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Abstract: For p ∈ (1,∞) \{2}, some properties of the spaceMp of multipliers on `pA are derived. In particular,
the failure of theweak parallelogram laws and the Pythagorean inequalities is demonstrated forMp. It is also
shown that the extremalmultipliers on the `pA spaces are exactly themonomials, in stark contrast to the p = 2
case.
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1 Introduction
Sequence spaces play an important role in functional analysis, providing a rich source of examples, a fertile
ground for generating conjectures, and a supply of applicable tools. Indeed the theory of Banach spaces
arose from early studies of the sequence space `p. The case `1 is connected to the Wiener Algebra, and its
additional structure hasmade deeper inroads possible. The case of `2 is particularly well understood, having
been studied byHilbert himself, and serving as a launching point for the spaces that bear his name.Moreover,
`2 is isometrically isomorphic to the Hardy space H2 on the open unit disk D. In this situation, the interplay
between the analytical properties of the functions and the behavior of the space has given rise to a deep and
extensive body of results, one of the great triumphs of the past century of mathematical analysis.

By contrast, when p ≠ 1 and p ≠ 2, relatively little is known about the space `pA, the space of analytic
functions onD for which the corresponding Maclaurin coe�cients are p-summable. For 1 < p < ∞, there is a
notion of a p-inner function, in terms of which the zero sets of `pA can be described [16]. Unlike H2, however,
the analogous inner-outer factorization can fail when p ≠ 2 [12]. Whereas the multiplier algebra of H2 is the
familiar space H∞, the multipliers on `pA have not been completely characterized.

In this paper we obtain some geometric properties of the multiplier space of `pA. These include the failure
of the weak parallelogram laws and the Pythagorean inequalities. Furthermore, it is known that the operator
norm of a multiplier φ on `pA is bounded below by its vector norm in `pA. We show that when 1 < p < ∞ and
p ≠ 2 a multiplier φ is extremal—that is, its operator and vector norms coincide—precisely if it is of the form

φ(z) = γzk

for some γ ∈ C and nonnegative integer k. Again, this is quite distinct from the p = 2 case, in which the
extremal multipliers consist of the constant multiples of inner functions.
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42 | Christopher Felder and Raymond Cheng

2 The space `pA

For 1 ≤ p ≤ ∞, the space `pA is de�ned to be the collection of analytic functions on the open unit disk D of
the complex plane for which the Maclaurin coe�cients are p-summable. (The de�nition makes sense when
0 < p < 1, but our attention will be limited to the range 1 ≤ p ≤ ∞.) This function space is endowed with the
norm that it inherits from the sequence space `p. Thus let us write

‖f‖p = ‖(ak)∞k=0‖`p

for

f (z) =
∞∑
k=0

akzk

belonging to `pA. We stress that ‖ · ‖p refers to the norm on `pA, and not to the norm on Hp, or some other
function space.

The following property is elementary, and will be essential for identifying the extremal multipliers of `pA
(for a proof, see [18, Proposition 1.5.2]).

Proposition 2.1. If 1 ≤ p1 < p2 ≤ ∞, then `p1
A ⊂ `p2

A , and ‖f‖p2 ≤ ‖f‖p1 for all f ∈ `p1
A . Furthermore, ‖f‖p2 =

‖f‖p1 holds if and only if
f (z) = γzk

for some γ ∈ C and nonnegative integer k.

Throughout this paper, if 1 ≤ p ≤ ∞, then p′ will be the Hölder conjugate to p, that is, 1/p + 1/p′ = 1 holds.
We recall that for 1 ≤ p < ∞, p ≠ 2, the dual space of `pA can be identi�ed with `p

′

A , under the pairing

〈f , g〉 =
∞∑
k=0

fkgk , (2.2)

where f (z) =
∑∞

k=0 fkz
k and g(z) =

∑∞
k=0 gkz

k. Let us retain this notation for the bilinear form 〈·, ·〉 even when
p = 2.

For further exploration of `pA, we refer to the paper [14] or the book [18].

