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ABSTRACT

EFFECTS OF MULTIPLE SCATTERING AND SURFACE 
ALBEDO ON THE PHOTOCHEMISTRY OF THE TROPOSPHERE

Tommy Reinhold Robert Augustsson 
Old Dominion University, 1981 

Director: Dr. Surendra N. Tiwari
with

Dr. Joel S. Levine

A one-dimensional photochemical model of the troposphere containing 

the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families 

has been developed and used to investigate the vertical profiles and the 

natural (including atmospheric chemical reactions) and anthropogenic 

sources and sinks of these species. The species continuity equations are 

solved numerically applying prescribed boundary conditions. The vertical 

flux is simulated by use of the parameterized eddy diffusion coefficients. 

Heterogeneous losses (e.g. rainout, gas-to-particle chemistry, and dry 

deposition), are parameterized to make calculated profiles consistent 

with measurements. The photochemical model is coupled to a radiative  

transfer model that calculates the radiation fie ld  due to the incoming 

solar radiation which in itia te s  much of the photochemistry of the 

troposphere. Comparisons of vertical profiles of tropospheric species 

are made between the Leighton approximation, widely used in most 

tropospheric models, and the detailed radiative transfer matrix inversion 

model used in this study. The radiative transfer code includes the 

effects of multiple scattering due to molecules and aerosols, pure 

absorption and surface albedo on the transfer of incoming solar radiation. 

The results indicate that significant differences exist for several key 

photolysis frequencies and species number density profiles between the 

Leighton approximation and the profiles generated with the more detailed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



radiative transfer matrix inversion technique used in this study. Most 

species show enhanced vertical profiles when the more re a lis tic  treatment 

of the incoming solar radiation fie ld  is included. Furthermore, most 

species increase in concentration as a function of increasing surface 

albedo. A few species, notably ozone, exhibit decreased levels of 

concentration when the re a lis tic  radiative transfer model is used. The 

effect of the detailed treatment of incoming solar radiation on the 

photochemistry of the troposphere is discussed.
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1

1. INTRODUCTION

Atmospheric modeling involves an attempt to simulate the physical,

chemical and dynamical processes in the atmosphere with the aid of

inathematical formulations and numerical techniques. A goal of many

models is to investigate the effects of anthropogenic a c tiv itie s  on

the composition and structure o f the atmosphere. The f ie ld  of

atmospheric modeling is not new. By the end of the las t century

scientists u tilize d  the concept of atmospheric modeling [ 1] * ,  but i t
0

has been only in the era of the modern day high-speed computers that 

rapid advancements have been made. Most atmospheric chemistry studies 

are performed with one-dimensional (v e rtic a l) models, whereas two- and 

three-dimensional models are usually used for studies of atmospheric 

flow, dynamics, and c ircu la tio n . Since atmospheric chemistry is in it ia te d  

by photodissociation of various molecules (which varies as a function of 

a ltitu d e ), the vertica l coordinate is the most important one in 

atmospheric chemistry studies. One-dimensional models are globally 

averaged models, because a ll parameters in these models are globally 

averaged. Vertical transport is  parameterized in terms of an empirical 

constant Kz , usually called the "eddy diffusion coeffic ien t".

Two-dimensional models, or zonally averaged models, employ an 

averaging technique whereby parameters are averaged in a given 

la titu d in a l band usually on the order o f 5° to 10° wide. These models

*The numbers in brackets indicate references
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2

have been used mostly to study certain flow phenomena of zonal character. 

Two-dimensional models are formulated usually from a phenomenological 

point of view rather than from f i r s t  principles. The eddy mixing model 

is developed usually by using the mixing length theory. Hence, despite 

increasing the model by one dimension, the transport coupling s t i l l  relies  

on the choice of eddy coeffic ients.

Three-dimensional models have been under development during the last 

decade but have yet to be used extensively because of th e ir  nearly 

prohibitive cost. The three-dimensional models in existence today have 

been used mostly for dynamic studies. The most sophisticated three- 

dimensional model in existence uses a mere nine chemical reactions and 

considers only seven species [2 ] , I t  has been found that each time 

seven new species are included, the computational cost rises by an .order 

of magnitude. Also, the largest d ig ita l computers available s t i l l  do not 

have adequate storage to fu lly  describe vertica l transport. Hence, three- 

dimensional models must s t i l l  rely on parameterized vertical eddy 

d iffu s iv it ie s . In one-dimensional models, a lo t  of storage is available 

to incorporate vast amounts of chemistry, which have th e ir  major 

variations in the vertical dimension. Furthermore, most chemical in te r­

actions are more easily studied with one-dimensional models.

The troposphere which is  the lowest region of the atmosphere (from 

the surface to about 10 km) contains about 75 percent of the total 

atmospheric mass. I t  is the region where nearly a ll c f man's 

a c tiv itie s  take place. The f ie ld  of tropospheric photochemistry 

originated early in the 1970's when i t  was suggested that the so 

called "odd hydrogen" radicals ought to exist in the unpolluted ' 

troposphere [3 -5 ]. During the las t decade photochemical modeling
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has become an important tool to assess the natural state and perturbed 

troposphere. During the las t few years, a one-dimensional global 

tropospheric photochemical model has been under development a t NASA 

Langley Research Center. The existing model consists of five major 

chemical fam ilies: oxygen, nitrogen, hydrogen, carbon, and sulfur.

The model consists of a total of 114 chemical reactions and 12 

photolytic reactions. The existing model covers the range from 0 to 

10 kilometers with grid steps of 1 kilometer.

The present model was developed as a tool to assess natural 

background concentrations as well as to assess the anthropogenic effect 

of environmentally s ign ificant gases. Man's a c tiv itie s  might 

s ign ifican tly  a lte r  the very delicate balance o f the atmosphere [6- 12] .  

U ltim ately, the distributions and abundances of tropospheric gases 

are governed by interactions of four reservoirs: the atmosphere, the 

hydrosphere, the biosphere, and the lithosphere (the crust).

The radiative quantity of primary in terest to a photochemical 

modeler is  the source function which is the amount that the radiation 

incident at the top of the atmosphere is attenuated by various 

atmospheric processes such as scattering and absorption. Most 

one-dimensional photochemical models of the troposphere have used the 

Leighton approximation to calculate the source function. Recently, 

Anderson and Meier [13J pointed out that the Leighton approximation 

is com -ut only when the optical depth due to pure absorption is 

much greater than the optical depths due to scattering. This occurs 

prim arily for wavelengths less than 320 nm. Various methods have been 

used to improve on the Leighton approximation. Luther and Gelinas [14 ],
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Luther e t a l . ,  [15J, and Crutzen et a l . ,  [16] used the so called two- 

stream approximation to calculate the source function. C allis  e t a l. 

[17] used a parameterization technique whereby correction factors 

were applied to photodissociation rates. Anderson and Meier [13J also

noted that "the two-stream approximation is in general not a good

approximation for S(t ) ,  the equation o f radiative transfer. For 

X > 320 nm, the two-stream model works w ell, due prim arily to the 

dominance of pure absorption and not to its  a b ility  to describe 

multiple scattering." A recent model development to determine the 

source function involves a so called matrix inversion technique [13]. 

This technique accounts for the flux of photons into a volume element 

from a ll directions, contrary to the Leighton and two-stream 

approximations. The matrix inversion radiative transfer model [13] 

is the- f i r s t  model that gives a re a lis t ic  treatment of the radiation  

fie ld-since i t  accounts for multiple scattering by particles and 

molecules, pure absorption and surface albedo.

The objectives of this study are two-fold. F irs t, to investigate

the sources and sinks (chemical and anthropogenic) of tropospheric gases 

in a systematic manner for a ll 38 species included in this model. 

Secondly, once the governing chemistry is established, the effects of 

multiple scattering and surface albedo are investigated.

The basic formulations o f the governing equations are presented in 

Chapter 2. The radiative transfer equations are discussed in Chapter 3. 

The results and discussion of the study are given in Chapter 4.
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2. BASIC FORMULATION

In this chapter the governing continuity and flux equations are 

derived along with appropriate boundary conditions. The calculations 

of photolysis rates are also described as is the formulation of 

heterogeneous (gas to partic le ) losses. Table A.l lis ts  the 12 photolytic 

processes that are included with these photolysis frequencies at the 

surface for a solar zenith angle of 45°. Table A.2 lis ts  the 114 

chemical reactions with appropriate rate coefficients.

2.1 The Species Continuity Equation

The rapidly reacting species have the ir vertical profiles  

determined by chemistry alone, while the vertical profiles of the more 

longlived species are determined by the combined effects of chemistry 

and eddy transport, u tiliz in g  a steady-state continuity equation. The 

species continuity equation for the ith  constituent of the atmosphere 

can be written in either number density form or mixing ratio  form.

In the present model the mixing ra tio  form is used. The vertical 

profiles of long-lived species are then expressed as

an- 3i().

M f i ’ t2' 1’

-2  1where <(>• is the vertical flux (cm s ) of the ith species, P-j(nj) is 

chemical production, L .(n .) is chemical loss, n. is the number density
• J I

of ith  species, f .  is the mixing ratio  of the ith  species, and M is the 

total number density (molecules cm ).
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The quantities and f  are related by

The vertical flux o f the ith  species, <}>.j, is usually written in terms 

of a parameterization with a ltitude as

diffusion coeffic ient". The value of Kz in the present model is taken

The use of the word "eddy" is somewhat of a misnomer since i t  indicates 

that the diffusive process occurs on a small scale. On the contrary, 

most vertical transport in the troposphere takes place on a very large 

scale. Inserting Eq. (2 .1) into Eq. (2.3) yields the final form of the 

species continuity equation (in  steady-state form) as

Because Eq. (2 .4) usually depends on many species other than the ith , i t  

is a highly coupled non-linear d iffe ren tia l equation that has to be solved 

numerically. For the short-lived species, chemistry dominates the vertical 

distribution , and therefore, the transport term ( i . e . ,  the lefthand side 

of Eq. (2.4))can be neglected. This condition is known as photochemical 

equilibrium (PCE). I f  PCE is ju s tif ie d , Eq. (2 .4) is sim plified  

considerably and i t  is possible to solve e x p lic itly  for the mixing ratio  

as

2 1where Kz is an empirical constant (cm s ) ,  usually called the "eddy

5
to be 1 x 10 and is assumed to be constant throughout the troposphere.

= - P^nj) + Ljfnj) Hf, (2 .4)
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(2.5)

The one-dimensional steady-state equation in mixing ra tio  form is  

expressed as

Since Eq. (2 .6 ) is a second-order d iffe re n tia l equation, two boundary 

conditions are necessary. Three kinds of boundary conditions which are 

commonly employed are:

( i )  PCE, which depends on the life tim e of the species under 
consideration.

( i i )  Constant number density, which should only be used i f  a 

species has been measured accurately at the boundaries.

( i i i )  Prescribed flu x , which is perhaps the most interesting kind 

of boundary condition since i t  allows the number density at 
the boundary to respond to any specified external forcing.

Equation (2 .4 ) is identical to the original form of the species 

continuity equation developed in the early part of the 1950s [18].

This can be shown by w riting Eq. (2 .3 ) in the form

(2.7)

This can be expanded upon to y ie ld

(2. 8)

The equation of state can now be introduced

p = MkT (2 .9)
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In thermodynamics, this equation is written as p -  nkT, but the fie ld

of atmospheric sciences trad itio n a lly  uses the le tte r  M to denote total

number density. Eq. (2 .9) can be d ifferentiated logarithm ically to 

yie ld

31n M _ 31 n p _ 31 n T
3z 3z 3z ( 2 .io

The hydrostatic equation can be expressed as

where g is the constant of gravitational acceleration and R represents 

the universal gas constant.

I f  we make the assumption that the atmosphere is isothermal then 

Eq. (2.11) can be integrated as

J P9 A*dp =   dz
H RT

(2 . 11)

P z
dz (2 . 12)

This can also be written as

(2.13)

The pressure scale height, H, is defined as

(2.14)

Thus, Eq. (2.13) can now be expressed as

,-z/H (2.15)
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Substituting this into Eq. (2 .8) yields the original form of the flux  

equation:

The continuity equation (in one-dimensional form) can now be expressed 

as

Hence, in the cases where PCE can be used, a high degree of computational

effic iency , both in terms of time and money, can be reached. Numerically,

the continuity equation is  solved using a f in ite  difference form known

as the central difference scheme. The details of the numerical schemes

are discussed in Appendix B. The boundary conditions for the continuity

equation can be e ither a specified number density or a specified flu x .

This is elaborated on in Appendix C. The convergence c r ite r ia  imposed

on the numerical solution are given in Appendix D.

The vertica l mixing flu x , , in general, includes advection by

atmospheric winds, molecular diffusion, and turbulent diffusion (often

referred to as the eddy flu x ). Molecular diffusion is  not important

below the turbopause (100 km) and, therefore, can be disregarded in

tropospheric models [19]. Horizontal wind (advection) is also disregarded

in one-dimensional models and only the eddy flux  is retained. Most models
5 2 - 1use constant value of 1 x 10 (cm s ) to simulate the very turbulent 

nature of the troposphere [ 8 , 9, 11, 20, 21, 21], There are a couple 

of d iffe ren t methods available to obtain values for the eddy d iffu s iv itie s . 

One method involves tracking the dispersion of radioactive carbon-14 [23],

(2.16)

3_
dZ (2.17)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Another method of obtaining Kz profiles is to use natural tracers 

(chem ically-inert gases), such as methane (CH^) and nitrous oxide (NgO). 

These gases are formed biogenically, i . e .  by microbial a c tiv ity  in the 

s o il, and are transported upwards. By measuring th e ir  number densities 

versus a ltitu d e , information about th e ir  rate of mixing can be obtained 

[24].

2.2 Photolysis Rate Calculations 

In order to calculate the photolysis rates fo r the 12 photolytic 

expressions, the amount of incoming radiation must be determined f i r s t .  

The incident radiation is - a function o f wavelength, x, a ltitu d e , z, and 

solar zenith angle, e ( i . e . ,  I = I ( x ,  z , 0) ) .  The expression for the 

incident solar radiation is given by Leighton [25] as

I(x ,z ,e )  = I o(x )exp (-t0 (x) sec e) |exp [-xp(x) - t  r (x )] sec e

1 (2.18)
+ [1-exp [-Tp(x) -  tr( x) ]  sec 0] cos 0J

In this equation, I Q(X) represents the incident solar flux a t the top

of the atmosphere and has been tabulated by Ackerman [26J. The term

e x p ( - T n (x) sec 0) is the attenuation o f solar radiation due to ozone 
3

absorption. Next term, exp[-xp (x) -  t r ( x ) ]  sec 0 is the direct solar

attenuation due to aerosol p artic le  scattering ( t p) and Rayleigh

scattering (tr ) , respectively. The la s t term, |l-exp  [ - t (x) -  tr ( x) ] |

sec 0 is the diffuse solar radiation attenuated by aerosol and Rayleigh

scattering, respectively. Values for xn (x ) , x (x) and xD(x) have
u3 P K

been tabulated by Elterman [27] and are used as standard input in most

models. Once the incident solar radiation I (x ,  z , 0) is  known, the
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photodissociation rates, , can be calculated by

N

^  (x , z , e) = A l jU ,  z , e) a .(x ) (2.19)
A=1

where o .(x ) is the molecular cross section of the ith  species. The 

solar zenith angle, e, is calculated by using the relation

cos 9 = cos cos 6 cos t  + sin <f> sin <s (2 . 20)

where <f> is the la titu d e , 6 is the solar declination angle and t  is 

the local hour angle of the sun. For a given la titude ($) and solar 

declination angle (6 ) ,  the local hour angle of the sun ( t )  varies from 

-180° to 180° with each hour corresponding to a 15° increment, i . e . ,  

local noon is 0 °, 11 a.m. is -15°, 1 p.m. is +15°, etc.

Certain long-lived species that are chemically in e r t, are treated  

as specified inputs, i . e . ,  th e ir vertical profiles are specified.

Examples of this group include: Molecular nitrogen (N2) which has a 

life tim e  of 10® years, molecular oxygen ( 02) has a life tim e  of several 

m illion years, molecular hydrogen (H2) ,  life tim e  10 years, methane (CH4) 

with a life tim e of 4 years, and carbon monoxide (CO) which has an 

average tropospheric life tim e  of 4 months. Water vapor (HgO) has an 

average tropospheric life tim e  of only about 1 week, but i t  is specified  

since its  p ro file  is prim arily a function of the temperature p ro file  and 

rainout rate. In the present model, the water vapor p ro file  was obtained 

by taking the average values of January and July, U.S. Standard 

Atmosphere Supplements, 1966 [28] a t 30° N. The incident solar flux at 

the top of the atmosphere used in this model are the values tabulated by
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Ackerman [26]. Figure 1 shows a graph or solar flux versus wavelength.

The model covers the wavelength region 270 to 730 nm. The incident solar 

radiation is needed in order to calculate the so called source function. 

This, in turn, is used to calculate the photodissociation rates as per 

Eq, (2 .13 ). A to ta l of nine species are photolyzed in 12 d ifferent 

paths (see Table A .1). The absorption cross section, which are needed to 

calculate photodissociation rates, are generally the values recommended 

in The Stratosphere: Present and Future (NASA Reference Publication 1Q49 

[2 9 ]). The ozone absorption cross sections shown in Fig. 2, are taken 

from Ackerman [26]. The spectral region up to 310 nm contains the so 

called 0^ Hartley bands, while the spectral range of the Huggins bands 

is 310 to 360 nm. From 400 to 850 nm is a .set of 0^ absorbing bands 

called the Chappius bands. The Hartley-Huggins bands are stronger 

absorbers than are the Chappius bands. Ozone w ill photolyze to either 

the ground state oxygen atom, Q( p ), or the excited metastable oxygen 

atom, C(^D), depending on the wavelength. For wavelengths greater than 

320 nm, 0^ photolysis yields 0( p) while for wavelengths less than 320 nm, 

0 (^D) is  formed.

The quantum effic iency of ozone photodissociation .yielding 0 (1D) 

has been and continues to be a source of uncertainty. For wavelength 

shorter than 300 nm, a quantum y ie ld  of unity [30-35] has been reported 

as well as a value of 0.9 fo r this quantum effic iency [36-37], Figure 3

shows graphically the quantum effic iency for ozone photolysis. In the

present model, a mathematical expression developed by Moortgad and 

Kudszus [33] is used and th is is given by

4>(A, T) = A ( t )  arctan [ B ( t )  ( a - a q ( t ) ) ]  + C ( t )  (2.21)
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Fig. 1 Solar flux  versus wavelength for the spectral 
region 270 -  730 nm.
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In this equation, x = T -  230 and T is  expressed in degrees Kelvin,

X is  given in nanometers and arctan in radians. A th ird  order in te r­

polation polynomial is  used for the coefficients as

A(x) = 0.369 + 2.35 x 10“ 4 x + 1.28 x 10" 5 x2 + 2.57 x 10" 8 x3

B(x) = -0.575 + 5.59 x 10‘ 3 x-1.439 x 1 0 '5 x2-3 .27 x 10"8 x3

XQ( x )  = 308.20 + 4.487 x 10-2  x + 6.9380 x 10" 5 x 2 -  2.5452 x 10" 6 x 3 

C(x) = 0.518 + 9.87 x 10‘ 4 x -  3.94 x 10“ 5 x2 + 3.9 x 10’ 7 x3

In the lim its  where <j>(x, T) > 1, the quantum effic iency is  set identical 

to one and for the cases where <j>(x, T) < 0 , the quantum efficiency is 

set to 0. A graphical depiction to the numerical solution of Eq. (2.21) 

is shown as a dashed line  in Fig. 3. The photolysis, of 0^ for wavelengths 

shorter than 320 nm is a key reaction in the troposphere and the 

uncertainty surrounding the quantum y ie ld  is obviously a question that 

merits further investigation. Nitrogen dioxide, NOg, is  another species 

with quantum yields d iffe ren t than unity as shown in the right-hand 

portion of Fig. 3. These quantum yields are taken from a tabulation by 

Harker [38 ]. Quantum effic iencies for NOg are generally between 0.7 to 

0.8  fo r the wavelength region 375 to 400 nm. and decrease nearly 

monotomically to 0.0 a t 420 nm. The absorption cross sections for NOg 

taken from a study by Bass e t a l . ,  [39] are depicted as a dotted line  in 

Fig. 4. Formaldehyde, CHgO, photodissociates via two d iffe ren t paths.

One path leads to atomic hydrogen, H, and the formyl rad ica l, HCO, while 

the other path leads to molecular hydrogen, Hg, and carbon monoxide, CO.

The branching ratios fo r formaldehyde photolysis are shown in Fig. 3. 

In i t ia l ly ,  the branch leading to atomic hydrogen and the formyl radical 

dominates. At 325 nm both paths have equal probab ilities , while a t 

wavelengths greater than 325 nm the path leading to Hg + CO shows a
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a modest increase until 340 nm where i t  starts a monotomic decrease 

reaching Q.14 at 360 nm. The other path, leading to H + HCO, intercepts 

the abscissa a t 340 nm. Both the branching ratios and the absorption 

cross sections are taken from Moortgat and Wameck [40]. Nitrogen 

trio x id e , N03, absorbs in the spectral region 400 to 700 nm. The 

absorption cross sections are taken from a study by Graham and Johnston 

[41] and shown in Fig. 4. I t  shows a re la tive ly  smooth increase versus 

wavelength from 400 to 600 nm. From 6Q0 to 700 nm, N03 absorption cross 

sections vary rapidly with wavelength but generally show a decrease.

The quantum y ie ld  for NÔ  photolysis is assumed to be unity. Dinitrogen 

pentoxide, NgOg* has absorption cross sections that decrease nearly 

linearly  from 270 nm to 380 nm as shown in Fig. 4. The molecular data 

is taken from Graham and Johnston [41 ]. The quantum effic iencies for 

NgOg are unknown and assumed to be unity. N itr ic  acid, HNOg, absorbs 

molecularly between 270 and 320 nm. The cross sections decrease 

linearly  in this spectral range, as seen in Fig. 4. The absorption data 

is from Johnston and Graham [42] while the information concerning 

quantum yields found to be unity, is from Johnston e t a l . ,  [43 ]. The 

spectral data for nitrous acid, HNOg, which has rapidly changing 

absorption cross sections in the region 300 to 400 nm, is taken from an 

extensive tabulation by Stockwell and Calvert [44]. No recommendations 

exist for wavelengths shorter than 300 nm. The quantum yields for the 

spectral region 300 to 400 nm are found to be unity. Hydrogen peroxide, 

H2O2 , absorbs in the region 270 to 360 nm. The cross-section data, 

shown in Fig. 4, is the mean o f two studies, one by Molina et a l . ,  [45] 

and the other by Lin e t a l . ,  [46 ]. Quantum yields are assumed to be 

unity. The methylhydroperoxy radical.CH^OOH, recently had its  cross
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sections measured by Arguello and Molina [47]. The data fo r CH-OOH
v

shows sim ilar characteristics to that of (see Fig. 4) and in fact 

nearly overlaps i t .  No data exists for the quantum efficiencies for

CĤ OCH and i t  is assumed to be one.

2.3 Heterogeneous Losses

Certain species are subject to loss mechanisms other than gas phase 

chemistry. The mechanisms include rainout, aerosol formation and dry 

deposition. A heterogeneous loss can be described as a chemical process 

that includes two phases ( i . e . ,  gas-solid, gas-liquid, or liq u id -so lid ). 

L it t le  is known about the physics and chemistry of these changes and 

hence they are not modeled e x p lic itly . The heterogeneous losses are 

expressed in the units of inverse time and i t  is therefore possible to 

arrive a t a characteristic time constant using the relation

W  ■ ^  <*•*>

where K̂ e t is the heterogeneous loss constant and T̂ e t is the 

characteristic time for heterogeneous loss. Ammonia, NHg, and sulfur 

dioxide, SOg, are examples of gases in the present model that have 

heterogeneous loss terms. Rainout affects the distribution of certain 

soluble gases (Stedman et a l . ,  [4 8 ]). The most obvious molecule 

undergoing rainout is water vapor, HgO. In fac t, the chemical lifetim e  

of tropospheric water vapor is almost en tire ly  governed by preciptation 

processes. An order o f magnitude estimate of the average tropospheric 

life tim e of HgO can be obtained by dividing the total number of HgO 

molecules in the atmosphere by the mean annual precipitation rate. The 

to ta l number of HgO molecules has been estimated to be 2.7 x 10^  [49]
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while the mean annual precipitation rate is 200.9 m m year"\ which can
38 1be expressed as 1.1 x 10 HgO molecules s [50], Using these two

values an average tropospheric life tim e  for water vapor of about 3 days

is obtained. I t  is  important to know this life tim e  because certafin

other species, notably n itr ic  acid, HNO ,̂ and to some extent ammonia,

NHg, and su lfur dioxide, SOg, are believed to be water soluble

enough that th e ir  vertical profiles should resemble that of water vapor

[48]. In addition to HgO, HNO ,̂ NHg, and SC ,̂ rainout losses have been

included fo r the methylhydroperoxy rad ica l, CĤ OOH [51] and for su lfu ric

acid, HgSO ,̂ and the sulfurous acid rad ica l,. HSOg, [52]. For water

vapor a vast amount o f data is  available to determine rainout rates.

The data base for the other species is, on the other hand, very sparse

and i t  is d i f f ic u lt  task to accurately determine th e ir rainout factors,

D ifin it iv e  studies of rainout processes, both theoretical and

experimental, are relevant topics deserving further elucidation.
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3. RADIATION MODEL

As discussed in the previous chapter, the radiation model usually 

employed in photolytic frequency calculations is the Leighton approxima­

tion (see Sec. 2 .2 ). Several lim itations to this widely used approxima­

tion have recently been noted in the lite ra tu re  [13]. The Leighton 

approximation is ,  in e ffe c t, a one-stream approximation. Hence, i t  does 

not account for the flux of photons from a ll sides into a volume element 

Furthermore, the Leighton approximation does not consider the effects  

of multiple scattering and surface albedo. Recently, Anderson and 

Meier [13] have proposed a more re a lis tic  mode; a b r ie f description of

this model is presented in this chapter.

For a p lane-para lle l, isotropically  scattering atmosphere, the 

radiative flux a t a given a ltitu d e , z, can be expressed as

I(Z ) = I .  T ( r ,r 0 ) + \  |  j ( Z ')  E2(Z ,Z ') dZ* (3 .1 )

where 1  ̂ is the solar flux at the top of the atmosphere, T ( r ,r Q) is the 

transmission function which describes the attenuation of incoming solar 

radiation due to molecular and partic le  scattering in addition to pure 

absorption. The quantity j ( Z ')  is the rate of absorption of the 

incoming solar radiation by partic le  and molecular scatterers, and E1 

is the f i r s t  exponential in teg ra l. The rate of absorption j ( Z ')  can be 

written in terms of optical depth, x, as

j ( Z ')  = I (Z ')  ( t p + tr ) (3 .2)

where xR is the optical depth due to Rayleigh (molecular) scattering 

and x is the optical depth due to Mie (p artic le ) scattering. In
r
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terms of the optical depths, Eq. (3 .1 ) can be written as

I ( z )  = I „ T ( r , r 0 ) * \  J S (t ')  E,(At) dT'S(t ' )  E-,(Ax) dx (3 .3)
0

Since dZ' = yds, where y = cos e and ? = r ' - r ,  Eq. (3 .3) can now be 

expressed as

where I Q(Z) = 1  ̂ TC?,r0) ,  and Ax = | tsc- t ' scJ + Ta- x 'a. The quantity 

S(x1) ,  which is the source function, can be defined as

In the above equations, the subscript "sc" stands for scattering (both 

Rayleigh and Mie) and "a" stands for absorption. The two d ifferent 

scattering terms can be combined into a single term that represents the 

to ta l scattering. Albedo, a, is  defined as the fraction of the incident 

lig h t that is reflected back from a surface into the atmosphere i . e . ,

The globally averaged value fo r the albedo was measured extensively by 

the Nimbus family o f spacecraft and determined to be about 0.30. The 

incident direct solar flux  a t the surface o f the Earth is  given in terms 

of an exponential attenuation by

I s = 1  ̂ cos e exp[-(xsc+xa) sec e] (3.7)

I f  a Lambertian surface is assumed, integration of this yields

(3.4)

(3 .5)
00
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SD1R = 2a cos e e x p [-(rsc+Ta) sec 0] E2 (a ts) (3 .8)

where Eg is the exponential integral of second order. The diffuse (or

scattered) component can be calculated s im ilarly  such that
00

SDIFF = aE2^ATs  ̂ J  S(T')  E2 (At^ ) drS(t ' )  E2(ATg ) dr (3.9)
0

Adding the direct and diffuse components into the radiative transfer - 

equation yields an integral equation fo r S (t) as

As mentioned in [1 3 ], a matrix inversion technique can be applied 

to solve Eq. (3 .10 ). The effects o f inclusion of m ultiple scattering  

and surface albedo on the photochemistry of the troposphere w ill be 

compared to the effects o f the Leighton approximation. A discussion of 

this follows in the next chapter.

CO

S(t ) = Sq( t ) + SqIR( t ) +

(3.10)
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4. RESULTS AND DISCUSSION

The results of the present study are presented in two sections. The 

f i r s t  compares the model calculated photodissociation frequencies with 

and without the inclusion o f multiple scattering. The second part deals 

with a systematic investigation of the chemical source and destruction 

terms as well as the effects of multiple scattering and surface albedo 

on the vertical profiles o f the 38 tropospheric species.

4.1 Comparison of Calculated Photodissociation Frequencies 
Using the Leighton Approximation with the Matrix 

Inversion Technique

Photolysis of ozone in the wavelength region 295 to 320 nm is  a 

pivotal reaction in tropospheric photochemistry. This Oj photolysis:

03 + hv -»■ 02 + 0(^D) [295 nm x _< 320 nm] (4 .1)

results in excited, metastable 0 ( 1D) atoms which very rapidly react 

with water vapor molecules to form the hydroxyl rad ica l, OH. The OH 

molecules are the main tropospheric scavenger, and hence, i t  is  of 

utmost importance to learn the distribution o f this molecule. Figure 5 

shows the photodissociation frequencies of ozone vs. a ltitu de  for the 

spectral region 295 to 320 nm. The solid line represents the d istribu­

tion obtained using the Leighton approximation according to Eq. (2 .18 ). 

The five  d iffe ren t curves on the righ t hand side represent the vertical 

profiles fo r various values of the surface albedo using the more 

re a lis tic  treatment o f the radiation f ie ld . The numerical values o f the 

photolysis frequencies are given in Table 1 in addition to a tabulation
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Table 1

Og + hv 02 + oO d ) (x < 320 nm) 

Photodissociation frequencies, s”^

a ltitu de , km 

10 

5 

0

9.74 E-6  

7.98 E-6  

6.32 E-6

Jms(a = ° - 00) Jms(a = ° * 25) Jms(a = 0’ 50) Jms(a = ° * 75) Jms(a = 1- 00)

4.18 E-5 

3.48 E-5 

1.33 E-5

4.37 E-5 

3.77 E-5 

1.94 E-5

4.62 E-5 

4.16 E-5 

2.73 Et5

4.94 E-5 

4.67 E-5 

3.80 E-5

5.41 E-5 

5.39 E-5 

5.29 E-5

Ratios of photodissociation frequencies for multiple 
scattering and the Leighton approximation for various albedos.

a ltitu d e , km
Jms(a = 0.00) 

JL

Jms<a " ° * 25> 

JL

Jms(a = 0.50) 

JL

Jms<a " ° * 75>

JL

Jms(a = 1. 00) 

JL

10 4.29 4.49 4.74 5,07 5.55

5 4.36 4.72 5.21 5.85 6.75

0 2.10 3.07 4.32 6.01 8.37

r o
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of the ratios o f photodissociation frequencies fo r multiple scattering  

to the Leighton approximation for various albedos, i . e . ,  Jms/J|_.

For a l l  cases a solar zenith angle o f 45° is  used. For a surface 

albedo o f 0 . 00 , which shows the effects of multiple scattering alone, 

an increase in the photolysis frequency by a factor o f 2.1 was calculated 

at the surface compared to the Leighton approximation. For^the mid- 

tropospheric level (5 km) the increase in this ra tio  was 4.36 and for 

the tropopause (10 km) i t  was found to be 4.29. For an albedo of 0.25, 

which is close to globally averaged value, a photolytic frequency of 

1.94 x 10 5 s 1 was calculated at the surface (0 km). This is in close 

agreement with a measured value of 3.2 (+0.3) x IQ’ 5 s" 1 fo r a solar 

zenith angle of 45 degrees and cloudless sky by Dickerson e t al.» [53] 

even when the elevation o f Dickerson's measurement (1 .8  km) is  

considered. The recent measurements by Hanser and Sellers [54] at an 

a ltitu d e  of 5.5 km are also in good agreement with the multiple 

scattering calculations. For an albedo or 0.50 we notice an increase in 

the photolysis frequencies of the multiple scattering case of 4 to 5 

times compared to the results using the Leighton approximation. For an 

albedo of 0.75 this increase is generally 5 to 6 times and fo r the case 

of a perfect re fle c to r, i . e .  an albedo of 1.00 , the photolysis frequencies 

are enhanced by a factor o f 6 to 8 . For the photolysis o f 03 for  

wavelengths > 320 nm smaller variations result when comparing the 

Leighton approximation and the Anderson-Meier calculations. The 

photolysis frequencies versus a ltitude for Q3 for x > 320 nm have been 

plotted in  Fig. 6 . The corresponding numerical values and the ratios of 

the multiple scattering results to Leighton approximation are given in 

Table 2. For the case of a surface albedo of 0 .00, we found increases
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Table 2

Og +  h v  -*■ O2 + 0(^p) (x > 320 nm) 

Photodissociation frequencies, s- ^

A  Jms(a = ° * 00) Jms(a = 0* 25) Jms(a = ° ‘ 50) Jms(a = ° * 75) Jms(a = 1- 00)

a ltitu d e , km

10 3.40 E-4 4.97 E-4 5.78 E-4 6.70 E-4 7.75 E-4 8.98 E-4

5 3.31 E-4 4.79 E-4 5.69 E-4 6.71 E-4 7.89 E-4 9.27 E-4

0 3.05 E-4 3.26 E-4 4.60 E-4 6,13 E-4 7.90 E-4 1.00 E-3

Ratios of photodissociation frequencies for multiple 
scattering and the Leighton approximation for various albedos

Jmt;(a = 0.00) J „ (a  = 0.25) J ( a  = 0.50) J ( a  = 0.75) J (a -  1.00) 
a ltitu de , km ----------------- — ----------------- — ----------------- — ----------------- — ----------------

JL JL JL JL JL

10 1.46 1.70 1.97 2.28 2.64

5 1.45 1.72 2.03 2.38 2.80

0 1.07 1.51 2.01 2.59 3.28
roto
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in the photodissociation frequencies for the multiple scattering 

calculations as compared to the Leighton approximation ranging from a 

factor of 1.07 a t the surface to a factor of 1.46 at the tropopause.

For an albedo of 0.25 the increase in the ra tio  ranges from a factor of 

1.51 a t the surface to 1.70 at the tropopause. When the albedo is 0.50 

we generally observe a doubling in the ra tio  of For higher

values of surface albedo we notice s lig h tly  more than a doubling of 

this ra tio . S pecifica lly , when the surface albedo is 0.75 the increase 

at the surface is 2.59, at the midtropospheric level (5 km) the factor 

increases by 2.38 and a t the tropopause (10 km) we observe a factor of 

2.28. For the case of a perfect re flecto r (a = 1 .00), the increase in 

the ratio  ranges from 3.28 a t the surface to 2.64 a t the tropopause.

I t  is not surprising that smaller differences are observed for the ozone 

photolysis for x > 320 nm than for x < 320 nm. Rayleigh scattering  

is inversely proportional to the fourth power of the wavelength, hence, 

a greater e ffec t was found for reaction (4 .1 )  than (4 .2 )

0g + hv 0g + 0 ( \) )  [295 nm < x < 320 nm] (4 .1)

0g + hv 0g + 0(^p) [x > 320 nm] (4 .2)

Most of the molecular scattering occurs in the troposphere since 

more than 75 percent o f the to ta l mass of the atmosphere resides in this  

atmospheric region. Consequently, the amount of the backscattered 

radiation increases from the tropopause to the surface, resulting in a 

decrease in the downward flux component. This decrease is especially 

noticeable in the ratios o f multiple scattering to the Leighton approxi­

mation for low values of the surface albedo. In general, i f  the albedo 

is less than 0.50 the ratio  Jms/JL 1s ^ower a t the surface than in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



mid and upper troposphere. For larger surface albedos say 0.75 to 

1. 00 , the large reflectance at the surface is  able to compensate for the 

decrease in downward flux  due to backscattering.

For the photodissociation of nitrogen dioxide, NG2

NQ2 + hv -»■ NO + 0, [ 270 < X < 420 nm ] (4 .3)

we found differences that are sim ilar in magnitude to those we found from

process (4 .2 ) . The numerical values of the photolytic process (4 .3 ) for

various values o f the surface albedo along with the ra tio  0 / 0, are3 ms L
reproduced in Table 3. For the case o f an albedo of 0.00 we can hardly

see any difference in the photolysis frequency at the surface between

the multiple scattering calculations and the Leighton approximation. I f

anything, there is a s lig h t decrease in the ra tio  of In tfie

mid to upper regions of the troposphere this ra tio  is about 1.7. For

higher values o f the surface albedo the ra tio  was found to increase.

When a = 0.25 we calculate values ranging from 1,44 a t the surface to

nearly 2.00 at the tropopause. We observe factors s lig h tly  more than

doubled through the entire troposphere when the albedo is 0.50. For

higher values of the albedo the surface reflection is able to compensate

for the decrease in downward flu x , sim ilar to process (4 .2 ). Hence, for

the case of a = 0 .75 , the ra tio  Jms/J L ranges from 2.75 a t  the surface

to 2.52 a t 10 km. When the surface is assumed to be a perfect re flecto r

(a = 1.00) the values range from 3.74 a t the surface to s lig h tly  less

than 3 a t the tropopause. Experimental values for process (4 .3) are

available [5 5 ], as afunction of local time. For local noon, most o f
-3  -1the values a t the surface are about 0.7 x 10 s which agrees very

- 3  -1well with our calculated value o f 1.1 x 10 s fo r an albedo of 0.25. 

