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Original Article

ESOPE-Equivalent Pulsing Protocols for
Calcium Electroporation: An In Vitro
Optimization Study on 2 Cancer Cell Models

Stefania Romeo, PhD1, Anna Sannino, PhD1, Maria Rosaria Scarfı̀, Dr1,
P. Thomas Vernier, PhD2, Ruggero Cadossi, MD3, Julie Gehl, MD4,5,
and Olga Zeni, PhD1

Abstract
Reversible electroporation is used to increase the uptake of chemotherapeutic drugs in local tumor treatment (electro-
chemotherapy) by applying the pulsing protocol (8 rectangular pulses, 1000 V/cm, 100 ms) standardized in the framework of
the European Standard Operating Procedure on Electrochemotherapy multicenter trial. Currently, new electro-
chemotherapy strategies are under development to extend its applicability to tumors with different histology. Electrical
parameters and drug type are critical factors. A possible approach is to test pulse parameters different from European
Standard Operating Procedure on Electrochemotherapy but with comparable electroporation yield (European Standard
Operating Procedure on Electrochemotherapy-equivalent protocols). Moreover, the use of non-toxic drugs combined with
electroporation represents the new frontier for electrochemotherapy applications; calcium electroporation has been
recently proposed as a simple tool for anticancer therapy. In vitro investigations facilitate the optimization of electrical
parameters and drugs for in vivo and clinical testing. In this optimization study, new pulsing protocols have been tested by
increasing the pulse number and reducing the electric field with respect to the standard. European Standard Operating
Procedure on Electrochemotherapy-equivalent protocols have been identified in HL-60 and A431 cancer cell models, and a
higher sensitivity in terms of electroporation yield has been recorded in HL-60 cells. Moreover, cell killing efficacy of
European Standard Operating Procedure on Electrochemotherapy-equivalent protocols has been demonstrated in the
presence of increasing calcium concentrations on both cell lines. Equivalent European Standard Operating Procedure on
Electrochemotherapy protocols can be used to optimize the therapeutic effects in the clinic, where different regions of the
same cancer tissue, with different electrical properties, might result in a differential electroporation yield of the standard
protocol over the same tissue, or, eventually, in an override of the operational limits of the instrument. Moreover, using
calcium can help overcome the drawbacks of standard drugs (side effects, high costs, difficult handling, preparation, and
storage procedures). These results support the possibility of new treatment options in both standard electrochemotherapy
and calcium electroporation, with clear advantages in the clinic.
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Introduction

The application of external pulsed electric fields (PEFs) of

sufficient amplitude and short duration to mammalian cells

results in an increase in the transmembrane potential of the

cell above a critical value, leading to the permeabilization of

the plasma membrane (electroporation or electropermeabili-

zation [EP]).1

Depending on the PEF exposure parameters (electric field

amplitude, pulse duration, repetition rate, and number of

pulses), membrane permeabilization can be either transient

(reversible EP) or permanent, leading to cell death (irreversible

electroporation [IRE]).