3 Orthogonality
There is a natural way to de�ne “inner functions” in the context of `pA, that makes use of a notion of orthogo-
nality in general normed linear spaces.

Let x and y be vectors belonging to a normed linear space X. We say that x is orthogonal to y in the
Birkho�-James sense [2, 26] if

‖x + βy‖X ≥ ‖x‖X (3.1)

for all scalars β, and in this case we write x ⊥X y.
Birkho�-Jamesorthogonality extends the concept of orthogonality froman innerproduct space tonormed

spaces. There are other ways to generalize orthogonality, but this approach is particularly fruitful since it is
connected to an extremal condition via (3.1).

It is straightforward to check that if X is a Hilbert space, then the usual orthogonality relation x ⊥ y is
equivalent to x ⊥X y. More typically, however, the relation⊥X is neither symmetric nor linear. WhenX = `pA,
let us write⊥p instead of⊥`pA

.
There is an analytical criterion for the relation⊥p when p ∈ (1,∞).
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On the geometry of the multiplier space of `pA | 43

Theorem 3.2 (James [26]). Suppose that 1 < p < ∞. Then for f (z) =
∑∞

k=0 fkz
k and g(z) =

∑∞
k=0 gkz

k belonging
to `pA we have

f ⊥p g ⇐⇒
∞∑
k=0
|fk|p−2f kgk = 0, (3.3)

where any incidence of “|0|p−20” in the above sum is interpreted as zero.

In light of (3.3) we de�ne, for a complex number α = reiθ, and any s > 0, the quantity

α〈s〉 = (reiθ)〈s〉 := rse−iθ . (3.4)

It is readily seen that for any complex numbers α and β, exponent s > 0, and integer n ≥ 0, we have

(αβ)〈s〉 = α〈s〉β〈s〉

|α〈s〉| = |α|s

α〈s〉α = |α|s+1

(α〈s〉)n = (αn)〈s〉

(α〈p−1〉)〈p
′−1〉 = α.

Notice that α〈1〉 = ᾱ. Thus, by comparing with the case p = 2, we can think of taking the 〈p − 1〉 power as
generalizing complex conjugation.

Further to the notation (3.4), for f (z) =
∑∞

k=0 fkz
k, let us write

f 〈s〉(z) :=
∞∑
k=0

f 〈s〉k zk (3.5)

for any s > 0.
If f ∈ `pA, it is easy to verify that f 〈p−1〉 ∈ `p

′
. Thus from (3.3) we get

f ⊥p g ⇐⇒ 〈g, f 〈p−1〉〉 = 0. (3.6)

Consequently the relation ⊥p is linear in its second argument, when p ∈ (1,∞), and it then makes sense to
speak of a vector being orthogonal to a subspace of `pA. In particular, if f ⊥p g for all g belonging to a subspace
X of `pA, then

‖f + g‖p ≥ ‖f‖p

for all g ∈ X. That is, f solves an extremal problem in relation to the subspace X.
Direct calculation will also con�rm that

〈f , f 〈p−1〉〉 = ‖f‖pp .

With this concept of orthogonality established, we may now de�ne what it means for a function in `pA to
be inner in a related sense.

De�nition 3.7. Let 1 < p < ∞. A function f ∈ `pA is said to be p-inner if it is not identically zero and it satis�es

f (z) ⊥p zk f (z)

for all positive integers k.

That is, f is nontrivially orthogonal to all of its forward shifts. Apart from a harmless multiplicative constant,
this de�nition is equivalent to the traditional meaning of “inner” when p = 2. Furthermore, this approach to
de�ning an inner property is consistent with that taken in other function spaces [1, 4, 17, 19, 22–24, 33, 34].

Birkho�-James Orthogonality also plays a role when we examine a version of the Pythagorean theorem
for normed spaces in Section 5.
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44 | Christopher Felder and Raymond Cheng

4 Multipliers on `pA

An analytic function φ on D is said to be amultiplier of `pA if

f ∈ `pA ⇒ φf ∈ `pA .