The photolysis frequency fo r reaction (4.3) has also been measured by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Table 3

N02 +  h v  NO + 0 (270 < * < 420 nm ) 

Photodissociation frequencies, s- ^

a ltitu de , km 

10 

5 

0

8.93 E-3 

8.48 E-3 

7.57 E-3

Jms(a = ° ' 00) Jms(a = ° * 25> Jms<a = ° - 50> Jms(a = ° *75) Jms(a = 1*00)

1.59 E-2 

1.45 E-2 

7.48 E-3

1.76 E-2 

1.66 E-2 

1.09 E-2

1.97 E-2 

1.93 E-2 

1.52 E-2

2.25 E-2 

2.27 E-2 

2.08 E-2

2.62 E-2 

2.73 E-2 

2.83 E-2

Ratios of photodissociation frequencies for multiple 
scattering and the Leighton approximation for various albedos

a ltitu de , km

10

5

0

Jm_(a = 0.00) ms'

1.78

1.71

0.99

Jms<a -  ° ’ 25>

L

1.97

1.96

1.44

Jms(a -  0.50)

L

2.21

2.28

2.01

Jm_(a = 0.75) ms' '

UL

2.52

2.68

2.75

L

2.93

3.22

3.74

Ca>
ro



3 1Harvey e t a l . ,  [56] and found to be 0 . 8 x 1 0  s a t an a ltitude o f 

0.3 km. Stedman e t a l . ,  measured values ranging from 0.75 to 0.9 x 10“ 3

s-1 during the "CHON" experiment in rural Colorado [57]. The calculated

values fo r process (4 .3) are illu s tra te d  in Fig. 7.

Nitrogen trio x id e , N03, photodissociates along two d iffe ren t paths 

with one path leading to

N03 + hv N02 + 0 [ 400 < X < 700 nm ] (4 .4 )

and the other branching to

N03 + hv + NO + 02 [ 400 < A < 700 nm ] (4 .5 )

The branching ratios fo r these photolytic processes were discussed in 

Section 2.2 and illu s tra te d  in Fig. 4. The photolysis frequencies for  

process (4 .4) are generally 4 times faster than those for process (4 .5 ) .  

The calculated values fo r N03 photolysis are tabulated in Table 4 for 

the branch leading to N02 + 0 and in Table 5 for the NO + 02 branch. 

Inspection of these Tables, show that the ratios o f are very

sim ilar a lb e it not identical for comparable albedos. For the case showing 

the effects of the multiple scattering alone, i .e .  a = 0 .00 , the 

inclusion of the multiple scattering code increases the photolytic 

frequency at the surface by 8 percent for both processes. In the mid 

and upper troposphere the factor is increased about 40 percent. For a 

surface albedo of 0.25 the ra tio  o f 1S a^ou  ̂ throughout the

troposphere for both processes. The ra tio  is approximately doubled when 

the albedo is 0.50 and varies from about 2.6 at the surface to 2.2 a t  

the tropopause fo r  an albedo of 0.75. When the surface is perfectly  

re flecting , i . e .  a = 1.00, the ratio  ranges from approximately 3.2 a t 

the surface to 2.6 at 10 km. The vertical profiles of the photolytic
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Table 4

NOg + hv -> NO2 + 0 (400 < X < 700 nm)

Photodissociation frequencies, s” ^

altitu de , km 

‘  10 

5 

0

9.11 E-3 

8.93 E-3 

8.21 E-3

Jms(a = ° ' 00) Jms(a = ° ' 25) Jms(a = ° * 50) Jms(a = ° ’ 75> Jms(a =

1.29 E-2 

1.26 E-2 

8.83 E-3

1.51 E-2 

1.50 E-2 

1.24 E-2

1.76 E-2 

1.78 E-2 

1.65 E-2

2.05 E-2 

2.09 E-2 

2.12 E-2

2.38 E-2 

2.46 E-2 

2.66 E-2

Ratios of photodissociation frequencies for multiple 
scattering and the Leighton approximation for various albedos

a ltitu d e , km

10

5

0

Jms<a = ° - 00) 

JL 

1.42 

1.41 

1.08

Jms(a = ° ‘ 25> 

JL 

1.66  

1.68  

1.51

Jms(a = ° ’ 50) 

JL

1.93

1.99

2.01

Jms<a = ° - 75> 

JL

2.25

2.34

2.58

Jmŝ a s 

JL 

2.61 

2.75 

3.24

( a)U1
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Table 5

NOg + hv -v NO + Og (400 < * < 700 nm)

Photodissociation frequencies, s~̂

altitu de , km 

10 

5 

0

2.25 E-3 

2.21 E-3 

2.04 E-3

Jmc(a = 0-00) «Lc(a = 0.25) 0mp(a = 0.50) J (a = 0.75) (a = 1.00) ms '  ms ms '  ms' 7 ms

3.10 E-3 

3.04 E-3 

2.20 E-3

3.66 E-3 

3.65 E-3 

3.09 E-3

4.28 E-3 

4.33 Er3 

4.09 E-3

4.99 E-3 

5.10 E-3 

5.22 E-3

5,79 E-3 

5.97 E-3 

6.50 E-3

Ratios of photodissociation frequencies for 

scattering and the Leighton approximation for various albedos

a ltitu d e , km
Jms(a = 0 . 00) 

JL

Jms(a -  0.25) 

JL

JmS(a = 0.50) 

JL

JmS(a -  0.75) 

JL

Jms(a = 1. 00) 

JL

10 1.38 1.63 1.90 2.22 2.57

5 1.38 1.65 1.96 2.31 2.70

0 1.08 1.51 2.00 2.56 3.19

to<y»
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processes (4 .4) and (4.5) are shown in Figs. 8 and 9 respectively for the 

Leighton approximation as well as for the multiple scattering cases for 

d iffe ren t albedos. Also included on these Figures are measurements by 

Graham and Johnston [58] and Magnotta and Johnston [59].

Dinitrogen pentoxide, NgOg, undergoes photolysis in the spectral 

region 270 to 380 nm. Its  photolytic products are nitrogen dioxide,

NOg, and nitrogen trio x id e , N0g> according to

NgQg + hv NOg + NOg [270 nm < X > 380 nm] (4 .6)

The values fo r the photodissociation frequencies for process (4 .6 ) are 

given in Table 6 along with the ratios of Jms/J L. Since N20g is 

photolytically  active at short wavelengths, i .e .  x < 300 nm, the ratio
s

Jn,s / J L should be larger than fo r species that are not active in this  

region, a t least for large values of the surface albedo. This is verified  

by inspecting the lower h a lf of Table 6 . For a = 0.00 no difference 

was found a t the surface for values calculated using the Leighton 

approximation to those obtained with the multiple scattering routine.

At the tropopause however, the ra tio  o f J ms/J |_  is doubled. When the 

albedo is 0.25 the ra tio  at the surface is about 1.5 increasing to 

approximately 2.2 a t 10 km. For an albedo of 0.50 the ra tio  is s lig h tly  

more than doubled a t the surface and almost 2.5 a t the tropopause.

For yet higher values of the surface albedo the ra tio  of J ^ /J i  

increases such that when a = 0.75 the ra tio  varies between 2.9 and 2 .8 , 

and f in a lly , when a = 1.00 the ratio varies between 4.1 at the surface 

to 3.2 a t the tropopause leve l. The vertical profiles of the photo­

dissociation frequencies fo r N̂ Og photolysis are shown in Fig. 10.
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Table 6

NgOg + hv -»■ NOg + NOg (270 < X  <  380 nm)

Photodissociatlon frequencies, s“ ^

altitu de , km 

10 

5 

0

2.41 E-5 

2.22 E-5 

1.96 E-5

Jms(a = 0.00) Jms(a = 0.25) Jms(a = 0.50) Jms(a = 0.75) Jms(a = 1.00)

4.98 E-5 

4.40 E-5 

1.96 E-5

5.38 E-5 

4.93 E-5 

2.88 E-5

5.91 E-5 

5.62 E-5 

4.08 E-5

6.62 E-5 

6.57 E-5 

5.72 E-5

7.64 E-5 

7.91 E-5 

8.07 E-5

Ratios of photodissociation frequencies for multiple 

scattering and the Leighton approximation for various albedos

a ltitu d e , km

10

5

0

Jms<a = ° - 00> 

JL 

2.07 

1.98 

1.00

W  = 0-25)

JL

2.23

2.22

1.47

JmS<a = ° - 50>

JL

2.45

2.53

2.08

Jms<a = ° - 75> 

JL 

2.75 

2.96 

2.92

JmS<a ■

JL 

3.17 

3.56 

4.12

o
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Fig. 10 Photodissociation frequencies of M20g for the
m ultiple scattering cases with various albedos and 
the Leighton approximation.
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N itr ic  acid, HNOg, is  another species that is very active in the 

shorter end o f the spectrum. Hence, we would expect large ratios for 

^ms^L to the case o f NgOg. N itr ic  acid undergoes photolysis

according to

HNOg + hv OH + NQg [  270 < X < 320 nm ] (4 .7)

with the numerical values given in Table 7. The upper h a lf of this 

Table shows the photodissociation frequencies for process (4 .7) to be on 

the order o f 10-7  s~^. The lower h a lf lis ts  the ratios of Jms/JL*

These ratios are in general higher than any of the previously discussed 

processes except (4 .1 ) . Even at low values for the surface albedo the 

ratios are re la tiv e ly  high, with a factor of 1.5 increase a t the surface 

for an albedo of 0.00 increasing to a factor of 3.2 at the tropopause.

With an albedo of 0.25 the increases range from 2.2 a t the surface to

3.4 a t 10 km. For the case of a = 0.50 we notice more than a tr ip lin g  

of the ra tio  of ^hen tbe al bedo ls 0*75 the ra tio  is more than

quadrupled at the surface and nearly quadrupled a t 10 km. F ina lly , for  

a = 1.00 the factor is larger than 6 a t the surface and decreases with 

altitu de  to a value o f 4.4 at the tropopause. The photolytic process (4.7) 

has its  frequencies displayed graphically in Fig. 11.

Nitrous acid, HNOg* photolysis in the spectral region 300 to 400 nm 

according to

HNOg + hv -*■ OH +  NO [300 nm < X < 400 nm] (4 .8 )

The model calculated values for this process are given in Table 8 

along with ratios of Jms/JL* For nitrous acid there is only a small 

effect noticeable a t low albedos between the multiple scattering results 

and those obtained with the Leighton approximation. In fa c t, we observe
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Table 7

HN03 + h\> ^ OH + N02 (270 < X < 320 nm)

Photodissociation frequencies, s-1

altitu d e , km

Jms(a = 0. 00) 0 „ («  = 0.25) J „ ( a  = 0.50) 0m I(a  = 0.75) 0mc(a  = 1.00)ms' ms ms’ ms'

10 2.20 E-7 7.02 E-7 7.41 E-7 7.92 E-7 8.61 E-7 9.60 E-7

5 1.91 E-7 5.96 E-7 6.54 E-7 7.28 E-7 8.30 E-7 9.76 E-7

0 1.61 E-7 2.37 E-7 3.48 E-7 4.93 E-7 6.90 E-7 9.74 E-7

Ratios of photodissocition frequencies for multiple

scattering and the Leighton approximation for various albedos

tude, km
Jms(a = 0 . 00) 

JL

Jms(a -  0.25) 

JL

Jms(a = 0.50) 

JL

J (a — ms'

JL

0.75) Jms(a = 1. 00) 

JL

10 3.19 3.37 3.60 3.91 4.36

5 3.12 3.42 3.81 4.35 5.11

0 1.47 2.16 3.06 4.29 6.05

-f*
CO
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Fig. 11 Photodissociation frequencies of HNOg for the
multiple scattering cases with various albedos and 
the Leighton approximation.
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Table 8

HN02 + hv -> OH + NO (300 < A < 400 nm)

Photodissociation frequencies, s“ ^

a ltitu de , km 

10 

5 

0

Jm<;(a = 0.00) Jms(a = 0.25) Jmc(a = 0.50) Jmc(a = 0.75)

5.74 E-4 

5.42 E-4 

4.84 E-4

ms’

1.05 E-3 

9.52 E-4 

4.70 E-4

1.15 E-3 

1.08 E-3 

6.86 E-4

ms

1.29 E-3 

1.25 E-3 

9.64 E-4

ms'

1.46E-3 

1.47 E-3 

1.33 E-3

1.71 E-3 

1.78 E-3 

1.84 E-3

Ratios of photodissociation frequencies for multiple 

scattering and the Leighton approximation for various albedos

a ltitu d e , km -  0-00> Jms(a = 0.25) Jms(a = 0.50) J (a ■ 0.75)ms' ' Jms<a = 

Ja

10

5

0

1.83 

1.76 

0.97

2.00

1.99

1.27

2.25

2.31

1.78

2.54

2.71

2.45

2.98

3.28

3.39

■CaU1
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a s lig h t decrease below unity in the ra tio  at the surface forms L

an albedo of 0 . 00. At higher a ltitu d es , however, the ra tio  is s lig h tly  

more than doubled. For an albedo of 0 .25, the surface level ra tio  is 

about 1.3 and the mid tropospheric and tropopause levels have values 

of 2 .0 . When a = 0.50 values range from 1.8 at the surface to 2 .3  in 

the upper regions of the troposphere. The ra tio  Jms/J L is more than 

doubled for a = 0.75 with a value of 2.5 at the surface, 2.7 at 5 km 

and 2.5 a t the tropopause. F ina lly , when the albedo is unity there is 

more than a tr ip lin g  of the ra tio  at the surface with a value of 3 .4 , 

decreasing with a ltitu de  to 3.0 a t 10 km. The vertical profiles of the 

photodissociation frequencies o f process (4.8) are shown in Fig. 12.

Hydrogen peroxide, ant* methylhydroperoxy, CĤ OOH, undergo

photolysis between 270 and 360 nm according to

H2 02 + hv + 2 OH [270 nm < X < 360 nm] (4.9)

and

CH300H + hv + CH3 + OH [270 nm < X < 360 nm] (4.10)

Both of these species are assumed to have nearly identical absorption

and quantum effic iency parameters and can, therefore, be assumed to have

identical photodissociation frequencies (see discussion in Section 2 .2 ). 

These frequencies as well as the ratios of the multiple scattering  

results to the results using the Leighton approximation are given in 

Table 9. The vertical profiles of the photolysis frequencies are 

illu s tra te d  in  Fig. 13. In i t ia l ly ,  a t the surface for an albedo of 

Q.Q0, only a s lig h t difference between the Leighton approximation 

calculations and the multiple scattering calculations are noticeable.

The multiple scattering calculations increase the photolysis frequency
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Fig. 12 Photodissociation frequencies of HN02 for the
multiple scattering cases with various albedos and 
the Leighton approximation.
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Altitude, km

Table 9

H2 02 + hv ->■ 2 OH (270 < X < 360 nm) 

and

CH3 00H + hv CH3 + OH (270 < X < 360 nm) 

Photodissociation frequencies, s~̂

Jms(a = 0.00) Jmc(a = 0 .2 5 )  Jmc(a = 0.50) Jme(a =ms ms' ms' 0.75) Jms(a = 1 .0 0 )

10

5

0

2.00 E-6 

1.82 E-6  

1.60 E-6

4.54 E-6  

3.96 E-6  

1.69 E-6

4,87 E-6  

4.41 E-6  

2.48 E-6

5.30 E-6  

4.99 E-6  

3.53 E-6

5.88 E-6  

5.79 E-6  

4.97 E-6

6.73 E-6  

6.95 E-6  

7.04 E-6

Altitude, km

10

5

0

Ratios of photodissociation frequencies for multiple 
scattering and the Leighton approximation for various albedos

Jmc(a = 0.00) ms

2.27

2.18

1.06

Jms<a “ ° * 25> 
JL

2.44

2.42

1.55

Jms(a = 50) J- (a = ° * 75)ms’

L
2.65

2.74

2.21

JL

2.94

3.18

3.11

Jms<a = 1 -0°) 
JL

3.37

3.82

4.40

■£»00
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by about 6 percent. At higher a ltitu d es , s t i l l  for the case of 

a = 0 .00, the photolysis frequencies more than doubled. For an increase 

in the albedo to 0.25, the ra tio  1S a t the 3nd

2.4  a t both 5 and 10 kilometers. More than a doubling is  noticed for  

an albedo of 0 .5 . S p ec ifica lly , a value of 2.2 is obtained a t the 

surface, and 2.7 in the mid-and-upper tropospheric regions. When the 

albedo is 0.75 the ra tio  is  more than trip led  a t the surface and at 

5 km with values of 3.1 and 3.2 respectively. At the tropopause i t  is  

nearly tr ip led  reaching a value of 2 .9 . When the assumption is made 

that the surface is a perfect re flecto r (a = 1 .00) ,  well over a 

quadrupling is  seen with a value of 4 .4 . In the mid troposphere 15 km)

the ra tio  is nearly quadrupled (3.82) and a t the tropopause (10 km) the

ra tio  is more than trip led  (3 .4 ).

Formaldehyde, CH2°, photodissociates in two d iffe ren t branches with 

one branch leading to atomic hydrogen, H, and the formyl rad ical, HCO, 

according to

CH20 + hv + H + HCO [ 280 < X < 340 nm ] (4.11)

and the other branch leading to molecular hydrogen, H2 , and carbon 

monoxide, CO, in accordance with

CH20 + hv -> H2 + CO [ 280 < X < 360 nm ] (4.12)

The branching of formaldehyde photolysis has been discussed in 

Section 2.2 and shown graphically in Fig. 3. The photolysis frequencies 

for process (4.12) are generally 3 times faster than those fo r process

(4 .11 ). The calculated photolysis frequencies are given in Table 10 

for the branch leading to H + HCO and in Table 11 fo r the H2 + CO branch.
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Table 10

CH20 + hv HCO + H (280 < \  < 340 nm) 

Photodissociation frequencies, s* 1

A ltitude, km JL Jms(a = ° *00) J (a = 0.25) ms' ' Jmc(a = 0.50) ms ' Jms<a = 0 -75> Jms<a== 1 .00)

10 2.53 E-5 5.36 E-5 5.77 E-5 6.31 E-5 7.04 E-5 8.11 E-5

5 2.32 E-5 4.70 E-5 5.26 E-5 5*98 E-5 6.97 E-5 8.40 E-5

0 2.05 E-5 2.04 E-5 3.01 E-5 4.28 E-5 6.02 E-5 8.54 E-5

Ratios of photodissociation frequencies for multiple 
scattering and the Leighton approximation for various albedos

A ltitude, km Jms(a = ° - 00) Jms(a = ° ' 25) Jms(a = 0.50) Jms(a = 0.75) Jms(a = 1 .0 0 )

JL JL JL JL JL

10 2.12 2.28 2.49 2.78 3.21

5 2.03 2.27 2.58 3.00 3.62

0 1.00 1.47 2.09 2.94 4.17

CJ1
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Table 11

altitu de , km 

10 

5 

0

8.03 E-5 

7,47 E-5 

6.63 E-5

CH20 + hv -> H2 + CO (280 < x < 360 nm)

Photodissociation frequencies, s"̂

Jm5(a = 0.00) JmQ(a = 0.25) JmS(a = 0.50) Jmc(a = 0.75) Jmc(a = 1.00)

1.57 E-4 

1.40 E-4 

6.30 E-5

1.71 E-4 

1.58 E-4 

9.29 E-5

1.89 E-4 

1.80 E-4 

1.32 E-4

ms

2.12 E-4 

2.11 E-4 

1.85 E-4

ms

2.47 E-4 

2.56 E-4 

2.62 E-4

Ratios of photodissociation frequencies for multiple 
scattering and the Leighton approximation for various albedos.

a ltitu d e , km
Jms(a = 0. 00) 

JL

Jms(a " ° - 25> 

JL

Jms(a = 0.50) 

JL

Jms<a " ° ’ 75> 

JL

Jms<a -  ^  

JL

10 1.96 2.13 2.35 2.64 3.08

5 1.87 2.12 2.41 2,82 3.43

0 0.95 1.40 1.99 2.79 3.95

Oll\>
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Inspection of Tables 10 and 11 shows that the values o f the ratio, o f 

Jms/ JL are S1' m1"*ar in magnitude and range, with the ratios due to 

process (4.11) s lig h tly  higher than those due to process (4 .12 ). For a 

surface albedo of 0 .00 , no difference is $;een at the surface for process

(4.11) while a 5 percent decrease is observed for process (4 .12 ). At 

higher altitudes s lig h tly  more than a doubling is seen fo r process (4.11) 

while process (4.12) shows s lig h tly  less than a doubling. When the 

albedo is 0.25 process (4.11) shows almost a 50 percent increase in Jms/JL 

at the surface while process (4.12) exhibits an increase of 40 percent.

In the mid and upper tropospheric regions process (4.11) has a ra tio  of 

2.3 while (4.12) is 2 .1 . For an albedo of 0.50 the ratio  is 2.1 for

(4.11) and exactly doubled for process (4 .1 2 ). The midtropospheric and 

tropopause values are also very s im ilar with ratios ranging from 2.4 to 

2.6 . Even when the ratios of Jms/JL for higher albedos are calculated, 

processes (4 .11) and (4.12) exhib it s im ilar numerical values. For

a = 0 .75, the values range from 2.8 to 3.0 for the branch leading to 

HCO + H (4.11) and from 2.6 to 2.8 for the H2 + CO branch (4 .12).

F in a lly , when an albedo of 1.00 is used, the ra tio  of ran9e f rom

3,2 to 4.2 fo r (4.11) and from 3.1 to 4.0 fo r (4 .12). The vertical 

profiles for the photodissociation frequencies for processes (4.11) and

(4.12) are displayed in Figs. 14 and 15 respectively.

4.2 The Nitrogen Group 

In this section a systematic approach is used to identify  the 

chemical production and loss terms and the percent contribution of each 

reaction to the formation and destruction of each species calculated in 

the present model. A solar zenith angle of 45° is used throughout this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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study. The species are discussed within the framework of th e ir  chemical 

families with the nitrogen family f i r s t  followed by the oxygen, hydrogen, 

carbon, and sulfur fam ilies. F ina lly , the calculated vertical profiles  

for each species are shown for the Leighton approximation and for the 

multiple scattering calculations based on the Anderson-Meier model for 

various albedos. Whenever possible, the calculated vertical profiles  

have been compared with available measurements.

The nitrogen group consists of a to ta l of 14 species with wide 

ranges of lifetim es and abundances. The most abundant species in the 

Earth's atmosphere, molecular nitrogen, is a member of this group. Also, 

some pivotal photochemical species in the troposphere such as odd 

nitrogen (n itric  oxide and nitrogen dioxide), ammonia and n itr ic  acid 

are members of this group. The reaction paths o f the nitrogen family 

are shown in Fig. 16. The species are arranged in decreasing order of 

th e ir  tropospheric abundances and within the framework of each species 

the chemical reactions are arranged in order of th e ir importance.

4.2.1 Molecular Nitrogen (Ng)

Although molecular nitrogen is the most abundant species in the 

Earth's atmosphere from a photochemical point of view i t  is uninteresting. 

This is due to its  radiative and chemical inertness. Molecular nitrogen 

has a concentration o f 78.08 percent by volume and a life tim e of several 

m illion years. I t  derives its  primary importance in the atmosphere from 

the fact that 78 percent of the time i t  serves as the th ird  b.ody in 

chemical reactions o f the type:

A + B + M •> AB + M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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where M is the th ird  body. Consequently, in the present model, molecular 

nitrogen is only included as an input with a specified vertical p ro file . 

Nitrogen is only important chemically since atmospheric lightning can 

decompose i t  forming atomic nitrogen, which can recombine with oxygen 

atoms to form n itr ic  oxide, NO.

4.2.2 Ammonia (NH )̂

Production Destruction

K53: NH2 + H2 ^ NH3 + H K48

K52: NH2 + OH NH3 + 0 K47

K46

K49

NH3 + OH + NH2 + H20

NH3 + 0('D ) + NH2 + OH

NH3 + 0 -> NH2 + OH 

NH3 + H + NH2 + H2

Ammonia which is the only common gaseous base in the atmosphere is 

formed primary as a result of microbial ac tiv ity  in the s o il. Chemically, 

two reactions contribute to the production. Reaction of the amino 

radical, NH2 with molecular hydrogen, H2 (reaction 53) provides for 

nearly a ll of the atmospheric chemical production, with only minute 

fractions produced as a result of reaction 52, see Table 12. The over­

whelming chemical sink for ammonia is the reaction with hydroxyl 

(reaction 48). The reaction of ammonia with excited oxygen (reaction 47) 

accounts for a minor sink (0.01 percent) at the tropopause, while the 

remaining two destruction terms for ammonia are six to ten orders of 

magnitude smaller than the primary destruction path. The chemical 

equilibrium concentration of NH3 has been calculated to 10" ^ '^  ppb [ 11] 

while the actual ammonia mixing ratio  is in the parts per b illio n  (ppb) 

range [60]. The large difference between the calculated and actual
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Table 12. Production and Destruction Terms of NH~ 

-3  -1Production rate (molecules-cm- -s ) and percent of total production

A ltitude, km K53 % K52 % Total %

10 5.796 El 99.97 1.755 E-2 0.03 5.798 El 100.00

5 3.182 E2 99.98 7.929 E-2 0.02 3.183 E2 100.00

0 1.709 E3 99.98 3.243 E-l 0.02 1.709 E3 100.00

Destruction frequency (s”^) and percent of total destruction

Altitude, km K48 % K47 0//o K46 % K49 Total %

10 8.319 E-8  99.99 8.805 E -l2 0.01 4.893 E -l4 1.857 E -l7 8.319 E-8 100.00

5 1.919 E-7 100.00 3.515 E -l2 - 1.152 E-l 3 2.319 E -l7 1.919 e-7 100.00

0 3.466 E-7 100.00 1.272 E -l2 - 1.798 E-l 3 2.855 E—17 3.466 E-7 100.00

cnto
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levels o f ammonia is  due to microbial a c tiv ity  in the s o il. Hence, the 

most important source of atmospheric NH3 appears to be the surface with 

d iffe ren t processes controlling ammonia production in d iffe ren t geogra­

phical locations. In the industrialized parts of the world coal 

conversion and combustion processes appear to emit large quantities of 

NH3 [61, 62]. V o la tiliza tio n  from fertized  and nonfertilized land is 

also an ammonia source [63]. In England, urine from domestic animals 

is  reportedly the dominant source of NĤ  [64]. With an ever increasing 

industrial a c tiv ity  combined with a switch to greater dependence on coal 

and an increase in the use of fe r t i l iz e rs  to enhance crop yields the 

prospect of large anthropogenic emissions of NH3 is very real indeed.

Until recently the only vertical measurements available of NH3 were 

those by Georgii and Muller [65J. They found large spatial and temporal 

v a ria b ilit ie s  partly  as a function of surface temperature. Recently a 

remote instrument, the Infrared Heterodyne Radiometer (IHR), has been 

developed and used to make routine measurements of NH3 [60 ]. Furthermore, 

in s itu  a irc ra ft measurements of ammonia in the same general location as 

the IHR (NASA Langley Research Center) have yielded excellent agreement 

with IHR [ 66] .  The typical background level of ammonia is generally 

about 1 ppb at the surface decreasing to about 0.5 ppb a t 10 kilometers. 

Measurements.obtained during the spring (March to early A pril) have 

exhibited about an order of magnitude larger values for the surface 

mixing ra tio  than the background leve l. I t  is believed that the enhanced 

level of ammonia in the springtim e is the result of rapid vo la tiliza tio n  

o f ammonium n itra te  f e r t i l iz e r  that is applied to agricultural fields  

prior to the s ta rt of the growing season L H ]. In the summertime the level
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of ammonia decreases to its  background level again. Sim ilar temporal

variations were observed in 1976 on Long Island, New York, during

engineering tests of the Infrared Heterodyne Spectrometer (IHS), which

was the predecessor o f the IHR. The homogeneous loss of NĤ  occurs

prim arily by the reaction o f ammonia with the hydroxyl radical (reaction

(reaction 48). The homogeneous life tim e  of ammonia based on this

reaction is nearly 40 days. Ammonia which is  water soluble and is  also

involved in aerosol formation has a heterogeneous loss time of about

10 days [11]. The e ffec t of varying the heterogeneous loss term and

eddy diffusion on the vertical distribution of ammonia has been

investigated by Levine e t a l. [11 ]. This study shows that an eddy
5 2 - 1diffusion coeffic ient of about 2 x 10 cm s is needed to obtain a 

good f i t  with the measured data. I t  should be pointed out, however, 

that the IHR uses the Sun as a radiation source and measurements can 

only be taken on clear sunny days which might lead to a bias since sunny 

days increase the local convection. The study by Levine e t a l .  also 

found that the heterogeneous loss term has a time constant in excess of 

10 days, which is somewhat longer than was previously believed. The 

amount of ammonia emitted from the soil is a function of soil moisture 

as well as soil temperature [6 3 ]. In 1980 lower ammonia levels were 

observed than in 1979 [6 7 ]. Part of the explanation for this might be 

that in 1979, through September, the Hampton, V irg in ia , area experienced 

a 57 percent enhancement in to ta l precipitation amount as compared to 

the mean. In 1980, on the other hand, the total precipitation was 

21 percent below the mean through September which resulted in much lower 

soil moisture value than the frequent precipitation patterns in 1979 did.
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The measurement envelope for background levels of ammonia is indicated 

by cross-hatches in Fig. 17, together with in situ a irc ra ft measurements 

at 1.6 and 3.0 kilometers LH» 66] .  The lower boundary condition was 

held constant at 1.25 ppb which corresponds to about 3.2 x 10^
_3

molecules cm . At the upper boundary a constant mixing ratio  of 0.5

ppb was imposed. This corresponds to an ammonia number density of 
9 -33.3 x 10 molecules cm . The resulting vertical profiles for the 

Leighton approximation as well as the multiple scattering cases are 

shown in Fig. 17. The multiple scattering profiles decrease more 

rapidly with a ltitude than does the Leighton approximation. This is a 

result of the enhanced OH level resulting from the multiple scattering 

calculations. From 8 to 10 kilometers the multiple scattering calcu­

lations appear to be turning back into the center of the measurement 

envelope. This is a numerical a r tifa c t as opposed to an atmospheric 

source of NH ,̂ due to the imposed upper boundary condition. The 

multiple scattering calculations with high albedos, notably 1.00 and 0.75, 

fa l l  outside the measurement envelope in the midtroposphere. The case 

of an albedo of 0.50 fa lls  just on the lower lim it of the measurement 

envelope, while the cases of albedos of 0.25 and 0.00 fa ll  entire ly  

within the measurement envelope, a lb e it not by very much. The Leighton 

approximation shows the best f i t  of any calculated vertical p ro file , 

but i t  should be kept in mind that the heterogeneous loss frequencies 

were determined by applying the code in the Leighton approximation mode.
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4.2.31 Nitrogen Oxides (N0x = NO + N02) 1

Production: Destruction:

04 : N03 + hv N02 + 0 K24 : N02 + OH HN03

K32: N03 + NO -*■ 2 N02 K28 : no2 + o3 -  no3 + o2

J5 : N03 + hv ->■ NO + 02 K112: NO + H02 -»■ HN03

K35: N205 -  NO.i + N 0 2 K54 : NO + NH2 -*■ N2 + H20

J7 : HN03 + hv -*■ N02 + OH K23 : no2 + ho2 + hno2 + o2

08 : HN02 + hv ->■ NO + OH K30 : N°2 + N03 -  n2o5

K40: HN02 + OH -* no2 + h2o K7 : N02 + CH302 -► HN03 + CH30

K31: no3 + no2 -► NO +N02 + 02 K25 : NO + OH ’-*■ HN02

06 : ^2^5 + -»■ no2 + no3 K33 : NO + N02 + H20 2HN02

K59: HNO + 02 -*■ NO + H02 K56 : NO + NH +  N2 + 0 + H

K61: HNO + H -*• NO + H2 K58 : NO + NH N2 + OH

K60: HNO + M ->■NO + H + M K67 : NO + HS Products

Due to the rapid cycling that occurs between n itr ic  oxide, NO, and 

nitrogen dioxide, N02, they are commonly grouped'together into an entity  

called "odd nitrogen" or NO . This grouping is made in order to avoid
A

numerical s tiffness . Thus, the code calculates the production and 

destruction of NO and subsequently partitions i t  with the so called
A

photostationary state equation [25]. This equation yields the ratio  

[N0i,]/[N0] according to

[N02] K29 [03]

[NO] = ” j3

The photostationary state equation is commonly employed in tropospheric 

models to obtain the abundances of NO and N02 , although some recent
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measurements indicate that this relation tends to breakdown for low 

concentrations of N0X [ 68] ,  I t  is important to note that the production 

and destruction terms for NO lis ted  above represent the net chemical 

production and destruction of N0x> In other words, many other reactions 

lis ted  in Table A.2 contain e ither NO or N02 or both but i f  no net 

production or destruction of NO occurs they are excluded from
A

Table 4 .2 .3 . For example, reaction 8 destroys one NO molecule but 

produces one N02, hence there is no net change of N0x ; s im ilarly  with 

reaction 22. I t  should also be noted that the photochemical equilibrium  

value of NO , in this study of less than 10 ppt a t the .surface, is lower
A

than measurements indicate. I t  is therefore evident that other processes 

such as industrial emissions, lightning, and forest fires  contribute to 

the NO budget [69]. The anthropogenic source o f NO has been
A X

estimated to be 20 Mt/yr [70] while the source due to lightning was 

thought to be 40 to 80 M t/yr [71, 72, 73, 74]. These estimates were 

based on measurements o f N02 by Noxon before, during and a fte r  a 

thunderstorm [71]. Subsequent theoretical calculations by H ill 

indicate the only NO, and not N02 , are formed during lightning  

discharges [75]. The theoretical arguments by H ill were confirmed in 

some recent laboratory experiments by Levine e t a l.  [76]. These 

experimental results indicate that only NO is instantaneously produced 

during lightning discharges. During a laboratory discharge neither N02 

nor 03 was measured, contrary to common b e lie f. Ozone has always been 

thought to be formed as a result of lightning discharges, prim arily on 

"aromatic evidence". (The odor of ozone is detected around welding and 

e le c tric  discharge machinery.) I t  is quite possible that the enhanced 

levels of NQ2 measured by Noxon during a thunderstorm could be due to
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two things. F irs t, the enhanced level of NO produced by lightning is  

converted by the natural background level of 03 to N02 according to the 

reacti on

NO + 03 N02 + 02 .

Secondly, the very turbulent nature of a thunderstorm causes rapid 

convection and enhanced levels of upper tropospheric-lower stratospheric 

N02 could be brought down to the surface. The laboratory experiments by 

Levine e t a l. yielded a global source of NQ due to lightning o f 1.8 M t/yr, 

much less than previous estimates, but in very good agreement with 

recent theoretical calculations of 3 Mt/yr by Dawson [77 ], Hence, i t  

appears that anthropogenic sources dominate the NO production.
y\

Measurements of tropospheric N02 range from 1 to 4 ppb in the more 

polluted areas such the Central and Eastern United States. S pecifica lly , 

values o f 1 to 2 ppb were measured in Florida and Hawaii [7 8 ], 4.6 ppb 

in North Carolina L79], and 1 to 3 ppb in the Central United States [80]. 

Lower values have been obtained in more pristine a ir ,  for example,

0.1 to 0.3 ppb in Boulder, Colorado [81], 0.2 to 0.7 ppb in the 

Tropics [82 ], less than 0.1 ppb a t F ritz  Peak, Colorado [83J, and in 

North America and Peru [84J. More recent measurements a t Loop Head on 

the West Coast of Ireland have yielded values in the range 0.1 to

2.6 ppb [85].

N itr ic  oxide, NO, has also been measured and generally shows lower

values than N02. Values ranging from 0.1 to 0.7 ppb were obtained in

the Tropics [82] and less than 0.05 ppb over the Pacific Ocean at

altitudes between 8 to 12 km [ 86] .  Measurements in Laramie, Wyoming,

indicate very low levels of NO, ranging from 0.01 to 0.05 ppb [8 7 ], as
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does measurements on the Niwot Ridge, Colorado, with NO levels between 

0.02 to 0.05 ppb was obtained in a recent experiment [ 68J. A ir samples 

in clean background a ir  a t an a ltitu de  of 7 km in the v ic in ity  o f 

Mt. St. Helens were found to contain between 0.015 to 0.029 ppb of 

NO [88] . Both the studies by Drummond a t Laramie, Wyoming L87] and by 

Kelly et a l. at the Niwot Ridge, Colorado [ 68J found that the ra tio  of 

N02/NQ was typ ica lly  much greater than the photostationary state  

equation would pred ic t.. Kelly e t a l.  [68] reported that only 10 to 

25 percent o f the NO was in the form of NO, and s im ila rly , Drummond [87J
A

found that NO molecules comprised only t  to 27 percent of the to ta l 

NQ with the smallest percentage for the lowest NO measurements. For
A A

this study a lower boundary condition of 0.03 ppb (or 30 ppt) of NO
A

was selected. The amount of N0x was then partitioned with the photo­

stationary state equation and the resulting vertica l profiles of NO and 

N02 are shown in Figs. 18 and 19 respectively. The vertical profiles  

of NO are in reasonably good agreement with the measured values at 

pristine locations [ 86, 87, 88, 89] but the calculated values o f N02 are 

lower than measured values due to the breakdown of the photostationary 

state equation. The contributions due to chemistry are lis ted  in 

Table 13. Again, i t  should be emphasized that the photochemical 

production accounts for only a small fraction of the total NQx 

chemistry.

