{j,1,numOfAtoms}],{m,1,numOfAtoms}];
(*Create the b(t)∗)

(*The k1-k4 take care of the time dependence based on pulselength∗)
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bt=Table[(−I/2)∗rabiVal∗Exp[I∗( {Sin[thetaValk]∗Cos[phiValk],Sin[thetaValk]∗Sin[phiValk ],Cos[thetaValk
]}.atomPositions [[ i ]]) ],{ i ,1, numOfAtoms}];

(*Loop over the number of time steps∗)

(*initial condition, all betaj’s are zero.∗)

X0=Table[0,{i,1,numOfAtoms}];
temptimedep=Append[{},X0];(*yiPlusOne added at end of each timestep∗)

tempti=0;

Do[

k1i=k1[ss,A,bt,Last[temptimedep],tempti, pulselength ];

k2i=k2[ss,A,bt,Last[temptimedep],k1i,tempti, pulselength ];

k3i=k3[ss,A,bt,Last[temptimedep],k2i,tempti, pulselength ];

k4i=k4[ss,A,bt,Last[temptimedep],k3i,tempti, pulselength ];

(*adds yi+1 to the list, Each component of this ”list” will be the value of all betaj’s at a particular time step∗)

temptimedep=Append[temptimedep, yiPlusOne[Last[temptimedep],k1i,k2i,k3i,k4i]];

tempti=tempti+ss;

Clear[k1i , k2i , k3i , k4i ];

,{ i ,1, numOftimesteps}];

(*Time dependent scattered intensity at the detection angle∗)

scatteredIntens = scatteredIntens+Abs[Sum[temptimedep[[All,i]]∗Exp[−I∗(1)∗{Sin[thetaVal]∗Cos[phiVal],Sin
[thetaVal]∗Sin[phiVal ],Cos[thetaVal]}.atomPositions [[ i ]] ],{ i ,1, numOfAtoms}]]ˆ2;

,{ j ,1, numOfEnsembles}];
(*Average over the numOfEnsembles∗)

scatteredIntens =scatteredIntens/numOfEnsembles;

(*Add time component, in units of natural lifetime∗)

scatteredIntens =Transpose[{Table[i,{i,0,tEnd,ss }], scatteredIntens }];

Export[”NameYourFile.dat”,scatteredIntens ,”Package”];

(*One may loop the above over many random ensembles∗)

B.2 PYTHON

B.2.1 DYNAMIC POLARIZABILITY

All Python code was performed in the JupyterLab 3.4.4. environment due to its similarity

to Mathematica. The ARC 3.0 package was used to obtain the dynamic polarizabilities.
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n, l, j ranges can be changed to any values. The code automatically ignores errors given by

transitions which are forbidden. The output file will provide n, l, j, α0, α2, αcore on each

line.

87Rb dynamic polarizabilities using ARC 3.0.

# Brent Jones 10−31−22 Old Dominion University

##Config setup taken from the Arc website##

# Configure the matplotlib graphics library and configure it to show

# figures inline in the notebook

%matplotlib inline

import matplotlib.pyplot as plt # Import library for direct plotting functions

import numpy as np # Import Numerical Python

from IPython.display import display, HTML #Import HTML for formatting output

import arc

from arc import ∗ #Import ARC (Alkali Rydberg Calculator)

atom = Rubidium87()

# initialize an array of 6 numbers, [n, l , j , alpha0, alpha2, alphaCore].

DynPolList = np.asarray([ [0,0,0,0,0,0] ])

for n in range(4,6): #loop through n values

for l in range(0,3):# loops through l (s,p,d,f)

for j in range(0,l+1): # loops through J starting at 1/2.

try: # block raising an exception. Basically if there is an error here,

all values are set to 0.

calc = DynamicPolarizability(atom, n, l, j+1/2)

calc.defineBasis(atom.groundStateN, 30)

alpha0, alpha1, alpha2, alphaC, alphaP, closestState = calc.

getPolarizability(1064e−9, units="a.u.",
accountForStateLifetime=False)

except:

alpha0, alpha1, alpha2, alphaC, alphaP, closestState =

0,0,0,0,0,[0,0,0,0]

pass # doing nothing on exception

if alpha0 == 0: #if the alpha0 is zero, do not add it to the list

pass #do nothing
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else:

DynPolList = np.append(DynPolList,[ [n, l,j+1/2, alpha0,

alpha2, alphaC] ],axis=0)

DynPolList=np.delete(DynPolList,0,axis=0) #deletes the initial [0,0,0,0,0,0,0].

#Export to .csv

np.savetxt("DynamicPolRb87.csv", DynPolList, delimiter=",")
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APPENDIX C

OPTICAL ELEMENTS

The optical elements used in various optical diagrams throughout this dissertation. While

some have been modified, the drawings were created by Alexander Franzen [108].

FIG. 103: Legend of optical diagram elements. The optical isolator denoted with a ∗ repre-

sent the factory aligned and fixed type.
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