The set of multipliers of `pA will be denoted byMp.
For φ ∈Mp, an application of the closed graph theorem shows that the linear mapping

Mφ : `pA → `pA , Mφ f = φf

is continuous. Thus we can de�ne themultiplier norm of φ by

‖φ‖Mp := sup{‖φf‖p : f ∈ `pA , ‖f‖p ≤ 1}.

In otherwords, themultiplier normofφ coincideswith the operator normofMφ on `pA. Henceforthwe identify
the multiplication operator Mφ with its symbol φ.

Relatively little is known about the multipliers on `pA, except when p = 1 or p = 2. In the former case,
we know thatM1 = `1

A, and in the latter,M2 = H∞. We will accordingly concentrate our e�orts on the range
1 < p < ∞, with p ≠ 2.

The following basic results have been established in the literature.

Proposition 4.1. Let 1 < p < ∞. If φ ∈Mp, then φ ∈ H∞ ∩ `pA ∩ `
p′
A , andMp = Mp′ , with ‖φ‖Mp = ‖φ‖Mp′

.

Proposition 4.2. Let 1 < p < ∞. If φ(z) =
∑∞

k=0 φkz
k ∈ Mp, then ‖φ‖p ≤ ‖φ‖Mp ≤ ‖φ‖1 (with ‖φ‖1 = ∞

being possible), and
|φ0| + |φ1| + · · · + |φn| ≤ ‖φ‖Mp (n + 1)1/p′ .

If all of the coe�cients of φ are nonnegative, then φ ∈ `1
A, and ‖φ‖1 = ‖φ‖Mp .

De�ne the di�erence quotient mapping Qw by

Qw f (z) := f (z) − f (w)
z − w

for any w ∈ D and analytic function f on D.
Di�erence quotients are (bounded) operators onMp. In fact, for any multiplier φ on `pA, and w ∈ D,

‖Qwφ‖Mp ≤
1

1 − |w| (‖φ‖Mp + φ(w)).

For proofs of these multiplier properties, see [18, Chapter 12], which has references to original sources.
To extract some geometric information aboutMp, we will rely on the following observation.

Corollary 4.3. For any complex numbers α and β, the multiplier φ(z) = α + βz satis�es

‖φ‖Mp = ‖φ‖1 = |α| + |β|.

Proof. The claim is trivial if α = 0 or β = 0. Otherwise, the mapping

f (z) 7−→ f
( αβ̄
|αβ̄|

z
)

determines a linear isometry on `pA (in fact it is unitary).
Consequently, the multiplier φ has the same norm as the multiplier

φ
( αβ̄
|αβ̄|

z
)

= 1
ᾱ

(
|α|2 + βᾱ

( αβ̄
|αβ̄|

z
))

= 1
ᾱ
(
|α|2 + |βᾱ|z

)
,

which is |α| + |β|, according to the last part of Proposition 4.2.
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Already this delivers some informationabout the geometry ofMp. Recall that anormed space is strictly convex
if

‖x + y‖ < ‖x‖ + ‖y‖ (4.4)

whenever the vectors x and y are not parallel [7, p. 108].

Corollary 4.5. If 1 < p < ∞, thenMp fails to be strictly convex.

Proof. Consider themultipliers φt(z) = t+(1− t)z for 0 ≤ t ≤ 1. By Corollary 4.3, we have ‖φ‖Mp = t+(1− t) = 1
for all t. But φ0 and φ1 are not parallel, and hence condition (4.4) fails when 0 < t < 1.

It is known that certain Blaschke products are multipliers of `pA (e.g., if the zeros converge to the boundary
rapidly enough), and that certain other classes of functions are multipliers. However, there does not yet exist
a complete characterization of Mp in terms of the coe�cients, or of the boundary function. Our sources on
the subject include [21, 25, 27–32, 35–37], along with the survey paper [14].