The primary sink for NQX is the reaction o f N02 with OH forming HNOg 

(reaction 24). Since n it r ic  acid has a longer life tim e than N0X i t  has 

been argued that the NO observed in clean background a ir ,  away from
A

anthropogenic sources, is due to the photolysis of n it r ic  acid molecules 

that were formed according to reaction 24 and subsequently transported
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Table 13. Production and Destruction Terms of N0x

-3 -1Production rate (molecules-;cm -s ) and percent of total chemical production 

Altitude, km J4_______ | _______ K32 %_______ J5_______ *_______ K35 X_______ J7_______ X_______ J8

10 1.017 E3 48. 08 1.131 E2 5.35 2.509 E2 11.86 4.808 E-l 0.03 4.398 E2 20.79 2.841 E2 13.43
5 4.885 E3 59. 38 7.066 E2 8.58 1.208 E3 14.68 1.170 E2 1.42 7.649 E2 9.29 5.457 E2 6.63
0 3.127 E4 49. 30 1.478 E4 23.30 7.772 E3 12.25 5.596 E3 8.82 2.460 E3 3.88 1.527 E3 2.41

Altitude, km K40 X K31 X J6 X KS9 X K61 X K60 X Total X
10 1.353 EO 0.06 1. 293 E-2 - 8.466 EO 0.40 4.703 E-3 -  1..157 E--15 - 1.170 E-37 - 2.115 E3 100.00
5 4.027 EO 0.02 2. 707 E-l - 4.617 E-•1 - 5.242 E-3 -  9..050 E--16 - 1.442 E-31 - 8.231 E3 100.00
0 1.605 El 0.03 1. 215 El 0.01 1.943 EO 6.159 E-3 -  7..856 E--16 - 8.321 E-27 - 6.434 E4 100.00

Destruction frequency (s ^ )  and percent of total chemical destruction
Altitude. km K24 X K28 X K112 X K54 X K23 X K30 t

10 6.859 II—5 70.34 2.052 E-6 2.10 1.663 E-5 17.05 2.831 E-6 2.90 3.564 E-6 3.65 4.225 t-7  0.44
5 1.205 E-4 62.78 7.368 E-6 3.84 3.827 E-5 19.94 8.734 E-6 4.55 8.007 E-6 4.17 2.078 E-6 1.08
0 1.804 E-4 44.97 8.127 E-5 20.26 7.063 E-5 17.61 2.816 E-5 7.02 1.514 E-5 3.77 1.448 E-5 3.61

Altitude, km f. 7 X K25 X K33 X K56 X K58 * K67 X Total %
10 8.270 E-7 0.85 2.604 E-6 2.67 3.215 E-13 -  4.309 E-11 - 3.567 E-11 - 3.131 £-16 9.752 E-5 100.00
5 3.157 E-6 1.65 3.812 E-6 1.99 1.130 E-11 -  3.651 E-11 -  3.029 E-11 - 1.122 E -l5 1.919 E-4 100.00
0 6.264 E-6 1.56 4.843 E-6 1.20 2.295 E-10 -  1.940 E-11 - 1.645 E-11 - 1.210 E-13 4.012 E-4 100.00
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away 1.70]. Other important chemical sinks for NO include the reaction 

of NOg with ozone (reaction 28) and the reaction of NO with H02 

(reaction 112), see Table 13.

One o f the objectives o f this study was to investigate the effects* 

of a detailed radiative transfer code on the photochemistry of the 

troposphere. In order to fa c ili ta te  this i t  was desirable to maintain 

a constant lower boundary condition. In addition to the boundary 

condition i t  was necessary to augment the chemical production with a 

source term to account for surface anthropogenic emissions and lightning  

production o f NQ . (In c iden ta lly , this could also be accomplished by aA
flux boundary condition.) The inclusion of a detailed radiative transfer 

code enhanced the levels of NQ and N02 only s lig h tly . In fa c t, odd 

nitrogen was less affected than any other species in this study. At the 

tropopause there was a factor of 1.3 difference between the multiple 

scattering calculations and the Leighton approximation. Since the NO
X

species are important precursors to ozone production i t  is essential 

that the background level of NO be established. Odd nitrogen participateA
in the ca ta lytic  cycle

NO + 03 -»■ N02 + 02 

NQ2 + hv NO + 0 

0. + 02 + M +  03 + M

which governs the photostationary state equation. The departure of 

the NQ2/NQ ra tio  from the photostationary state value indicates that 

free pero*y radicals, which constitute a competing mechanism to ozone for  

reaction with n it r ic  oxide, may play a more sign ificant role in the 

clean troposphere, as recently suggested by Kelly et a l. [ 68] .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

4 .2 .4  N itr ic  Acid (HN03)

Production: Destruction:
K24 : N02 + OH -► HN03 K26 : hno3 + oh -»■ no3 + h2o

K112: NO + HQ2 HN03 . J7 : HN03 + hv -»■ N02 + OH

K7 : no2 + ch3o2 + hno3 + ch2 KUO: hnq3 + 0 no3 + OH

K34 : NO + N02 + H20 -  2HN03 K114: HN03 + H -»■ Products

K115: hno2 + 03 hno3 + 03

K113: NO3 + H20 -v HNO3 + OH
N itr ic  acid is an important molecule in troposphere, because

as a reservoir fo r reactive nitrogen species. I t  is formed by six

reactions, but prim arily by nitrogen dioxide reacting with hydroxyl in

the presence of a th ird  body (reaction 24) and by n itr ic  oxide reacting

with hydroperoxyl (reaction 112). Together these two reactions are

responsible fo r 97 to 99 percent of a ll tropospheric HNÔ  production

depending on a ltitu d e  (see Table 14). Minor HN03 sources include

reactions of N02 with C H ^  (reaction 7) and NOg with NO and H20

(reaction 34); together they account for 1 to 3 percent. The two

remaining reactions are between four and nine orders o f magnitude smaller

than the primary chemical sources. N itr ic  acid is  a very water soluble

gas and hence is  subject to heterogeneous removal by rainout and washout.

In addition,, n it r ic  acid is also lost by dry deposition and an attempt

to quantify this loss process was made during the CHON Experiment in

rural Colorado [91 ]. Yet another removal mechanism of HN03 is the

conversion to aerosol n itra tes . In addition to these physical sinks,

there are also chemical reactions that remove HNOg. The two primary

chemical sinks are reaction of HNO with OH (reaction 26) and HNO,
3 3

photolysis (J 7 ), see Table 14. The two remaining chemical reactions
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Table 14. Production and Destruction Terms for HNOj

3 -1Production rate (molecules -  cm -s ) and percent of total production

Altitude, km K24 X KU2 X K7 X K34 X Kl'l 5 X K113 X Total X

10 3.043 E3 60.13 1.936 E3 38.62 3.669 El 0.73 1.760 El 0.52 2.468 E-l -  6.423 E-6 - 5.060 E3 100.00

5 1.296 E4 68.07 5.549 E3 29.14 3.394 E2 1.78 1.910 E2 1.01 4,478 E-l -  5.785 E-4 - 1.904 E4 100.00

0 8.043 E4 75.35 2.253 E4 21.11 2.794 E3 2.62 9.890 E2 0.92 1.184 EO -  4.379 E-2 - 1.067 E5 100.00

Destruction frequency ( s-1 ) and percent of total destruction
%

Altitude, km K26 X J8 X K1.10 X K114 X Total X

10 1.107 E-7 33.48 2.199 E-7 66.52 5.844 E-13 - 1.857 E-*14 - 3.306 E-7 100.00

5 1.620 E-7 45.87 1.912 E-7 54.13 2.110 E-13 - 2.318 e-14 - 3.532 E-7 100.00

0 2.057 E-7 56.13 1.608 E-7 43.87 7.680 E-14 - 2.855 e-14 - 3.665 E-7 100.00

co



removing HNQg are six to seven orders of magnitude smaller than the two 

primary chemical loss terms and, thus, do not have to be considered.

The chemical lifetim e of HNÔ  based solely on the reaction scheme above 

is much too long to account for the re la tive ly  low abundances that have 

been measured la te ly . C learly, heterogeneous removal must play an 

important part in controlling the tropospheric level o f n itr ic  acid. 

Measurements of HNÔ  have been obtained in both urban and rural 

environments. Okita e t a ! . ,  found HN03 levels is Tokyo, Japan varying 

between 0.2 to 8 ppb [92J. Huebert and Lazarus measured levels in the 

0.4 to 0.9 ppb range over the Continental United States [93]. As 

expected, lower values of n it r ic  acid are present in rural a ir .

Okita e t a l. obtained levels between 0.0 to 0.7 ppb on Mt. Tsukuba,

Japan [9 2 ], while Huebert and Lazarus found values of 0.02 to 0.3 ppb 

over a wide range of latitudes and altitudes [93J. Those measurements 

have been transposed to Fig. 20 and are compared to the present 

calculations. Shipboard measurements taken during a voyage in the 

equatorial Pacific region found low values of HN03*> the average 

concentration was 0.030 ppb [94]. Kelly e t a l. measured values of 

0.03 to 0.1 ppb at the Niwot Ridge at an elevation of 3 km in the 

Rocky Mountains of Colorado [ 68J. In addition, Kelly e t a l. also found 

that N0X levels were always greater than HNÔ  levels , perhaps invalidating  

the photostationary state equation. More research is needed on this 

point. The measurements by Heubert and Lazarus during the GAMETAG 

fligh ts  seem to indicate higher concentrations in the rural free tropos­

phere than in the boundary layer contrary to the prediction of 

photochemical models [95J. At 5.5 km HNQ̂  concentrations of 0.08 to 

0.2 ppb were found while in the boundary layer 0.27 to 0.37 km
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concentrations ranged from less than 0.05 to 0.09 ppb. The present study, 

sim ilar to other tropospheric calculations finds decreasing levels of 

HNO3 with a ltitu d e . The heterogeneous loss frequency which is  a 

composite of dry and wet deposition is  taken from a study of su lfu ric  

acid by Turco e t a l .  [52 ]. The characteristic life tim e  for heterogeneous 

removal at the surface is 0.5 ,day, somewhat shorter than the 1.7 days 

for wet deposition suggested by Huebert and Lazarus [93J. As noted by 

Huebert and Lazarus, there are several reasons the heterogeneous removal 

time is shorter than the average ra in fa ll frequency. The heterogeneous 

removal by dry deposition could be higher in areas with large 

anthropogenic sources. This would decrease the amount"of HNO3 that 

would have to be rained out. Also, the average ra in fa ll could remove 

larger amounts of HNO3 per event than is commonly believed.

Furthermore, some NOg might be scavenged d irectly  which would reduce the 

amount of NÔ  available fo r HNÔ  formation. I t  should also be noted 

that the heterogeneous removal frequency in this study incorporates 

both dry and wet deposition, and, that the characteristic time constant 

is larger than 1.7 days in the mid-and-upper troposphere. Furthermore, 

i t  has been postulated that a step-function might be needed to correctly  

represent the heterogeneous removal o f HNO3 [93 ]. For this study the 

n itr ic  acid concentration a t the lower boundary was fixed a t 0 .6  ppb.

The calculated vertica l profiles  of HNÔ  decrease in concentration with 

a ltitu d e  in agreement with measurements over the Continental United States, 

see Fig. 20, but in disagreement with the measurements of rural a ir .

The more refined treatment of the radiation f ie ld  in this study 

increases the level of HNO3 by a factor of 1.3 a t the tropopause, 

sim ilar to NQX. Due to the rapid interconversion of HNO3 to N0X sim ilar
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responses to the multiple scattering calculations are expected. Obviously, 

there is a great need for further research on the HNO.,-N0v-0 ,  cycles on 

a global scale.

4.2.5 Nitrous Acid (HNOg)

Production;

K25: NO + OH + HN0„ J8
C .

K33: NQ2 + NO + H2Q -»■ 2HN02 K40

K115

Nitrous acid, HN02> is formed chemically by two reactions and 

destroyed by three. The primary mechanism for production of HN02 is the 

reaction of NO with OH in the presence of a th ird  body, M (reaction 25).

This reaction is five  to seven orders of magnitude larger than the

secondary reaction path o f N02 combining with NO and H20 (reaction 33)

(see Table 15). There are also indications that HNo2 is emitted anthropo- 

genically in automobile exhaust and in effluents from industrial and 

residential chimneys [96 ]; the magnitude of the anthropogenic emissions 

is very uncertain however. Chemically, destruction o f nitrous acid 

occurs prim arily by photolysis (J8 ) .  About 99 percent of a l l  HN02 is 

destroyed in this manner. Roughly one percent at the surface is lost as a 

result o f HN02 reacting with QH (reaction 40). At the tropopause this  

reaction is responsible for approximately 0.5 percent of a ll HN02 loss.

The reaction of HN02 with O3 (reaction 115) constitutes a very minor 

sink for nitrous acid with less than 0.1 percent of a ll HN02 molecules 

destroyed in this manner. The life tim e  of HN02 based on the

Destruction:

HN02 + hv + QH + NO

hno2 + OH no2 + h2o 

HN02 + 03 + HNO3 + o2
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Table 15. Production and Destruction Terms of HNOg 

-3 -1Production rate (molecules cm - s ) and percent of total production

A ltitude, km ^_________ K33______ %________ Total________%

10 3.031 E2 100.00 1.053 E-5 -  3.031 E2 100.00

5 5.661 E2 100.00 7.088 E-4 -  5.661 E2 100.00

0 1 .545 F.3 100.00 4.268 E-2 - 1.545 E3 100.00

Destruction frequency (s- ^) and percent o f total destruction

titude, 00*“0E

% K40 % K115 % Total %

10 5.742 E-4 99,44 2.736 E-6 0.47 4.998 E-7 0,09 5.774 E-4 100.00

5 5.424 E-4 99.19 4.003 E-6 0.73 4.454 E-7 0,08 5.648 E-4 100.00

0 4.838 E-4 98.88 . 5,084 E-6 1.04 3.750 E-7 0.08 4,893 E-4 100.00

00
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photochemistry described above is about 0.5 hour. Nitrous acid is highly 

water soluble and should, therefore, be subject to heterogeneous removal 

by rainout which would further decrease its  life tim e . The f i r s t  tropos­

pheric measurements of HNOg were made by Nash in Southern England using 

a wet chemistry technique [97J. The levels of HNOg measured by Nash 

ranged from 0.4 to 11 ppb. Subsequent measurements of nitrous acid by 

P la tt and Perner [85] and Perner and P la tt [96] have yielded'much 

lower values. The las t two studies use a d iffe re n tia l optical absorption 

technique where the sen s itiv ity  o f the apparatus is a function of 

prevailing v is ib il i ty ;  i . e .  in clear unpolluted a ir  lower levels of HNOg 

can be detected than during episodes of pollution. The studies by 

Perner and P la tt report on measurements of nitrous acid at three 

diffe ren t locations in Europe. The levels o f HNOg a t the moderate to
II

heavy polluted s ite  at Julich, West Germany, were generally less than 

0.1 ppb, although values as high as 0 .8  ppb were observed just prior to 

sunrise before the in it ia t io n  o f photolytic decomposition. At 

Deuselbach in the German mountains the level o f HNOg was found to be 

always below the detection lim it  which ranged from 0.02 to 0.13 ppb. At 

the Loop Head s ite  on the Ir ish  West Coast, nitrous acid was also always 

below the detection lim it  which varied between 0.003 and 0.13 ppb. Due 

to the much cleaner a ir  at the Loop Head s ite  the sen s itiv ity  was much 

higher. The detection lim it  o f the d iffe re n tia l optical absorption 

technique is a strong function of prevailing v is ib il i ty .  The concen­

trations o f HNO2 calculated in this study are generally about an order 

of magnitude lower than the lowest measurements at Loop Head, see 

Fig. 21. I t  should be remembered, however, that the concentration of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A
LT

IT
U

D
E,

 
km

80

\  N N \\
\ \%
\\'A\

X ' t '  
%

LEIGHTON APPROX. 

ALBEDO °  0 .0 0  

ALBEDO = 0 . 2 5  

ALBEDO = 0 . 5 0  

ALBEDO = 0 . 7 5  

ALBEDO = 1 . 0 0

4 x 105

NUMBER DENSITY, p a r t i c l e s - c m '

Fig. 21 . Vertical distributions of HNCL for the multiple 
scattering cases with various albedos and'the 
Leighton approximation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

nitrous acid never reached the detection lim it  which on occasion was as 

low as 3 ppt. Hence, the only thing that can be concluded with any cer­

ta inty is that during pris tine  conditions 3. ppt is an upper lim it  o f HN02 

concentration and the existence of considerably lower levels cannot be 

ruled out. When the more detailed radiation code is  coupled into the 

photochemical calculations the vertical profiles of HN02;are enhanced 

by factors ranging from 1.2 to 1.5 at the surface, depending on albedo, 

to factors of 1.35 to 1.75 a t the tropopause, again as a function of 

albedo. The largest enhancement occurs for the case with an albedo of 

0.00 and smallest fo r an albedo of 1.00. This is contrary to the behavior 

of many other tropospheric trace gases. The enhanced levels of NO and OH 

resulting, from the multiple scattering calculations produce larger 

amounts of HNO2 than does the Leighton approximation. Destruction by 

photolysis is  also affected by multiple scattering; the re la tive  amounts 

can be seen in Table 8. From this Table i t  can be seen that the 

photolytic frequency fo r HN02 decomposition varies strongly as a 

function o f albedo. For an albedo o f 1.00 the ratio  o f is greater

than three while the ra tio  is s lig h tly  less than one for an albedo of 0.00. 

Consequently, the enhanced levels of HN0? due to reaction 25 are 

readjusted downward by photolysis in greater amounts fo r the high albedo 

values than for the low.

4.2 .6  Hydrazine (^2*̂ 4 )

Destruction:

K42: N2H4 + H + N2H3 + Hg

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Product!on:

K55: NH2  + NH2  -

K44: N2 H3  + N2 H3  -  N2 H4  + NgHg



Hydrazine is a very stable compound that is formed prim arily when 

the amino rad ica l, NH2 , reacts with i t s e lf  (reaction 55). The secondary 

source of hydrazine, reacting with i t s e l f  (reaction 44) is between 

10 to 15 orders of magnitude smaller (see Table 16). Loss of NgĤ  occurs 

when i t  reacts with the hydrogen atom to form N2H3 and H2 (reaction 42). 

The chemical life tim e of hydrazine based on the chemistry above is
5

extremely long, 7 x 10 years. I t  is very lik e ly  that hydrazine is  

involved in additional, h ite rto , unidentified chemistry. Furthermore, 

in a ll like lihood , hydrazine is subject to rainout sim ilar to NH3 [ 11] 

and NH2 [21 ]. No atmospheric measurements exist of hydrazine and 

consequently boundary conditions have to be assigned somewhat a rb itra r ily . 

A lower boundary condition of a few parts per t r i l l io n  (ppt) was adopted 

with a condition of zero flux at the tropopause with the resulting  

vertical profiles shown in Fig. 22. The vertical profiles of that 

have undergone the more detailed treatment o f the radiative transfer 

equation are, in  general, enhanced two to three times compared to the 

Leighton approximation. This occurs because the amino radical, NH2 , is 

approximately doubled, and when m ultiplied by i t s e l f  yields four times 

as much N2H4. Atomic hydrogen, H, which is  involved in the destruction 

has also increased as a result of including multiple scattering, and 

thus, the profiles o f hydrazine are adjusted accordingly.

4 .2 .7  Nitrogen Trioxide (No3)

Production: Destruction:

K28: N02 + 03 +  N03 + 02 

K35: N205 -»■ N03 + N02 

K26: HNO3 + QH ^ N03 + HgO

J4 : NO3 + hv -»■ N02 + 0

K32: N03 + NQ+2N02

J5 : NO3 + hv -*• NQ +02

with permission of the copyright owner. Further reproduction prohibited without permission.
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Table 16. Production and Destruction Terms for

-3 -1Production rate (molecules -  cm -s ) and percent of total production

ltitu d e , km K55 % K44 % Total %

10 1.817 E0 100.00 6.617 E-10 - T .817 E0 100.00

5 1.731 El 100.00 1,393 E-9 1.731 El 100.00

0 1.796 E2 100.00 3.901 E-13 - 1.796 E2 100.00

Destruction frequency (s~^) and percent of total destruction

A ltitude, km K42_________ %______

10 8.525 E-15 100.00

5 2.103 E-14 100.00

0 4.392 E-14 100.00

00
CO
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J6 : NgOg + hv -»■ NO3 + NOg 

K110: HNO3 + 0 •> NO3 + OH

K30 : NO3 + N02 N205

K31 : N03  + N02  NO + NOg + Og

K113: NO3  + HgO -v HNO3  + 0 2

Nitrogen trioxide is formed by five  chemical reactions and destroyed 

by s ix . The primary path for NO3 production is oxidation of nitrogen 

dioxide by ozone (reaction 28). At the surface almost 55 percent of 

a ll NO3 production occurs via this path (see Table 17). In the 

midtroposphere nearly 75 percent of NO3 is formed by reaction 28 and at 

the tropopause almost 50 percent by this reaction. Reaction 35 offers 

a secondary path to NO3 production, providing over 38 percent at the 

surface, almost 11 percent at 5 km and 28 percent at the tropopause.

The reaction of n itr ic  acid with hydroxyl accounts for NO3 production 

in amounts varying from 6.8  percent at the surface to 17.7 percent at 

the tropopause. Photolysis of dinitrogen pentoxide, NgOg, produces about 

0.01 percent of the NO3 at the surface increasing to approximately

4.5 percent a t the tropopause. The reaction of HNO3 with ground state 

oxygen, 0 ( p ), (reaction 110) ,  can be neglected as an NO3 source. 

Destruction of NO3 occurs primarily as a result of two photolytic 

reactions, one leading to NOg and 0(J4), the other to NO and Og (J5).

At the surface these two photolytic processes destroy about 70 percent 

of a ll the NO3 molecules and at the tropopause more than 90 percent.

The reaction of NO3 with NO provides an appreciable sink with amounts 

varying from nearly 19 percent at the surface to 8 percent at the 

tropopause. The reaction of NO3 with NOg accounts for 11.5 percent of 

the NO3 loss at the surface decreasing to s lig h tly  more than one percent 

at 10 km. Reaction 31 provides a minute sink (0.02 percent) at the 

surface while reaction 113 can be neglected. The life tim e of nitrogen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 17. Production and Destruction Terms of NÔ

-3 -1Production rate (molecules - cn -s- ) and percent o f total nroduction

Altitude, km *28 X K35 X K26 X J6 X KUO X Total X

10 9.281 El 49.74 5.234 El 28.05 3.296 El 17.66 8.466 EO 4.54 1.163 E-2 -  1.866 E2 100.00

5 7.921 E2 74.21 1.170 E2 10.96 1.536 E2 14.39 4.617 EO 0.44 2.001 E-4 -  1.067 E3 100.00

0 8.417 E3 S4.56 5.958 E3 38.62 1.050 E3 6.81 1,943 EO 0.01 3.924 E-4 -  1.543 E4 100.00

Destruction frequency (s"1) and percent o f total destruction

Altitude, km J4 % K32 % J5 X K30 X K31 X KU3 X Total X

10 9.107 E-3 72.65 1.013 E-3 8.08 2.246 E-3 17.92 1.686 E-4 1.35 1.157 E-7 -  5.750 E-U - 1.253 E-2 100.00

5 8.932 E-3 69.56 1.292 E-3 10.06 2.209 E-3 17.20 4.085 E-4 3.18 4.949 E-7 -  1.058 E-9 - 1.284 E-2 100.00

0 8.211 E-3 65.76 2.775 E-3 18.85 2.041 E-3 13.86 1.695 E-3 11.51 3,191 E-6 0.02 1.150 E-8 - 1.473 E-2 100.00

ooo>
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trioxide based on the chemistry described above is approximately 1 minute.

N03 has been measured in the troposphere a t night in s lig h tly  

polluted a ir  in Colorado [98] and during tw ilig h t and at night on the West 

Coast of Ireland in clean a ir  [85 ]. The measurements in Colorado were 

in the range from a few ppt to about 75 ppt depending on the background 

Tevel of NOg. The measurements of NOg at Loop Head, Ireland, were always 

below the detection lim it  regardless of the level of NOg- Most of the 

nitrogen trioxide concentrations at night were in the 2 to 14 ppt range. 

Two measurements taken ju st at sunrise had exceptionally low detection 

lim its , 0.5 and 0 .8  ppt, respectively. Despite th is , NOg was not 

observed. I t  should be kept in mind that the night time chemistry 

differs  radically from the daytime, and therefore, only the measurements 

during daylight hours can be considered tru ly  representative of a 

photochemical system. As a consequence, only the 0.8 ppt and 0.5 ppt 

measurements have been transposed to Fig. 23 and compared to the model 

calculated NOg p ro files . The surface level concentration of NOg based 

on photochemistry is about 0.2 ppt decreasing to about 0.03 ppt at the 

tropopause. The clean a ir  measurements by P la tt and Perner [85] do not 

exclude these levels o f NOg. At the surface the profiles o f the multiple 

scattering calculations are closely grouped together independent of 

albedo. The enhancement over the Leighton approximation is  about a 

factor of 1.3. In the upper regions of the troposphere the differences 

between the various profiles are more pronounced. Like HNOg the greatest 

enhancement was found for an albedo of 0.00 and the smallest increase 

for a = 1.00. This can be explained from the data in Tables 4 and 5. 

Photolysis provides the largest destruction of NOg and the ratios of 

Jms/ j l  a t tiie t r °P°Pause for an albedo of 0.00 are about 1 .4; for an
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albedo of 1.00 the ratios of Jms/ f r o m  Tables 4 and 5, are approximately

2.6 at the tropopause. Hence, more NOg is  photolyzed, and therefore lo s t, 

when the albedo is high.

4 .2 .8  Amino Radical ( NH )̂

Production: Destruction:

K48: NH3 + OH + NH2 + H20 K54: NH2 + NO + N2 + H20

K47: NHg + 0 (] D) NH2 + OH K53: nh2 + h2 nh3 + H

K46: NHg + 0 + NH2 + OH K55: nh2 + nh2 + n2h4

K49: NHg + H NH2 + H2 K52: NH2 + OH -> NHg + 0

K45: N2H3 + H + 2NH2 K5Q: NH2 .+ 0 HNO + H

K51: NH2 + 0 NH + OH

The amino rad ica l, NHg, is produced by five tropospheric reactions 

and destroyed by s ix . V irtu a lly  a ll amino radicals that are present in 

the troposphere are formed as a result o f ammonia reacting with hydroxyl 

(reaction 48) (see Table 18). The only other production term yielding  

a noticeable contribution is  the reaction o f ammonia with excited oxygen, 

reaction 47, which provides for a minute 0.01 percent of the total NHg 

production. The remaining three terms producing NH2 are between 7 and 17 

orders o f magnitude smaller than the primary production term. The loss 

of NHg occurs prim arily as a resu lt of the reaction of NHg with NO 

(reaction 54) and with H2 (reaction 53). At the surface more than 

81 percent o f a ll NH2 molecules are destroyed due to reaction 54. About

15.5 percent are lost as a resu lt of reaction 53, while 3.25 percent are 

destroyed when NHg reacts with i ts e lf  (reaction 55). At higher a ltitu des, 

the reaction with molecular hydrogen (reaction 53) becomes the predominant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Table 18. Production and Destruction Terms of NHg

•3 -1Production rate (molecules -  cm -s ) and percent o f total production

Altitude, km K48_______ *_______ K47____ %_______ K46 % K49 % K45 % Total %

10 3.744 E2 99.99 3.938 E-2 o.Ol . 2.247 E-5 -  8.305 E-8 -  3.330 E-12 -  3.744 E2 100,00

5 1.619 E3 100.00 2.967 E-2 -  9.721 E-4 -  1.957 E-7 -  6.033 E-13 .  1.619 E3 100.00

0 1.105 E4 100.00 4.055 E-2 -  5.732 E-3 -  9.102 E-7 -  3.931 E-13 _ 1.105 E4 100.00

Destruction frequency (s’ * ) and percent o f total destruction

Altitude, km K54 % K53 %_______ K55 %_______ K52 it K50 % K51 t  ■ Total______ %

10 2.444 E-3 36.10 4.300 E-3 63.51 2.696 E-5 0.39 1.302 E-7 -  3.506 E-8 - 3.506 E-8 - 6.771 E-3 100.00

5 3.119 E-3 28.74 7.650 E-3 70.49 8.319 E-5 0.77 1.906 E-7 -  1.266 E-8 - 1.266 E-8 - 1.085 E-2 100.00

0 6.699 E-3 81.28 1.275 E-3 15.47 2.682 E-4 3.25 2.421 E-7 -  4.615 E-9 - 4.615 Er 9 - 8.242 E-3 100.00

toO
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loss mechanism and the reaction with n itr ic  oxide (reaction 54) becomes 

secondary. Since Hg is well-mixed in the troposphere its  relative  

abundance a t higher altitudes is greater than NO, which decreases fa ir ly  

rapidly with a ltitu de . Consequently, in the mid-and-upper troposphere, 

reaction 53 provides approximately two thirds of the total NHg 

destruction while one third is due to reaction 54. The reaction of NHg 

with i t s e lf  (reaction 55) accounts for less than 1 percent of the total 

NH2 loss in the upper troposphere. The remaining three loss terms are 

between 4 to 6 orders of magnitude smaller than the primary loss 

mechanisms. The photochemical lifetim e of NHg, based on the kinetic 

scheme above, is on the order of a couple of minutes. The vertical 

profiles of NH£ (see Fig. 24) decrease about an order of magnitude from 

the surface to the tropopause. The choice of surface albedo significantly  

affects the NH2 profiles in the lower troposphere. Number density 

enhancements, due to inclusion of multiple scattering, compared to the 

Leighton approximation range from 1.4 for an albedo of 0.00 to 4.2 when 

the albedo is 1.00. In the mid-and-upper troposphere, the choice of 

albedo becomes less significant and the vertical profiles, due to multiple 

scattering, are closely grouped together approximately twice the value 

of the Leighton approximation. No atmospheric measurements of NH2 are 

available. I t  has been postulated that NH2 is lost heterogeneously, but 

this has not been supported by loss rates [21] .

4.2.9 Dinitrogen Pentoxide (NgOg)

Production: Destruction:

K30: N02 + N03 NgOg K35: NgOg -* N03 + NOg

K34: Ng°5 + H2° 2HN°3

J6 : Ng05 + hv + N02 + N03
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The only atmospheric reaction known to produce dinitrogen pentoxide, 

NgOg, is the reaction of nitrogen dioxide with nitrogen trioxide  

(reaction 30). Losses of NgOg include decomposition (K35), reaction of 

NgOg with HgO (reaction 34) and photolysis (06). The decomposition is 

strongly temperature dependent which manifests i t s e l f  in a very rapidly 

decreasing loss frequency with a ltitu d e , see Table 19. At the surface, 

more than 92 percent of a ll NgOg is destroyed by decomposition; in the 

midtroposphere about 54 percent; and a t the tropopause less than 3 percent. 

The reaction of water vapor with dinitrogen pentoxide (reaction 74) 

destroys less than 8 percent a t the surface; about 44 percent a t 

5 kilometers; and almost 50 percent at the tropopause. Photolysis o f 

NgOg (J6 ) destroys only a minute 0.03 percent a t the surface; about 

2 percent in the midtroposphere; and more than 47 percent a t  

10 kilometers. Hence, the loss mechanisms of NgOg are very a ltitude  

depependent. At the surface, the overwhelming path of NgOg destruction 

is  thermal decomposition. In the midtroposphere both decomposition and 

the reaction of HgO with NgOg (reaction 34) are important. At the 

tropopause, i t  is photolysis (J6 ) and reaction 34 that dominate. The 

life tim e  of NgOg is about 15 seconds; thus, the PCE formulation is used.

The vertical profiles generated by the model are shown in Fig. 25. In 

general, the number density o f dinitrogen pentoxide increases with 

a ltitu d e , except at the tropopause. In the lower regions of the 

troposphere, the vertical profiles, calculated with the Anderson-Meier 

code, are closely grouped together independent of the choice of surface 

albedo. This is  not surprising since the primary loss mechanism in the 

low troposphere is decomposition which is a function of atmospheric 

temperature. Above 5 kilometers, there are noticeable differences in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Table 19. Production and Destruction Terms of 

-3 -1Production rate (molecules - cm -s ) and percent o f total production

Altitude, km______ K30_________ %______

10 1.883 El 100.00

5 2.234 E2 100.00

0 6.455 E3 100.00

Destruction frequency (s and percent of total destruction

titud e , km K35 % K34 % J6 % Total %

10 1.487 E-6 2.94 2.500 E-5 49.47 2.405 E-5 47.59 5.054 E-5 100.00

5 5.635 E-4 53.89 4.600 E-4 43.99 2,224 E-5 2.12 1.046 E-3 100.00

0 6.022 E-2 92.31 5,000 E-3 7.66 1.964 E-5 0.03 6.524 E-2 100,00.

<0
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vertical profiles as a function of albedo. In fac t, the number density 

of NgQjj calculated using the Leighton approximation to describe the 

radiation fie ld  is greater than the number densities for the multiple 

scattering calculations with albedos of 1.00 and 0.75. The number 

densities, at the tropopause for albedo in the range 0.00 to 0.50, are 

greater than the Leighton approximation; with the calculation using a 

0.00 albedo, they are enhanced by a factor of 1.5. The reason some 

profiles are greater than the Leighton approximation and others are 

smaller can be understood by inspection of Tables 6 and 19. The ratio  

of the photodissociation frequencies Jms/JL 1S doubled at the tropopause 

for an albedo of 1.00, see Table 6 . As indicated in Table 19, photolysis 

becomes increasingly important with a ltitude, and at the tropopause 

almost half of a ll NgOg molecules are destroyed this way. As a result 

of th is , the vertical profiles for the various albedos are more spread 

out in the upper troposphere. No measurements of NgOg to compare with 

the theoretical calculations have been made.

4.2.10 Imino Radical (NH)

Production: Destruction:

K51: NHg + 0 -> NH + OH K56: NH + NO -*■ Ng + 0 + H

The imino radical, NH is formed by the reaction of the amino
O

radical, NHg, with groundstate oxygen, 0( p ), see Table 20. Some other 

reaction paths for the formation of NH have been proposed, but none has 

been supported by kinetic data [21]. In particular, the reaction of NH 

with Og (reaction 57), which has a proposed rate constant of 6.0E-13, 

has not been included since that rate is probably several orders of 

magnitude too high. At that high of a rate and with the large abundance
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Table 20. Production and Destruction Terms of NH 

-3 -1Production rate (molecules-cm -s ) and percent of total production

A ltitude, km K51 %

TO 4.731 E-3 100.00

5 5.266 E-3 100.00

0 6.175 E-3 100.00

Destruction frequency (s- ^) and percent of total destruction

Altitude, km_______K56___________ %______
10 5.471 E-3 100.00

5 6.980 E-3 100.00

0 1.499 E-3 100.00

VO
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of 02 reaction 57 would, for example, dominate the chemical production 

of N0V. For these reasons reaction 57 has been deleted from the 

chemical scheme.

Destruction of NH occurs as a result of the reaction of n itr ic  oxide 

with the imino radical forming molecular nitrogen, groundstate oxygen, 

and atomic hydrogen (reaction 56). The lifetim e of NH is about 10 minutes, 

hence the PCE formulation was used to calculate its  vertical p ro file .

The imino radical is greatly influenced by multiple scattering and choice 

of surface albedo. The number densities, at the surface, are enhanced by 

a factor of 1.5 for albedo of 0.00 compared to the Leighton approximation; 

for an albedo of 1.00, the enhancement is a factor of about 14 (see 

Fig. 26). Even at the tropopause, there are large differences between 

the profiles obtained with the Leighton approximation and those with the 

more refined m ultiple scattering calculations. There is almost a factor 

of 5 difference for an albedo of 0.00 and more than a factor of 5.5 

difference when the albedo is 1.00. The vertical profiles of NH are
O

strongly dependent on the profiles of NHg and 0( p ), see Figs. 24 and 32, 

respectively. Both groundstate oxygen and the amino radical are enhanced 

when multiple -.cattering is introduced into the radiation calculations, 

and both ccrpounds show large variations in the number densities close 

to the surface as a function o f albedo. These variations are propagated 

into the calculation of the vertical profiles of NH.

4.2.11 Nitroxvl Radical (HNO)

Production: Destruction:

K50: NHg + 0 HNO +  H K59

K61

K62

HNO + 0g  -* NO + H0g 

HNO + H -*■ NO + Hg 

HNO + HNO +  NgO +  HgO
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The nitroxyl rad ical, HNO, is formed by the same reactants that 

produced NH, and, at the same rate. Only the end produces vary between 

reactions 50 and 51. Chemically, HNO is lost by three reactions, but 

the primary destruction path (reaction 59) to ta lly  dominates the loss 

mechanism of HNO. In fa c t, this reaction is anywhere from 13 to 16 

orders of magnitude larger the minor loss mechanisms (reactions 61 and 

62) (see Table 21). The life tim e of the nitroxyl radical based on the 

scheme above is about 10 seconds, well ju stify ing  the PCE assumption.

The reaction of the nitroxyl radical with molecular oxygen is reportedly 

endothermic and should therefore occur very slowly in the atmosphere [ 21] .  

The fact that this reaction dominates the destruction of HNO is due to 

the large abundance of molecular oxygen. The vertical profiles of HNO 

are very s im ilar to the NH profiles (see Fig. 27). In fa c t, i f  the 

horizontal scale is shifted approximately an order of magnitude, the HNO 

profiles form almost a perfect overlay to the NH pro files. Since both 

NH and HNO are formed by the same reactants and at identical rates, th e ir  

vertical profiles should be nearly iden tica l. At the tropopause, some 

small differences in the profiles of NH and HNO are noticeable. This is 

due to the loss terms. The nitroxyl radical is destroyed prim arily when 

i t  combines with molecular oxygen, which has a constant mixing ra tio .

The imino rad ical, on the other hand, is lost when i t  reacts with n itr ic  

oxide which does not have a constant mixing ra tio , but rather decreases 

with a ltitu d e .

4.2.12 Hydrazine Derivative (NgHg)

Products: Destruction:

K42: N2H4 + H -»■ NgHg + W? ' K45: N2H3 + H -*■ 2NH2

K44: N2H3 + N2H3 + N2H4 +
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Table 21. Production and Destruction Terms for HNO

-3 1Production rate (molecules-cm -s" ) and percent of total production 
Altitude, km K50 %

10 4.727 E-3 100.00

5 5.266 E-3 100.00

0 6.185 E-3 100.00

Destruction frequency (s~^) and percent of total destruction

tude, km K59 % K61 % K62 % Total % ■

10 3.775 E-2 100.00 9.250 E -l5 - 9.968 E-16 - 3.775 E-2 100.00

5 6.715 e-2 100.00 1.159 E -l4 - 6.244 E -l5 - 6.715 E-2 100.00

0 1.119 E-l 100.00 1.428 E -l4 - 4.400 E-16 _ 1.119 E^l 100.00

O
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In order to complete a very detailed ammonia package two rather 

obscure hydrazine derivatives, NgHg, and N2H2 were included. The f ir s t  

compound, H2H3 are formed when hydrazine reacts with atomic hydrogen 

(reaction 42). Two loss terms are specified for N2H3. The reaction with 

H (reaction 45) dominates near the surface while the reaction of N2H3 

with i t s e l f  (reaction 44) is the predominant loss in the upper troposphere, 

(see Table 22). The calculated lifetim e for NgHg is very long, about
3

1.5 x 10 years. I t  is clear that unidentified chemical processes, and 

possible also heterogeneous mechanisms, must affect NgH .̂ The vertical 

profiles of N2H3 are very sim ilar looking to the hydrazine profiles  

(see Fig. 28), and the same reasoning for the variations in the profiles  

apply here. The choice of lower boundary condition was arrived a t in a 

sim ilar way to the lower boundary condition for NgH .̂ At the upper 

boundary, a condition of zero flux was used.