Based on these characteristics, different EP-based strategies

have been developed for applications in the clinical field. The

use of IRE as a nonthermal modality for cancer and tissue abla-

tion has substantially increased over the past decade, and

in vitro, translational, and clinical studies are being carried out

with the aim of proving its validity and safety in clinical practice.2

Reversible EP is used in DNA transfection for DNA vacci-

nation and gene therapy, although standard procedures have not

yet been defined.3 Reversible EP is also used to increase the

uptake of cytotoxic hydrophilic drugs in local tumor treatment,

termed electrochemotherapy (ECT).4

Electrochemotherapy, which is highly effective even with

lower doses of the chemotherapeutic agent (and concomitant

reductions in side effects), has become a standard practice for

the treatment of cutaneous and subcutaneous metastatic tumor

nodules or deep-seated tumors of various histologies at differ-

ent body sites, and is currently adopted in over 140 clinical

centers in Europe.5-7

Electrochemotherapy treatment was standardized in the

framework of the European Standard Operating Procedure

on Electrochemotherapy (ESOPE) multicenter trial, first

released in 20064,8 and recently updated.9 The ESOPE proto-

col (8 rectangular pulses, 1000 V/cm, 100 ms) defines the

standard pulsing conditions on human patients, in combina-

tion with a nonpermeant (bleomycin) or a low-permeant (cis-

platin) anticancer drug with a very high intrinsic cytotoxicity,

and pulses applied just after, or few minutes after, the injec-

tion of the drug.5,6

New ECT strategies are currently being evaluated to extend

its applicability to tumors with different histology, including

drug-resistant cancer types.10 The physical and biological

heterogeneity of cancer cells leads to the expectation that dif-

ferent cancer cells within a tumor may require different elec-

trical parameters for the optimum therapeutic effect. Indeed,

different regions of the same cancer tissue might be, for exam-

ple, characterized by differences in conductivity, resulting in

variations in EP yield of the standard protocol over the same

tissue. Moreover, in necrotic areas exhibiting a lower electrical

impedance, an increase in the current above the operational

limits of the instrument may occur, leading to an interruption

of the treatment.11,12 Furthermore, following the ESOPE pro-

tocol application, different degrees of adverse reactions have

been reported, such as electrically burnt skin and uncontrolla-

ble muscle contraction.13,14 The impracticability of testing new

combinations on patients makes in vitro investigations a suit-

able approach for selecting electrical parameters for evaluation

in in vivo and clinical studies. It has been demonstrated that

ECT parameters optimized in vitro are applicable in vivo.15-17

Accordingly, an important challenge in this framework is

the definition of new combinations of pulsing protocols and

drugs which address the above mentioned issues without reduc-

ing the efficiency of the standard treatment.

Several papers tested in vitro pulsing protocols different

from ESOPE. Saczko and coworkers tested a combination of

5-fluorouracil and cisplatin in a human ovarian carcinoma cell

model, resistant to cisplatin.18 Ongaro and coworkers identi-

fied, in a human osteosarcoma cell line, different combinations

of electric field amplitude and pulse number, able to attain EP

efficiency comparable to the one achieved by the standard

ESOPE protocol (ESOPE-equivalent protocols).12

Recently, a new EP-based therapy called calcium electro-

poration (calcium EP) has been demonstrated.19-23 In this

method, lethal levels of intracellular calcium (Ca2þ) are gen-

erated by electropermeabilizing tumor tissue in the presence of

extracellular calcium administered locally. Calcium signaling,

which regulates many vital cell functions and is necessary for

cell survival, depends on the carefully regulated distribution of

Ca2þ among intracellular compartments and the maintenance

of a very low Ca2þ concentration overall in the cytoplasm.

The loss of calcium homeostatic control, which occurs after the

severe intracellular calcium overload associated with calcium

EP, can result in necrotic, apoptotic, or autophagic cell death.24

Calcium EP kills tumor cells in vitro with an efficiency

similar to that of the chemotherapeutic agent bleomycin,7,19

and calcium EP is more effective in inducing cell death in
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cancer than in healthy cells, possibly due to different mem-

brane repair capacities, different membrane compositions, dif-

ferent energy reserves, and other factors that distinguish cancer

cells from healthy cells.23,25-28 Calcium EP is also effective

in vivo,20 with preliminary indications of an induced immune

response in addition to direct killing of tumor cells.29,30 Cal-

cium EP requires only a simple aqueous calcium solution.

Because it does not use chemotherapeutic drugs, calcium EP

avoids the complications of specific pharmacological prepara-

tion, handling, and storage procedures, and it can be easily

incorporated into the services of nononcological centers, such

as dermatology clinics, and even into field facilities lacking a

biomedical technological infrastructure.7 The first clinical trial

on calcium use in ECT was initiated in 2013, and the results

have been recently published.28

The goal of the present study is to identify optimized

ESOPE-equivalent pulsing protocols for 2 different cancer cell

models and to test their efficacy with calcium as the therapeutic

agent. Human acute promyelocytic leukemia (HL-60) cells and

human epidermoid carcinoma (A431) cells were subjected to

100-microsecond electric pulses with a 5-kHz repetition rate,

and the EP efficiency was evaluated for several protocols with

increased pulse number and reduced electric field amplitude

relative to the ESOPE standard, and with several concentra-

tions of calcium.