5 The geometry ofMp

It is well known that when 1 < p < ∞, the spaces `p (and hence also `pA) are uniformly convex and uniformly
smooth (see, for example, [3, 7]). In fact, more can be said. A normed spaceX is said to satisfy the LowerWeak
Parallelogram property (LWP) with constant C > 0 and exponent r > 1, if

‖x + y‖rX + C‖x − y‖rX ≤ 2r−1(‖x‖rX + ‖y‖rX)

for all x and y in X; it satis�es the Upper Weak Parallelogram property (UWP) if for some (possibly di�erent)
constant and exponent the reverse inequality holds for all x and y in X. If X is a Hilbert space, then the par-
allelogram law holds, corresponding to r = 2 and C = 1. Otherwise, these inequalities generalize Clarkson’s
inequalities [20], and the parameters r and C give a sense of how far the space X departs from behaving like
a Hilbert space.

It was shown in [11] that the Lp spaces satisfy LWP and UWP when 1 < p < ∞, and the full ranges
of parameters C and r were identi�ed (see also [5, 6, 9, 10, 15]). More generally, a space satisfying LWP is
uniformly convex, and a space satisfying UWP is uniformly smooth [11, Proposition 3.1]. From this it could
be further surmised that the dual of a LWP space is an UWP space, and vice-versa; this is made precise in [9,
Theorem 3.1].

Another useful consequence of the weak parallelogram laws is a version of the Pythagorean Theorem for
normed spaces, where orthogonality is in the Birkho�-James sense. It takes the formof a family of inequalities
relating the lengths of orthogonal vectors with that of their sum [11, Theorem 3.3].

Theorem 5.1 ([11]). If a smooth Banach space X satis�es LWP with constant C > 0 and exponent r > 1, then
there exists K > 0 such that

‖x‖rX + K‖y‖rX ≤ ‖x + y‖rX (5.2)

whenever x ⊥X y; if X satis�es UWP with constant C > 0 and exponent r > 1, then there exists a positive
constant K such that

‖x‖rX + K‖y‖rX ≥ ‖x + y‖rX (5.3)

whenever x ⊥X y. In either case, the constant K can be chosen to be C/(2r−1 − 1).

When X is any Hilbert space, the parameters are K = 1 and r = 2, and the Pythagorean inequalities reduce
to the familiar Pythagorean theorem. More generally, these Pythagorean inequalities enable the application
of some Hilbert space methods and techniques to smooth Banach spaces satisfying LWP or UWP; see, for
example, [18, Proposition 4.8.1 and Proposition 4.8.3; Theorem 8.8.1].
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46 | Christopher Felder and Raymond Cheng

The weak parallelogram laws and the Pythagorean inequalities fail on L1 and L∞. We previously saw in
Corollary 4.3 thatMp contains a subspace, consisting of the linear functions, that behaves geometrically like
`1
A. Consequently we would expect the weak parallelogram laws and the Pythagorean inequalities to fail on
Mp, and indeed that is the case.

Theorem 5.4. Let 1 < p < ∞. The space Mp fails to satisfy LWP or UWP for any constant C > 0 or exponent
r > 1.

Proof. If
‖1 + z‖rMp + C‖1 − z‖rMp ≤ 2r−1(‖1‖rMp + ‖z‖rMp )

holds, then an application of Corollary 4.3 yields

(1 + C)2r ≤ 2r−1(2),

which forces C ≤ 0. Thus LWP fails.
Similarly, for C > 0 we have

‖1‖rMp + Cr‖z/C‖rMp ≥ 2r−1(‖1 + z/C‖rMp + ‖1 − z/C‖rMp )

implies
2 ≥ 2r−1 · 2 · (1 + 1/C)r ,

which is absurd when 1 < r < ∞. Therefore UWP also fails.

Theorem 5.5. Let 1 < p < ∞. The space Mp fails to satisfy either of the Pythagorean inequalities for any
parameters r > 1 and K > 0.

Proof. Fix c ≠ 0. Let φ(z) = 1 + cz, and consider f (z) ∈ `pA of the form f (z) = f0 + f2z2 + f4z4 + · · · . Then

‖φ(z)f (z)‖pp = ‖(1 + cz)(f0 + f2z2 + f4z4 + · · · )‖pp
= ‖(f0 + f2z2 + f4z4 + · · · ) + cz(f0 + f2z2 + f4z4 + · · · )‖pp
= |f0|p + |c|p|f0|p + |f1|p + |c|p|f1|p + |f2|p + |c|p|f2|p + . . .
= ‖f‖pp + |c|p‖f‖pp
≥ ‖f‖pp .