4.2.13 Hydrazine Derivative (N2H2)

Production;

K44: N2H3 + N2H3 N2H2 + N2H4

The second hydrazine derivative, H2H2, is formed when N2H3 reacts 

with i t s e l f  yielding hydrazine in addition to N2H2 (reaction 44) (see 

Table 23). No destruction mechanisms have been postulated for N2H2 

although clearly some must ex ist. Since N2H2 only has a production term 

its  atmospheric abundance in the troposphere w ill basically be a constant 

mixing ra tio  with the possible exception near the lower boundary, where 

the boundary condition must again be assign somewhat a rb itra r ily . The 

main advantage of including N2H2, therefore, is that i t  can be used as a
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Table 22. Production and Destruction Terms for 

-3 -1Production rate (molecules - cm -s ) and percent of total production

Altitude, Km______ K42_________ %
10 5.038 E-6  100.00

5 2.110 E-6 100.00

0 3.360 E-6  100.00

Destruction frequency (s- ^) and percent of total destruction

tude, Km K45 '% K44 % Total %

10 1.114 E -ll 2.72 3.985 E-10 97.28 4.096 E-10 100.00

5 1.391 E -ll 2.35 5.782 E-10 97.65 5.921 E-10 100.00

0 1.713 E -ll 84.84 3.060 E -l2 15.16 2.019 E -ll 100.00
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tracer to ensure that the numerical techniques of the problem are 

operating correctly . The model generated profiles of are given in 

Fig. 29.

4 .2 .14 Future Perturbations to the Nitrogen Budget

Most of the concern over future perturbations to nitrogen species 

have centered around two issues: The global increase in the useage of 

nitrogen based fe r t i l iz e r s  and subsequent n itr i f ic a t io n , d en itrifica tio n  

and vo la tilza tion  gas production, and the increasing industrial output 

of NO . Biological systems are unable to use nitrogen species with a'A
double bond, e .g . ,  Ng as nutrients. Instead, single bonded nitrogen 

species such as ammonia, NH^, ammonium, NH ,̂ n itra te , NOg and n i t r i t e ,

NOg are applied to agricultural fie lds as fe r t i l iz e r s . The process of 

forming single bonded nitrogen species is known as nitrogen fixa tio n .

The opposite of th is , i . e . ,  production o f double bonded nitrogen species 

in the soil by bacteria and other microorganisms, is called  

d e n itrific a tio n . The increase in crop yields during the la s t few decades 

as a result of advances in agricultural technology has been impressive. 

Some of these techniques include irr ig a tio n , selection of higher y ie ld  

stra ins , application of herbicides and insecticides and la s t, but not 

leas t, the increased application of fe r t i l iz e r s . The adverse effects of • 

indiscriminate use o f pesticides are well documented, e .g . ,  DDT and 

Kepone, but only recently has the effects of large and widespread use 

of fe r t i l iz e rs  been considered.

In 1959, the amount of nitrogen fixation  due to f e r t i l iz e r  use was

3.5 m illion tons per year (3 .5  M t/yr). In the 1974, this had increased 

to 40 M t/yr and has been projected to reach 200 Mt/yr by the year 2000 

[70 ]. The natural fixa tion  o f nitrogen in the soil which occurs due to
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a c tiv itie s  of micro-organisms has been estimated to be 44 Mt/yr in one 

study [99] and 175 Mt/yr in another [100]. The marine biosphere is thought 

to f ix  10 Mt/yr [101]. Regardless of which estimate of nitrogen fixation  

in the land biomass that is used, by the turn of the century anthropo­

genic input w ill exceed the natural cycle. The effects of this massive 

f e r t i l iz e r  application are at least two fo ld . Large amounts of the 

ammonium n itra te  fe r t i l iz e rs  that are applied are vo la tilized  rapidly 

and diffuse upward. During extreme conditions, as much as 50 percent of 

the fe r t i l iz e r  is emitted into the troposphere in gaseous form, and, thus, 

from an agricultural point of view this portion of the fe r t i l iz e r  is 

useless [63]. The tropospheric effects of ammonia fluxes have recently 

been discussed by Levine et a l . ,  [11, 102]. The second effect is that 

the large levels of fe r t i l iz e r  input w ill increase the rate of 

bacterial d en itrifica tio n  which causes larger amounts of nitrous oxide,

NgO, to be produced and emitted into the atmosphere. This species 

diffuses upward into the stratosphere where i t  reacts with the excited 

oxygen atom, 0(^D), forming two n itr ic  oxide molecules. This in itia te s  

a cata lytic  cycle o f ozone destruction in the stratosphere. Naturally, 

any large-scale perturbation of the stratosphere would propagate into  

the troposphere.

The anthropogenic emissions of NO are currently about 20 M t/yr[70].A
As discussed in Section 4 .2 .3 , the anthropogenic emissions of N0X are 

greater than the natural. The man-made emissions of NO are primarilyA
in the form of M0 which is formed during high-temperature combustion.

The N0X species are active participants in the formation of HNOg which 

is one o f'the  components o f acid ra in . Another species o f the nitrogen 

group, NHg plays an important role in controlling the ac id ity  of the 

troposphere, since it -  is the only common base in the atmosphere.
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4.3 The Oxygen Group

Only four species are members o f this group. Despite th is , there 

is a large degree o f v a ria b ility  between the individual species, both 

in terms of th e ir  lifetim es and th e ir  concentrations. For example, 

molecular oxygen has a Tong life tim e , on the order of millions of years 

and is very abundant with an atmospheric concentration of almost 21 percent 

The excited oxygen atom [O ^D )] on the other hand, has a very short
_ q

life tim e  (10 seconds), and a low number density. Other members o f the
O

oxygen group are ozone and groundstate oxygen, [0( p)J. Photolysis of 

ozone in itia te s  most of the tropospheric photochemistry, and consequently, 

0( p) is a pivotal molecule in the atmosphere. The reaction paths of the 

oxygen family are shown in Fig. 30.

4.3.1 Molecular Oxygen (Og)

Molecular oxygen, Og, is the second most abundant species in the 

Earth's atmosphere comprising about 20.9 percent. The atmospheric
g

life tim e  of Og is on the order of 10 years, although there are two 

separate time scales involving oxygen. One is a fa ir ly  short time scale 

that involves the exchange of oxygen between the biosphere and the 

atmosphere. This occurs as a result of photosynthesis, respiration and 

oxidation of dead organic carbon. The longer of the two time scales 

involves a cycling of oxygen between the atmosphere and the lithosphere.

The characteristic time constant for this cycling is very long indeed, 

on the order o f several m illion years. The early  atmosphere had only

trace amounts of oxygen compared to the present level of nearly 21 percent.

The chronology for the rise of atmospheric oxygen, and hence ozone, has 

been the subject of intense studies [103J. The most recent investigations
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of the evolution of oxygen are those of Kasting and Donahue [104] and. 

Levine e t a l . ,  [105]. I t  has been calculated that only a 3 percent 

decrease in the 0g level would result i f  a ll fossil fuel reserves were 

burned [106]. Furthermore, i f  a ll photosynthetic a c tiv ity  ceased and 

respiration o f man and animals continued a t the present le v e l, only a 

fraction of the to ta l amount of oxygen would be destroyed [107]. Thus, 

i t  would appear that the present level of atmospheric oxygen is fa ir ly  

stable.

In a sense, oxygen can be regarded as the greatest pollutant in  

the history o f the Earth. The te rre s tia l atmosphere changed from a 

chemically reducing one to an oxidating one with profound implications 

for biological evolution.

4 .3 .2  Ozone (0^)

Ozone, which is the molecule that in it ia te s  a great deal o f

tropospheric photochemistry, is calculated somewhat d iffe ren tly  than most

of the other species in this study. Ozone is included as a part of odd 
3 1oxygen (03, 0( p ), and 0( D)), and formulated s im ilarly  to the expressions 

given by Chameides and Walker [ 6] and by Stewart e t a l . ,  [7J. The 

steady-state equation for ozone is given by

where the J's and K's re fer to photodissociation frequencies and reaction 

rates in Tables A .l and A.2 respectively. For groundstate oxygen the 

expression would be

0. = K36 [0 ] [02] [M] -  [03] + K29 [NO] + K38 [OH]

+ K39 [H02] + K103 [SO]
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0 = K18 [OH] 2 + K37 [0 (1D)3 [M] + K52 [NHg] [OH] + K75 [CS] [Og] 

+ K76 [S] [02] + J2 [03J + J3 [NOg] + J4 [NOg]

+ K68 [SO] [Og] + K56 [NH] [NO] -  0 (3p) j K36 [Og] [M]

+ K46 [NHg] + K46 [NHg] + K50 [NHg] + K51 [NHg] + K65 LHS]

+ K70 [CSg] + K71_[CS2] + K72 [CSg] + K73 [CS] + K81 [SOg]

+ K94 [CHgSHJ + K95 [CHgSH] + K98 [CHgSCHgJ + K99 [CH3SCH3]

+ K101 [COS] + K102 [HgS] + K104 [SOg] [M] + KUO [HNO3] I  .

*1 *
For the excited oxygen atom, 0 ( D ) ,  the equivalent expression would be

0 = J1 [O3J -  0 (1D) [ K2 [CH4] + K16 [HgO] + K17 [Hg] + K37 [M] ’

+ K43 [CH4] + K47 [NH3]].

The ra tio  o f [0( p)]/[O g] called f-j, can then be written as 

^1 = [0 ( 3p ) ] / [ 03] where f-j is given by

^  = (l<28 [NOg] + K29 [NO] + K38 [OH] + K39 [HOgJ + K103 [SO]

+ J1 + J 2 )/ K36 [Og] [M]

S im ilarly , the ratio  Of [0 (^ D )]/[0 g ], denoted fg , is written in the form 

f 2 = C0(1D )3/[03] .  with fg expressed as fg = 01/ ̂ K2 [CH^] + K16 [HgO]

+ K17 [Hg] + K37 [M] + K43 [CH^] + K47 [NHg|. Since the concentration

of ozone is-very dependent of the cycling of odd nitrogen, see 

discussion in Section 4 .2 .3 , i t  is necessary to define a ra tio  , F, 

which is an expression for the fraction o f nitrogen dioxide molecules 

that is destroyed by photolysis, i .e .

F - c p ^ t
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The complete expression for F is

F = J3 / ( j 3  + K23 [H02] + K28 (03] + K30 [N O g] + K33 [N O ] [H g O ] 

+ K69 [S O ]).

The destruction of nitrogen dioxide is  dominated by photolysis, 

consequently the fraction, F, is typ ically  near unity. Values of F 

range from 0.95 to 0.99 depending on a ltitu de . Hence, the abundance of

ozone can be calculated according to

[Q g ] = [ j 4  [N O g] +  J6 [N 2 0 5 ]  +  J7  [HNOg] +  LNO] (l<8 [CHgOg]

K22 [H0g]+ 2 K32 [NOg]) + K35 [NgOgj + K44 [HNOg] [OH]]

F /  fg [K2 [CH4 ]  + K16 [H g O ] + K17 [H g ]  + K37 [M]

+ K43 [CH4 J + K47 [N H g ] ] + K28 [N O g] + K38 [O H ]

+ K39 [H O g] + K103 [S O ] + K29 [N O ] (1-F).

The numerator contains the terms that produce NOg and are multiplied by 

the fraction that is photodissociated. The denominator contains the 

terms that destroy odd oxygen, 0 ; in addition, reaction 29 must be
X

included. The term K29 [NO]C1-F) expresses the destruction of odd 

oxygen due to n itr ic  oxide molecules that are formed by processes other 

than photolysis of nitrogen dioxide.

Because of the central role ozone occupies in tropospheric

photochemistry, most of the early studies concentrated on this molecule. 

The classical view of tropospheric ozone contended that Og is essential 

in ert in this region and is transported down from the stratosphere by 

intrusion [108, 109]. During the las t decade, several studies have 

suggested that ozone is photochemically very active in the troposphere 

[6 , 20, 110, 111]. Some studies have suggested that the troposphere is
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a region where ozone is photochemically produced [112]. Another study 

suggests that additional sources augment the photochemical levels of 

O3 [7 ] ,  while yet other studies contend that ozone is photochemically 

lost in the troposphere [20, 111], Photochemical production of ozone 

maximizes fo r an NO level of 0.5 ppb. For high NO levels the photo-
X X

stationary state equation, discussed in Section 4 .2 .3 , dominates the 

cycling of odd oxygen. For NO levels between 0.5 to 1.0 ppb the level 

of Og is decreased because odd hydrogen, H0X, reacts very e ffic ie n tly  

with odd nitrogen, NO [7 ]. At very low levels o f N0V , i t  is not
A X

possible to photochemically produce ozone [113]. Fishman e t a l . ,  [112] 

c r it ic a lly  assessed the photochemical production of tropospheric ozone 

as a function of NO concentration and found that the level of n itr ic  

oxide determines the concentration of ozone in the troposphere since 

03 is formed when a peroxy rad ica l, ROg, converts NO to NOg. S p ecifica lly , 

i t  was determined that the "c r it ic a l level" o f NO is about 10 ppt. Below 

this level peroxy radicals pre ferentia lly  react with Og rather than NO, 

thus, enhancing the ozone destruction. At NO concentrations exceeding 

10pptv, peroxy radicals react with NO more often than with Og, which 

results in conversion to NOg and la te r  enhanced levels of ozone. Obviously, 

the background level of NO is a key parameter in determining the photo-
A

chemistry of ozone. Some of the early NO measurements, see discussion
A

in Section 4 .2 .3 , indicated background levels in the ppb [79].

Subsequent measurements yielded concentrations on the order of 0.1 ppb, 

while the most recent measurements o f NO resulted yet lower concentrations, 

on the order o f a few parts per t r i l l io n  by volume (pptv) [84, 85, 87].
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The dialogue of in s itu  production, destruction and transport of 

tropospheric ozone was recently rekindled in a paper by Singh e t a l . ,  

[113]. This paper argues that most o f the ozone that is present in the 

troposphere is stratospheric in origin and is transported downward by a 

mechanism known as tropopause folding. Furthermore, they point out that 

the vertica l gradient of ozone is  consistent with a downward transport 

of Og from the stratosphere. F in a lly , they note that the seasonal 

v a ria b ility  of ozone is  out of phase with the solar f lu x , i . e . ,  ozone 

concentrations tend to maximize in the springtime while the maximum 

amount of solar flu x , and therefore, greatest photochemical e ffic iency , 

occurs during the summer. The question of whether ozone in the tropos­

phere is produced photochemically in the troposphere or is stratospheric 

in origin cannot be settled  until the important precursor NO has beenA
measured more extensively in clean, background tropospheric a ir .  In

p articu la r, vertical profiles  of the concentrations of odd nitrogen are

highly desirable. Ozone concentrations are monitored routinely at many

stations throughout the world. However, most of these stations are

located in large, metropolitan areas with a high degree of a ir  pollution

and hence, have a photochemistry that is d ifferen t from the more

pristine  background tropospheric a ir .  Some measurements of Og, even

vertical p ro file s , of clean tropospheric a ir  are available (see Fig. 31).

Both the measurements by Krueger and Minzner LH4] and Chatfield and
11 3Harrison [115] are generally between 6-10 x 10 molecules-cm . The 

average o f measurements a t 2.0 and 5.5 km by Routhier e t a l . ,  [116] are 

also in tha t range, while the vertical p ro file  by Routhier e t a l . ,  

has a steeper gradient than those by Kreuger and Minzner and Chatfield  

and Harrison. In the present study, the number density of ozone was held 

constant a t 7x5 x 1011 molecules-cm" 3 a t the surface and 10 x lO1^
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_3
molecules cm a t the tropopause. Inclusion of multiple scattering and 

surface albedo to the calculations of the radiation f ie ld  causes 

drastic changes compared to the p ro file  calculated using the Leighton 

approximation. With the Leighton approximation a gradual increase from
11 3

7x5 x 10 molecules of 0-. per cm (corresponding to 29 ppbv) at the
11 3

surface to 10 x 10 Og molecules per cm (corresponding to 116 ppbv) 

at the tropopause is obtained. The vertical profiles o f the multiple 

scattering calculations, on the other hand, minimize at four kilometers 

and are generally lower than the Leighton approximation. I t  should also 

be noted that the selection o f a particu lar value of the surface albedo 

has less of an e ffec t than using the more detailed treatment of the 

radiation equation has in the f i r s t  place. I t  should come as no surprise 

that the ozone concentration decreases when a multiple scattering routine 

is used. The photolysis of Og, processes J1 and J2, become more e ffic ie n t  

and furthermore, the enhanced levels o f OH and HOg cause a further . 

decrease in the Og concentration. The hydroxyl and hydroperoxy radicals 

have together along with surface deposition been id en tified  as the major 

loss mechanisms for ozone [9 ].

4 .3.3
3

Atomic Oxygen [0( p)1

Production: Destruction:

02 : Og + h v  -> 0 +  Og K36: O + Og + M + Og + M

K37: 0 (1D) + M -► 0 + M K99: 0 + CHgSCHg + CHgS

J3 : NOg +  hv  0 + NO K70: 0 + CSg + SO + CS

K68 : SO + Og + 0 + SOg K71: 0 + CSg s + COS

J4 : NOg +  h v  -»■ 0 +  NOg K72: 0  +  CSg -*■ Sg + CO
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K 75: CS + Og -*■  o +  COS K 10 4 : 0 + SOg +  M -»■ S 03  +  M

K 19: OH +  OH +  0  +  HgO K 102: 0 + HgS HS +  OH

K 76 : S +  Og +  0  +  SO K 10 1 : 0 + COS SO +  CO

K 52: NHg +  OH +  0  +  NHg K50 : 0 + NHg HNO +  H

K 56: NH +  NO -*• 0  +  Ng + H K51 : 0 + NHg ^  NH +  OH

K46 : 0 + NH3 -v NHg +  OH

K98 : 0 + c h 3s c h 3 c h 3 so  +

K 11 0 : 0 + HN03 ■+ N 03 +  OH

K94 : 0 + CH3SH +  CH3 +  HSO

K95 : 0 + c h 3 s h  c h 3s o  +  H

K96 : 0 + CH3SH CH3 S0H

K81 : 0 + SOg -»■ SO +  Og
0

K65 : 0 + HS +  SO +  H

2
Groundstate atomic oxygen, 0( p ), is produced by a total of ten 

reactions and destroyed by nineteen. However, o f the ten reactions that 

produce groundstate oxygen only three are of real importance. Atomic 

oxygen is produced prim arily by ozone photolysis a t wavelengths greater 

than 320 nm. This process accounts for approximately 97 percent of a ll 

tropospheric 0( p) that is produced (see Table 24). Between two and 

three percent of atomic oxygen production is due to quencing of the 

excited oxygen atom 0(^0) in the presence of a th ird  body, reaction 37. 

Photolysis of nitrogen dioxide, NOg, produces about 1.75 percent of a ll 

0 ( p) atoms at the surface, decreasing to 0.1 percent a t the tropopause. 

The remaining seven reactions, that produce groundstate atomic oxygen, 

are anywhere from four to eleven orders of magnitude smaller than the 

primary path of 0( p) production. A to ta l of 19 reactions contribute to 

the destruction of 0 ( p ), but nearly a ll of the destruction occurs by
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3
Table 24. Production Terms of 0( p)

-3 -1Production rate (molecules -  cm -s ) and percent of total production

A lti tude, km 02 % K37 % 03 % K68 % 04 % K75 %
10 3.388 E8 97.11 9.693 E6 2.78 3.962 E5 0.11 8.804 El - 1.107 E3 - 2.083 El

5 2.952 E8 97.43 6.884 E6 2.27 9.111 E5 0.30 4.207 E2 - 4.685 E3 - 1.972 El -

0 2.287 E8 96.81 4.152 E6 1.76 3.378 E6 1.43 6.471 E4 - 3.127 E4 1.677 El -

A lti tude, km K19 % K76 % K52 % K56 % Total %

10 1.813 E0 4.998 E-l 1.755 E-2 - 5.016 E-3 - 3.469 E8 100.00

5 5.140 E0 4.735 E0 7.929 E-2 - 5.421 E-3 - 3.030 E8 100.00

0 1.033 El 4.025 E0 3.247 E-l - 6.188 E-3 - 2.362 E8 100.00

r o
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Table 24 (Concluded) Destruction Terms of 0 (3p) 

Destruction frequency (s~^) and percent of total destruction

Altitude, km K36 2 K99 2 K70 2 K71 2 K72 2 K104 2 K102 2

10 1.776 E4 100.00 2.673 E-6 .— 2.181 E-3 — 2.594 E-4 — 2.594 E-4 — 2.017 E-7 _ 6.848 E-9 —

5 4.243 E4 100.00 4.600 E-4 — 5.638 E-3 — 6.766 E-4 — 6.766 E-4 — 3.579 E-6 — 3.821 E-7 —
0 9.170 E4 100.00 6.426 E-l — 1.314 E-2 — 1.577 E-3 — 1.577 e-3 — 2.190 E-4 — 1.344 E-4 —

Altitude, Km K101 2 K50 2 K51 2 K46 2 K98 2 K110 2 K94 2

10 4.654 E-4 — 2.426 E-7 — 2.426 E-7 — 1.153 E-8 — 3.659 E-15 — 1.530 E-7 — 1.448 E-16 —
5 2.895 E-5 — 7.488 E-7 — 7.488 E-7 — 1.382 E-7 — 1.225 E -ll — 3.060 E-7 — 4.845 E-13 —
0 1.294 E-4 — 2.414 E-6 — 2.414 E-6 — 2.235 E-6 — 1.224 E-6 — 4.590 E-7 — 4.845 E-8 —

Altitude, km K95 2 K96 * K81 2 K65 2 K73 • 2 Total 2

10 1.488 E-16 — 1.488 E-16 — 1.305 E-20 — 5.008 £-14 — 2.781 E-17 — 1.776 E4 100.00

5 4.845 E-13 — 4.845 E-13 — 2.121 E-17 — 1.795 E-13 — 1.481 E-17 — 4.243 E4 100.00

0 4.845 E-8 _ 4.845 E-8 _ 4.129 E -ll _ 1.945 E -ll _ 7.550 E-18 _ 9.170 E4 100.00
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reaction of atomic oxygen with molecular oxygen in the presence of a 

th ird  body forming ozone (reaction 36). In fac t, so dominating is this 

one term that the next largest destruction term is five  orders of
O

magnitude smaller a t the surface. The remaining 17 loss terms of 0( p)

are anywhere from five  to as much as 24 orders of magnitude smaller than

the primary destruction term. The life tim e of groundstate oxygen is 
-5about 10 seconds based on the chemistry described above. The vertical 

profiles o f atomic oxygen are presented in Fig. 32. The level of 0( p) 

is  enhanced only s lig h tly , about 10 percent at the surface for an albedo 

of 0.00. For an albedo of 0.25 the groundstate atomic oxygen concentra­

tion is increased by a factor of 1.5 compared to the Leighton 

approximation. An albedo of 0.50 approximately doubles the abundance of 

0( p ), while a factor of 2.7 increase is obtained a t the surface for an 

albedo of 0.75. F in a lly , for a surface that is a perfect re flecto r,

i . e . ,  the albedo is 1. 00 , the surface concentration of groundstate 

oxygen is increased by a factor of 3.4. At the tropopause, a trend 

sim ilar to that a t the surface is noticed with the exception that the 

multiple scattering cases with low albedos are enhanced more than the 

corresponding factor a t the surface. There are no measured troposphere 

values o f 0 ( p) available to compare with the theoretical calculations.

4 .3 .4  Excited Oxygen Atom 0(^D)

Production: Destruction

J l: 03 + hv -»■ 0 (1D) + 02 K37

K16

K2

0 (1D) + M + 0 (3p) + M 

0 (1D) + H20 -► 20H 

O^D) + CH4 + CH3 + OH
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K17: 0 (] D) + H2 H + OH

K41: 0 (] D) + CH4 CH20 + H2

K47: 0 ( ] D) + MH3 ^ NH2 + OH

The excited oxygen atom 0(^D) which plays an important role in

tropospheric photochemistry is only produced when ozone is photolyzed

in the spectral range 300 to 320 nm (see discussion in Chapter 2,

Section 2 ). The 0(^D) atom derives its  importance from the fact that

0(^D) reacts with water vapor and produces hydroxyl radicals, which in

turn determines the levels of mzny tropospheric gases. The majority

of the excited oxygen atoms are destroyed by quenching in the presence

of a th ird  b'ody, M (reaction 37). At the surface approximately

88 percent is lost by quenching and in the mid-and-upper regions of the

troposphere about 97 percent is deactivated this way (see Table 25).

The very important reaction of 0(^D) to H20 (reaction 16) accounts for

about 12 percent of the total loss o f 0(^D) at the surface. In the

upper regions of the troposphere this reaction is responsible for

approximately 3 percent of the total 0(^D) loss. The reason that

reaction 16 is proportionally much larger a t the surface than a t higher

altitudes is a result of the re la tive ly  high number density of water

vapor molecules close to the surface compared to higher altitudes. The

amount of water vapor in the atmosphere is of course dependent on the

temperature and with a rapidly decreasing temperature, gradient,

-6 .5  K km "\ the amount of water vapor decreases rapidly. The remaining

four destruction mechanisms, for 0(^D) are between 5 and 8 orders of

magnitude less important than the primary loss mechanism. The calculated
-9lifetim e of excited oxygen is  very short, about 10 seconds. Larger
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Table 25. Production and Destruction Terms of 0(^0)

3 -1Production rate (molecules - cm -s ) and percent of total production

Altitude, km J1________ X

10 9.713 Efi 100.00
5 7.109 E6 100.00
0 4.736 E6 100.00

Destruction frequency ) and percent of total destruction

Itltude, km K37 X K16 X K2 *  K17 *  K41 % M? X Total X

10 2.752 E8 97.24 7.820 E6 2.76 1.077 E3 — 4.257 E2 — 1.806 E2 . .  1.118 E0 — 2.830 E8 100.00
5 4.896 E8 96.64 1.702 E7 3.36 2.984 E3 -  7.574 E? — 3.213 E2 . .  2.110 E0 — 5.066 E8 100.00
0 8.160 E8 87.65 1.150 E8 12.35 4.973 E3 — 1.262 E3 — 5.355 E2 „  7.970 E0 - - 7.970 E8 100.00

N
cn
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differences between the Leighton approximation and the multiple scattering 

calculations are observed for 0(^D) than for any other molecule. As 

mentioned previously, scattering is strongly wavelength dependent, i . e . ,  

the shorter the wavelength the more sign ificant scattering becomes. The 

production o f Of1D) occurs only at wavelengths between 300 to 320 nm, • 

i . e . ,  the u ltra v io le t end of the spectrum. Consequently, large 

differences in the vertical profiles  of 0(^D) w ill occur depending on 

the treatment o f the radiation f ie ld . The number density of 0(^D) a t the 

surface is approximately doubled for the multiple scattering case with 

albedo o f 0.00 compared to the Leighton approximation (see Fig. 33).

For an albedo of 0.25 this ra tio  is s lig h tly  more than trip led  and when 

the albedo is 0.50 the ra tio  is nearly 4 .5 . A factor of six increase 

results when the surface albedo is 0.75 and an albedo of 1.00 yields a 

factor o f 8.5 increase. In the upper troposphere the vertical profiles  

calculated with the multiple scattering code are enhanced by factors 

varying from 4.3 fo r a 0.00 albedo to 5.6 when the albedo is 1.00.

There are no measurements o f tropospheric 0(^D) to compare the 

theoretical calculations with.

4 .3 .5  Future Perturbations to the Oxygen Budget

As mentioned in Section 4 .3 .1 , i t  would appear as though the most 

abundant species o f this group, 02 » w ill not be altered s ign ificantly  

due to any potential perturbations in the future. The second most 

abundant oxygen species ozone, however, could possibly undergo 

substantial modifications due to anthropogenic a c tiv ity . Much of the 

early in terest in stratospheric photochemistry centered around the 

issue of ozone depletion due to jet-engine emissions [117] and
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ca ta ly tic  03 destruction in itia te d  by the upward diffusion of 

chlorofluoromethanes commonly called Freons [118]. Although ozone is 

a so called "trace gas", i . e . ,  i t  is  present in only minute quantities, 

i t  absorbs the potentia lly  harmful radiation in the spectral range 280 

to 320 nm. This wavelength region is commonly referred to as the UV-B, 

where B stands for biological [119]. Most biological processes, 

although not a l l ,  are very sensitive to the amount of radiation that is 

f ilte re d  through the UV-B part of the spectrum. Even re la tive ly  small 

changes in total radiative flux in this spectral region could have a 

s ign ificant impact on many ecological systems. This can easily.be  

appreciated by comparing so-called "biological action spectra" to the 

amount of 03 absorption in the UV-B. Many biological organisms and 

functions have action spectra that are v irtual overlays to the ozone 

absorption. Examples o f this are deoxyribonucleic acid (DNA) and 

erythema (sunburn). The fact that DNA molecules, the building blocks 

of l i f e ,  are sensitive to radiation in the same region that ozone is a 

strong absorber has great implications for the development and evolution 

of l i f e .  In the primordial atmosphere oxygen and ozone were present in 

only very minute fractions and nearly a ll radiation in the UV-B region 

reached the surface o f the Earth. As the atmospheric level o f oxygen 

started to ris e , so did the level o f ozone and consequently more of the 

UV-B radiation was shielded from the surface by 0^ absorption. I t  has 

been calculated that the present day ozone layer has a shielding e ffec t 

equal to a water column of 10 meters depth. Thus, l i f e  would have had 

to originate deep in water and migrate on to land as the ozone layer 

started to grow. I t  should be pointed out that some prim itive organisms
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have a repair mechanism whereby they are able to repair damage cause by 

elevated levels of UV-B radiation [120]. This would then o ffe r an 

a lternative  path to biological evolution. I t  is very evident that the 

lessons leaped  from atmospheric evolution must be kept in mind when 

anthropogenic modifications are discussed. Calculations have shown that 

a 2 percent increase in skin cancer would occur fo r each on percent 

reduction in to ta l ozone [121]. There is also evidence that this 2:1 

ra tio  would not maintain its  lin e a r ity  i f  a sizeable fraction of the 

to ta l ozone is depleted. Other radiative effects due to altered levels 

of ozone would occur as a result o f the ozone absorption in the 9.6 ym 

region, which is  in the so-called "atmospheric window region" o f 8 to 

12 ym. In addition to the radiative changes of 03 the photochemistry 

would also be altered since ozone photolysis produces the excited 

oxygen atom, 0(^D), which subsequently, reacts with water vapor to 

form hydroxyl radicals, OH. In Section 4 .4 .5  i t  w ill be shown how the 

abundance of OH controls the level of many tropospheric gases.

4.4 The Hydrogen Group

This family of species consists o f six gases with lifetim es  

ranging from 10”  ̂ seconds for atomic hydrogen (H) to 10 years for 

molecular hydrogen (Hg) and abundances varying from several percent for 

water vapor to a mixing ra tio  o f 10“^  fo r atomic hydrogen. In addition 

to water vapor, some other key tropospheric gases, such as the hydroxyl 

radical (OH) and hydrogen peroxide (HgOg) are members of this group.

The importance o f the hydroxyl radical on tropospheric photochemistry 

can easily  be understood by realiz ing  that 35 percent of a l l  chemical
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reactions included in this model involve these species. Hydrogen 

peroxide is believed to contribute to acid rain and is therefore, of 

considerable in teres t. A strong correlation between the concentration 

of hydrogen peroxide and acid ity  in rainwater has been observed. The 

reaction paths for the hydrogen species are shown in Fig. 34.

4.4.1 Water Vapor (HgO)

The tropospheric abundance of water vapor (HgQ) is highly variable. 

The concentration o f HgO is a strong function of latitude and season.

In this study an average concentration of the values of January and July 

in the U.S. Standard Atmosphere Supplements (1966) [28] a t 30°N la titu de  

was used. Water vapor is somewhat o f an anomaly. In general, the 

longer the life tim e  of an atmospheric species, the more in ert i t  is .

Water vapor is  a re la tive ly  abundant tropospheric species and ye t, i t  

has only a moderately long life tim e . The reason for this is that water 

vapor is continuously emitted into the troposphere by evaporation.

Water vapor lik e  other gases exerts a vapor pressure. Sometimes the 

vapor pressure of water vapor is referred to as the partia l pressure of 

HgO. Under normal atmospheric conditions the vapor pressure of HgO is 

below the saturation vapor pressure. When the saturation vapor 

pressure is  reached, or exceeded, cloud droplets w ill form and precipi­

ta tion  may occur. In some cases supersaturation can occur and 

precipitation w ill not fa l l  despite the fact that the vapor pressure 

of HgO has exceeded the saturation vapor pressure. The saturation 

vapor pressure is a function o f temperature only. Thus, the tropos­

pheric d istribution of water vapor should para lle l that of temperature. 

Consequently, since the temperature p ro file  is specified in
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one-dimensional models, im p lic ity , so is the water vapor p ro file . The 

ra tio  of the partia l pressure of water vapor to the saturation pressure 

is called re la tive  humidity, a quantity expressed in percent. Oddly 

enough, human comfort depends more on re la tive  humidity than absolute 

humidity [122]. Once the re la tive  humidity exceeds 80 percent the a ir  

starts to feel clammy, even though the absolute moisture content might" 

be very low.

Photochemically, water vapor is of tremendous importance since i t  

is the reaction of H20 with the excited oxygen atom, O ^D ), that forms 

the hydroxyl radical (OH). The level of OH, the major tropospheric 

scavenger, determines the atmospheric abundances of many species. This 

w ill be discussed further in Section 4 .4 .5 . Water vapor is also of 

significance due to its  radiative properties. I t  has absorption bands 

in the 6 , 10, and 20 ym  regions and contributes s ig n ifican tly  to the 

greenhouse e ffec t.

4 .4 .2  Molecular Hydrogen (H2)

The second most abundant species of the hydrogen group is molecular 

hydrogen (H2) which has a mixing ra tio  of 0.5 ppm in the troposphere 

[123]. Molecular hydrogen is believed to be formed prim arily by 

bacterial fermentation in the soil [123], as well as by photolysis of 

formaldehyde (photolytic process 4 .12). Additional sources include 

volcanic outgassing and outgassing from hot springs [124]. In fa c t, on 

rare occasions a burning hydrogen flame has been observed in the 

Kilanea Volcano [125]. The major removal mechanism for atmospheric 

hydrogen is exospheric escapt [126], In the troposphere molecular
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hydrogen is lost prim arily due to the reaction with the hydroxyl radical 

forming atomic hydrogen and water vapor. The tropospheric life tim e  of 

molecular hydrogen is  re la tiv e ly  long (10 years), a further indication  

of its  chemical inertness.

4 .4 .3  Hydrogen Peroxide (HgOg)
i

Certain tropospheric gases have thermodynamic properties rendering 

them highly water soluble L127J. Hydrogen peroxide is among those 

species. Other examples are hydrogen chloride (HC1) and hydrogen bromide 

(HBr) [48 ]. As discussed previously in Section 4 .4 .1 , the amount o f 

water vapor in the troposphere is  a strong function of the temperature 

p ro file . Typically , the vertical d istribution of Wf l  shows a strong 

negative gradient. The calculated turn over time for tropospheric HgO 

to cycle in and out of these various phases is about one day [127].

Hence, i f  the photochemical life tim e  of a species is longer than one 

day, and i t  is highly water soluble, the vertical p ro file  should closely 

resemble that of water vapor. Hydrogen peroxide has a life tim e  of 

approximately two days and would therefore fa l l  in to  the category of 

species that are controlled by water vapor. Consequently, fo r this
O

study a vertical d istribution o f hydrogen peroxide of 5 x 10 times 

the HgO distribution was specified, giving a mixing ra tio  a t the surface 

of 1 ppb. This is in reasonable close agreement with recent measurements 

[128]. The highly polluted Los Angeles basin exhibited values in the 

4 to 15 ppb range on weekdays and 4 to 11 ppb on weekends. Both weekday 

and weekend measurements show diurnal variations with early afternoon 

peak and minimum values ju st p rio r to sunrise. The measurements in
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rural Colorado [129] are generally 1 to 3 ppb with diurnal maxima and 

minima occuring a t the same times as in the Los Angeles study.

On a local scale high abundances of HgOg might cause photochemical 

smog. The photolysis o f HgOg causing two hydroxyl radicals is normally 

a re la tiv e ly  slow process, but i f  large amounts of hydrogen peroxide 

are present in the morning a t the commencement of photochemistry, the 

enhanced levels of OH can react with oxides of nitrogen (NO ) and 

hydrocarbons to form smog. There is also increasing evidence that 

hydrogen peroxide might play a role in the formation of acid rain 

since there is a strong correlation between the concentration of H202 

and acidity in rainwater [129].