Materials and Methods

Chemicals and Reagents

Roswell Park Memorial Institute (RPMI) medium, Dulbecco’s

modified Eagle medium (DMEM), phosphate-buffered saline

(PBS), foetal bovine serum (FBS), L-glutamine, penicillin–

streptomycin, trypan blue, and trypsin were from Biowhittaker

(Verviers, Belgium), and resazurin, propidium iodide (PI), cal-

cein acetoxymethyl ester (CAM), hepes, sucrose, magnesium

chloride (MgCl2), and calcium chloride (CaCl2) were from

Sigma (St. Louis, Missouri).

Cell Culture and Maintenance

Both HL-60 and A431 cell lines were used as models of dif-

ferent cancer types. The HL-60 cells were acquired from the

Biological Bank and Cell Factory of the IRCCS Azienda Ospe-

daliera Universitaria San Martino—IST National Institute for

the Research on Cancer (Genova, Italy), while A431 cells were

kindly provided by Prof. Paolo Abrescia from the University

Federico II (Napoli, Italy). Cells were maintained under expo-

nential growth conditions (37�C, 95% air, and 5% CO2) in

standard complete growth medium consisting of RPMI (in the

case of HL-60 cells) or DMEM (in the case of A431 cells)

supplemented with 10% heat-inactivated FBS, 2 mmol/L L-

glutamine, and 1% penicillin/streptomycin antibiotic. For con-

sistency and reproducibility, HL-60 cells were subcultured

3 times per week, while A431 were routinely maintained as a

monolayer by subculturing twice per week by trypsinization.

Experimental Procedures

Pulse Generator and Pulsing Conditions

A Cliniporator device (IGEA, SpA, Italy) was used to deliver

100-microsecond electric pulses, 5 kHz repetition rate, to 300

mL pulsing buffer containing 5 � 106 cells/mL in standard,

4-mm gap, EP cuvettes (Sigma Aldrich). Different pulsing

media were used based on the specific analysis to be carried out

and are described below. The following pulse number/electric

field combinations were tested: 8 pulses, 1000 V/cm (ESOPE);

20 pulses, 750 V/cm; 40 pulses, 750 V/cm; 40 pulses, 500 V/cm;

60 pulses, 500 V/cm; and 80 pulses, 500 V/cm.

For each pulsing condition, each exposed sample was asso-

ciated with a sham-exposed sample which served as control.

Analysis of EP Efficiency

The EP efficiency was evaluated with a flow cytometric

method based on double-staining samples with the fluorescent

dyes CAM and PI. The CAM is an esterified anionic fluoro-

chrome that enters viable cells freely and becomes trapped in

the cytoplasm by an intact cell membrane following removal of

the AM group. The PI is membrane impermeant and generally

excluded from viable cells, but it passes through permeabilized

membranes and fluoresces on binding to nucleic acids. The

combined staining of cells with these 2 dyes enables quantifi-

cation, in the same sample, of the percentage of viable and

nonpermeabilized (CAMþ/PI�; Q3), viable and permeabilized

(CAMþ/PIþ; Q2), and dead (CAM�/PIþ; Q1) cells. Unstained

debris (CAM�/PI�; Q4) were not included in the analysis. A

representative dot-plot graph is shown in Figure. 1.

For the experiments, cells were exposed in basic medium to

electric pulses in the presence of PI (40 mmol/L) and then

incubated for 5 minutes at room temperature (RT) to allow dye

uptake by permeabilized cells. Subsequently, samples were

washed in PBS and incubated for 10 minutes at RT in PBS

containing CAM (0.2 mmol/L in the case of HL-60 cells and

0.02 mmol/L in the case of A431 cells). A BD FacsCalibur flow

cytometer (Becton Dickinson, San Josè, CA, USA) (488 nm

excitation wavelength) was used to process the samples. For

each sample, 15 000 events were acquired using CELL QUEST

software (Becton Dickinson, San Josè, CA, USA), and the raw

fluorescence data were then quantitatively analyzed with the

FlowJo analysis program (TreeStar, Oregon).