This shows that ‖1 + cz‖Mp ≥ ‖1‖Mp for all constants c, or 1 ⊥Mp z. By considering the limit

lim
c→0

‖1 + cz‖rMp
− ‖1‖rMp

‖cz‖r
Mp

= lim
c→0

(1 + |c|)r − 1r
|c|r ,

we see thatMp fails to satisfy (5.3), as K = ∞ would be forced.
Next, note that for c ≠ 0, we have

‖(1 + z) + c(1 − z)‖Mp = ‖(1 + c) + (1 − c)z‖Mp

= |1 + c| + |1 − c|
≥ 2
= ‖1 + z‖1

= ‖1 + z‖Mp .

This shows that 1 + z ⊥Mp 1 − z. Next, consider

‖(1 + z) + c(1 − z)‖rMp
− ‖1 + z‖rMp

‖c(1 − z)‖r
Mp

= (|1 + c| + |1 − c|)r − 2r
2|c|r ,

where 1 < r < ∞.
This tends toward zero as c → 0+, which would require K = 0. Thus, (5.2) fails to hold.
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On the geometry of the multiplier space of `pA | 47

6 Functionals onMp

Let 1 < p < ∞. Suppose that λ = (λ0, λ1, λ2, . . .) is a sequence of complex numbers such that for some C > 0
we have

|λ0φ0 + λ1φ1 + λ2φ2 + · · · | ≤ C‖φ‖Mp

for all φ(z) =
∑∞

k=0 φkz
k ∈Mp. Then λ determines a bounded linear functional onMp with norm at most C.

Let us give the name S = Sp to the collection of functionals arising in this manner. It is a nonempty collection,
since it contains all of `p

′

A . Thus S is a linear manifold withinM*
p, the continuous dual space ofMp.

If λ = (λ0, λ1, λ2, . . .) ∈ S, then λk = λ(zk) and the pairing

λ(φ) =
∞∑
k=0

λkφk .

applies for all φ ∈Mp.
Trivially, we can bound the norm of λ as follows:

‖λ‖p′ = sup
φ≠0

|λ(φ)|
‖φ‖p

≥ sup
φ≠0

|λ(φ)|
‖φ‖Mp

= ‖λ‖M*
p
≥ sup
φ≠0

|λ(φ)|
‖φ‖1

= ‖λ‖∞, (6.1)

possibly with∞ on the left side.
SinceMp = Mp′ with equal norms (Proposition 4.1), we also have

‖λ‖p = sup
φ≠0

|λ(φ)|
‖φ‖p′

≥ sup
φ≠0

|λ(φ)|
‖φ‖Mp′

= sup
φ≠0

|λ(φ)|
‖φ‖Mp

= ‖λ‖M*
p
.

Consequently,
‖λ‖p ≥ ‖λ‖M*

p
,

again, with the left side possibly being in�nite.
Taking the 〈p − 1〉 power does something natural in this context.

Proposition 6.2. Let 1 < p < ∞. If φ ∈Mp, then φ〈p−1〉 ∈ S.

Proof. In this situation, φ〈p−1〉 ∈ `p
′

A , and hence φ〈p−1〉 ∈ S, by (6.1).

Members of S might not have radial boundary limits, but they do satisfy the following growth condition,
which can also be interpreted as boundedness of point evaluation.

Proposition 6.3. Let 1 < p < ∞. If λ ∈ S, then

|λ(w)| ≤
‖λ‖M*

p

(1 − |w|) , w ∈ D.

Proof. For w ∈ D, let us write kw(z) =
∑∞

k=0 w
kzk for the point evaluation functional at w. We then have

|λ(w)| =
∣∣ ∞∑
k=0

λkwk
∣∣

≤ ‖λ‖M*
p
‖kw‖Mp

≤ ‖λ‖M*
p
‖kw‖1

=
‖λ‖M*

p

1 − |w| .
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It turns out that di�erence quotients are bounded on S. Let us denote by S the mapping

f (z) 7−→ zf (z),

where f is analytic in the open unit disk. It is straightforward to verify that S determines a bounded linear
operator onMp, with ‖Skφ‖Mp = ‖φ‖Mp for all k ∈ N and φ ∈Mp.