4 .4 .4  Hydroperoxyl Radical (HO2 )

Production: Destruction:

K15: H + 02 + MI-* ho2 + M K22 : ho2 + NO -v OH + N02

K9 : CH302 + O2 ->■ ho2 + ch2o K20 : ho2 + ho2 -> H2°2 + °2

K21: OH + H202 ■*  ho2 ■f  h2o K39 : ho2 + V OH + 202

K ll: HCO + 02 -»■ H02 + CO K4 : ho2 + CH3°2, ch3ooh + o2

K38: OH + 03 -*■ H02 + 1°2 K18 : ho2 + OH ->■ h2o + o2

K59: HNO + 02 -»■ ho2 + NO K112: ho2 + NO HNO3

K78 : ho2 + so2 - S03 + OH

K13 : ho2 + C0-> OH + C02

Of the six chemical terms producing the hydroperoxyl radical (H02)

fiv e  account fo r at least one percent o f the tota l H02 production at 

some a ltitu d e  in the troposphere (see Table 26). The primary source of 

HOg in the troposphere is oxidation of atomic hydrogen by molecular
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Table 26. Production and Destruction Terms of HO2

-3 -1Production Rate (molecules cm -s ) and percent of total production

Altitude, km K15 X K9 X K21 X KU* X K38 X K59 X Total X

10 2.382 E5 79.25 3.548 E4 11.80 5.690 E2 0.19 1.150 E4 3.83 1.483 E4 4.93 2.257 E-2 __ 3.006 E5 100.00
S 7.805 E5 75.66 1.422 E5 13.78 2.333 E4 2.26 5.374 E4 5.21 3.183 E4 3.09 5.241 E-3 — 1.032 E6 100.00
0 2.258 E5 64.94 5.027 E5 14.46 4.481 E5 12.89 2.166 E5 6.23 5.149 E4 1.48 6.156 E-1 — 3.477 E6 100.00

Destruction frequency (s~*) and percent of total destruction

Altitude, km K22 X K20 X K39 X K4 X K18 X K112 X K78 X

10 1.210 E-3 44.03 5.940 E-4 21.81 8.205 E-4 29.86 5.527 E-5 2.01 5.208 E-5 1.90 1.630 E-5 0.59 2.158 E-9 _-

5 1.342 E-3 33.00 1.335 E-3 32.82 1.014 E-3 24.93 2.792 E-4 6.86 7.624 E-5 1.87 2.079 E-5 0.52 1.130 E-8 —

0 2.853 £-3 36.69 2.523 E-3 35.84 1.102 E-3 15.65 6.905 E-4 9.81 9.684 E-5 1.37 4.466 E-5 0.64 2.550 E-7 —

Altitude, km K13 X Total X

10 1.032 E-8 — 2.748 E-3 100.00
5 1.836 E-8 — 4.067 E-3 100.00
0 3.060 E-8 — 2.040 E-3 100.00

co07
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oxygen in the presence of a th ird  body (reaction 15). At the surface, 

this reaction accounts for almost 65 percent of the total production, 

increasing to nearly 80 percent at the tropopause. Secondary reactions 

at the surface are the reaction of methylperoxy (CHgOg) with molecular 

oxygen (02) (reaction 9) which contributes about 14.5 percent to the 

total H02 production at the surface and the reaction of the hydroxyl 

radical to hydrogen peroxide (reaction 21) which accounts for s lig h tly  

less than 13 percent at the surface. At the tropopause, reaction 9 s t i l l  

accounts for a re la tive ly  large share ( 11.6 percent) but the contribu­

tion of reaction 21 has decreased to less than 0.2 percent. Another 

reaction with intermediate importance is the oxidation of the formyl 

radical (HCO) by molecular oxygen (reaction 11). At the surface, this 

reaction is responsible for more than 6 percent, in the midtroposphere 

a l i t t l e  more than 5 percent and at the tropopause about 3.8 percent.

The reaction of ozone (03) with hydroxyl radical (OH) (reaction 38) 

contributes about 1.5 percent a t the surface, increasing its  share of 

the total H02 production to nearly 5 percent at the tropospause. The 

final production term, oxidation of the nitroxyl radical (HNO) by 

molecular oxygen (reaction 59) is anywhere from seven to eight orders 

of magnitude less important than the primary production term (reaction 

15). Of the eight loss terms, five contribute more than one percent to 

the total destruction of H02 . The major loss terms are the reactions of 

H02 to NO (reaction 22), to i t s e l f  (reaction 20) and to ozone (reaction 

39). At the surface reactions 22 and 20 each account for approximately 

36 percent of the total H02 destruction; in the midtroposphere the ir  

shares are about 33 percent each, while a t the tropopause reaction 22 

contributes to 44 percent of the total H02 loss and reaction 20 accounts
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for 20.0 percent. The th ird  major loss mechanism, reaction 39, is 

responsible fo r 15.7 percent a t the surface, increasing to s lig h tly  

less than 30 percent a t the tropopause. Reaction 4, hydroperoxy in te r ­

acting with methylperoxy, provides almost 10 percent of the total loss 

at the surface. Its  share decreases monotonically throughout the 

troposphere to about 2 percent a t the tropopause. The interaction o f H02 

with OH, (reaction 18) is responsible for 1.4 to 1.9 percent o f the total 

H02 loss depending on a ltitu d e , while the combination of H02 with NO 

accounts fo r s lig h tly  more than 0.5 percent throughout the troposphere. 

The two remaining loss terms, reactions 78 and 13, are 5 to 7 orders of 

magnitude less important than the major destruction mechanisms.

Including the more re a lis tic  treatment of the radiation fie ld  in the 

calculations enhanced the levels of H02 a t the surface from 30 percent 

for an albedo of 0.0 to 110 percent for an albedo of 1.00. Each time the 

albedo was increased by 0.25, the number density of H02 increased by 

about 20 percent. At the tropopause, there was approximately a factor 

of two increase in the number densities between the Leighton approxima­

tion and the cases including multiple scattering (see Fig. 35). The 

increased levels are due prim arily to enhanced levels of atomic hydrogen

(H) methylperoxy, (CH302) and hydroxyl (OH) •

4 .4.5 Hydroxyl Radical (OH)

Production: Destruction:

K16: H2Q + 0 (] D) + 20H K12 : CO + OH -»■ C02 + H

K39: H02 + 03 + OH + 202 K1 : ch4 + oh ^ ch3 + h£o

J12: CH300H + hv ->■ OH + CH3Q K100: CH3SCH3 + 0H ■+ Products

J9 : H202 + hv ->■ 20H K14 : H2 + OH -»■ H + H20
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K 66: HS + 0 2 -»■ OH + SO K10 : CH2 0 +  OH -*■ HCO +  H20

J 7  : HNOg +  hv -»■ OH +  N02 K38 : Og + OH ^  H02 +  0 2

0 8  : HN02 +  hv +  OH +  N02 K5 : CHgOOH +  OH CHg02 +

K 22: h o 2 +  NO ->■ oh +  n o2 K24 : N02 +  OH +  M -»■ HNOg +

K 78: H02 +  S02  OH +  S 0 3 K 64: H2 S +  OH -»■ HS +  H2 0

K2 : CH4  +  0 ( 1 D) -»■ OH +  CHg K18 : H02  +  OH -*• H2 0  +  0 2

K 13: H02 +  CO -v OH +  C02 K 2 1 : : h 2o 2 + oh  -► ho2 +  h 2 o

K 17: H2 +  O ^ D )  ->■ OH + H K77 : S 02 +  OH +  N HSOg +

K102: 0 +  H2 S OH +  HS K48 : NHg +  OH -*• NH2 +  H2 0

K113: H2 0 + N03 OH + HNOg K 10 5 : HSOg + OH •> SOg +  HgO

K 47: NHg +  O ^ D )  -*■ OH +  NH2 K26 : HNOg + OH -*■ NOg +  H2 0

K 51: NH2 + 0  -*■ OH + NH K86 : COS +  OH -»■ HS + C02

K 46: NHg +  0  OH + NH2 K25 : NO + OH -► HN02

KI10: HNOg +  0  ->• OH +  NOg K87 : CS2  +  OH h . HS +  COS

K19 : OH +  OH H2 0  +  0

K40 : h n o 2 +  oh  n o 2 + h 2o

K97 : CHgSH + OH -»■ Products

K52 : NH2  + OH ^  NHg + 0

Of the 114 chemical equations i ncluded in this model, 40  invol

the hydroxyl radical. The fact that 35 percent of the total chemical 

processes involve this molecule is a testimony to its  pivotal role in 

tropospheric photochemistry. The hydroxyl radical is formed prim arily  

when water vapor (HgO) reacts with the excited oxygen atom 0(^D) 

(reaction 15) and when the hydroperoxyl radical (H02) reacts with ozone 

(O g ) (reaction 39). These two reactions together account for 

approximately 85 percent of the to ta l hydroxyl production at the surface
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(see Table 27). Since ozone photolysis in the near-UV region ( \  < 320 nm) 

produces the excited oxygen atom i t  is  very apparent that the abundance 

of ozone constitutes an important parameter, both exp lic ity  and 

im p lic ity , in the formation of OH. Minor contributions are due to 

photolysis o f the methylhydroperoxy radical (J12) and o f hydrogen 

peroxide (J9) together with the oxidation o f HS by molecular oxygen 

(02) (reaction 66) .  These processes account for 7 .8 , 3 .9 , and 3.2 

percent of the to ta l OH production, respectively. Very minor sources 

of OH are the photolysis o f n itr ic  acid (HNO )̂ (J7) of nitrous acid 

(HNOg) (J8 ) ,  and the reaction of HOg-with NO (reaction 22). These 

three processes provide only small fractions o f the to ta l OH production. 

They are responsible for 0 .13, 0.08, and 0.05 percent, respectively.

The remaining ten reactions producing OH are between four and nine orders 

of magnitude smaller than the predominating terms. In the higher 

regions of the troposphere, the reaction of water vapor (HgO) with the 

excited oxygen atom (0(^D )), is not as dominant as near the surface. 

Although the abundance of o(^D) increases with increased a ltitu d e , the 

rapid decrease of water vapor with a ltitude decreases the share o f 

reaction 16 to some 25 percent a t the tropopause. The scale height of 

water vapor is only about two km causing a very rapid "e-folding" of 

HgO. The significance of a scale height is that each time the vertical 

distance is increased by one scale height, the quantity under 

consideration has decreased by an amount that is equal to 1/e. Water 

vapor has, as mentioned e a r lie r , a small scale height of 2 kms; other 

gases have scale heights that are larger. For example, the atmospheric 

pressure scale height is about 8 kms.
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Table 27. Production Terms of OH

Production rate (molecules -  cm -s ) and percent o f total production

A1titude, Km K16 X K39 X J12 X J9 X K66 X J7 X

10 4.0S0 E4 25.49 9.702 E4 61.07 1.997 E4 12.57 4.993 E2 0.31 5.628 El 0.04 4.398 E2 0.28
5 2.975 E5 46.23 2.706 E5 42.05 6.519 E4 10.13 8.377 E3 1.30 3.588 E2 0.06 7.648 E2 0.12
0 1.170 £6 57.53 5.561 E6 27.34 1.578 E5 7.76 7.980 E4 3.92 6.494 E4 3.19 2.560 E3 0.13

Altitude, Km 38 X K22 X K78 X K2 X ' K13 X K17 X

10 2.841 E2 0.18 1.565 El 0.01 2.564 E-l — 5.906 El 0.04 1.226 EO — 1.499 El 0.01
5 5.457 E2 0.08 1.185 E2 0.02 3.017 EO — 4.195 El 0.01 4.900 EO — 1.065 El —
0 1.527 E3 0.08 1.022 E3 0.05 1.286 E2 — 2.533 El — 1.544 El — 6.422 EO —

Altitude, km K102 X KU3 X K47 X K51 X K46 X K110 X Total

10 1.320 E-4 _ 6.423 E-6 — 3.938 E-2 — 4.727 E-3 — 2.188 E-5 — 1.169 E-3 — 1.589 E5
5 2.687 E-3 — 5.786 E-3 — 2.967 E-2 — 5.266 E-3 — 9.574 E-4 — 8.440 E-4 — 6.435 E5
0 3.446 E-l — 4.379 E-2 — 4.055 E-2 — 6.119 E-3 — 5.732 E-3 — 1.173 E-3 — 2.034 E6

100.00
100.00
100.00
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Table 27 (Concluded) Destruction Terms of OH 

Destruction frequency (s_1) and percent of total destruction

Altitude, km K12 X K1 2 K100 2 K14 X K10 2 K38 X 25 X

10 1.758 E-l 76.37 1.460 E-2 6.34 4.702 E-7 — 2.710 E-3 1.18 3.186 E-3 1.38 2.368 E-2 10.29 2.155 E-3 0.94
5 3.800 E-l 69.27 6.861 E-2 12.51 7.498 E-5 0.02 1.682 E-2 3.07 1.375 E-2 2.51 3.607 E-2 6.57 1.181 E-2 2.15
0 8.262 E-l 54.90 2.430 E-l 16.15 9.873 E-2 6.56 7.394 E-2 4.91 5.272 E-2 3.50 4.596 E-2 3.05 4.533 E-2 3.01

Altitude, km K24 2 K64 2 K18 2 K21 * K77 X K48 2 K105 2

10 2.337 E-3 1.02 4.092 £-6 — 4.752 E-3 2.06 4.344 E-5 — 8.103 E-5 0.03 2.857 E-4 0.12 5.708 E-5 _
5 6.798 E-3 1.24 1.234 E-4 0.02 1.068 E-2 1.95 1.224 E-3 0.22 4.406 E-4 0.08 8.496 E-4 0.14 2.796 E-4 0.05
0 3.324 E-2 2.21 2.675 E-2 1.78 2.018 E-2 1.34 1.852 E-2 1.23 1.014 E-2 0.67 4.566 E-3 0.30 3.089 E-3 0.21

Altitude, km K26 X K86 X K25 * K87 c t
40 K19 uto K40 X K97 2

10 1.700 E-4 0.07 2.363 E-4 0.10 2.328 E-4 0.10 2.268 E-6 ----- 2.773 E-6 _ 1.039 E-6 ___ 2.592 E -l5 ___

5 3.400 E-4 0.06 4.233 E-4 0.08 2.970 E-4 0.05 4.134 E-6 — 5.394 E-6 ----- 2.113 E-6 — 8.670 E-12 _

0 1.301 E-3 0.09 7.268 E-4 0.05 6.380 e-4 0.04 7.268 E-6 ~ 8.540 E-6 — 6.630 E-6 — 8.670 E-6 —

Attitude, km K52 2 Total % -

10 1.348 E-8 — 2.303 E-l 100.00
5 4.160 E-8 — 5.486 E-l 100.00
0 1.341 E-7 — 1.505 EO 100.00

ro



The second largest OH-producing term a t the surface, reaction 39, 

dominates the production of hydroxyl radicals in the upper troposphere.

At the tropopause reaction 39 accounts for s lig h tly  more than 61 

percent of the total OH production. By inspecting Table 27 i t  can be 

seen that reactions 16 and 39 reverse roles in the troposphere. The 

cumulative share of these two reactions to the to ta l OH production is 

always between 85 and 88 percent, independent of a ltitu d e . Of the

minor contributors, the photolysis o f CĤ OOH increases with a ltitu d e  as a 

source of OH, while photolysis o f HgOg and reaction 66 decrease. The 

remaining minor contributors account for approximately constant 

production o f OH throughout the troposphere. A to ta l of 22 reactions 

in this scheme destroy OH and 11 of those are responsible for a t least 

one percent a t some tropospheric a ltitu d e . Another six reactions 

destroy between 0.01 and one percent while five  reactions can be 

neglected as OH sinks. The major destruction mechanism for the hydroxyl 

radical is the reaction of CO with OH (reaction 12). At the surface, 

this reaction destroys about 55 percent of a ll  hydroxyl molecules, in 

the midtroposphere 69.3 percent and a t the tropopause 76.4 percent.

The second largest sink fo r hydroxyl is the reaction of OH with methane, 

CĤ  (reaction 1). This reaction accounts for shares varying from 16 

percent a t the surface to 6.3 percent a t the tropopause. The th ird  

largest destruction mechanism a t the surface is the reaction of dimethyl 

sulfide (DMS) (CH^SCHg) with OH (reaction 100). At the surface, DMS 

reacting with hydroxyl provides 6 .6  percent of the to ta l OH sink in 

the midtroposphere i t  is a minute sink (0 . 02) and a t the tropopause a 

negligible sink. The reason this reaction decreases its  influence with
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a ltitude  is the rapid decrease in DMS abundance with a ltitu d e . Of the 

remaining loss terms, five  (reactions 14, 10, 5, 24, and 18) account for 

anywhere from one to five  percent o f the tota l OH destruction depending 

on a ltitu d e . Ozone interacting with OH (reaction 38) comprises three 

percent of the hydroxyl destruction at the surface, increasing to ten 

percent at the tropopause. Of the remaining 13 chemical reactions 

destroying OH, 8 (reactions 64, 21, 77, 48, 105, 26, 86, and 25) account 

for anywhere from 0.00 to 1.8 percent depending on a ltitu d e . The las t 

5 reactions (87, 19, 40, 97, and 52) are between 5 and 15 orders of 

magnitude less important as OH destruction mechanisms than the primary 

loss terms. The photochemical lifetim e of OH is on the order of one 

second. The importance of the hydroxyl radical as a sink for reduced 

species (such as CH^, CH^SCH ,̂ H2 H2S, NH ,̂ and CS2) as well as partly  

oxidized species (e .g ., CO, CHgO, CHgOOH, N02 , H02, H202 , S02> HSOg, 

HNOg, and COS) has long been recognized [3 ]. Since OH plays such a 

central role in tropospheric photochemistry, i t  is absolutely essential 

to learn the distribution of this radical. Large differences exist in 

the vertical profiles calculated with the Anderson-Meier radiation code 

compared to the Leighton approximation (see Fig. 36). At the surface 

and in the lowest few kms, a strong dependence on the surface albedo 

is evident. At higher a ltitu des , this dependence is diminished and the 

multiple scattering calculations are closely grouped together. At the 

surface,the multiple scattering calculation with an albedo of 0.00 

increases the OH number density by a factor of 1.4 compared to the 

Leighton approximation. When the albedo is 0.25 this difference is 

nearly doubled a t the surface, and for a = 0.50, OH is enhanced by a
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factor of 2 .5 . Using an albedo of 0.75 yields a factor of 3.4 increase 

in OH, and fo r the case o f a = 1.00 the number density of OH at the 

surface is approximately quadrupled. In the upper parts of the tropos­

phere the multiple scattering calculations increase Ahe OH number 

densities by a factor of three compared to the Leighton approximation. 

The reason enhanced levels of OH are obtained with the multiple 

scattering code is due to the enhanced levels of 0 (^D), which was 

discussed in Section 4 .3 .3 .

Measurements of the hydroxyl radical seem to confirm the enhanced 

levels obtained with the Anderson-Meier model. The f i r s t  tropospheric

measurement o f OH was that by Wang e t a l . ,  [130] in 1974. A value of 
7 -31.5 x 10 molecules cm was obtained; this is  one of the highest values

of tropospheric OH reported in the lite ra tu re . Subsequent measurements

by Wang e t a l . ,  [131], in 1975, yielded a value of 5 x 10® molecules 
-3cm . Perner et a l. [132] measured hydroxyl at two d iffe ren t altitudes  

in 1976. The measured data near the surface had values ranging from
C O

2 to 8 x 10 molecules cm while the data at 2 km ranged from

6.4  x 10® to 1.3 x 107 molecules cm"3. Davis e t a l . ,  [133] also 

measured the hydroxyl radical in 1976, but at higher altitudes than 

Perner e t a l. The measurements a t 7 km ranged from 1.3 x 10® to 1.1 x

1.1 x 107 depending on a ltitu d e , while the measurements at 11.5 km
6 -3varied between 2.9 to 6 .8  x 10 molecules c m .  More recent data by 

Campbell and Blankenship [134] in 1978 yielded OH number densities of 

5.8 x 10® molecules cm" 3 and 8.7 x 10® molecules cm" 3 in 1979 [135].
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Davis e t a l. [136] measured OH a t two altitudes in 1979. At 2 km,
6 7 -3values ranged from 6 .4  x 10- to 1.3 x 10 molecules cm . At 7 km, a

6 3value o f 3.3 x 10 molecules cm was obtained. The most recent

measurement is  that o f Campbell e t a l . ,  [137] during the CHON-experiment

on the Pawnee Grasslands in Northern Colorado during the summer of 1980.
6 -3A value of 4 .3 x 10 molecules cm was measured. A ll the above data 

have been transposed to Fig. 36 for comparison with the model calculated 

values. C learly, a re a lis tic  treatment of the radiation f ie ld  is 

necessary to obtain the higher value indicated by the measurements of 

several investigators.

4 .4 .6  Atomic Hydrogen (H)

Production: Destruction:

K12: CO + OH -»■ C02 + H K15 :: 02 + H + M H02 + M

K14: H2 + OH + H20 + H K84 :: H2S + H HS + H2

J10: CH20 + hv ♦  HC0 + H K114: HNO3 + H -> Products

K17: 0 (1D) + H2 + OH + H K85 :: COS + H -»• HS + CO

K50: NH2 + 0 -»■ HN0 + H K42 :: N2H4 + H -*• N2H3 + H2

K56: NH + NO -*• N2 + 0 + H K49 :: NH3 + H NH2 + H2

K95: CH3SH + 0-*- CH3 SO + H K82 :: HS + H+ H2 + S

K65: HS + 0-*- SO + H K63 ::H  + H + M * H 2 + M

K83: S + H2 -*■ HS + H K45 :: N2H3 + H +  2NH2

K60: HNO + M-*N0 + H + M K61 :: HNO + H NO + H?

Atomic hydrogen (H) is involved in a total of 20 reactions, 10 

produce i t  and 10 destroy i t .  Of the 10 terms producing H only 3 are 

sign ifican t contributors. The primary path of H formation occurs as
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a result o f carbon monoxide reacting with the hydroxyl radical 

(reaction 12). At the surface, 88 percent of a ll H atoms are formed this  

way, decreasing to s lig h tly  less than 75 percent a t 10 km. Two secondary 

sources of hydrogen atoms in the troposphere are the reaction of 

molecular hydrogen (Hg) with the hydroxyl radical (OH) (reaction 14) 

and the photolysis of formaldehyde (CHgO). At the surface, reaction 14 

produces almost 8 percent of the total amount of hydrogen atoms 

decreasing to about 1 percent a t the tropopause. Photolysis of 

formaldehyde accounts for nearly 4 percent of a ll hydrogen atoms that 

are produced near the surface and increases to about 24 percent at the 

tropopause. The remaining 7 reactions that produce H atoms are of 

l i t t l e  or no significance being between 4 to 42 orders to magnitude 

smaller than the primary source o f hydrogen (see Table 28). Atomic 

hydrogen is destroyed almost en tire ly  by tha oxidation with molecular 

oxygen (Og) in the presence of a th ird  body, (M) (reaction 15). The 

other 9 reactions destroying atomic hydrogen are anywhere from 5 to 

21 orders of magnitude less important than the primary source depending 

on a ltitu d e  (see Table 28). The chemical life tim e of atomic hydrogen is 

very short, approximately 10“ 7 second. The vertical profiles of H are 

altered s ign ifican tly  when the Anderson-Meier radiation model is 

coupled to the photochemical model (see Fig. 37). The differences 

between the Leighton approximation and the multiple scattering  

calculations are very s im ilar in magnitude to. those calculated for OH.

In fa c t, the vertical profiles of atomic hydrogen form a nearly perfect 

overlay to the vertical profiles of OH. This is readily understood from 

inspection of the l i s t  o f reactions producing atomic hydrogen as well as
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Table 28. Production Terms of H

-3 -1Production rate (molecules -  cm -s ) and percent o f total production

Altitude. km K12 2 K14 X J10 X K17 X K50 X K56 X

10 2.289 E5 74.66 3.528 E3 1.15 7.416 E4 24.19 1.499 El — 4.727 E-3 — 5.016 E-3 —
5 7.242 E5 85.64 3.207 E4 3.79 8.932 E4 10.57 1.183 El — 5.266 E-3 -  5.421 E-3 —
0 2.000 E6 88.16 1.790 E5 7.89 8.955 E4 3.95 6.422 E0 — 6.189 E-3 — 6.188 E-3 -

Altitude, km K95 X K65 X K83 X K60 X Total X

10 2.821 E—12 ___ 9.759 E-10 ___ 1.197 E-18 — 1.171 E-37 _ 3.066 E5 100.00
5 3.410 E-9 — 1.263 E-9 — 1.133 E-18 — 1.448 E-31 — 8.456 E5 100.00
0 1.242 E-4 — 4.984 E-8 — 9.630 E-19 — 8.321 E-27 — 2.269 E5 100.00
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Table 27. Reactions 12 and 14, which both depend on OH for production 

of H, together account for about 76 percent of the total production at 

the surface decreasing to 66 percent a t the tropopause. Consequently, 

i t  is not surprising to find large s im ilarities  in the vertical 

profiles of hydrogen and hydroxyl. Thus, the discussion concerning 

the enhanced intensity factor in the ratio  of multiple scattering 

calculations to the Leighton approximation in the previous section on OH 

also applies to H. There are no atmospheric measurements of H available.

4.4.7 Future Perturbations to the Hydrogen Budget

I t  appears as though the two most abundant hydrogen species, water 

vapor and molecular hydrogen, are stable enough that anthropogenic 

perturbations w ill not a lte r  th e ir distributions s ign ificantly . A 

systematic, global-scale temperature increase from the C02 greenhouse 

effect may increase the water vapor content in the atmosphere s lig h tly . 

Hydrogen peroxide (H202) is believed to act as an a precursor for 

photochemical production of smog, as well as being involved in the 

formation of acid rain [128]. Photochemical smog is a severe problem 

on a local scale in many metropolitan areas. Smog is usually formed 

when hydroxyl radicals react with odd nitrogen (NO ) and hydrocarbons
A

(HC) during certain meterological conditions, such as temperature 

inversion, low windspeeds and high atmospheric pressure. Acid rain is 

an ever increasing problem on a regional scale. The industrialized  

parts of the world, in particular the northeastern part of the United 

States and A tlantic  Provinces of Canada, parts of California and a 

large portion of Western Europe, especially Scandinavia, have been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



plagued by this problem over the la s t couple of decades. Acid rain 

decreases crop yields and tree growth. The ac id ification  of many lakes 

and streams decrease the fish population and consequently, a ffect the 

sizes o f fish catches. In addition to these basic issues of perturba­

tions in the food supply, many esthetic a rt works are also threatened. 

For example, some of the exposed a r t  works of marble in Venice, Ita ly  

are etched away a t a staggering rate of 6 percent per year due to acid 

rain and a ir  pollution [138]. The problem of acidic precipitation w ill 

be discussed further in the section dealing with sulfur species, in 

p articu la rly , Section 4 .6 .5  which concerns su lfuric  acid, HgSO .̂

The most s ign ificant perturbations in tropospheric composition 

would occur i f  the abundance of the hydroxyl radical was altered.

Ozone in itia te s  a great deal of tropospheric chemistry (see discussion 

in Section 4 .3 .2 ). Photolysis of ozone in the region 300 to 320 nm 

results in the excited, metastable oxygen atom (0 (^D )), which very 

rapidly combines with water vapor to form two hydroxyl molecules. Thus, 

a change in ozone concentration would affect tropospheric photochemistry 

in two ways. By changing the tropospheric radiation f ie ld  and by 

altering  the abundance o f 0(^0). Both of these changes would 

s ign ifican tly  a ffec t the distribution of hydroxyl. As seen in 

Section 4 .4 ,5 , the number density of the hydroxyl radical is the rate 

lim itin g  factor for many trospheric species. Due to the short lifetim e  

of OH, any change in its  abundance would necessarily be due to in situ  

photochemistry. Not only ozone, but also oxides o f nitrogen can a lte r  

the level o f hydroxyl. The reaction of HOg with NO (reaction 22) can 

produce OH [112]. However, the magnitude of this source term is very
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uncertain since the measurements of background levels o f tropospheric N0X 

are highly variable. The most recent measurements of n it r ic  oxide in 

pristine a ir  have yielded re la tive ly  small concentrations which would 

tend to diminish the importance of reaction 22 as a source of OH 

[87, 88, and 89J. Presently, the strength of global NO -emission is not
A

very well known, although i t  is  believed that the anthropogenic portion 

of NO -emission may have increased at a 5 percent rate per year untilA
cata lytic  convertors were made mandatory to decrease the pollution due 

to automobile exhaust [139]. The interaction of the 0g-0H-N0x system 

are in need of further study.

4.5 The Carbon Group 

The eight carbon species included in this model are products of 

the oxidation of methane by the hydroxyl radical. Consequently, this 

sequence of reactions is known as the methane oxidation chain and is 

depicted in Fig'. 38. Ultimately the oxidation of methane results in 

carbon monoxide (CO) and carbon dioxide (COg). Carbon dioxide is not 

included in the present model, as is customary with most photochemical 

models. Carbon dioxide is chemically very in e rt, has a long lifetim e  

of about 5 years, and hence, from a photochemical point of view, no 

accuracy is  lost by omitting CO2 . Most of the atmospheric studies 

concerning CO2 have centered on its  thermal properties. This w ill be 

addressed further in Section 4.5.9

Carbon monoxide is of great importance in tropospheric photochemistry 

since i t  is the main sink for hydroxyl. The abundance of carbon 

monoxide from the oxidation of methane could possibly be affected by the
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removal of intermediate species in the methane oxidation chain, namely 

methylhydroperoxy, (CH^OOH), and formaldehyde, (CHgO). These two species 

are believed to undergo heterogeneous removal; but, the mechanisms for 

this removal are very uncertain. .

4.5.1 Methane (CH4)

Methane is a re la tiv e ly  long-lived species in the troposphere. Its  

mean tropospheric life tim e  is on the order of 4 years. I t  is formed 

prim arily by anaerobic decomposition in swamps, tid a l f la ts , rice  

paddies and estuaries. An average acre in a wetland might produce as 

much CĤ  as 3000 Ib s /y r. Even domesticated animals produce large 

amounts of methane. Flatulence from the ruminants is accountable for
g

an estimated 85 x 10 tons CĤ  per year [140]. In addition to the large 

natural sources o f methane, there are also anthropogenic sources. Coal 

mining a c tiv itie s  and o il d r il lin g  release methane into the atmosphere. 

The man-made a c tiv itie s  are thought to account for 9 percent of the 

to ta l amount of CĤ  with the remaining 91 percent from natural sources 

[114J. There are no known chemical reactions in the atmosphere that 

produce CH .̂ Hence, methane is released a t the surface and diffuses 

upward, where i t  in it ia te s  a very important chemical cycle known as the 

methane oxidation chain [142].

The chemical cycle is graphically depicted in Fig. 38. Methane is , 

together with carbon monoxide, an important sink for hydroxyl. I t  is 

the reaction of methane with hydroxyl that in it ia te s  the methane 

oxidation chain that eventually produces carbon monoxide (CO) and carbon 

dioxide (CO2) .  Carbon dioxide is not included in the present model, as 

is customary with most photochemical models. Carbon dioxide is
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chemically very in e r t, has a long life tim e  of about 5 years, and hence, 

from a photochemical point of view, no accuracy is lo s t by omitting COg. 

Most o f the atmospheric studies concerning COg have centered on its  

thermal properties. This w ill be addressed further in Section 4 .5 .9 .

4 .5 .2  Carbon Monoxide (CO)

Carbon monoxide is a re la tiv e ly  unreactive species in the 

troposphere with a mean life tim e  of approximately 4 months. I t  is well 

mixed in the vertica l d irection, but shows a large la titu d in a l gradient. 

The Northern hemisphere has a mean concentration of approximately 0.20 

parts per m illion by volume (ppmv) while the Southern hemisphere has a 

mean concentration of about 0.05 ppmv [143]. This large hemispherical 

asymmetry has been interpreted as evidence of large-scale anthropogenic 

modifications. The majority of the Earth's population lives in the 

Northern hemisphere, where most anthropogenic a c tiv itie s  occur. Man-made 

a c tiv it ie s  believed to cause increases in the carbon monoxide concentra­

tion include automobile emissions and emissions from industrial plants.

As much as 82 percent of a ll surface emissions of CO are believed to be 

industrial in origin [141]. Any combustion process that is 

in su ffic ie n tly  oxidized leads to CO production. In high concentrations 

CO is very toxic.

On the local scale, CO is c learly  a pollutant of considerable 

concern. An exposure to a concentration of 120 ppm fo r an hour is  serious 

enough to severely re s tr ic t a person's a b il ity  to pursue a c tiv it ie s  that 

require coordination, such as driving an automobile. Yet, the average 

CO concentration in many tunnels, garages and even the streets of 

metropolitan areas frequently exceed 100 ppm [138]. On the global
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scale, however, CO derives most of its  importance as the sink for the 

hydroxyl radical

CO + OH -*■ C02 + H

In the present model carbon monoxide is treated as in input with a 

globally averaged concentration of 0.125 ppm.

4 .5 .3  Methylhydroperoxy (CĤ OOH)

Production: Destruction:

K4: CH302 + H02 ->■ CH300H + 02 J12: CH300H-+ hv -»■ CH30 + OH

K5 : CH300H + OH CH302 + HgO

The methylhydroperoxy radical (CH300H) is formed as an intermediate 

species in the methane oxidation chain. I t  is formed when the methyl- 

peroxy radical (CH302) combines with the hydroperoxyl rad ica l, (H02). 

Chemical destruction terms include oxidation with OH (reaction 5) 

yielding the methylperoxy radical and water vapor, and photolysis (J12)

resulting in the formation of the methoxy radical and hydroxyl radical.

Methylhydroperoxy is also believed to undergo heterogeneous losses. 

Chemically, the primary loss mechanism at a ll altitudes is photolysis 

(J12) see Table 29. At the surface, photodissociation destroys about 

59 percent o f the CH300H molecules while 41 percent of the destruction 

occurs via the path provided by reaction 5. Photolysis increases its  

importance with a ltitu d e  such that at the tropopause more than 87 percent 

is lost by photolysis and approximately 12 percent is lost by reaction 5. 

The chemical life tim e  of CHgOOH based on these calculations is s lig h tly  

more than 4 days, hence, necessitating the use of the continuity equation 

to calculate its  vertical d istribution. There are no tropospheric
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Table 29. Production and Destruction Terms of CĤ OOH 

-3 -1Production rate (molecules-cnf -s ) and Rercent of total production 

Altitude, km K4 %

10 6.566 E3 100.00

5 7.452 E4 100.00

0 3.483 E5 100.00

Destruction frequency (s- ^) and percent of total destruction
;ude, km J12 % K5 % Total %
IQ 1.997 E-6 87.62 2.882 E-7 12.38 2.279 E-6 100.00

5 1.821 E-6 74.33 6.289 E-7 25.67 2.450 E-6 100.00

0 1.596 E-6 58.94 1.112 E-6 41,06 2.708 E-6 100.00
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measurements available to use as a guide for boundary conditions. A 

condition of zero flux  was used at both the upper and lower boundaries 

yielding the vertical profiles in Fig. 39. Inclusion of multiple  

scattering and surface albedo increases the number densities at the 

surface about 50 percent compared to the Leighton approximation. This 

enhancement is  due prim arily to the increased level of H02. The 

photolysis frequency at the surface is only increased by 6 percent 

(see Section 4 .1 ). Consequently, the loss terms at the surface are not

altered s ign ifican tly  between the Leighton approximation and the

calculations with m ultiple scattering included. The net e ffe c t, thus, 

is to increase number densities in the lower regions of the troposphere. 

Near the tropopause photolysis is more than doubled when the m ultiple  

scattering code is used. In addition, photodissociation is the 

predominant loss mechanism at high a ltitu des, with the net e ffec t of 

decreasing the number densities for the multiple scattering calculations 

compared to the Leighton approximation.

4 .5 .4  Formaldehyde (CHgO)

Production: Destruction:

K9 : CH30 + 02 -v CH20 + HOg d l l :  CHgO + hv -* H2 + CO

K41: CH4 + 0 (1D) ->■ CH20 + H2 K10: CHgO + OH ->• HCO + HgO

J10: CH20 + hv HCO + H

Formaldehyde, CHgO, is formed chemically from the methane oxidation 

chain by the reaction of the methoxy radical with molecular oxygen 

(reaction 9) and also, but less s ig n ifican tly , by the reaction of methane 

and the excited oxygen atom O^D) (reaction 41). Formaldehyde is also
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emitted anthropogenically as a result of incomplete combustion by 

automobiles and diesel engines [144]. I t  has also been -suggested that 

aldehydes are emitted biogenically through plants [145]. The chemical 

losses are due to photolysis with two d iffe ren t paths (J10 and O i l) ,  as 

well as reaction with hydroxyl radical (OH) (reaction 10) (see Table 30). 

The photodissociation leading to H2 and CO (J l l )  dominates throughout 

the troposphere with values ranging from 57 percent at the surface to 

67 percent a t the tropopause. Secondary losses are due to the reaction 

with OH (reac tio n '10) with is responsible for 25 percent of the to ta l 

loss of CHgO a t the surface and to the photolysis leading to HCO + H2O 

(J10) (approximately 18 percent). In the midtroposphere, both of these 

loss’ mechanisms are of equal importance, while in the higher regions of 

the troposphere photolytic reaction 010 becomes the secondary loss 

mechanism (21 percent) and reaction 10 is te rtia ry  (nearly 12 percent). 

The chemical life tim e  of CHgO based on the reactions above is 

approximately 2 hours, but i t  has been postulated that formaldehyde 

undergoes a s ign ificant amount of heterogeneous loss which would act to 

further decrease its  life tim e . The extent to which heterogeneous losses 

contribute to the overall loss of CHgO is presently not very well known.

Formaldehyde has been measured extensively in urban a ir  [146], as 

well as in more pris tine  rural settings [147] and over the ocean [148]. 

The most recent measurements of background concentrations of formalde­

hyde indicate levels of less than 0.3 ppbv [85 ], 0 .4 ppbv [148], and 

0.0 -  2.0 ppbv [147] respectively. These measurements have been 

transposed to Fig. 40 and generally show a good agreement with the 

calculated profiles of CHgO. The effect o f albedo and multiple  

scattering increases the number density fo r low values of the albedo.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

T a b l e  3 0 .  P r o d u c t io n  and D e s t r u c t i o n  Terms o f  CHgO.