Cell permeabilization efficiency was calculated as electro-

permeabilized live cells / total live cells¼ Q2 / (Q2þ Q3). For

each pulsing protocol, 4 experiments with triplicate samples

were carried out.

Analysis of Calcium EP-Induced Cell Death

Cell viability was assessed by the ability of cells to grow over a

24-hour period. The spectrofluorimetric method of the resa-

zurin assay was used, in which the nonfluorescent compound

resazurin is reduced to the highly fluorescent resorufin in the

growth medium by cell activity, and a direct correlation exists

Romeo et al 3



between the reduction in resazurin and the metabolic activity of

living cells.31

For the experiments, a previously standardized pulsing pro-

cedure was employed.21 Chilled (4�C) cuvettes were used to

pulse cells in pulsing buffer (10 mmol/L hepes, 250 mmol/L

sucrose, 1 mmol/L MgCl2 in sterile water), at RT, containing

CaCl2 added 5 minutes before pulsing to yield a final concen-

tration of 0, 1, 3, 5, or 10 mmol/L. To avoid calcium precipita-

tion, this buffer does not contain phosphates.19 After 20 minutes

postpulse incubation of cells in EP cuvettes at 37�C and 5%
CO2, to allow the uptake of calcium, cells were diluted in

3 mL complete medium and incubated for 24 hours. At the end

of the incubation period, HL-60 cells, collected by centrifugation

(1200 rpm, 5 minutes), and A431 cell monolayers were incu-

bated for 40 and 25 minutes, respectively, at 37�C with 10

mg/mL resazurin in PBS (assay medium). Resorufin production

was analyzed in the assay medium with a fluorometer (Perkin-

Elmer, LS50B; Perkin-Elmer Instruments, Norwalk, Connecticut)

at an excitation and emission wavelength of 530 and 590 nm,

respectively, and expressed as relative fluorescence unit (RFU).

For each pulsing protocol, and for each calcium concentration,

3 experiments with triplicate samples were carried out.

Statistical Analysis

For each pulsing condition, EP occurrence was statistically

analyzed by applying the Student t test between exposed and

sham-exposed samples. The EP efficiency of each pulsing con-

dition was compared to that of ESOPE to identify equivalent

protocols by applying a 1-way analysis of variance (ANOVA)

followed by a Bonferroni test.

The effect of calcium alone on cell viability was statistically

analyzed by 1-way ANOVA, followed by Bonferroni. Statisti-

cal comparisons in cell viability after calcium EP among the

groups of samples were conducted with 2-way ANOVA for

multiple comparison at the 95% confidence level, followed

by a Bonferroni test.

In all cases, data met the assumptions for ANOVA applica-

tion (independence of samples, normality, and homogeneity of

variances). In all cases, P <.05 was considered as an indication

of statistical significance.

Results

Effect of Pulsing Parameters on EP Efficiency and
Determination of ESOPE-Equivalent Protocols

The EP efficiency under different pulsing conditions is pre-

sented in Figure 2 for HL-60 and A431 cells. In both cell lines,

all the pulsing conditions were able to induce significant EP

with respect to sham-exposed cells (P < .01, Student t test, not

indicated in the figure to avoid excessive number of symbols),

and the EP efficiency strictly depended on the pulse number–

electric field combination. It can be pointed out that, at a fixed

electric field, the EP efficiency increases upon increasing the

pulse number, but a threshold effect is evident in terms of elec-

tric field level: 500 V/cm yields a lower EP efficiency (38% +
3.0%, 58% + 4.1%, and 48% + 3.9% for HL-60 cells and 24%
+ 2.3%, 33% + 2.9%, and 35% + 2.6% for A431 cells, when

40, 60, and 80 pulses were delivered, respectively), with respect

to 750 V/cm (82% + 3.6% and 96% + 0.38% for HL-60 cells

and 70% + 6.2% and 86% + 3.9% for A431 cells, when 20 and

40 pulses were delivered, respectively). Moreover, in both cell

lines, 20 and 40 pulses delivered at an applied electric field of

750 V/cm were capable of inducing EP efficiency comparable to

the one of ESOPE protocol and were identified as ESOPE-

equivalent protocols. On the contrary, the 40, 60, and 80 pulses

and 500 V/cm protocols resulted significantly different from

ESOPE (P < .05 as indicated in Figure 2 with the * symbol).