Proposition 6.4. Let 1 < p < ∞. If λ ∈ S, and w ∈ D, then Qwλ ∈ S, and

‖Qwλ‖M*
p
≤
‖λ‖M*

p

1 − |w| .

Proof. Suppose that λ ∈ S, and w ∈ D. We now calculate

(Qwλ)(φ) =
(∑

λkzk −
∑
λkwk

z − w

)
(φ)

=
( ∞∑
k=1

λk(zk−1 + zk−2w + · · · + wk−1)
)

(φ)

=
( ∞∑
k=1

k−1∑
j=0

λkzjwk−j−1
)

(φ)

=
∞∑
k=1

k−1∑
j=0

λkφjwk−j−1

= λ1(φ0)
+ λ2(φ0w + φ1)
+ λ3(φ0w2 + φ1w + φ2)
+ · · ·

= λ1φ0 + λ2φ1 + λ3φ2 + · · ·
+ w(λ2φ0 + λ3φ1 + λ4φ2 + · · · )
+ w2(λ3φ0 + λ4φ1 + λ5φ2 + · · · )
+ · · ·

= λ(Sφ) + wλ(S2φ) + w2λ(S3φ) + · · · .

From this we obtain

|(Qwλ)(φ)| ≤ ‖λ‖M*
p
‖Sφ‖Mp + |w|‖λ‖M*

p
‖S2φ‖Mp + |w|2‖λ‖M*

p
‖S3φ‖Mp + · · ·

=
‖λ‖M*

p
‖φ‖Mp

1 − |w| ,

which proves the claim.

Let us add that the weak parallelogram laws and the Pythagorean inequalities must fail onM*
p as well. This

is because it contains a subspace that is isomorphic to `∞A ({0, 1}). Furthermore we see that Mp fails to be
smooth. For example, the multiplier 1 is normed by both 1 and 1 + z inM*

p.

7 The extremal multipliers on `pA

Recall that if φ ∈Mp, then ‖φ‖Mp ≥ ‖φ‖p. We say that the multiplier φ is extremal if equality holds, that is,

‖φ‖Mp = ‖φ‖p .
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For `2
A = H2, the multipliers are the bounded analytic functions on D, and the extremal multipliers are

exactly the constant multiples of inner functions. Indeed, if

sup
z∈D
|φ(z)| =

(
sup

0<r<1

∫
T

|φ(reiθ)|2 dθ2π
)1/2

,

then |φ(eiθ)| = ‖φ‖H∞ a.e. is forced. The reverse implication is similarly trivial.
For `pA, p ≠ 2, it would therefore be plausible to guess that the extremal multipliers are the p-inner func-

tions. However, this is incorrect, as the following example illustrates.

Example 7.1. If 1 < p < ∞ and 0 < |w| < 1, then the function

B(z) := 1 − z/w
1 − w〈p′−1〉z

,

turns out to be p-inner [13, Lemma 3.2], and

‖B‖pp = 1 + (1 − |w|p
′
)p−1

|w|p .

Note, in particular, that when p = 2 the function B is the Blaschke factor, possibly apart from amultiplicative
constant, with its root at w.

Since B is analytic in a neighborhood of the closed disk D, it is a multiplier. Let us show directly that for
p = 4 it fails to be extremal.

We will take as a test function
f (z) := 1 − w〈p′−1〉z,

so that f ∈ `pA and
‖f‖pp = 1 + |w|p/(p−1).

Now �x p = 4, so that p′ = 4/3. For 0 < a < 1 we have the elementary inequalities

a − a2 > 0
3(a2 − a) < a2 − a

a3 + 1 − 3a + 3a2 − a3 < a2 − a + 1

a3 + (1 − a)3 < a
3 + 1

1 + a

1 + (1 − a)3

a3 < 1 + 1/a3

1 + a .