A l t i t u d e ,  km K9 % K41 %
10  3 . 5 4 8  E4 9 9 . 9 8  6 .3 6 1  E0 0 . 0 2

5 1 . 4 2 3  E5 1 0 0 . 0 0  4 . 5 1 7  E0

0 5 . 0 3 5  E5 1 0 0 . 0 0  2 . 7 2 5  E 0 '

D e s t r u c t i o n  f r e q u e n c y  ( s ~ ^ )  and p e r c e n t  o f  t o t a l  d e s t r u c t i o n

A l t i t u d e ,  km J l l  % K10 %
1 0  8 , 0 3 0  E -5  6 7 . 0 7  1 .4 1 4  E -5  1 1 .8 1

5 7 . 4 6 8  E -5  6 2 . 3 2  2 .1 9 1  E -5  1 8 . 2 9

0 6 . 6 3 2  £ - 5  5 7 . 2 2  2 . 9 0 9  E -5  2 5 . 1 0

T o t a l  %
3 . 5 4 9  E4 1 0 0 . 0 0

1 . 4 2 3  E5 1 0 0 . 0 0

5 . 0 3 5  E5 1 0 0 . 0 0

J 1 0 % T o t a l %
2 . 5 2 8  E -5 2 1 .1 2 1 .1 9 7  E - 4 1 0 0 .0 0

2 . 3 2 4  E -5 1 9 . 3 9 1 . 1 9 8  E -4 1 0 0 .0 0

2 . 0 5 0  E -5 1 7 . 6 8 1 . 1 5 9  E - 4 1 0 0 .0 0

ro
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This is easily  understood by inspection of Tables 10 and 11. In i t ia l ly ,  

at the surface, there is no appreciable e ffec t for the photolytic 

reaction J10 compared to the Leighton approximation and for reaction J ll  

there is  a 5 percent decrease in the photodissociation frequency. This 

in sen s itiv ity  to photodissociation coupled with enhanced values for  

CH30 and 0(^D) has the e ffec t of increasing the surface concentration 

of CHgO. As one ascends through the troposphere and simultaneously 

considers higher values for albedos, the increase is diminished and 

fo r an albedo of 1.00  above 8 km formaldehyde is decreased below the 

level obtained using the Leighton approximation. This can also be 

explained for the values in Tables 10 and 11. For high albedos and 

high a ltitudes there is more than a factor of 3 increase in the photo­

dissociation frequencies J10 and J l l .  Hence, the destruction mechanism 

fo r formaldehyde is enhanced resulting in decreased level of CH20.

4 .5 .5  Methylperoxy Radical (CH^Og)

K79 : CH302 + S02 -► CHjO + SO3

K7 : CH302 + N02 ^  CHgO + HN03

The methylperoxy radical (CH302) is formed prim arily as a resu lt

of the reaction of molecular oxygen with the methyl radical in the

presence of a th ird  body (reaction 3 ). A secondary contributor is  the 

reaction of CH300H with OH (reaction 5 ). An inspection of Table 31 

reveals that reaction 3 accounts for approximately 85 percent of the

Production: Destruction:

K3: CH3 + 02 + M -»■ CH302 + M 

K5: CH300H + OH CH302 + HgO

K4 : CH302 + H02 ->■ CH3OOH + 02 

K109: CH302 + CH302 -*■ 2CH30 + 02
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Table 31. Production and Destruction Terms of C H ^

A ltitude, km________ K3_________ %_________ K5_________ %___________ Total_________% _

10 1.888 E4 87.00 2.882 E3 13,00 2.170 E4 100.00

5 1.302 E5 85.26 2.251 E4 14.74 1.527 E5 100.00

0 5.868 E5 84.24 1.098 E5 15.76 6.966 E5 100.00

Destruction frequency (s- ^) and percent of total destruction

A ltitude, km K4________ %______ K109 % K79______ *_______ K7______ %________ Total
10 3.811 E-4 97.08 8.960E-6 2,28 3.561 E-7 0.10 2.129 E-6  0.54 3.925 E-4

5 1.133 E-3 96.49 3.421 E-5 2.91 1.865 E-6  0.16 5.160 E-6  0.44 1.173 E-3

0 2.669E-3 95.31 6.706E-5 2.42 4.208E-5 1.51 2.141 E-5 0.76 2.80GE-3

'%

100.00

100.00

100.00

cr>Ol
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CH3O2 production, regardless of a ltitu d e . The remaining 15 percent are 

due to reaction 5. Chemical destruction of CH302 is due to four 

d iffe re n t reactions. The primary loss mechanism is reaction 4 providing 

between 95 and 93 percent of the to ta l tropospheric loss, depending on 

a ltitu d e . Methylperoxy radical with i ts e lf  (reaction 109) accounts for 

approximately 2.5 percent, while the reaction of CH302 with N02 

(reaction 7) is responsible for about 0.5 percent o f the to ta l loss.

Reaction 79, S02 with CH302> is somewhat a ltitude dependent with

1.5 percent of the to ta l loss at the surface proceeding through this  

path, diminishing in importance to 0.1 percent at the tropopause. The 

chemical life tim e  of the methylperoxy radical at the surface, based 

on the chemistry described above, is  about 6 minutes. The e ffec t of 

m ultiple scattering and surface albedo on CH302 is shown in Fig. 41.

The number densities of CH302 are s lig h tly  more than doubled for the 

m ultiple scattering calculations compared to the Leighton approximation. 

The choice of albedo makes approximately a 20 percent difference at the 

surface for each successive run, i . e . ,  the number density of CH302 at 

the surface for the case of an albedo of 0.50 is about 20 percent 

greater than the case of an albedo of 0.25 which in turn is 20 percent

greater than the case of 0.00. At higher altitudes however these

differences are not as large. There are no measurements of CH302 

available to compare the model calculated results with.

4 .5 .6  Methoxy Radical (CH-jO)

Production: Destruction:

K8 : CH3 0 2 +  NO -*■ CHgO +  N02 K9 : CH3 0  +  0 2 -»■ CHgO +  H02 

J 1 2  : CH3 00K  +  hv -► CH3 0 +  OH 

K 109: CH3 0 2 +  CH3 0 2 +  2CH3 0 +  0 2
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K79 : CH302 + SOg -*■ CH30 + S03 

K99 : CH3SCH3 + 0 -*■ CH30 + CHgS

Of the fiv e  chemical reactions producing the methoxy radical only 

two are of real significance. Reaction 8 accounts for almost two-thirds 

of the to ta l loss a t the surface (65.7 percent) while photolysis of 

methylhydroperoxy (J12) accounts fo r 31.1 percent. The remaining 3 per­

cent are shared by reaction 109 (1 .8  percent), reaction 79 (1.1 percent) 

and reaction 99 (0.3 percent)(see Table 32). In higher regions of the 

troposphere reactions 8 and J12 reverse roles with photolysis becoming 

the dominant production mechanism (55.2 percent. Reaction 8 provides 

44.3 percent of the to ta l production at the tropopause and reaction 109 

accounts fo r 0.5 percent. Reactions 79 and 99 that were minor pathways 

for methoxy production at the surface are o f no importance at the tropo­

pause. The only known chemical loss mechanism for CH30 is the oxidation

with molecular oxygen, 02 (reaction 9 ). Chemical life tim e  of methoxy is
-4very short, on the order o f 10 seconds, well ju stify in g  the PCE 

assumption. The choice o f surface albedo s ign ificantly  a lters  the 

vertica l p ro file  of CH30 (see Fig. 42). For a surface albedo of 0.00 

more than a 40 percent enhancement results compared to the Leighton 

approximation. For the case close to globally averaged conditions 

(albedo = 0:25) nearly a doubling in the CH30 number density at the 

surface results. The extreme case of a surface albedo of 1.00 yields 

s lig h tly  more than a quadrupling in number densities in the low tropo­

sphere. Near the tropopause the m ultiple scattering cases are more 

closely grouped together and on the average a factor of 2.5 larger than 

the Leighton approximation. The reason that CH30 is  so dependent on
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Table 32. Production and Destruction Terms of CHjO

- 3  -1Production rate (molecules-cm -s ) and percent of total production

Altitude, km K8_________ %_________ J12 % .__ K109_______ i ________ K79_______ % K99 X_______ Total X

10 1.604 E4 44.34 1.997 E4 55.21 1.544 E2

5 7.815 E4 53.63 6.519 E4 44.74 2.250 E3

0 3.330 E5 65.73 1.576 E5 31.11 8.856 E3

Destruction frequency (s~^) and percent of total destruction

Altitude, tan K9__________ %

10 1.175 E2 100.00

5 6.407 E2 100.00

0 2.578 E3 100.00

0.45 6.135 EO - 5.207 E-2 3.617 E4 100.00

1.54 1.227 E2 0.09 3.234 EO 1.457 E5 100.00

1.75 5.491 E3 1.08 1.648 E3 0.33 5.066 E5 100.00



AL
TI

TU
DE

, 
km

170

10

102

/ # / —  
m  ~ z  

i —

' \

LEIGHTON APPROX. 
ALBEDO =0 . 00  
ALBEDO =0. 25  
ALBEDO =0. 50  
ALBEDO = 0.75 
ALBEDO =1 . 00

I ! 1

I ' l  '  t
I ! '

I j 1 \
/II | .

/ / !  '
/ I I  i I

J / ‘ 1 

/  /  1
/ / ' /  I !/  /  /  /  /

y  ./■ J . i
NUMBER DENSITY, particles-cm

To3”
-c m ' 3

3 x 103

Fig. 42 Vertical distributions o f CHoO for the multiple 
scattering cases with various albedos and the 
Leighton approximation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



171

surface albedo is partly  due to its  dependence on CH302 and partly  due 

to CHjOOH fo r its  production. As seen in the previous section, CH302 

varies a great deal with albedo and this e ffec t cascades into the 

production of CH30. Also, the m ultiple scattering calculations for 

CH300H were enhanced 50 percent over the Leighton approximation. At 

higher altitudes the differences between the multiple scattering 

calculations and the Leighton approximation for CH302 and CH-jOOH were 

not as pronounced, (see Figs. 41 and 39 , respectively). Hence, smaller 

effects of m ultiple scattering on the vertica l distributions of CH30 

would be expected in the higher regions of the troposphere. The 

methoxy radical has not been measured, and hence, a comparison with 

model calculated values is not possible.

4 .5 .7  Methyl Radical (CHg)

Production: Destruction:

K1 : CĤ  + OH -»■ CH3 + H20 K3 : CH3 + 02 + M ->• CH302 + M

K98: CH3S0H3 + 0 -»■ CH3 + CH3S0 K92: CH3 + S02 (+M) + CH3S02 (+M)

K2 : CH4 + 0 (] D) -*■ CH3 + OH

K94: CH3SH + 0 -► CH3 + HSO

The methyl rad ica l, CH3> is formed almost exclusively as a result 

of methane reacting with hydroxyl (reaction 1 ). The other three 

production terms are either very small contributors (reactions 98 and 2 ) 

or insign ificant (reaction 94). Reaction 1 provides almost 100 percent 

of the production of the methyl radical at a ll a ltitu d es , (see Table 33). 

At the surface, reaction 98 is responsible fo r 0.21 percent of the to ta l 

methyl production and reaction 2 for a scant 0.01 percent. At the 

tropopause, reaction 2 has a 0.31 percent share of the total methyl
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T a b le  3 3 . P r o d u c t io n  and D e s t r u c t i o n  Terms o f  CH^

“ 3  - 1Production rate (molecules-cm s ) and percent of total production

A ltitude, km K1________% K98 %______ K2_______ % K94 % Total

10 1.927 E4 99.69 3.967 E-2 5.906 El 0.31 2.821 E-12 -  1.933 E4

5 1.308 E5 99.97 2.465 EO -  4.195 El 0.03 3.407 E-9 -  1.308 E5

0 5.882 E5 99.78 1.255 E3 0.21 2.530 El 0.01 1.242 E-4 -  5.895 E5

D e s t r u c t i o n  f r e q u e n c y  ( s - 1 ) and p e r c e n t  o f  t o t a l  d e s t r u c t i o n

A ltitude, km K3 % K92 % Total %

10 6.489 E6 100.00 3.237 E-5 - 6.489 E6 100.00

5 1.530 E7 100.00 1.695 E-4 - 1.530 E7 100.00

0 3.267 E7 100.00 3.825 E-3 - 3.267 E7 100.00

%

100.00

100.00

100.00

•VI
PO
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production, while reactions 98 and 94 are neglig ib le. The destruction

CH3 occurs nearly always as a resu lt of oxidation by molecular oxygen

in the presence of a th ird  body (reaction 3). This loss mechanism is

10 to 11 orders of magnitude more important than the only other

id en tified  loss of CĤ  (reaction 92). The chemical life tim e  of the
-8methyl radical is extremely short, about 10 seconds. The vertical 

profiles  of CH3 show a large dependence on surface albedo, sim ilar to

the CĤ O and CĤ Og p ro files . This is due to its  strong dependence on

the hydroxyl rad ica l. As seen in Table 33, more than 99 percent of the

CH3 molecules are formed by OH reacting with CH .̂ Since methane is

specified variations in the production terms are d irec tly  proportional 

to the changes in the levels of OH. S im ilarly , the loss mechanism of 

CH3 is dominated by oxidation with 02 which is also a specified input 

(see Section 4 .3 .1 ) . Hence, the changes in the vertica l profiles of CH3 

as a function of albedo are due en tire ly  to altered levels of OH. In

fa c t, so strong is this dependence that the graph showing the vertical

profiles of CHg, Fig. 43, can be overlaid with an almost perfect f i t  to

the graph of the OH distributions (Fig. 36). No measurements of the

methyl radical ex is t.

4 .5 .8  Formyl Radical (HCO)

Production: Destruction:

K10: CH20 + OH -*■ HCO + HgO K ll: HCO + 02 ->• CO + H02

J10: CH20 + hv ■* HCO + H

The formyl radical (HCO) is formed two ways: by reaction of formal-

dahyde with hydroxyl (reaction 10) and by photodissociation of 

formaldehyde (J10). Of these two production terms, reaction 10 is
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Fig. 43 Vertical d istributions o f CH3 fo r the m ultiple  
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7 to 10 orders of magnitude more important than the'photolytic production

(010) (see Table 34). The only identified  chemical destruction is due

to oxidation by molecular oxygen (02) (reaction 11). The chemical

life tim e  of the formyl radical in the troposphere is very short, on the 
-8order of 10 seconds. The inclusion of multiple scattering and surface 

albedo show large differences compared to the Leighton approximation in 

the low troposphere, sim ilar to the other rapidly reaction hydrocarbon

species (see Fig. 44). Again this is due to a very strong dependence on

hydroxyl. The vertical profiles of HCO resemble those of OH but are 

smoother. This smoothing.is a result of the reaction of OH to CHgO. 

Formaldehyde depends inversely on surface albedo, i .e .  albedo of 0.00 

shows the greatest enhancement a t the surface. Consequently, the 

vertical profiles of HCO are governed by the combined effects of CHgO 

and OH. No measurements of HCO exist.

4 .5 .9  Future Perturbations to the Carbon Budget

Most of the early work in atmospheric radiation and chemistry 

Concerned i ts e lf  with C02. In fac t, scientists were concerned with 

this problem already at the end of the las t century [1 ]. The mere fact 

that this problem s t i l l  exists today, some 80 years la te r is a 

testimonial to its  significance. The global increase of carbon dioxide, 

as a function of time, is well documented [149]. The atmospheric level 

of C02 is approximately 330 ppmv with a yearly increase of about 1 ppmv 

at the present time. Due to the nonlinearity of the atmosphere- 

hydrosphere-biosphere-lithosphere system a doubling in the C02 level 

would not necessarily take 330 years. The models of Keeling and 

Bacastow [149] and Hoffert [150] predict a doubling in the C02
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Table 34. Production and Destruction Terms of HCO 

-3 -1Production rate (molecules-cm -s ) and percent of total production.

Altitude, km K10 % J10 % Total %

10 4.151 E3 100.00 2.528E-4 -  4.151 E3 100.00

5 2.621 E4 100.00 2.324E-5 -  2.621 E4 100.00

0 1.276 E5 100.00 2.050 E-5 - 1.276 E5 100.00

Destruction frequency (s_1) and percent of total destruction.

Altitude, km K10 %

10 8.987 E6 100.00

5 1.599 E7 100.00

0 2.665 E7 100.00

•̂ 1O)
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concentration in 50 years. The quantitative long-term increase in C02 

is somewhat d if f ic u lt  to predict since the roles of the oceans and the 

biosphere as sinks in the carbon cycling are not fu lly  understood. In 

p articu lar, the deep-ocean uptake of C02 needs to be c la r if ie d .

Recently i t  has also been suggested that alterations in the land 

biota, such- as deforestation and biomass burning, might enhance the 

atmospheric level of C02 [115]. The natural level of carbon dioxide is 

determined by photosynthesis, where C02 is used by plants to synthesis 

organic compounds. Carbon dioxide is returned to the atmosphere by 

oxidation of dead organic matter. Obviously, any large-scale perturbation 

in the biota due to human a c tiv itie s  is bound to enhance the level of C02 

in the atmosphere. Biomass burning d irec tly  emits carbon dioxide into  

the atmosphere.

The second part of the carbon dioxide climate problem deals with 

the potential of a global temperature increase due to the greenhouse 

effects as the level of C02 rises. The thermal properties of C02 have 

been subject of intense studies and are well understood [152]. One­

dimensional radiative-convective models have been used extensively to 

calculate temperature enhancements [153]. At the time, the most 

complete radiative-convective model used to study the C02 climate problem 

was that of Augustsson and Ramanathan [154]. This model includes the 

fundamental bands of four isotopes of C02 in addition to the six "hot 

bands" in the 15 pm region. Furthermore, several o f the weak bands in 

the 7 to 8 pm, 9 to 10 ym, and 12 to 18 ym regions were also included.

The Augustsson-Ramanathan model [1.54] predicted an increase in the 

global surface temperature o f approximately 2.0 K fo r a doubling o f the 

C02 leve l. I t  is important to note that the temperature increase
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represents a globally averaged value and that the increase in the high 

latitudes would be much greater, perhaps by a factor o f 3 to 4 , due to 

certa in  feedback mechanisms such as a decrease in the albedo and a 

greater thermal s ta b ility  of the troposphere. I t  would, therefore, 

appear as though $ simple doubling of the C02 level in the atmosphere 

would pose a very serious problem indeed on the global scale.

Another potentia lly  threatening problem involving species of the 

carbon group deals with the increasing flux o f carbon monoxide due to 

anthropogenic a c tiv itie s  [155]. A recent study has predicted that the 

level of methane would increase to 2.45 ppm in the next 50 years due to 

an increase in CO flu x . Methane increases as a result of the reaction 

between carbon monoxide and the hydroxyl rad ica l, (OH), which in itia tes
0

the methane oxidation chain. Hence, CO and CĤ  compete with each other 

for the available hydroxyl radicals. Since CO reacts more rapidly with 

OH than does CĤ  (see Section 4 .4 .5 ), an increase in CO emission would 

enhance the level of CH .̂ A doubling of the level of methane would 

result in an increased surface temperature of 0.3 to 0.4 K, depending on 

the absorption data used [156]. This is less than the C02 doubling 

would y ie ld , but nevertheless, i t  is s ign ificant. The combined effects 

of C02 and CĤ  doubling simultaneously is especially disturbing. The 

C02 doubling constitutes a problem with run-away effects and by the time 

mankind is ready to rec tify  this threat i t  could conceivably be too la te .

4.6 The Sulfur Group

Of the five major chemical families in the tropophere, sulfur is 

perhaps the least studied and understood. The sulfur species family 

consists of species in various states of oxidation (from highly reduced
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to highly oxidized) with a wide range of lifetimes (from 10"^ seconds 

to several years). Most sulfur reactions have a common feature: a 

trend toward further oxidation. The oxidation chain for the sulfur 

family is shown in Fig. 45.

I t  has been known for a long time that species of the sulfur 

family adversely affect the a ir  quality on the local and regional 

scales. This is due mainly to anthropogenic emissions in large 

Metropolitan areas. Furthermore, i t  has been known for about two 

decades that species of the sulfur family diffuse upward into the 

stratosphere where they form sulfur particulates that constitute the 

stratospheric "aerosol layer" usually found around 20 km [157, 158]. 

Natural emissions of particulates from volcanoes also contribute to 

the aerosol layer.

In this section, the sources and sinks of the sulfur compounds 

are examined. Some sulfur species are produced chemically as well 

as emitted anthropogenically. Loss mechanisms include chemical 

reactions and heterogeneous losses, i . e . ,  rainout, washout and dry 

deposition. The chemical production and loss terms for each species 

lis ted  below are arranged in order of importance.

4.6.1 Sulfur Dioxide (SOg)

The chemical reactions that a ffect sulfur dioxide in this 

model are (in order of importance):
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Production: Destruction:

K68: so + o2 so2 + 0 K77 : S02 + OH (+M) -»■ HSOg (+M)

K69: SO + N02 -»■ S02 + NO K79 : SOg + CHgOg SOg + CHgO

K103: so + o3 ■> so2 + o2 K78 : S02 + H02 ■* SOg + OH

K90: SO + so so2 + S K104: S02 + 0 + M SOg + M

K91: SO + S0g ^ 2S02 K92 : S02 + CHg (+M) CHgS02 (+M)

K81 : so2 + 0 -»• so + o2

The chemical production of S02 always involves SO (reactions 68 , 69,

103, 90, and 91). Of these reactions, only the recombination of

sulfoxy with molecular oxygen (Og) (reaction 68) and sulfoxy with nitrogen

dioxide (N02) (reaction 69) are of major importance. SO reacting with

ozone ( 0 g )  (reaction 1 0 3 ) is o f minor importance while the reactions of

SO with i t s e lf  (reaction 90) and with sulfur trioxide (S O g) (reaction 91)

are negligible. The most important gas phase loss is due to the reaction

with the hydroxyl radical (OH) (reaction 77). A minor loss mechanism

is due to reaction with the methylperoxy radical (CHg02) (reaction 79).

Reactions with the hydroperoxy radical (H02) (reaction 78), with atomic

oxygen (0) in the presence of a th ird  body (reaction 104), with the

methyl radical (C H g ) (reaction 92), and with atomic oxygen (0)

(reaction 81) are a ll negligible. The lifetim e of S02 based solely on

gas phase chemistry is about 2.5 days. Table 35 lis ts  the production

rates and the loss frequencies for the chemical reactions that involve

S02. The destruction term is given as a frequency (s_1) rather than as
3 -1a rate (molecules cm s ) so that the chemical lifetim e can more readily 

be computed. The chemical lifetim e ( t ) of a species is related to the 

loss frequency (L) as:
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Table 35. Production and Destruction Terms of SOg 

-3  -1Production rate (molecules-cm -s ) and percent of total production

Altitude, km K68 %_______ K69 X K103______ %_______ K90 X K91 t  Total %

10 7.855 EO 96.50 8.144 E-3 0.10 2.767 E-1 3.40 4.495 E-13 -  1.083 E-15 -  8.140 EO 100.00

5 4.207 E2 99.42 9.376 E-2 0.03 2.131 EO 0.50 1.014 E -ll -  6.714 E-15 -  4.229 E2 100.00

0 6.472 E4 99.99 8.572 EO 0.01 1.922 E-2 -  4.925 E-9 -  1.480 E-13 -  6.473 E4 100.00

Destruction frequency (s-1 ) and percent of total gas-phase destruction

Altitude, km K77 %_______ K79_______ X_______ K78 t _______ K104 % K92 t _______ K81 % Total______ %

10 9.778 E-7 94.29 5.686 E-8 5.48 2.337 E-9 0.27 3.608 E -ll -  8.740 E-16 - 2.384 E-24 - 1.037 E-6 100.00

5 1.486 E-6 86.98 2.171 E-7 12.71 5.338 E-9 0.31 4.405 E -ll -  2.554 E-15 - 2.638 E-22 - 1.708 E-6 100.00

0 1.926 E-6 81.37 4.307 E-7 18.20 1.011 E-8 0.43 4.404 E -ll -  5.388 E-15 - 8.304 E-21 - 2.376 E-6 100.00

ooco



184

In addition to chemical production and loss terms, sulfur dioxide 

is also emitted anthropogenically as well as naturally . SOg is known as 

a product of combustion of fuel [159]. I t  has also been detected in 

the exhaust of turbines [160] and of diesel engines [161.]. The applica­

tion of certain types of fe r t i l iz e rs  also emits SOg [162]. Sulfur 

dioxide has been found in the smoke form erupting volcanoes [163, 164].

In addition to its  chemical destruction, sulfur dioxide is also 

lost via heterogeneous processes. The heterogeneous loss of SOg has been 

estimated to be about 50 percent of the to ta l loss and is modeled 

following the procedure of Turco [52] with the exception that the present 

model has the tropopause a t 10 km while the model of Turco uses 13 km 

for tropopause a ltitu d e . Inclusion of the heterogeneous loss of SOg 

lowers its  life tim e to s lig h tly  less than two days. At the lower 

boundary, a flux of 1.275 x 10^° molecules cnf^ s”  ̂ was used together 

with a depositional velocity of 1.0 cm s " \  This results in a surface 

mixing ratio  of 0.5 ppb. The resulting vertical p ro file  is shown in 

Fig. 46. The solid line represents the Leighton approximation while the 

various broken and dotted lines represent the vertical profiles of sulfur 

dioxide as calculated with the multiple scattering routine for varying 

albedos. In a ll calculations, a zero flux condition was imposed a t the 

upper boundary. Inclusion of multiple scattering and ground albedo 

results in a decrease of SOg compared to the Leighton approximation.

This is  not very surprising, since the major loss mechanism fo r SOg is  

the reaction with the hydroxyl radical (OH). In fa c t, 80 to 90 percent 

of the time, depending on a ltitu d e , SOg is lost by reaction 77. The 

vertical profiles of the hydroxyl radical were drastically  enhanced, as
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seen previously, when multiple scattering and ground albedo were 

accounted for.

Vertical profiles have been measured by Jost [165], Georgii [166] 

and Georgii and Meixner [167], In general, these measurements show a 

decreasing mixing ra tio  with a ltitude sim ilar to the calculations with 

the present model. One notable exception is a p ro file  by Georgii [166] 

over the A ltantic Ocean indicated by diamonds in Fig. 46. In this case, 

there is an increase in mixing ratio  with a ltitu d e . This would be 

consistent with the theory that the oceans act as a sink for SOg [168]. 

Also included are some measurements by Maroulis et a l . ,  [169] and by 

Jaeschke e t a l . ,  [174], The surface mixing ratio  of the vertical 

profiles  by Georgii [166] and Jost [165J are about an order of magnitude 

higher than those calculated by the present model. This is not very 

surprising since Georgii's [166] and Jost's [165] measuremenst were made 

over Western Europe, an area which is known to have a high background 

concentration o f SOg.

Depositional velocities a t the surface have a range of 0.1 to

2.5 cm s"1 [171]. A value of 1.0 cm s“  ̂ has been suggested as an

average depositional velocity [172] and was used in this study. With a

slow depositional velocity a very rapid increase in mixing ra tio  with

a ltitude results and conversely with a high depositional velocity the

mixing ratio  increases slowly with a ltitu de . In a ll calculations,

the downward flux  o f SOg was kept constant at 1.275 x 1010 molecules 
-2 -1cm s . There are numerous estimates of global SOg emission. For 

example, Katz [173] estimated that 77 x 10 metric tons (77 Mt) were 

emitted. Subsequent estimates by Robinson and Robbins [174] indicate 

that the annual global SOg emission strength is 146 Mt. Of this amount,
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70 percent comes from coal combustion and 16 percent from petroleum 

fuel combustion and the rest from various processes such as petroleum 

refining and smelting. Approximately 95 percent of a ll the 

anthropogenically emitted sulfur compounds are in the form of SOg [175].

A recent estimate of global land sulfur dioxide emission was made by 

Shinn and Lynn [168]. They estimate anthropogenic emissions to be 

183 M t., 33 Mt of that amount is in the form of fe r t i l iz e rs . Natural 

emissions (biogenic and volcanic) were found to be 210 Mt. Hence, 

man's a c tiv itie s  account for nearly 50 percent of a l l  sulfur dioxide 

that is  emitted into the atmosphere. Since the bulk of this figure 

involves coal combustion, a switch to greater use of coal, as recently 

suggested, is lik e ly  to rapidly increase man's contribution to the total 

sulfur budget. In large concnetrations, SOg is very toxic to animals and 

plants. I t  is an important precursor to formation of particulates.

This affects the aerosol loading which has climatic implications in 

addition to the very obvious problem of reduced v is ib il i ty . The clim atic  

aspect to consider is related to the infrared absorption bands of 

SOg at 8.7 pm and 7.3 pm [156].

4 .6 .2  Carbonyl Sulfide (COS)

Production: Destruction:

K75: CS + 0g *>■ COS + 0 K86 : COS + OH *> HS + CO

K87: CSg + OH -»■ COS + HS K101: COS + 0 -*■ SO + CO

K71: CSg + 0 -»■ COS + s K85 : COS + H HS + CO

K89 : COS + S CO + Sg
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The chemical sources of carbonyl sulfide are the reactions of carbon 

sulfide (CS) with molecular oxygen (02) (reaction 75), the reaction of 

carbon disulfide (CS2) with the hydroxyl radical (OH) (reaction 87) and 

with atomic oxygen (reaction 71). At the surface, reactions 75 and 87 

are of equal importance as a chemical source term fo r COS, with 

reaction 71 providing a minor path (see Table 36). With increasing 

altitude reaction 75 becomes the dominant term while reaction 87 

continuously diminshes its-in fluence and, in fac t, a t the tropopause is  

of even less importance than reaction 71. The loss mechanisms of 

carbonyl sulfide are to ta lly  dominated by the reaction of COS to OH 

(reaction 86). A ll other chemical losses o f COS, i . e . ,  reaction with 

atomic oxygen (reaction 101), reaction with atomic hydrogen (H)

(reaction 85) and reaction with atomic sulfur (S( p) (reaction 89) can 

v irtu a lly  be neglected. The calculated life tim e of COS based on the 

loss mechanisms mentioned above is about 500 days.

In addition to the chemical production terms mentioned above, COS 

is also emitted anthropogenically and naturally. Some of the natural 

processes emitting COS include erupting volcanoes [164] and forest fires  

[177]. Some of the industrial processes forming COS include the 

manufacturing of petroleum [177] and of synthetic fib e r [178]. COS is a 

very stable.molecule and consequently i t  should be very well mixed in 

the troposphere. In the model calculations a surface boundary value of 

0.5 ppbv was used together with a condition of zero flux a t the 

tropopause. The resulting vertical p ro file  is shown in Fig. 47.

The measurements of COS have mostly been made at the surface and 

indicate that carbonyl sulfide is very well mixed. Sandalls and Penkett 

[179] obtained a value of 0.51 ppb. Torres e t a l . ,  [180] measured
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T a b l e  3 6 .  P r o d u c t io n  and D e s t r u c t i o n  Terms o f  COS

- 3  -1P r o d u c t io n  r a t e  (m o le c u le s -c m  - s  ) and p e r c e n t  o f  t o t a l  p r o d u c t io n

A l t i t u d e ,  km K75 % K87 % K71 % T o t a l %

10 2 .0 8 2  El 7 3 .3 1 2 .9 5 2  EO 1 0 . 2 5 5 . 0 2 6  E0 1 7 . 4 4  2 . 8 8 0  El 100.00

5 1 .9 7 2  El 6 0 . 9 4 7 .8 7 9  EO 2 4 . 3 5 4 . 7 5 9  E0 1 4 .7 1  3 . 2 3 6  El 100.00

0 1 .6 7 7  El 4 3 . 6 7 1 .7 5 9  El 4 5 .8 1 4 . 0 3 7  E0 1 0 . 5 2  3 . 8 4 0  El 100.00

D e s t r u c t i o n  f r e q u e n c y  ( s “’"*) and p e r c e n t  o f  t o t a l  d e s t r u c t i o n .

A l t i t u d e ,  km K86 % K101 % K85 % K89 % T o t a l %

10 1 . 1 7 2 E - 8 9 9 . 8 2 2 . 1 4 8  E - l l 0 . 1 8 4 . 0 8 6  E -1 5 -  3 . 6 3 7  E -2 2 1 . 1 7 4  E - 8 100.00

5 1 . 7 1 5 E -8 9 9 . 8 4 2 . 7 0 7  E - l l 0 . 1 6 5 .1 0 1  E -1 5 -  6 . 2 1 0  E -2 2 1 . 7 1 8  E - 8 100.00

0 2 . 1 7 9  E -8 9 9 . 8 8 2 . 6 0 9  E - l l 0.12 6 .2 8 1  E -1 5 -  7 . 8 1 7  E -2 2 2 . 1 8 2  E - 8 100.00

COlO
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Fig. 47 Vertical d istributions of COS for the multiple 
scattering cases with various albedos and the 
Leighton approximation.
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an average value o f 0.512 ppb over a wide range of la titu des , while 

Maroulis e t a l . ,  [181] found an average value of 0.467 ppb over three 

d iffe ren t locations in the United States. Some early data by Hanst [182] 

indicate a value o f 0.2 ppb a t the surface, but these measurements were 

associated with large experimental uncertainties. The vertical profiles  

calculated by the model show a nearly constant mixing ra tio  in the 

troposphere as would be expected from its  long life tim e . COS diffuses 

into the stratosphere, where i t  undergoes photolysis forming SO [158]. 

Hence, COS would be an important precursor to the formation of the 

particulates that constitute the aerosol layer. As shown in Fig. 47 

there are only s lig h t differences between the Leighton approximation 

and the multiple scattering cases. This is not unexpected, since COS 

is a re la tiv e ly  unreactive molecule its  vertical d istribution w ill 

closely resemble the d istribution obtained from a pure transport 

solution (neglecting chemical terms).

4 .5 .3  Hydrogen Sulfide (H2S)

Production: Destruction:

K93: HS + HS ^ HgS + H K64 : HgS + OH HS + HgO

K84 : H2S + H -v HS + H2

K102: H2S + 0 + HS + OH

The only known chemical production of HgS in the atmosphere is 

due to the reaction of the thiohydroxyl radical (HS) with i ts e lf  

(reaction 93). This is only of very minor importance when the to ta l 

budget of H2S is considered. The primary loss mechanism for hydrogen 

sulfide is the reaction of H2S with OH (reaction 64). The losses due 

to reactions with atomic hydrogen (reaction 84) and with atomic oxygen

(reaction 102) are nearly negligible (see Table 37). I t  is only at
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Table 37. Production and Destruction Terms of H2S 

-3 -1Production rate (molecules-cm -s ) and percent of total production 

Altitude, km K93 %

10 1.177 E-18 100.00

5 1.511 E-17 100.00

0 1.771 E-13 100.00

Destruction frequency (s~^) and percent of total destruction.
A ltitude, km K64 % K84 % K102 % Total

5.584 E-6 

9.154 E-6 

1.270 E-5

10 5.583 E-6

5 9.154E-6

0 1.270 E-5

99.99 6.075 E-10

100.00 8.641 E -ll

100.00 7.284 E -ll

0.01 1.383 E-10

1.045 E-10 

6.758 E -ll

%

100.00

100.00

100.00
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ro



193

tropopause where reaction 64 does not contribute to 100 percent of the 

total loss of H2S (to the accuracy of two decimal places). At this  

altitude reaction 84 contributes a minute 0.01 percent of the overall 

destruction.

The calculated lifetim e of H2S based on these three chemical 

losses is nearly one day. Some of the industrial ac tiv ities  that have 

been identified as emitting HgS include wood pulping [183] and sewage 

treatment [184]. HgS is formed primarily by microbial ac tiv ity  [185]. 

Volcanoes also emit hydrogen sulfide [186] as does animal waste [187]. 

Only few measurements of H2S exists [167, 188]. The measurements by 

Georgii [167] are the only measurements with a vertical d istribution. 

Most of Georgii's measurements indicate a surface mixing ra tio  of

1.5 -  3.0 ppb. I t  should be kept in mind, however, that these 

measurements were obtained in the tida l fla ts  of Northwestern Germany, 

an area that emits higher fluxes than the globally averaged surface. 

Robinson and Robbins [174] estimated the globally averaged surface 

mixing ratio  to be 0.2 ppb. Using this value as the lower boundary 

conditionand zero flux at the tropopause, the model-calculated profiles  

are shown in Fig. 48. The model shows a very rapid decrease in the 

vertical distributions sim ilar to Georgii's measurements. In the case 

of H2S there are greater differences between the Leighton approximation 

and the results from the multiple scattering calculations than was the 

case for COS. Since HgS is fa ir ly  reactive i t  responds noticeably to 

the enhanced OH levels. In the midtroposphere, hydrogen sulfide  

decreases by an order of magnitude for an albedo of 0.25 compared to the 

Leighton approximation and at the tropopause level the decrease is 

about two orders of magnitude.
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Fig. 48 Vertical d istributions of H2S fo r the m ultiple  
scattering cases with various albedos and the 
Leighton approximation.
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4 .6 .4  Carbon Disulfide.(CSg)

Production: Destruction:

K70 : CS2 + 0 -»■ SO + CS

K87 : CSg + OH -»■ HS + COS

K71 : CSg + 0 -*■ S + COS

K72 : CSg + 0 -»• Sg + CO

K88 : CSg + S -»■ Sg + CS

There are no known chemical reactions in the atmosphere that

produce carbon d isu lfid e , although CSg is formed both naturally by

volcanic emissions [164], as well as by anthropogenic emissions such as

manufacturing o f petroleum [177] and of synthetic fib er [161]. Carbon

disu lfide has also been measured in sea water [189] giving an almost
-13constant value o f 5.2 x 10 gm/ml water over a wide range of latitudes. 

This would indicate a natural source for carbon d isu lfide . The primary 

loss mechanism for CSg is  the reaction with atomic oxygen yielding  

sulfoxy (SO) and carbon sulfide (CS) (reaction 70). At the surface 

this reaction accounts fo r more than 50 percent o f the to ta l loss of 

CSg (see Table 38). S im ilarly , at the surface, reaction 87 is respon­

sib le fo r about 30 percent of the loss and reactions 71 and 72 each 

contribute nearly 7 percent. In the midtropospheric region reaction 70 

has increased its  share to almost 70 percent, while reaction 87 has 

decreased its  influence to less than 15 percent. Reactions 71 and 

72 have increased s lig h tly  in importance with each reaction contri­

buting about 8 percent to the to ta l loss o f CSg. At the tropopause, 

reaction 70 accounts fo r more than 75 percent of the loss, reactions 

71 and 72 fo r almost 10 percent each and reaction 87 for a scant 

5 percent. Throughout the troposphere the reaction of CSg with
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Table 38. Destruction Terms for CS2 

(No chemical production terms are known) 

Destruction frequency (s_1) and percent of total destruction

titude, km K70 % K87 t K71 t K72 % K88 % Total t

10 2.770 E-8 76.31 1.953 E-9 5.37 3.324 E-9 9.16 3.324 E-9 9.16 8.219 E-19 - 3.630 E-8 100.00

5 1.439 E-8 69.51 2.859 E-9 13.81 1.727 E-9 8.34 1.727 E-9 8.34 4.374 E-19 - 2.070 E-8 100.00

0 6.956 E-9 56.75 3.632 E-9 29.63 8.345 E-10 6.81 8.345 E-10 6.81 2.231 E-19 - 1.226 E-8 100.00

10cr»
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o
atomic sulfur (S( p)) is of negligible importance. The life tim e  of 

CSg based on these reactions is about 2.5 years.