Taken together, these results also give some indications of a

higher sensitivity (in terms of EP) of HL-60 with respect to

Figure 1. Calcein-AM/PI flow cytometric assay. A representative dot-plot graph from analysis of PEF-exposed/sham-exposed samples, double-

stained with calcein-AM and PI. Calcein-AM indicates acetoxymethyl ester; PI, propidium iodide.
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A431 cells: EP efficiency in HL-60 cells always reached higher

values for all the pulsing protocols investigated.

Effect of Extracellular Calcium Ions on Cell Viability

In both cell lines, calcium alone had no significant impact on

cell viability at all the concentrations tested (1, 3, 5, and 10

mmol/L) as assessed by the resazurin assay at 24 hours after

treatment (P > .05, 1-way ANOVA followed by Bonferroni

test). Results are presented in Figure 3, as mean + SE of 18

independent experiments with triplicates, obtained by pooling

together calcium concentration data from all the experiments

carried out.

Calcium EP-Induced Cell Death

In Figure 4, cell viability (normalized to sham samples in the

absence of calcium) of HL-60 and A431 cells, subjected to

different pulsing protocols, in the presence of increasing

Figure 3. Cell viability of HL-60 and A431 cells under calcium

treatment. Samples were treated with increasing calcium concentra-

tions in the absence of pulsing. Each data is the mean + SE of 18

independent experiments. SE indicates standard error.

Figure 4. Calcium electroporation-induced cell death. Cell viability of

HL-60 and A431 cells exposed to different pulsing protocols in the

presence of increasing calcium concentrations. Each data point is

mean + SE of 3 independent experiments with triplicates. SE indi-

cates standard error.

Figure 2. Electropermeabilization efficiency in HL-60 and A431 cells

subjected to different pulsing protocols. Each data set is for p pulses at

q V/cm, highlighted with different gray scales. Each data point is

mean + SE of 4 independent experiments with triplicates (*P < .05

with respect to ESOPE (8 pulses, 1000 V/cm); 1-way ANOVA for

repeated measurements followed by Bonferroni test). ANOVA indi-

cates analysis of variance; ESOPE, European Standard Operating

Procedure on Electrochemotherapy; SE, standard error.
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calcium concentrations and assayed at 24 hours postpulse, is

presented.

The results of the statistical analysis are reported in Fig-

ure 5 as mean of RFU values in sham/PEF-exposed samples

in the presence of different calcium concentrations, with a

95% confidence interval for the mean. Overlapping intervals

are representative of data points that are not statistically

different between each other. The results of 3 representative

pulsing conditions (ESOPE, 40 pulses at 750 V/cm and 80

pulses at 500 V/cm), for each cell line, are reported for the

sake of brevity. The results relative to the remaining pulsing

conditions are presented in Supplementary Figure S1.

In both cell lines, ESOPE and the ESOPE-equivalent proto-

cols (20 and 40 pulses delivered at 750 V/cm with 0 mM

CaCl2) resulted in a significant decrease in cell viability (P <

.05 vs sham without calcium in the case of ESOPE and 40 pulses

750 V/cm protocol), with an average residual viability of 49%
and 68% for HL-60 and A431 cells, respectively. When expo-

sures were carried out in the presence of calcium, in both cell

lines all the concentrations tested increased significantly the

efficacy of ESOPE and ESOPE-equivalent protocols in inducing

cell death (P < .05 vs sham without calcium), with no significant

differences among the calcium concentrations (P > .05).