Substitute a = |w|4/3 to obtain

1 + (1 − |w|4/3)4−1

|w|4 < 1 + 1/|w|4

1 + |w|4/3 .

This yields the bound

‖B‖pp = 1 + (1 − |w|4/3)p−1

|w|4

< 1 + 1/|w|4

1 + |w|4/3

=
‖Bf‖pp
‖f‖pp

≤ ‖B‖p
Mp

.

This veri�es that B fails to be an extremal multiplier.
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Furthermore, it was shown in [16] that for 2 < p < ∞, there are p-inner functions whose zero sets fail to be
Blaschke sequences. Such a p-inner function cannot be a multiplier of `pA, since it would also have to belong
to `p

′

A . In the paper [8] p-inner functions are constructed whose zero sets accumulate at every point of the
boundary circle T. However, by [18, Corollary 12.6.3], a multiplier on `pA for p ∈ [1, 2) has unrestricted limits
almost everywhere on T. A p-inner function thus described cannot therefore be a multiplier on `pA.

More can be said when p ≠ 2. First, the extremality of a multiplier is inherited by its conjugate in the
following sense.

Proposition 7.2. Let φ ∈Mp. If ‖φ‖Mp = ‖φ‖p, then ‖λ‖M*
p

= ‖λ‖p′ , where λ = φ〈p−1〉.

Proof. Put g = φ〈p−1〉. By hypothesis,

‖φ‖Mp = ‖φ‖p = |〈φ1, g〉|
‖1‖p‖g‖p′

.

Since g ∈ `p
′
, we also have g ∈ S by Proposition 6.2. Relabeling g as the functional λ, we have

‖φ‖p = |〈φ, g〉|‖g‖p′
≤ |〈φ, λ〉|‖λ‖M*

p

≤ ‖φ‖Mp .

Equality is forced throughout, and we conclude that

‖λ‖p′ = ‖λ‖M*
p
.

This comes into play in the main result, to which we presently turn.

Theorem 7.3. Let p ∈ (1,∞) \{2}. A multiplier φ ∈Mp satis�es ‖φ‖Mp = ‖φ‖p if and only if φ is a monomial.

Proof. First, the claim is trivial if φ is identically zero, so let us suppose otherwise. Also, sinceMp = Mp′ as
point sets and with equal norms, it followsM*

p = M*
p′ with equal norms as well.

Now suppose that 2 < p < ∞. Then 1 < p′ < 2, and we have

‖φ‖p′ ≥ ‖φ‖p = ‖φ‖Mp = ‖φ‖Mp′
≥ ‖φ‖p′ .

Equality is forced throughout. In particular, ‖φ‖p = ‖φ‖p′ , which implies that φ is a monomial, according to
Proposition 2.1. (This step fails if p = p′ = 2).

Finally, let 1 < p < 2, and suppose that φ ∈Mp is extremal; that is, ‖φ‖Mp = ‖φ‖p. Then

‖φ‖Mp = ‖φ‖p
≥ ‖φ‖p′
≥ ‖φ‖M*

p′

≥ |〈φ
〈p−1〉, φ〉|

‖φ〈p−1〉‖Mp′

=
‖φ‖pp

‖φ〈p−1〉‖Mp′

(*)

=
‖φ‖pp

‖φ〈p−1〉‖p′

= ‖φ‖p .

This forces φ to be a monomial.
From the line (*) to the next, we used ‖φ〈p−1〉‖Mp′

= ‖φ〈p−1〉‖p′ , which we derive as follows:

‖φ‖p−1
p = |〈φ

〈p−1〉, φ〉|
‖φ‖p
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= |〈φ
〈p−1〉, φ〉|
‖φ‖Mp

≤ ‖φ〈p−1〉‖M*
p

= ‖φ〈p−1〉‖M*
p′

≤ ‖φ〈p−1〉‖p′

= ‖φ‖p−1
p

and equality must hold throughout.
Conversely, any monomial is a multiplier, and it can be checked by inspection that it is extremal.
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