Measurements of CSg are very sparse and un til recently confined 

to a single location in England [179], The average surface value obtained 

was 0.19 ppb. No vertica l measurements are available. Using the 

value of 0.19 ppb as the lower boundary condition and zero flux  at 

the tropopause the model-calculated profiles are shown in Fig. 49. CSg

decreases re la tiv e ly  slowly with a ltitude as would be expected from its

long life tim e . The recent measurements of CSg [190] seem to indicate 

much lower values than yielded by the e a rlie r  measurements. The more 

re a lis tic  treatment of the radiation f ie ld  has very l i t t l e  influence on 

CSg due to its  long life tim e .

4.6.5 Sulfuric Acid (HgSO )̂

Producti on: Destruction:

K80 : SOg + HgO +  HgSÔ  Heterogeneous losses

Sulfuric Acid is  formed chemically by the reaction of sulfur 

trioxide (SOg) with water vapor (HgO) (reaction 80 ), as well as 

naturally by volcanic emissions [163] and anthropogenically in the 

exhaust o f automobiles [161] and in the manufacturing process of

HgSÔ  [191]. Sulfuric acid occurs both in liqu id  and solid forms. I t

forms the solid form (su lfa te , SÔ - ) ,  i t  combines with cations other 

than hydrogen. Hence, HgSÔ  affects the environment in two ways:

( i )  by formation o f aerosol particulates which reduces incoming 

radiation and also v is ib i l i ty ,  and

( i i )  by lowering the dH in rainwater.

In Scandinavia, which is downwind from the large industrial
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areas in Germany and Great B rita in , a gradual lowering of pH in 

rainwater with time has been measured. The average rate of decrease 

has been 0.3 to 0.4 units o f pH per decade [192]. Sim ilar acidic 

ra in fa lls  have been observed in the A tlan tic  provinces o f Canada, down­

wind o f the highly industrialized metropolitan Northeast corridor [193]. 

Acid precipitation is known to hav an adverse e ffec t on soils and 

vegetation. I f  a soil becomes more acid ic, leaching of nutrients in 

the top soil layer (humus) is  accelerated [194]. This leaching affects 

among other things the rate-of-growth of trees. For example, forest 

productivity in Scandinavia has decreased by one percent per year 

during the la s t few decades with high incidence of acidic precip i­

tation [193]. Ammonia, NHg, plays an important role in neutralizing  

acidic sulfur species. Consequently, i f  the global sulfur budget 

increases more rapidly than the global ammonia budget, a further 

increase in acid precipitation would be expected.

The only known loss mechanism fo r su lfu ric  acid is heterogeneous 

loss. In the present model, a heterogeneous loss rate sim ilar to 

Turco [52] was used, again with the exception o f a lower tropopause 

a ltitu de  (10 km vs. 13 km). The life tim e  of HgSÔ  at the surface based 

on the heterogeneous loss rate is about 0.5 day (see Table 39).

I t  is of great importance to understand the fa te  of the HgSÔ  

molecules. I t  can occur in liquid  form and rainout in the form of 

acid rain which affects the environment adversely, or, i t  can occur 

in solid form which affects the growth of the aerosol layer and, hence, 

ultim ately w ill a ffec t the climate. In the model, a zero flux condition 

was imposed at both boundaries. The resulting vertica l profiles are 

shown in Fig. 50. There are no tropospheric measurements of HgSÔ
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Table 39. Production and Loss Terms for HgSÔ

-3  -1Production rate (molecules-'cm -s ) and percent of total production

Altitude, km K80

10 8.031 El 100.00

5 6.610 E2 100.00

0 1.314 E4 100.00

Destruction frequency (s- ^) and percent of total destruction 

Altitude, km Heterog. loss %

10 5.31 E-6 100.00

5 1.42E-5 100.00

0 2.30E-5 100.00
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to compare the calculated values with. Sulfuric acid concentration is 

more than doubled fo r an albedo of 0.25 compared to the Leighton 

approximation. This increase in concentration is  due to an enhanced 

level of sulfur triox ide (SOg) which reacts with water vapor to form 

HgSÔ . The level of SOg was increased as a resu lt of an increase in the 

OH level when the multiple scattering code was used.

4 .6.6 Sulfuric Acid Radical (HSOg)

Production: Destruction:

K77 : S0'2 + OH ->■ HSOg K105: HSOg + OH -*■ H2S04

Heterogeneous losses 

The only known chemical reaction producing HSOg, is the reaction of 

S02 with OH. I t  is  important to learn how gaseous sulfur is eventually 

converted into aerosol particulates. One reaction scheme that even­

tua lly  produces H2S04 is via the HSOg radical. The HSOg to H2S04 

conversion is not immediate however. I t  is , therefore, of considerable 

in terest to discover the ultimate fate of the HSOg radical. Some 

complex reaction schemes for HSOg have been suggested [195, 196, 197] 

but none is supported by rate constants. Gas phase loss occurs as a 

result of reaction of HSOg with OH (reaction 105). The homogeneous 

life tim e  of.HSOg is approximately 12 hours at the surface (see Table 40). 

The heterogeneous loss term is modeled sim ilar to H2S04 [52]. The 

combined life tim e  due to both homogeneous and heterogeneous chemistry 

is about 6 -hours at the surface.

I t  is of in terest to find out the details  of the fa te  of the 

HSOg radical because i t  offers a loss mechanism fo r sulfur before 

oxidation to su lfuric  acid occurs. As is the case of HgSO ,̂ no
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Table 40. Production and Destruction Terms of HSOg

I
-3 -1Production rate (molecules-cm -s ) and percent of total production 

Altitude, km K77 %

10 1.055 E2 100.00

5 5.179 E2 100.00

0 2.454 E4 100.00

Destruction frequency (s- .̂) and percent of total destruction

Altitude, km K105 % Heterog. loss % Total %

10 1.302 E-5 71.04 5.310 E-6 28.96 1.833 E-5 100.00

5 1.906 E-5 57.31 1.420 E-6 42.69 3.326 E-6 100.00

0 2.420 E-5 51.77 2.300 E-5 48.73 4.720 E-5 100.00
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tropospheric measurements of HS03 ex is t. The free acid HgS03 is not 

believed to ex is t, while the b isu lfites  containing HS03 are known [198]. 

The boundary condition chosen for HS03 are s im ilar to those fo r HgS04 .

The resulting profiles are shown in Fig. 51. At the surface HS03 is  

lo s t by almost equal amounts due to gas-phase reaction and heterogeneous 

loss. With increasing a ltitu de  the gas-phase loss starts to predomin­

ate over the heterogeneous loss such that at the tropopause approxi­

mately 70 percent of the HS03 molecules are destroyed due to reaction 77 

and the remaining 30 percent are lost heterogeneously. The model-calcu­

lated vertica l profiles o f HS03, shown in Fig. 51, have an interesting  

cross-over point at 2 km. In i t ia l ly ,  the m ultiple scattering calcu­

lations show s lig h tly  enhanced levels of HS03 compared to the Leighton 

approximation. At 2 km nearly a ll calculations have sim ilar values and 

between 2 and 10 km inclusion of the multiple scattering code causes 

decreased levels of HSOj. This cross-over point is due to the fac t that 

both the production and loss terms are dependent on the OH leve l. In 

the mid-to-upper regions of the troposphere the levels of sulfur 

dioxide are decreased when the multiple scattering code is used.

Hence, these decreased SOg levels combine with enhanced levels of OH 

and produce vertical profiles of HS03 that are smaller in magnitude 

than the vertical p ro file  calculated using the Leighton approximation.

4 .6 .7  Sul foxy (SO)

Production: Destruction:

K66 : HS + 02 SO + OH K68 : SO + 0£ -► SOg + 0

K70 : CSg + 0 -*■ SO + CS K103: SO + 03 SOg + Og

K74 : CS + Og ^  SO + CO K69 : SO + NOg ■* SOg + NO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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K76 : S + 02 -*■ SO + OH K90 : SO + SO S02 + S

K101: COS + 0 -»■ SO + CO K91 : SO + S03 -  2S02

K65 : HS + 0 -»■ SO + H

K81 : so2 + 0 SO + o2

At the surface, sulfoxy, SO, is formed almost exclusively (more

than 99.9 percent of the time) by oxidation of the thiohydroxyl 

radical (HS) with molecular oxygen (02) (reaction 66). Of very minor 

importance are the oxidation o f carbon disu lfide (CS2) with 0 (reaction 

70) and the oxidation of carbon sulfide (CS) with 02 (reaction 74).

The remaining four reactions producing SO at the surface are negli­

gible (see Table 41). In the midtroposphere reaction 66 is s t i l l  by 

fa r the dominant production mechanism for sulfoxy (85 percent), but 

reaction 70 now provides 10 percent of the tota l SO production.

Reaction 74 is contributing s lig h tly  less than 5 percent and reaction 

76 a scant 0.1 percent. At the tropopause, 10 km, reaction 66 is 

s t i l l  the largest producer of SO, but its  share has decreased to 

47 percent compared to the increase of reaction 70 to 35 percent and 

reaction 74 to almost 17.5 percent. Even reaction 76 shows a modest 

gain to 0.4 percent and reaction 101 now contributes a miniscule 

0.01 percent to the to ta l SO production. The oxidation of the th io ­

hydroxyl radical (HS) with 0 (reaction 65) and of su lfu r dioxide (S02) 

with 0 (reaction 81) are negligible when compared to the other reactions 

producing SO. Losses are prim arily due to oxidation of SO with molecular 

oxygen (02) (reaction 68). More than 99 percent of the destruction of 

SO at the surface occurs as a resu lt of reaction 68. This predominance 

is evident even in higher regions of the troposphere. At 5 km reaction 

68 accounts fo r about 99.5 percent and at 10 km fo r approximately
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Table 41. Production and Destruction Terms of SO

-3 -1Production rate (molecules-cm -s ) and percent of total production

Altitude, km K66 % K70 % K74 % K76 % K101______ % K6S % K81 % Total %

10 5.628 El 47.01 4.210 El 35.17 2.083 El 17.40 4.998 E-1 0.41 9.065 E-2 0.01 9.759 E-10 - 1.842 E-17 - 1.198 E2 100.00

5 3.588 E2 85.71 3.965 El 9.47 1.972 El 4.71 4.735 E-1 0.11 2.010 E-1 -  1.263 E-9 -  9.324 E-15 - 4.186 E2 100.00

0 6.475 E4 99.92 3.369 El 0.05 1.677 El 0.03 4.025 E-1 -  3.318 E-1 -  4.984 E-8 -  1.059 E-10 - 6.480 E4 100.00

Destruction frequency (s”' )  and percent of total destruction

Itude, km K68 t K103 t K69 % K90 % K91 % Total %

10 6.587 E-1 96.56 2.280 E-2 3.34 6.654 E-4 0.10 1.118 E-13 - 7.058 E-17 - 6.822 E-1 100.00

5 7.236 EO 99.47 3.666 E-2 0.50 1.613 E-3 0.03 3.488 E-13 - 3.158 E-17 - 7.274 EO 100.00

0 5.051 El 99.89 4.903 E-2 0.10 6.690 E-3 0.01 7.686 E—12 - 5.774 E-17 - 5.057 El 100.00
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96.5 percent of the total loss. The remaining portion of the SO

destruction is due to reaction 103 which provides 0.1 percent of the

loss at the surface, 0.5 percent at 5 km and about 3.5 percent at the

tropopause. Reaction 69 offers a minor pathway to loss of sulfoxy

(see Table 41). Negligible loss mechanisms include the reaction of

sulfoxy with i ts e lf  (reaction 90) and of SO reacting with SOg

(reaction 91). Hence, the five  loss mechanisms for SO always produce

SOg, thus, acting as an important SOg precursor. The calculated l i f e -
_2

time of SO based on the reactions above is on the order of 10 seconds. 

Due to its  short life tim e  and high reac tiv ity  measurements cannot be 

made as is true for the most reactive shortlived photochemical 

equilibrium species. The vertical profiles of SO are plotted in 

Fig. 52. At the surface there are large differences in the values of 

number densities of SO due to the various albedos. There is almost 

a logarithmic increase from the Leighton approximation to the multiple 

scattering case with an albedo of 1.00. Between 2 and 4 kilometers 

the roles are reversed with the Leighton approximation yielding the 

highest number densities and the multiple scattering case with an 

albedo of 1.00 the lowest. Near the tropopause the roles are reversed 

again, resembling the distribution at the surface. This peculiar 

behavior in the vertical distributions of SO is due to its  strong 

dependence on HS fo r its  formation. Hence, the vertical profiles of 

sulfoxy closely resemble those of the thiohydroxyl radical, which is 

discussed in the next section.
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4.6.8 Thiohydroxyl Radical (HS)

Production: Destruction:

K64 : H2S + OH ■+ HS + H20 K66 : HS + 02 SO + OH

K86 : COS + OH + HS + C02 K67 : HS + NO -»■ products

K87 : CS2 + OH HS + COS K65 : HS + 0 -*• SO + H

K102: H2S + 0 -»■ HS + OH K82 : HS + H S + H2

K84 : H2S + H + HS + H2 K93 : HS + HS ^ H2S + S

K85 : COS + H -* HS + CO

K83 : S + H2 HS + H

The thiohydroxyl radical is a highly reactive species formed by 

seven reactions and destroyed by five . Only two of the seven reactions 

forming HS are of significance. At the surface reaction o f H2S with 

OH (reaction 64) provides more than 99.5 percent of the thiohydroxyl 

radicals that are produced (see Table 42). Reaction of carbonyl 

sulfide with the hydroxyl radical (reaction 86) contributes about 

0.4 percent, while the reaction of H2S with H (reaction 87) is respon­

sible for a scant 0.02 percent. At 5 km production of HS is due

63.5 percent of the time to reaction 64 and about 34.4 percent of the 

time to reaction 86. Again, reaction 87 is a minor contributor 

(2.1 percent). At the tropopause reaction 86 dominates over reaction 64 

with 86.6 percent and 9.4 percent production, respectively. At this 

altitude reaction 87 contributes to 5 percent of the HS formation.

Losses are due almost entire ly  to the oxidation of 02 (reaction 66).

Of negligible importance are the remaining four loss mechanisms: HS 

reacting with NO (reaction 67), HS oxidized by 0 (reaction 65), HS 

reacting with H (reaction 82) and HS reacting with i ts e lf  (reaction 93). 

In fac t, reaction 66 dominates by more than 9 orders of magnitude over
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Table 42. Production and Destruction Terns of HS

-3 -1Production rate (molecules-cm -s ')  and percent of total production

Altitude, km K64 % K86 t K87 % K102 t  K84 % K85 X K83 X Total X

10 5.336 EO 9.38 4.858 El 85.60 2.953 EO 5.02 1.334 E-4 - 1.069 E-4 - 1.694 E-5 -  1.196 E-18 -  5.687 El 100.00

S 2.353 E2 63.50 1.274 E2 34.38 7.879 EO 2.12 2.687 E-3 -  2.222 E-3 3.789 E-5 -  1.133 E-18 -  3.706 E2 100.00

0 6.476 E4 99.55 2.778 E2 0.43 1.759 El 0.02 3.446 E-1 -  3.715 E-1 - 8.008 E-5 -  9.630 E-19 -  6.506 E4 100.00

Destruction frequency (s'‘^) and percent of total destruction

Altitude, km K66 % K67 X K65 % K82 X K93 % Total X
10 1.797 E5 100.00 1.164 E-4 - 3.117 E-6 -  4.643 E-12 - 7.514 E-15 - 1.797 E5 100.00

5 3.198 E5 100.00 1.485 E-4 - 1.125 E-6 -  5.789 E-12 - 2.693 E-14 - 3.198 E5 100.00

0 5.330 E5 100.00 3.190 E-4 - 4.102 E-7 -  7. 138 E-12 - 2.916 E-12 - 5.330 E5 100.00

ro
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any of the other loss mechanisms for HS. The resulting life tim e  of the
C

thiohydroxyl radical is very short, on the order o f 10 seconds. Its  

calculated vertica l profiles are shown in Fig. 53. The vertica l d is t r i ­

butions of HS are very sim ilar to those of SO, except in the upper 

troposphere where thiohydroxyl decreases continuously while sulfoxy 

exhibits increases. This difference is due to the fact that sulfoxy

is very dependent on CS2 for its  formation in the upper troposphere.

Carbon d isu lfide is a very stable and well-mixed molecule and 

consequently there is nearly as great of an abundance of i t  at the tropo- 

pause as there is  at the surface.

4 .6 .9  Carbon Sulfide (CS)

Production: Destruction:

K70 : CS2 + 0 -*■ CS + SO K74 : CS + 02 -*• SO + CO

K88 : CS2 + S -»■ CS + S2 K75 : CS + 02 -*■ COS + 0

K73 : CS + 0 -»■ S + CO

Carbon su lfide , CS, is formed prim arily when carbon d isu lfide is

oxidized by atomic oxygen (reaction 70), and, of negligible importance,

when atomic sulfur reacts with CS2 (reaction 88). Table 43 shows

more than ten orders of magnitude difference between these two reactions.

The two primary loss mechanisms are oxidation of CS with 02 (reactions

74 and 75). The reaction of CS with 02 takes two paths with equal

preference. A negligible loss fo r CS is the oxidation with atomic

oxygen (0) (reaction 73). The life tim e  of carbon sulfide based on
_2

these reactions is on the order of 10 seconds, well ju stify in g  the 

PCE assumption. The vertica l profiles shown in Fig. 54 are generally 

increasing with a ltitu d e . The m ultiple scattering calculation with an
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Table 43. Production and Destruction Terms of CS

-3  -1Production rate (molecules-cm -s ) and percent of total production

A1ti tude K70 % K88 % Total %

10 4.188 El 100.00 1.242 E-9 - 4.188 El 100.00

5 3.965 El 100.00 1.206 E-9 - 3.964 El 100.00

0 3.369 El 100.00 1.081 E-9 — 3.369 El 100.00

Destruction frequency (s~^) and percent of total destruction

Altitude, knrI K74 % K75 % K73 % Total %

10 5.392 EO 50.00 5.392 E0 50.00 4.285 E-8 - 1.078 El . 100.00

5 9.593 EO 50.00 9.593 EO 50.00 1.547 E-8 - 1.919 El 100.00

0 1.599 El 50.00 1.599 El 50.00 5.632 E-8 3.198 El 100.00

r>o
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albedo of 0.00 shows small differences in the low and midtroposphere 

compared to the Leighton approximation. Near the tropopause,-however, 

there is  almost a 50 percent increase in the CS number density. An 

increase in the surface albedo has the effect of increasing the values 

of the vertica l profiles of CS. For an albedo of 0.25 approximately 

a 60 percent increase in the CS number density at the surface results.

In the midtroposphere the increase is on the order of 25 percent while

at 10 km the increase is nearly 75 percent.

4.6.10 Sulfur Trioxide (SO^)

Producti on: Destruction:

K105: HS03 + OH -*■ S03 + HgO K80 : S03 + HgO H2S04

K71 : S02 + CH302 +  S03 + CH30 K91 : S03 + SO 2 S02

K78 : S02 + H02 -»■ S03 + OH

K104: S02 + 0 + M -> S03 + M

Sulfur trioxide (S03) is the only intermediate sulfur species that 

is known to have non-chemical production terms. The re la tive  importance 

of chemical versus non-chemical contributions to the to ta l S03 budget 

is poorly understood. Chemically, S03 is produced prim arily by the

reaction of HS03 with OH (reaction 105) and by S02 reacting with the

methylperoxy radical (CH302) (reaction 79). Reaction 105 accounts fo r  

57 percent of the to ta l S03 production at the surface while reaction 79 

accounts for 42 percent. Approximately 1 percent of the S03 produc­

tion comes from the interaction of S02 and H02 (reaction 78), while 

a negligible 0.01 percent is due to reaction 104 (see Table 44). In 

the midtroposphere the predominance of reaction 105 is increased to 

81 percent, while reaction 79 has decreased its  production to approx-
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Table 44. Production and Destruction Terms of SO
3

- 3 - 1P ro d u c t io n  r a t e  (m o le c u le s -c m  - s  ) and p e r c e n t  o f  t o t a l  p ro d u c t io n

tu d e , km K105 % K79 % K78 % K104 % T o ta l %

10 7 .4 3 2  E l 9 2 .0 8 6 .1 3 5  EO 7 .6 0 2 .5 6 4  E-1 0 .3 2 3 .9 2 9  E -3 - 8 .0 7 2  El 100.00

5 5 .3 2 9  E2 8 0 .9 1 1 .2 2 7  E2 1 8 .6 3 3 .0 1 7  E0 0 .4 6 2 .4 8 9  E -2 - 6 .5 8 6  E2 100.00

0 7 .4 7 8  E3 5 7 .0 9 5 .4 9 1  E3 4 1 .9 2 1 .2 8 6  E2 0 .9 8 5 .6 1 5  E -1 0.01 1 .3 1 0  E4 100.00

D e s t r u c t io n  fre q u e n c y  (s ~ ^ )  and p e r c e n t  o f  t o t a l  d e s t r u c t io n  

A l t i t u d e ,  km K80 % K91 % T o ta l  %
T

10 2 .2 7 5  E3 100.00 3 .7 2 6  E -1 3  - 2 .2 7 5  E3 100.00

5 4 .1 8 6  E4 100.00 1 .1 6 3  E -1 3  - 4 .1 8 6  E4 100.00

0 4 .5 5 0  E5 100.00 2 .5 6 2  E -1 2  - 4 .5 5 0  E5 100.00

ro—J
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imately 18.5 percent. Reaction 78 accounts for s lig h tly  less than

0.5 percent of the S03 production in this region while reaction 104 

can be neglected. At the tropopause, 10 km, reaction 105 produces 

about 92 percent of a ll the S03 molecules. Reaction 78 accounts for

7.5 percent and reaction 78 is a minor contributor with 0.3 percent. 

Again the reaction of SOg with 0 in the presence of a th ird body, M, 

(reaction 104) can be neglected. Minor contributors to S03 production 

are SOg reacting with HOg (reaction 78) and SOg being oxidized by 0 

in the presence of a third body (reaction 104). The main path for 

S03 destruction is the reaction with water vapor (HgO) (reaction 80).

Of negligible importance is the reaction of S03 with SO (reaction 91). 

Sulfur trioxide is very shortlived. Its  lifetim e is on the order of 

10 second.. The vertical profiles due to the chemistry described above 

and due to the multiple scattering calculations with various albedos 

are shown in Fig. 55. Sulfur trioxide varies strongly as a function of 

ground albedo. The number density at the surface is more than doubled 

for the case of 0.25 albedo compared to the Leighton approximation, 

and more than quadrupled for an albedo of 1.00. Above 3 km the effect 

of albedo is diminished as the major loss term (reaction 80) becomes 

increasingly predominant. This reaction involves the recombination 

of sulfur trioxide with water vapor. Since water vapor has a specified 

vertical p ro file , discussed in Section 4 .4 .1 , only small variations 

would be expected once the reflecting properties of the surface albedo 

are accounted for.
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4.6.11 Atomic Sulfur [S(3p)l

Production: Destruction:

K71:

K73

K90

K83

K93

CS2 + 0 S + COS K76

CS + 0 -*■ S + CO K88

SO + SO -*■ S + S02 K89

HS + H + S + H0 K83

HS + HS ■> S + H2S

s + 02 -*■ SO + 0 
S + CS2 -*■ S2 + CS 

S + COS S2 + CO

S + H2 -*■ HS + H

The production of atomic sulfur in the atmosphere is due almost 

entire ly  to the reaction of CS2 with 0 (reaction 71). Of negligible 

importance are the four reactions: CS with 0 (reaction 73), SO with 

i t s e l f  (reaction 90), HS reaction with H (reaction 83) and HS reacting 

with i ts e lf  (reaction 93). Depending on a ltitu de , these four reactions 

are anywhere from 8 to 17 orders of magnitude less important than 

reaction 71. Loss of S is primarily by oxidation with molecular 

oxygen (reaction 76). The reactions of atomic sulfur with CS2 

(reaction 88) ,  with COS (reaction 89) and with H2 (reaction 83) are

v irtu a lly  negligible as losses for atomic sulfur (see Table 45).
3 7The life tim e of S( p) is extremely short, about 10 seconds. The

vertical profiles of atomic sulfur are shown in Fig. 56. Inspection

of this figure shows that the influence of radiation and chemistry

must be very sim ilar to that of carbon sulfide, since the vertical

profiles of S( p) can be overlaid those of CS (with the horizontal

scale sh ifted). This is not unexpected since both S( p) and CS are

formed and destroyed by sim ilar reactions with identical rate constants.

Both atomic sulfur and carbon sulfide are formed when carbon

disulfide reacts with atomic oxygen, and sim ilarly , both are destroyed

by oxidation with molecular oxygen, 02. Consequently, the ir vertical
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Table 45. Production and Destruction Terms for (S p)

-3 -1Production rate (molecules-cm s ) and percent of total production

Altitude, km K71 X K73 X K90 X K83 X K93 X Total Vi*

10 5.051 EO 100.00 1.656 E-6 - 1.041 E-10 - 1.454 E-15 - 1.176 E-18 5.051 E0 100.00

5 4.758 EO 100.00 3.181 E-7 - 1.014 E -ll - 6.505 E-15 - 1.511 E-17 4.785 E0 100.00

0 4.043 EO 100.00 5.916 E-8 - 4.923 E-9 - 8.672 E-13 - 1.771 E-13 4.043 E0 100.00

Destruction frequency (s' * ) and percent of total destruction

Altitude, km K76 X K88 X K89 X K83 X Total X

10 3.954 E6 100.00 9.828 E-4 - 1.213 E-6 - 9.460 E-13 - 3.954 E6 100.00

5 7.035 E6 100.00 1.791 E-3 - 6.853 E-6 - 1.683 E-12 - 7.035 E6 100.00

0 1.172 E7 100.00 3.149 E-3 - 2.904 E-5 _ 2.805 E-12 - 1.172 E7 100.00
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profiles should be identical in their shapes for the various albedos.

4.6.12 Methanethiol (CH3SH)

Production: Destruction:

K97 : CH3SH + OH + products

K94 : CHgSH + 0 -*• CH3 + HSO

K95 : CH3SH + 0 CH3SO + H

K96 : CH3SH + 0 -v CH3SOH

No chemical source in the atmosphere is known to exist for 

methanethiol (CH3SH) but both natural and anthropogenic sources are 

known to exist. Some of the natural processes emitting CH3SH include 

microbes [185] and animal waste [199]. Anthropogenically, CH3SH is 

emitted due to petroleum manufacturing [177], sewage treatment [200] 

and wood pulping [183]. Destruction of methanethiol at the surface 

proceeds almost exclusively (99.9 percent) through reaction 97. 

Reactions 94, 95, and 96 each account for a minute 0.01 percent. Even 

in the mid- and upper regions of the troposhpere these percentages 

remain almost constant (see Table 46). The vertical profiles of 

CH3SH (see Fig. 57), decrease very rapidly with a ltitude . This is due 

to the e ffic ie n t reaction with OH. The lower boundary condition is 

held constant at 0.001 parts per t r i l l io n  by volume (pptv). The 

calculated lifetim e based on the four destruction terms above is 

slightly  more than 3 hours. The combination of short life tim e , strong 

dependence on OH and an absence of a chemical source term produces the 

rapidly decreasing vertical profiles. Methanethiol has a strong 

dependence on albedo which is to be expected since the destruction term 

is dominated by the reaction with OH (reaction 97). The hydroxyl
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Table 46. Destruction Terms of CĤ SH 

(No chemical production terms are known)

itude, km K97 % K94 % K95 % K96 % Total %

10 4.428 E-5 99.76 3.701 E-8 0.08 3.701 E-8 0.08 3.701 E-8 0.08 4.439 E-5 100.00

5 6.480 E-5 99.94 1.336 E-8 0.02 1.336 E-8 0.02 1.336 E-8 0.02 6.484 E-5 100.00

0 8.230 E-5 99.97 4.872 E-9 0.01 4.872 E-9 0.01 4.872 E-9 0.01 4.439 E-5 100.00
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radical in turn has a very strong dependence on surface albedo, as 

seen in Section 4 .4 .5 .

4.6.13 Dimethyl sulfide (CH3SCH3 )

Production: Destruction:

K100: CHgSCHg + OH ■* products

K99 : CH3SCH3 + 0 -*■ CH2S + CH3O

K98 : CH3SCH3 + 0 CH3SO + CH3

Dimethyl sulfide (CH3SCH3 ) sometimes also written as (CH3)2S 

sim ilar to CH3SH has no known chemical source terms in the atmosphere. 

The same natural and anthropogenic sources that emit CH3SH have also 

been identified as emitting CH3SCH3 . Hence, the natural sources are 

microbial a c tiv ity  [185] and animal waste [199], while the man-made 

sources are sewage treatment [200], wood pulping [183] and the manufac­

turing of petroleum products [177]. Chemical destruction at the ground 

occurs primarily as a result of reaction 100. Minor contributions 

are due to reactions 99 and 98. In the upper region of the troposphere 

reaction 100 s t i l l  dominates with approximately 87 percent, 7.5 percent 

of the production is due to reaction 99 and 5.5 percent is due to 

reaction 98 (see Table 47). The chemical lifetim e based on the three 

destruction terms is approximately 12 hours. The vertical profiles of 

CH3SCH3 (see Fig. 58) exhibit very sim ilar characteristics to those of 

CH3SH. This is to be expected since the same arguments that applied 

to CH3SH are pertinent to CH3SCH3 .

4.6.14 Future perturbations to the sulfur budget

A couple of decades ago the only global scale consequences of 

the sulfur species was thought to be the formation of stratospheric
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Table 47. Destruction Terms of CH3SCH3 

(No chemical production terms are known)

tude, km K100 % K99 % K98 % Total %

10 1.443 E-5 86.97 1.227 E-6 7.40 9.349 E-7 5.63 1.359 E-5 100.00

5 1.957 E-5 96.16 4.431 E-7 2.18 3.376 E-7 1.66 2.035 E-5 100.00

0 2.345 E-5 98.82 1.616 E-7 0.68 1.231 E-7 0.50 2.371 E-5 100.00
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particulates [157, 158]. This argument was based on the re la tiv e ly  

moderate lifetim es of most sulfur species. Lifetimes on the order of 

a few days to a week were thought to preclude any real important 

contributions to global tropospheric chemistry. We now know that 

sulfur species play an integral part in the highly coupled and complex 

chemical system that constitutes the troposphere. S02 emissions have 

exhibited an upward trend during the 1960's . This trend was p a rtia lly  

reversed during the 1970's. Some actions responsible fo r this decrease 

were: Greater use of clean-burning natural gas and of crude o il with 

low sulfur content. Also, a slower economic growth coupled with energy 

conservation contributed to a decrease in S02 emissions. Recently, 

this trend has started upward again. The global concentrations of 

sulfur compounds are very lik e ly  to see a rapid increase in years to 

come due to energy policies. Already emission standards fo r many o il 

burning power plants and industrial plants have been relaxed to allow 

for usage of lower grade crude o il containing more su lfu r. Anthro­

pogenic emissions are currently responsible fo r approximately h a lf 

as much of the atmospheric sulfur concentrations as the natural 

emissions, but some 20 -  25 years from now man-made emissions may 

equal those of nature and may at the turn of the century surpass natural 

emissions in the Northern Hemisphere [175]. The estimates of global 

emission of sulfur are widely varying. Katz [173] made some early
g

estimates and calculated that 77 x 10 metric tons of S02 (Mt) was 

emitted in 1943. The Study of C ritica l Environmental Problems [201] 

established a global emission of 93 Mt per year in 1967-68. Robinson 

and Robbins [174] estimated the annual total S02 emission in the 

mid-1960's to be 146 Mt. A more recent estimate [162] suggests that
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global man-made emissions of S02 are 183 Mt. I t  is s ign ificant to note 

that o f the to ta l global emissions of S02 , 93.5 percent occurs in 

the Northern Hemisphere and only 6.5 percent in the Southern Hemisphere 

[201]. The most recertt estimate [162] of global bacteriogenic 

production of S02 is 210 Mt. F e rtilize rs  are thought to account for 

33 Mt. This portion of the sulfur budget is  very lik e ly  to increase 

fu rther. In the SCEP report [201] some predictions for the future 

were made. An annual growth in fossil fuel usage of 4 percent betv/een 

1970 -  1980 was assumed and a 3.5 percent growth rate from 1980 -  2000.

By the year A.D. 2000, a global anthropogenic emission of 275 Mt per 

year would occur [201]. However, at the present time i t  seems that 

any predictions of future crude o il usage is a risky undertaking at 

best,

I t  is very evident that future sulfur levels in the atmosphere are 

a strong function o f man's a c tiv it ie s . Many questions concerning 

sulfur species remain to be answered. For example, the exact amounts 

of naturally vs. anthropogenically produced sulfur need to be ascertained. 

Also, what is the global concentration o f S02 . Present measurements 

are too inconclusive, and in part contradictory. Furthermore, short 

term and long term impacts of S02 emissions on the sulfur budget must 

be better understood. The primary chemical loss for S02 is OH. The 

hydroxyl radical is  very reactive and acts somewhat lik e  a tropospheric 

vaccuum cleaner. S02 competes with many other species fo r the OH 

rad ica l. The budgets of these competing trace gases need to be 

addressed. The importance o f homogeneous vs. heterogeneous loss for 

S02 needs further research. Presently, i t  is believed that 50 percent 

of S02 is lost homogeneously and 50 percent is lost heterogeneously,
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but this breakdown is only a very crude estimate. The depositional

velocity of S02 needs further defining. Estimates vary from 0.1 -

2.5 cm s' 1 with 1.0 cm s"  ̂ as an average. The vertical profiles of

S02 are very dependent on this quantity. Another question that urgently

needs an answer is to find the mechanism that controls the S02 to

sulfate (gas-to-particle) conversion. From Fig. 45 i t  can be seen that

S02 is converted to HgSÔ  via the intermediate species SOg. A

possible alternate reaction path involves the HSOg radical. The fate

of this molecule is v irtu a lly  unknown. Also, the kinetic data concerning
_2

the reactions that convert S02 to SÔ  needs to be improved upon. 

F inally , the role of ammonia (NHg) in aerosol formation needs to be 

addressed. NHg is largely responsible for neutralizing the acidic 

sulfur species. Hence, i f  the sulfur budget increases more rapidly 

than the amnonia budget, an increase in acidic precipitation over 

the already high levels would result.

In conclusion, we have seen that the sulfur family, because i t i  

is largely so anthropogenic, plays an increasingly important role in 

tropospheric chemistry. Additional research is needed to answer 

many of the questions related to the tropospheric sulfur budget. The 

answers to these questions w ill have an impact on many fie lds of 

sc ien tific  study, e.g. radiative transfer, climatology, meteorology, 

agronomy, ecology and limnology, just to mention a few.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



232

5. CONCLUSIONS

A one-dimensional radiative transfer/photochemical model that 

includes detailed radiative transfer processes that controls the levels 

of incoming solar radiation in the troposphere, e.g. Rayleigh and Mie 

scattering and surface albedo, and a detailed chemistry package that 

includes 114 chemical reactions and 12 photolytic processes and eddy 

transport has been described. Thirtyeight tropospheric gases were 

investigated with respect to the processes that govern th e ir d istributions,

i .e .  transport, radiation and chemistry. The radiative transfer model 

makes use of a matrix inversion code that calculates the source function 

accurately and with a high degree of computational precision and 

efficiency. I t  was found that inclusion of multiple scattering and 

surface albedo s ign ificantly  a lters the vertical profiles of most species 

compared to the Leighton approximation, a one-stream radiation approxima­

tion widely used in most tropospheric models. In p articu lar, large 

differences are calculated for species that are dependent on processes in 

the near u ltrav io le t region (300 to 320 nm). The frequencies for ozone 

photolysis yielding excited oxygen, 0(^D) is enhanced between factors of 

2 to 8 , depending on a ltitu de  and surface albedo. The increased levels 

of 0(^D) cause enhanced levels of the hydroxyl radical (OH) which is 

formed when water vapor ^ 0 ) reacts with the excited oxygen atom [0 (^D)]. 

Since reaction with OH is the major chemical loss mechanism for many 

tropospheric gases, i t  is essential to know the d istribution of this  

radical with high accuracy. At the surface, the OH number densities are 

increased from a factor of 1.4 to a factor of 4.0 depending on the 

assumed surface albedo. In the upper troposphere, the OH number densities
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are enhanced by a factor of 3 .0 . The theoretical results have been 

compared to measured values when such measurements are available. 

Measurements of many species and photolytic processes, in general, agree 

very well with the distributions obtained with the multiple scattering 

radiative transfer model coupled to the tropospheric photochemical model.

Future studies should include a description of the photochemical 

production, transformation and removal of tropospheric aerosols and the 

sensitiv ity  of aerosol production to concentrations of sulfur dioxide 

(S02) ,  odd nitrogen (N0X) and ammonia (NH3). In addition, the photo­

chemical production of acid rain needs to be addressed. Furthermore, 

the rainout parameterization of water-soluble gases needs to be improved.

A vast improvment in the calculations of the radiation fie ld  would 

be the inclusion of clouds. The amount of incoming radiation in the 

troposphere is altered sign ificantly  when clouds are present compared to 

a cloudless sky. Since the Earth has approximately a f i f t y  percent 

cloudcover on the average, the need to include clouds in the radiative  

transfer calculations is obviously great.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



234

REFERENCES

1. Chamberlain, T .C ., "An Attempt to Frame a Working Hypothesis of 
the Cause of Glacial Periods on an Atmospheric Basis," Journal of 
Geology, Vol. 7, 1899, pp. 575, 667, 751.

2. Cunnold, D .F., Aleya, F ., P h illips , N., and Prinn, R ., "A Three- 
Dimensional Dynamic-Chemical Model of Atmospheric Ozone," Journal 
of the Atmospheric Sciences, Vol. 32, No. 1, January 1975, pp. 170- 
194.

3. Levy, H., I I ,  "Normal Atmosphere: Large Radical and Formaldehyde
Concentrations Predicted," Science, Vol. 173, No. 3992, July 1971, 
pp. 141-143.

4. Levy, H., I I ,  "Photochemistry of the Lower Troposphere," Planetary
and Space Science," Vol. 20, No. 6 , June 1972, pp. 919-935.

5. Levy, H., I I ,  "Photochemistry of Minor Constituents in the Tropos­
phere," Planetary and Space Science, Vol. 21, No. 4, April 1973, 
pp. 575-591.