The remaining protocols (40, 60, and 80 pulses, 500 V/cm)

did not induce significant reduction in HL-60 and A431 cell

viability when delivered in the absence of calcium (P > .05 vs

sham without calcium). When exposures were carried out in the

presence of calcium, in the case of HL-60 cells, the 40 and 60

Figure 5. Results of the statistical analysis. Two-way ANOVA with Bonferroni test on cell viability data as obtained from resazurin assay. Data

are reported as mean RFU. ANOVA indicates analysis of variance; RFU, relative fluorescence units.
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pulses, 500 V/cm protocols resulted in a statistically significant

reduction in cell viability only in the presence of 10 mmol/L

CaCl2 (P < .05), while the 80 pulses, 500 V/cm protocol was

effective with both 5 and 10 mmol/L CaCl2 (P < .05). In the

case of A431 cells, only the 80 pulses, 500 V/cm protocol with

10 mmol/L CaCl2 was effective in reducing cell viability (P <

.05). These results confirm the higher sensitivity of HL-60 cells

with respect to A431 cells.

In Figures 6 and 7, the morphological features of HL-60 and

A431 cells subjected to calcium EP under selected pulsing

conditions are presented. In particular, in both cell lines, cells

exposed to ESOPE or to 40 pulses, 750 V/cm protocols look

shrunk, darker, and more sparse with respect to sham, with

these features becoming more evident in the presence of 3 and

10 mmol/L calcium. Cells exposed to 80 pulses, 500 V/cm,

look similar to respective sham, except when exposed in the

presence of 10 mmol/L calcium.

Discussion

In this article, 2 different cancer cell lines have been used to

identify ESOPE-equivalent pulsing protocols alone and in

combination with calcium in such a way to expand and opti-

mize the range of drugs and pulsing conditions that can be

effective in EP-based treatments in the clinics.

We have demonstrated here that, with respect to the ESOPE

standard, lower electric field amplitudes (750 V/cm) can be

used, if a suitable number of pulses is applied, for inducing

comparable cell membrane permeabilization. This confirms the

results reported by Ongaro and coworkers.12 In that previous

work, the extent of EP induced by different pulsing protocols

was qualitatively evaluated by fluorescence microscopy in a

single-cell model, based on the electropermeabilized area

around the electrodes applied to cells in a culture dish. Here

we have provided a quantitative evaluation of EP with 2 dif-

ferent cell models, by flow cytometric measurements, which

yields more robust statistics. The possibility to compensate the

decrease in pulse amplitude by increasing pulse numbers has

been demonstrated in other publications.11,32

The demonstration here that changes in the value of 1 pulse

parameter can be compensated by selected values for other

parameters is relevant for the optimization of EP applications

that require different pulse settings. In this respect, simple

empirical mathematical relations between pulse parameters

have been derived, such as power, logarithmic, and exponential

functions.11,33

Moreover, we have demonstrated that ESOPE-equivalent

protocols can be successfully applied to induce cell death when

provided in the presence of calcium chloride, a compound

already approved for clinical use.19 In accordance with previ-

ous studies, we have observed that calcium alone, at concen-

trations between 1 and 10 mmol/L, does not significantly affect

cell viability.21 By applying equivalent EP protocols in com-

bination with calcium, our results demonstrate the possibility

of inducing substantial cell death with less intense pulsing

protocols. In particular, in the presence of calcium, both the

Figure 6. Morphological features of HL-60 cell cultures (scale bar 10 mm). Images show samples exposed/sham exposed to ESOPE, 40 pulses

750 V/cm, 80 pulses 500 V/cm in the presence of CaCl2 0, 3, and 10 mM (�10 images acquired by a Leica ICC50W camera mounted on a Leica

DMIL inverted microscope). ESOPE indicates European Standard Operating Procedure on Electrochemotherapy.
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standard ESOPE protocol and the 2 ESOPE-equivalent proto-

cols (20 pulses at 750 V/cm and 40 pulses at 750 V/cm)

resulted in a strong reduction in cell viability in both cell lines.

In these cases, varying the calcium concentration, in the range

here considered, had no significant effect on viability. When

pulses with the lower electric field value 500 V/cm were

applied, cell viability decreased with increasing calcium con-

centration in both cell lines. However, in the case of HL-60

cells, the 40- and 60-pulse protocols significantly altered the

cell viability only with 10 mmol/L calcium, while the 80-pulse

protocol was effective already at 5 mmol/L calcium. In the case

of A431 cells, only the 80-pulse protocol significantly reduced

cell viability and only at 10 mmol/L calcium. It can be argued

that with the more efficient EP protocols, the uptake of calcium

is maximized already at lower external concentrations and that,

as a consequence, the effect of different calcium concentrations

on cell viability can be observed only in the case of milder

pulsing protocols or also with the more efficient EP protocols

but with lower calcium concentrations.

Interestingly, in our cell models, both ESOPE and ESOPE-

equivalent protocols without calcium resulted in a decrease in

cell viability at 24 hours postpulse, a time point at which any

reversible EP effect can be ruled out, with an average 49% and

68% residual viability among the protocols for HL-60 and

A431 cells, respectively. It is demonstrated that pH or tempera-

ture changes due to pulsing can affect cell viability. However,

in our experimental conditions, pH changes were minimized by

using a buffered, low conductivity solution and cuvettes with

stainless steel electrodes,34,35 and a significant temperature

increase can be excluded even in the highest energy level

delivered to the sample.36 This finding is consistent with other

studies, where a significant cell death was observed 24 hours

postpulse, with a residual viability depending on the cell

type.21,26,27 Thus, our observations confirm that determination

of thresholds for reversible and irreversible EP is not straight-

forward, that it is dependent on cell type, and that the transition

from one condition to the other is a continuum and not an on–

off phenomenon.33

The 2 cell lines studied here exhibit different sensitivity to

PEF exposure and to calcium EP-induced cell death, with

HL-60 showing higher susceptibility than A431 cells. This is

consistent with many reports showing that cells growing in

suspension, like HL-60, are more sensitive to PEFs than cells

growing in attachment to a substrate, like A430,37,38 although

also other factors such as cell shape39 and size,40 membrane

composition,41 population density,42 and many other physical

and biological properties33 are known, from theory and prac-

tice, to affect EP efficiency.

In spite of the differences between in vitro and in vivo

models, and in the clinical settings, it has been demon-

strated that the ECT parameters identified in vitro are appli-

cable in vivo.15-17 Indeed, in vitro testing enables the

evaluation of a broad range of conditions, which would be

impractical on patients, and the identification of optimized

ECT settings ready to be applied in vivo and transferred to

the clinics.

Figure 7. Morphological features of A431 cell cultures (scale bar 10 mm). Images show samples exposed/sham exposed to ESOPE, 40 pulses

750 V/cm, 80 pulses 500 V/cm in the presence of CaCl2 0, 3, and 10 mmol/L (�10 images acquired by a Leica ICC50W camera mounted on a

Leica DMIL inverted microscope). ESOPE indicates European Standard Operating Procedure on Electrochemotherapy.
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In conclusion, the results presented here suggest that the

application of ESOPE-equivalent protocols could provide new

treatment options in both standard ECT and calcium EP that

could be pursued to advantage in the clinic. In particular, apply-

ing a higher number of pulses with lower electric field ampli-

tude with respect to the ESOPE standard protocol may (1)

avoid the risk of exceeding the operational limits of pulse

generators due to heterogeneity of impedance characteristics

of large nodules; (2) reduce the intensity or the extent of muscle

contractions, and may also provide a reduction in discomfort

during pulse application,43 which can be also accomplished by

the application of high-frequency bipolar pulses13; and (3)

increase the electrode therapeutic range or develop electrodes

for deep-seated tumors.44

Furthermore, the possibility of applying equivalent proto-

cols in combination with calcium provides further support to

the potential use of calcium EP in cancer therapy. Due to the

pivotal role of calcium in defining the fate of cells, further

investigations will be devoted to study the cellular mechanisms

of such combined treatments and to give insight into the dif-

ferent response between healthy and cancer cells.
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