6 . Chameides, W.L. and Walker, J.C.G., "A Photochemical Theory of 
Tropospheric Ozone," Journal of Geophysical Research, Vol. 78, No.
36, December 1973, pp. 8751-8760.

7. Stewart, R.W., Hameed, S ., and Pinto, J .P ., "Photochemistry of 
Tropospheric Ozone," Journal of Geophysical Research, Vol. 82, No.
21, July 1977, pp. 3134-3140.

8 . Liu, S.C., "Possible Effects on Tropospheric 03 and OH Due to NO 
Emissions," Geophysical Research Letters, Vol. 4, No. 8 , Auqust 
1977, pp. 325-328.

9. Fishman, J. and Crutzen, P .J ., "A Numerical Study of Tropospheric 
Photochemistry Using a One-Dimensional Model," Journal of Geophysical 
Research, Vol. 82, No. 37, December 1977, pp. 5897-5906.

10. Man's Impact on the Troposphere, edited by J.S. Levine and D.R. 
Schryer, NASA Reference Publication 1022, 1978, pp. 372.

11. Levine, J .S ., Augustsson, T.R ., and Hoell, J.M., "The Vertical 
Distribution of Atmospheric Ammonia," Geophysical Research Letters, 
Vol. 7, No.5, May 1980, pp. 317-320.

12. Augustsson, T .R ., Levine, J .S ., and Tiwari, S.N., "The Sulfur 
Budget of the Troposphere," EOS, Vol. 61, No. 17, April 1980, p .239.

13. Anderson, D .E., Jr. and Meier, R.R., "Effects of Anisotropic 
Multiple Scattering on Solar Radiation in the Troposphere and 
Stratosphere," Applied Optics, Vol. 18, No. 12, June 1979, pp. 1955- 
1960.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



235

14. Luther, F.M. and Gelinas, R .J ., "Effect of Molecular Multiple  
Scattering and Surface Albedo on Atmospheric Photodissociation 
Rates," Journal of Geophysical Research, Vol. 81, No. 6 , February 
1976, pp. 1125-1132.

15. Luther, F.M., Wuebbles, D .J ., Duewer, W.H., and Chang, J .S .,
"Effect of Multiple Scattering on Species Concentration and Model 
S ensitiv ity ," Journal of Geophysical Research, Vol. 83, No. C7,
July 1978, pp. 3563-3570.

16. Crutzen, P .J ., Isaksen, I.S .A ., and McAfee, J .R ., "The Impact of
the Chlorocarbon Industry on the Ozone Layer," Journal of Geophysical 
Research, Vol. 83, No. Cl, January 1978, pp. 345-363.

17. Call is , L .B ., Ramanathan, V ., Boughner, R.E., and Barkstrom, B.R., 
"The Stratosphere: Scattering Effects, a Coupled 1-D Model and 
Thermal Balance Effects," Proceedings of the Fourth CIAP Conference, 
Rep. D0T-TSC-0ST-75-38, 1975, U.S. Department of Transportation, 
Washington, D.C., pp. 224-233.

18. Lettau, H., Compendium on Meteorology, edited by T.F. Malone, 
American Meteorological Society, 1951, pp. 320-333.

19. U.S. Standard Atmosphere, U.S. Government Printing Office,
Washington, D.C., 1962.

20. Chameides, W.L. and Walker, J.C.G., "A Time-Dependent Photochemical
for Ozone Near the Ground," Journal of Geophysical Research, Vol. 81,
No. 3, January 1976, pp. 413-420.

21. McConnell, J .C ., "Atmospheric Ammonia," Journal of Geophysical 
Research, Vol. 78, No. 33, November 1973, pp. 7812-7821.

22. McElroy, M.B., Wofsy, S.C., and DakSze, N., "Photochemical Sources 
for Atmospheric H?S," Atmospheric Environment, Vol. 14, No. 1,
January 1979, pp. 159-163.

23. Johnston, H.S., Kattenhorn, D ., and Whitten, G., "Use of Excess
Carbon 14 Data to Calibrate Models of Stratospheric Ozone Depletion
by Supersonic Transports," Journal of Geophysical Research, Vol. 81, 
No. 3, January 1976, pp. 368-380.

24. Hunten, D.M., "The Philosophy of One-Dimensional Modeling," Fourth 
Conference on CIAP, February 1975.

25. Leighton, P.A., Photochemistry of Air Pollution, Academic Press,
New York, 1961.

26. Ackerman, M., "U ltraviolet Solar Radiation Related to Mesospheric 
Processes," Institu te  Aeronautic Spatiale Belgique, Brussels,
Belgium, A-77, 1970, pp. 149-159.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



236

27. Elterman, L ., "UV, V isib le, and IR Attenuation for Altitudes to
50 km," Environmental Research Paper 285, U.S. Air Force Cambridge 
Research Laboratory, Bedford, Massachusetts, 1968, pp. 1-48.

28. U.S. Standard Atmosphere Supplements, U.S. Government Printing 
Office, Washington, D.C., 1966.

29. The Stratosphere: Present and Future, NASA Reference Publication 
1049, edited by R.D. Hudson and E .I. Reed, 1979.

30. Lin, C.L. and DeMore, W.E., "0(^D) Production in Ozone Photolysis
Near 3100 A," Journal of Photochemistry, Vol. 2, 1973, pp. 161-164.

31. Moortgad, G.K. and Warneck, P ., "Relative 0(^D) Quantum Yields in 
the Near UV Photolysis of Ozone at 298 K," Zeitung Naturforschung,
A 30, 1975, pp. 835-844.

32. Moortgad, G.K., Kudszus, E ., and Warneck, P ., "Temperature
Dependence of 0( D) Formation in the Near UV. Photolysis of Ozone,"
Journal of the Chemical Society, Faraday Transactions, I I ,  Vol. 73, 
1977, pp. 1216-1221.

33. Moortgad, G.K. and Kudszus, E ., "Mathematical Expression for the 
0( D) Quantum Yields From the 0, Photolysis as a Function of 
Temperature (230-320 K) and Wavelength (295-320 nm)," Geophysical 
Research Letters, Vol. 5, No. 3, March 1978, pp. 191-194.

34. Amimoto, S .T ., Force, A.P., and Wiesenfeld, J .R ., "Ozone Photo­
chemistry: Production and Deactivation of 0( D?) Following Photolysis 
at 248 nm," Chemical Physics Letters, Vol. 60, No. 1, December 1978, 
pp. 40-43.

35. Kajimoto, 0. and Cvetanovic, R .J., "Absolute Quantum Yield of 0(^Dp) 
in the Photolysis of Ozone in the Hartley Band," International 
Journal of Chemical Kinetics, Vol. 11, No. 6 , June 1979, pp. 605-612.

36. Fairchild, C.E., Stone, E .J ., and Lawrence, G.M., "Photofragment 
Spectroscopy of Ozone in the UV Region 270-310 nm and at 600 nm," 
Journal of Chemical Physics, Vol. 69, No. 8 , April 1978, pp. 3632- 
3638.

37. Sparks, R.S., Carson, L ., Shobatake, K., Kowalczyk, M.L., and Lee, 
Y .T ., "Dynamics of Photodissociation of 0 ,,"  paper presented at the 
7th International Symposium on Molecular Beams, Riva Del Garda,
Ita ly , May 28- June 1, 1979.

38. Harker, A.B. and Johnston, H.S., "Photolysis of Nitrogen Dioxide to 
Produce Transient 0, NO, and NoOc," Journal of Physical Chemistry, 
Vol. 77, No. 9, April 1973, ppf T153-1156.

39. Bass, A.M., Ledford, A.E., J r . ,  and Laufer, A.H., "Extinction 
Coefficients of N0? and N?0d," Journal of Research of the National 
Bureau of Standards, Section A 80, 1976, pp. 143-166'.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



237

40. Moortgad, G.K. and Warneck, P., "C02 and H2 Quantum Yields in the 
Photodecomposition of Formaldehyde in A ir,"  Journal of Chemical 
Physics, Vol. 70, No. 8 , April 1979, pp. 3639-3651.

41. Graham, R.A. and Johnston, H.S., "The Photochemistry of NO, and the 
Kinetics of the N^0c-0o System," Journal of Physical Chemistry,
Vol. 82, No. 3, February 1978, pp. 254-268.

42. Johnston, H.S. and Graham, R.A., "Gas Phase U ltrav io le t Absorption 
Spectrum of N itric  Acid Vapor," Journal of Physical Chemistry,
Vol. 77, No. 1, January 1973, pp. 62-63-.

43. Johnston, H.S., Chang, S .-G ., and Whitten, G., "Photolysis of
N itric  Acid Vapor," Journal of Physical Chemistry ,Vo l. 78, No. 1, 
January 1974, pp. 1-7.

44. Stockwell, W.R. and Calvert, J.G ., "The Near U ltrav io let Absorption 
Spectrum of Gaseous HONO and N„0o," Journal of Photochemistry,
Vol. 8 , 1978, pp. 193-203. * 6

45. Molina, L .T ., Schinke, S.D., and Molina, M .J., "U ltraviolet
Absorption Spectrum of Hydrogen Peroxide Vapor," Geophysical 
Research Letters, Vol. 4, No. 12, December 1977, pp. 580-582.

46. Lin, C .L., Rohatgi, N.K., and DeMore, W.E., "U ltraviolet Absorption 
Cross Sections of Hydrogen Peroxide," Geophysical Research 
Letters, Vol. 5, No. 2, February 1978, pp. 113-115.

47. Arguello, G. and Molina, M .J., "U ltraviolet Absorption Spectrum of 
CH,00H Vapor," Geophysical Research Letters, Vol. 6 , No. 12,
December 1979, pp. 953-955.

48. Stedman, D.H., Chameides, W.L., and Cicerone, R .J., "The Vertical 
Distribution of Soluble Gases in the Troposphere," Geophysical 
Research Letters, Vol. 2 ,No. 8 , August 1975, pp. 333-336.

49. Boughner, R.E. and Nealy, J .E ., "A Coupled Radiative-Convective- 
Photochemical Model of the Stratosphere," NASA Technical Paper 
No. 1418, April 1979.

50. Palmen, E. and Newton, C.W., Atmospheric Circulation Systems- 
Their Structure and Physical Interpretion, Academic Press, New York, 
1969.

51. Wofsy, S.C., McConnell, J .C ., and McElroy, M.B., "Atmospheric CH,,
CO and C0o," Journal of Geophysical Research, Vol. 77, No. 24,
August 1972, pp. 4477-4493.

52. Turco, R.P., Hamill, P ., Toon, O.B., Whitten, R.C., and Kiang, C.S.,
"A One-Dimensional Model Describing Aerosol Formation and Evolution
in the Stratosphere : I .  Physical Processes and Mathematical Analogs," 
Journal of the Atmospheric Sciences, Vol. 36, No. 4, April 1979, 
p p . 6 9 9 -7 1 7 :—  -------------------------------

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



238

53. Dickerson, R.R., Stedman, D.H., Chameides, W.L., Crutzen, P .J ., and 
Fishman, J . ,  "Actinometric Measurements and Theoretical Calculations 
of J(O -), the Rate of Photolysis of Ozone to 0 (D ) ,"  Geophysical 
Research Letters, Vol. 6 , No. 11, November 1979, pp. 833-836.
(Also correction, Geophysical Research Letters, Vol. 7, No. 1, 
January 1980, p. 112).

54. Hanser, F.A. and Sellers, B., "Variations of 0(^D) Photoproduction 
Rate for the 1977 Gametag Flights," Journal of Geophysical Research, 
Vol. 85, No. Cl2 ,  December 1980, pp. 7 3 7 7 - 7 3 8 2 .

55. Stedman, D.H., Chameides, W.L., and Jackson, J.O ., "Comparision of 
Experimental and Computed Values of J(N0?),"  Geophysical Research 
Letters, Vol. 2, No. 1, January 1975, pp. 22-25.

56. Harvey, R.B., Stedman, D.H., and Chameides, W.L., "Determination of 
the Absolute Rate of Solar Photolysis of N02," Journal of the Air 
Pollution Control Association, Vol. 27, 1977, pp. 663-668.

57. Stedman, D.H. and Smith, J ., "A Qualitative Understanding of Ozone 
Observations," The CHON Photochemistry of the Troposphere, National 
Center for Atmospheric Research, Boulder, Colorado, 1980, pp. 21-27. 
(Available as NCAR/CQ-7+1980-ASP).

58. Graham, R.A. and Johnston, H.S., "The Photochemistry of NO, and the 
Kinetics of the NoOc-Oo System," journal of Physical Chemistry,
Vol. 82, No. 3, February 1978, pp. 254-268.

59. Magnotta, F. and Johnston, H.S., "Photodissociation Quantum Yields 
for the N0o Free Radical," Geophysical Research Letters, Vol. 7,
No. 10, October 1980, pp. 769-772.

60. Hoell, J .M ., Harward, C.N., and Williams, B.S., "Remote Infrared 
Heterodyne Radiometer Measurements of Atmospheric Ammonia," 
Geophysical Research Letters, Vol. 7, No. 5, May 1980, pp. 313-316.

61. Erikson, E ., "Composition of Atmospheric Precipitation, I ,  Nitrogen 
Compounds," Tellus, Vol. 4, 1952, pp. 215-232.

62. Health and Environmental Effects of Coal Gasification and 
Liquefaction Technologies, ' 1 edited by J. Antizzo, Mitre Corporation 
M78-58, 1978.

63. Dawson, G.A., "Atmospheric Ammonia From Undisturbed Land," Journal 
of Geophysical Research, Vol. 82, No. 21, July 1977, pp. 3125-3133.

64. Healy, T .V ., McKay, H.A.C., Pilbeam, A., and S carg ill, D ., "Ammonia 
and Ammonium Sulfate in the Troposphere over the United Kingdom," 
Journal of Geophysical Research, Vol. 75, No. 12, April 1970,
pp. 2317-2321.

65. Georgii, H.W. and Muller, W.J., "On the Distribution of Ammonia in 
the Middle and Lower Troposphere," Tellus, Vol. 26, 1974, pp. ISO- 
184.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



239

66. Hoell, J .M ., Harward, C.N., and McClenny, W.A., "Comparison of 
Remote Infrared Heterodyne Radiometer and In Situ Measurements of 
Atmospheric Ammonia," paper presented at the Conference on Lasers 
and Electro-Optical Systems, San Diego, C alifornia, February 26-28, 
1980.

67. Hoell, J .M ., Levine, J .S ., Augustsson, T .R ., and Harward, C.N., 
"Atmospheric Ammonia: Measurements and Modeling," AIAA Paper No. 81- 
0376, January 1981.

68. Kelly, T .J . , Stedman, D.H., R itte r, J .A ., and Harvey, R.B., 
"Measurements of Oxides of Nitrogen and N itr ic  Acid in Clean A ir,"  
Journal of Geophysical Research, Vol. 85, No. C12, December 1980, 
pp. 7417-7425.

69. Liu, S .C ., "Possible Nonurban Environmental Effects Due to Carbon 
Monoxide and Nitrogen Oxides Emission," in Man's Impact on the 
Troposphere, edited by J.S. Levine and D.R. Schryer, NASA Reference 
Publication 1022, 1978, pp. 65-79.

70. Anonymous."Effect on Increased Nitrogen Fixation on Stratospheric 
Ozone," Report No. 53, Council on Agricultural Science and 
Technology, January 1976.

71. Noxon, J .F ., "Atmospheric Nitrogen Fixation by Lightning,"
Geophysical Research Letters, Vol. 3, No. 8 , August 1977, pp. 463- 
465.

72. G riffin g , G.W., "Ozone and Oxides of Nitrogen Production During 
Thunderstorms," Journal of Geophysical Research, Vol. 82, No. 6 , 
February 1977, pp. 943-950.

73. Chameides, W.L., Stedman, D.H., Dickerson, R.R., Rusch, D.W., and
Cicerone, R .J ., "NO Production in Lightning," Journal of the 
Atmospheric Sciences, Vol. 34, No. 1, January 1977, pp. 143-149.

74. Tuck, A .F ., "Production of Nitrogen Oxides by Lightning Discharges,"
Quarterly Journal of the Royal Meteorological Society, Vol. 102,
No. 434, October 1976, pp. 749-755.

75. H i l l ,  R .D., Rinker, R.G., and Wilson, H.D., "Atmospheric Nitrogen
Fixation by Lightning," Journal of the Atmospheric Sciences, Vol. 37,
No. 1, January 1980, pp. 179-192.

76. Levine, J .S ., Rogowski, R.S., Gregory, G .L., Howell, W.E., and 
Fishman, J . ,  "Simultaneous Measurements of NO , NO and 03 Production 
in a Laboratory Electric Discharge: Atmospheric Implications," 
Geophysical Research Letters, Vol. 8 , No. 4, April 1981, pp. 357- 
360.

77. Dawson, G.A., "Nitrogen Fixation by Lightning," Journal of the 
Atmospheric Sciences," Vol. 37, No. 1, January 1980, pp. 174-178.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



240

78. Junge, C .E ., A ir Chemistry and Radioactivity, Academic Press. New 
York, 1963.

79. Ripperton, L .A ., Worth, J .J .B ., and Kornreich, L ., "Nitrogen Di­
oxide and N itr ic  Oxide in Non-Urban A ir,"  paper presented at the 
61st Annual Meeting of the A ir Pollution Control Association, June 
1968.

80. Breeding, R .J ., Lodge, J .P ., J r . ,  Pate, J .B ., Sheesley, D.C.,
Klonis, H .B., Fogle, B ., Anderson, J .A ., Englert, T .R ., Haagenson, 
P .L ., McBeth, R .B., Morris, A .L ., Pogue, R., and Wartburg, A .F ., 
"Background Concentrations of Trace Gases in the Central United 
States," Journal of Geophysical Research, Vol. 78, No. 30, October 
1973, pp. 7057-7064.

81. Moore, H ., "Isotopic Measurements of Atmospheric Nitrogen Compounds," 
Tellus, Vol. 26, Nos. 1-2, January-April, 1974, pp. 169-174.

82. Lodge, J . P . , J r . ,  Machado, P.A., Pate, J .B ., Sheesly, D .C., and 
Wartburg, A .F ., "Atmospheric Trace Chemistry in the American Humid 
Tropics, Te llus , Vol. 26, Nos. 1-2, January- A p ril, 1974, pp. 250-253.

83. Noxon, J .F . ,  "Nitrogen Dioxide in the Stratosphere and Troposphere 
Measured by Ground-Based Absorption Spectroscopy," Science, Vol. 189, 
No. 4202, August 1975, pp. 547-549.

84. Noxon, J .F .,  "Tropospheric N0o," Journal of Geophysical Research,
Vol. 83, No. C6 , June 1978, pp. 3UFT-T057'.

85. P la tt , U. and Perner, D ., "Direct Measurements of Atmospheric CH?0, 
HN02» 03 , ND2 > and S02 by D iffe ren tia l Optical Absorption in the 
Near UV," Journal of Geophysical Research, Vol. 85, No. C12,
December 1980, pp. 7453-7458.

86. B riehl, D .C., Hilsenrath, E ., Ridley, B.A., and Schiff, H . I . ,  "In 
Situ Measurements o f N itr ic  Oxide, Water Vapor and Ozone From an 
A irc ra ft,"  Second International Conference on the Environmental 
Impact of Aerospace Operations in the High Atmosphere -  Preprints, 
American Meteorological Society, July 1974, pp. 11-15.

87. Drummond, J.W ., "Atmospheric Measurements of N itr ic  Oxide Using a 
Chemiluminescent Detector," Ph. D. Thesis, University of Wyoming, 
Laramie, Wyoming, 1977.

88 . Torres, A .L ., Personal Communication, 1981.

89. McFarland, M., Kley, D ., Drummond, J.W., Schmeltekopf, A .L ., and 
Winkler, R .H., "N itric  Oxide Measurements in the Equatorial Pacific  
Region," Geoph.ysical Research Letters, Vol. 6 , No. 7, July 1979, 
pp. 605-608.

90. Chameides, W.L., "The Photochemical Role of Tropospheric Nitrogen 
Oxides," Geophysical Research Letters, Vol. 5, No. 1, January 1978, 
pp. 17-20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



241

91. Huebert, B.J. and Smith, J . ,  "HNO- Vapor vs. A ltitude at the 
Pawnee Grasslands," The CHON Photochemistry of the Troposphere, 
National Center for Atmospheric Research, Boulder, Colorado, 1980, 
pp. 67-71. (Available as NCAR/CQ-7+1980-ASP).

92. Okita, T ., Morimoto, S ., Izawa, M., and Konno, S ., "Measurements of 
Gaseous and Particulate Nitrates in the Atmosphere," Atmospheric 
Environment, Vol. 10, No. 12, December 1976, pp. 1085-1089.

93. Huebert, B.J. and Lazrus, A .L., "Global Tropospheric Measurements 
of N itric  Acid Vapor and Particulate N itrate ," Geophysical Research 
Letters, Vol. 5, No. 7, July 1978, pp. 577-580.

94. Huebert, B .J ., "N itric  Acid and Aerosol N itrate Measurements in the 
Equatorial Pacific Region," Geophysical Research Letters, Vol. 7,
No. 5, May 1980, pp. 325-328.

95. Huebert, B.J. and Lazrus, A .L ., "Tropospheric Gas-Phase and Particu­
late  Nitrate Measurements," Journal of Geophysical Research, Vol. 85, 
No. Cl2, December 1980, pp. 7322-7328.

96. Perner, D. and P la tt, U ., "Detection of Nitrous Acid in the Atmos­
phere by D ifferentia l Optical Absorption," Geophysical Research 
Letters, Vol. 6 , No. 12, December 1979, pp. 917-920.

97. Nash, T ., "Nitrous Acid in the Atmosphere and Laboratory Experiments 
on its  Photolysis," Tellus, Vol. 26, 1974, pp. 175-179.

98. Noxon, J .F ., Norton, R.B., and Marovich, E ., "NO, in the Tropos­
phere," Geophysical Research Letters, Vol. 7, Not 2, February 1980, 
pp. 125-128.

99. Delwiche, C.C., "The Nitrogen Cycle," Scientific  American, Vol. 223, 
No. 3, September 1970, pp. 136-140.

100. Hardy, R.W.F. and Halvcka, U.D., "Nitrogen Fixation: A Key to
World Food?" Science, Vol. 188, No. 4188, May 1975, pp. 633-643.

101. McElroy, M.B., Elkins, J.W., Wofsy, S.C ., and Yung, Y .L ., "Sources 
and Sinks for Atmospheric N,0," Review of Geophysics and Space 
Physics, Vol. 14, No. 2, Ma£ 1976, pp. 143-150.

102. Levine, J .S ., Augustsson, T .R ., and Hoell, J.M., "The Ammonia
Budget of the Atmosphere/Biosphere System," EOS, Vol. 61, No. 17,
April 1980, p. 239.

103. Levine, J .S ., Hays, P.B., and Walker, J.C.G., "The Evolution and 
V ariab ility  of Atmospheric Ozone Over Geological Time," Icarus,
Vol. 39, No. 2, August 1979, pp. 295-309.

104. Kasting, J.F. and Donahue, T.M., "The Evolution of Atmospheric 
Ozone," Journal of Geophysical Research, Vol. 85, No. C6 , June 
1980, pp. 3255-3263.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



242

105. Levine, J .S ., Augustsson, T.R ., Boughner, R.E., Natarajan, M., and 
Sacks, L . , "Comets and the Photochemistry of the Paleoatmosphere,"
To appear in Comets and the Origin of L ife , edited by C. Ponnamperuma, 
D. Reidel Publishing Co., 1981.

106. Broecker, W.S., "Man's Oxygen Reserves," Science, Vol. 168, No. 3939,
June 1970, pp. 1537-1538.

107. Machta, L. and Hughes, E ., "Atmospheric Oxygen in 1967 to 1970,"
Science, Vol. 168, No. 3939, pp. 1582-1584.

108. Fabian, P..and Pruchniewicz, P.G., "Meridional Distribution of 
Ozone in the Troposphere and Its  Seasonal Variations," Journal of 
Geophysical Research, Vol. 82, No. 15, May 1977, pp. 2063-2073.

109. Danielsen, E.F. and Mohnen, V .A ., "Project DUST0RM Report: Ozone 
Measurements and Meteorological Analyses of Tropopause Folding," 
ASRC-SUNY-PUB-394. (Contract N00014-76-C-0283), State University 
of New York at Albany, May 1976. (Available from DDC as AD A032 
555).

110. Crutzen, P .J ., "Photochemical Reactions In itia ted  by and Influencing
Ozone in Unpolluted Tropospheric A ir," Tellus, Vol. 26, Nos. 1-2, 
January-April, 1974, pp. 47-57.

111. Chameides, W.L. and Stedman, D.H., "Tropospheric Ozone: Coupling 
Transport and Photochemistry," Journal of Geophysical Research,
Vol. 82, No. 12, April 1977, pp. 1787-1794.

112. Fishman, J . ,  Solomon, S ., and Crutzen, P .J ., "Observational and
Theoretical Evidence in Support of a Significant In Situ Photo­
chemical Source of Tropospheric Ozone," Tellus, Vol. 31, No. 5, 
October 1979, pp. 432-446.

113. Singh, H.B., Viezce, W., Johnson, W.B., and Ludwig, F .L ., "The 
Impact of Stratospheric Ozone on Tropospheric A ir Quality," Journal 
of the Air Pollution Control Association, Vol. 30, No. 9, September 
1980, pp. 1009-1017.

114. Kreuger, A.J. and Minzner, R.A., "A Mid-Latitude Ozone Model for
the 1976 U.S. Standard Atmosphere," Journal of Geophysical Research,
Vol. 81, No. 24, August 1976, pp. 4477-4481.

115. Chatfield, R. and Harrison, H., "Tropospheric Ozone 2. Variations 
Along a Meridional Band," Journal of Geophysical Research, Vol. 82,
No. 37, December 1977, pp. 5969-5976.

116. Routhier, F ., Dennett, R ., Davis, D.D., Wartburg, A ., Haagenson, P., 
and Delany, A.C., "Free Tropospheric and Boundary-Layer Airborne 
Measurements of Ozone Over the Latitudinal Range of 58 S to 70 N," 
Journal of Geophysical Research, Vol. 85, No. Cl2, December 1980, 
pp. 7307-7321.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



243

117. Crutzen, P .J ., "SST's. Threat to the Earth's Ozone Shield," Ambio, 
Vol. 1, No. 2, February 1972, pp. 41-51.

118. Rowland, F.S. and Molina, M .J., "Chlorofluoromethanes in the 
Environment," Review of Geophysics and Space Physics, Vol. 13,
No. 1, February 1975, pp. 50-52.

119. Meyer, A.D. and Seitz, E.O., "U ltravio lette Strahlen ihre Erzeugung, 
Messung und Andwendunq in Medizin, Biologie und Technik," de Gruter, 
Berlin, 1942.

120. Rambler, M.B. and Margulis, L ., "Bacterial Resistance to U ltrav io let 
Irradiation Under Anaerobiosis: Implications for Pre-Phanerozoic 
Evolution," Science, Vol. 210, No. 4470, November 1980, pp. 638-640.

121. National Academy of Sciences, Climate Impact Committee, "Environ­
mental Impact of Stratospheric F ligh t,"  Washington, D.C., 1975.

122. Riehl, H., Introduction to the Atmosphere, McGraw-Hill, New York, 
1972.

123. Schmidt, U ., "Molecular Hydrogen in the Atmosphere," Tellus, Vol. 26, 
Nos. 1-2, January-April, 1974, pp. 78-90.

124. Muenow, D.W., "High Temperature Mass Spectrometric Gas-Release 
Studies of Hawaiian Volcanic Glass: Pele's Tears," Geochimica et 
Cosmochimica Acta, Vol. 37, No. 6 , June 1963, pp. 1551-1561.

125. Naughton, J .J .,  "Volcanic Flame: Source of Fuel and Relation to 
Volcanic Gas~Lava Equilibrium," Geochimica et Cosmochimica Acta,
Vol. 37, No. 5, May 1973, pp. 1163-1169.

126. Mason, B ., Principles of Geochemistry, Wiley, New York, 1966.

127. Chameides, W.L., "Tropospheric Odd Nitrogen and the Atmospheric 
Water Vapor Cycle," Journal of Geophysical Research, Vol. 80, No. 36, 
December 1975, pp. 4989-4996.

128. Kok, G .L., "Measurements of H909 and HNO, in Rural A ir,"  Geophysical 
Research Letters, Vol. 6 , No. 5, May 1979, pp. 325-328.

129. Kok, G. and N utta l, J .G ., "Atmospheric Chemistry of Hydrogen Per­
oxide and Formaldehyde," The CHON Photochemistry of the Troposphere, 
National Center fo r Atmospheric Research, Boulder, Colorado, 1980, 
pp. 59-66. (Available as NCAR/CQ-7+1980-ASP).

130. Wang, C.C. and Davis, L . I . ,  J r . ,  "Measurements of Hydroxyl Concen­
trations in Air Using a Tunable UV Laser Beam," Physical Review 
Letters, Vol. 30, 1974, pp. 349-352.

131. Wang, C.C., Davis, L . I . ,  J r . ,  Wu, C.H., Japar, S ., N ik i, H ., and 
Weinstock, B., "Hydroxyl Radical Concentrations Measured in Ambient 
A ir,"  Science, Vol. 189, No. 4205, September 1975, pp. 797-800.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



244

132. Perner, D ., Ehhalt, D.H., Patz, H.W., P la tt, U ., Roth, E .P ., and 
Volz, A ., "OH-Radicals in the Lower Troposphere," Geophysical 
Research Letters. Vol. 3, No. 8, August 1976, pp. 466-468.

133. Davis, D.D., Heaps, W., and McGee, T . ,  "Direct Measurements of 
Natural Tropospheric Levels of OH Via an A irc ra ft Borne Tunable Dye 
Laser," Geophysical Research Letters, Vol. 3, No. 6, June 1976,
pp. 331-333.

134. -Campbell, M.J. and Blankenship, W., Personal communication. Average
of measurements taken during June-August, 1978, at Washington State 
University, Pullman, Washington.

135. Campbell, M .J ., Sheppard, J .C ., and Au, B .F ., "Measurement of 
Hydroxyl Concentration in Boundary Layer A ir by Monotoring CO 
Oxidation," Geophysical Research Letters, Vol. 6 , No. March 1979, 
pp. 175-178.

136. Davis, D.D., Heaps, W., Philen, D ., and McGee, T ., "Boundary Layer 
Measurements of the OH Radical in the V ic in ity  of an Isolated Power 
Plant Plume: S0„ and N0„ Conversion Times," Atmospheric Environment, 
Vol. 13, No.8, August 1979, pp. 1197-1203.

137. Campbell, M .J ., Sheppard, J .C ., and Blankenship, W., "Measurements 
of Hydroxyl Radical Concentrations in Boundary Layer A ir ,"  The CHON 
Photochemistry of the Troposphere, National Center for Atmospheric 
Research, Boulder, Colorado, 1980,* pp. 49-58.” (Available as NCAR/ 
CQ-7+1980-ASP).

138. Horne, R.A., The Chemistry o f Our Environment, Wiley, New York, 1978.

139. A ir Quality C rite ria  fo r Nitrogen Oxides. NAPCA-Publication No. AP- 
84, U.S. Environmental Protection Aaency, January 1971. (Available 
from NTIS as PB 197 333).

140. Swinnerton, J.W., Linnenbom, V .J ., and Lamontagne, R.A., "The
. Ocean :A Natural Source of Carbon Monoxide," Science, Vol. 167,

No. 3920, February 1970, pp. 984-986.

141. Crutzen, P.J. and Fishman, J . ,  "Average Concentrations of OH in the 
Troposphere and the Budgets of CH,, CO, H« and CFLCCl.,," Geophysical 
Research Letters , Vol. 4, No. 8, August 1977, pp. 321-324.

142. Wofsy, S .C ., McConnell, J .C ., and McElroy, M.B., "Atmospheric CH«,
CO, and C02," Journal of Geophysical Research, Vol. 77, No. 24,
August 1972, pp. 4477-4493.

143. S e ile r, W., "The Cycle of Atmospheric CO," Tellus , Vol. 26, nos. 1-2, 
January-April 1974, pp:. 116-135.

144. Barber, E.D. and Lodge, J .P ., J r . ,  "Paper Chromatographic Id en tifica ­
tion of Carbonyl Compounds as Their 2,4-Dinitrophenyl-Hydrazones in 
Automobile Exhaust," Analytical Chemistry, Vol. 35, No. 3, March 
1963, pp. 348-350.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



245

145. Hatanaka, A. and Harada, T ., "Formation of Cis-3-Hexanal, Trans-2- 
Hexanal and Cis-3-Hexanol in Macerated Thea Sinensis Leaves, Phyto­
chemistry, Vol. 12, 1973, pp. 2341-2346.

146. Lodge, J .P ., J r . ,  and Pate, J .B ., "Atmospheric Gases and Particu­
lates in Panama," Science, Vol. 153, No. 3734, July 1966, dd. 408- 
410.

147. Fushimi, K. and Miyake, Y ., "Contents of Formaldehyde in the A ir 
Above the Surface of the Ocean," Journal of Geophysical Research, 
Vol. 85, No. Cl2, December 1980, pp. 7533-7536.

148. Zafiriou , O.C., A lford, J . ,  Herrera, M., Peltzer, E .T ., and 
Gagosian, R.B., "Formaldehyde in Remote Marine A ir and Rain: Flux 
Measurements and Estimates," Geophysical Research Letters, Vol. 7, 
No. 5, May 1980, pp. 341-344.

149. Keeling, C.D., "The Carbon Dioxide Cycle: Reservoir Models to 
Depict the Exchange of Atmospheric Carbon Dioxide With the Oceans 
and Land Plants," Chemistry of the Lower Atmosphere, edited by
S .I. Rasool, Plenum Press, 1973, pp. 251-329.

150. Hoffert, M .I . ,  "Global Distributions of Atmospheric Carbon Dioxide 
in the Fossil-Fuel Era: A Projection," Atmospheric Environment,
Vol. 8, No. 12, December 1974, pp. 1225-1249.

151. Bolin, B ., "The Carbon Cycle," S cientific  American, Vol. 223, No. 3, 
September 1970, pp. 124-132.

152. Rasool, S .I .  and Schneider, S.H ., "Atmospheric Carbon Dioxide and 
Aerosols: Effects of Large Increases on Global Climate," Science, 
Vol. 173, No. 3992, July 1971, pp. 138-141.

153. Manabe, S. and Wetherald, R .T ., "The Effects of Doubling the 
Concentration of C02 on the Climate of a General Circulation Model," 
Journal of the Atmospheric Sciences, Vol. 32, No. 1, January 1975, 
pp. 3-15.

154. Augustsson, T.R. and Ramanathan, V ., "A Radiative-Convective Model 
Study of the C09 Climate Problem," Journal of the Atmospheric 
Sciences, Vol. 34, No. 3, March 1977, pp. 448-451.

155. Chameides, W.L., Liu, S .C ., and Cicerone, R .J ., "Possible Variations 
in Atmospheric Methane," Journal of Geophysical Research, Vol. 82, 
No. 12, April 1977, pp. 1795-1798.

156. Wang, W.C., Yung, Y .L ., Lacis, A .A ., Mo, T . ,  and Hansen, J .E ., 
"Greenhouse Effects Due to Man-Made Perturbations of Trace Gases," 
Science, Vol. 194, No. 4266, November 1976, pp. 685-690.

157. Junge, C.E., Chagnon, C.W., and Manson, J .E ., "Stratospheric 
Aerosols," Journal of Meteorology, Vol. 18, 1961, pp. 81-108.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



246

158. Crutzen, P .J ., "The Possible Importance of CSO for the Sulfate 
Layer of the Stratosphere," Geophysical Research Letters , Vol. 3,
No. 2, February 1976, pp. 73-76.

159. Environmental Protection Agency, A ir Quality C rite ria  for Sulfur 
Oxides, Report AP-50, Washington, D.C., 1969, pp.19-20.

160. F u ji i ,  T . ,  "Studies on the A ir Pollution by Exhaust Gases of 
A irc ra ft (1 ) ,"  Taiki Osen Kenkyu, Vol. 8 , 1975, p .515.

161. Environmental Protection Agency, A ir Pollution Emission Factors, 
Report AP-42, Research Triangle Park, North Carolina, 1973-1975.

162. Shinn, J.H. and Lynn, S ., "Do Man-Made Sources Affect the Sulfur 
Cycle of Northeastern States?" Environmental Science and Technology, 
Vol. 13, 1979, pp.1062-1067.

163. Cadle, R.D., "Trace Constituents Emitted to the Atmosphere by 
Volcanoes, Chemosphere, Vol. 2, No. 6, November 1973, pp. 231-234.

164. Stoiber, R.E. and Jepsen, A ., "Sulfur Dioxide Concentrations to the
Atmosphere by Volcanoes," Science, Vol. 182, No. 4112, November
1973, pp. 577-578.

165. Jost, D ., "Aerological Studies on the Atmospheric Sulfur-Budget," 
Tellus , Vol. 26, 1974, pp. 206-213.

166. Georgii, H.W., "Large Scale Spatial and Temporal D istribution of 
Sulfur Compounds," Atmospheric Environment, Vol. 12, Nos. 1-3, 
January-March, 1978, pp. 681-690.

167. Georgii, H.W. and Meixner, F .X ., "Measurement o f the Tropospheric
and Stratospheric S0„ D istribution," Journal of Geophysical Research, 
Vol. 85, No. C12, December 1980, pp. 7433-7438.

168. Georgii, H.W. and Gravenhorst, G ., "The Ocean as Source or Sink for
Reactive Trace Gases," Pure and Applied Geophysics, Vol. 115, No. 3, 
1977, pp. 503-511.

169. Maroulis, P .J ., Goldberg, A .S ., and Bandy, A .R ., "Measurements of 
Tropospheric Background Levels of S09 on Project GAMETAG," EOS,
Vol. 59, No. 46, November 1978, pp. T081-1082.

170. Jaschke, W., Schmitt, R ., and Georgii, H.W., "Preliminary Results 
of Stratospheric S09-Measurements," Geophysical Research Letters,
Vol. 3, No. 9, September 1976, pp. 517-519.

171. Garland, J .D ., "Dry and Wet Removal of Sulfur From the Atmosphere," 
Atmospheric Environment, Vol. 12, Nos. 1-3, January-March 1978,
pp. 349-362.

172. Hicks, B.B. and Liss, P .S ., Tellus, Vol. 28, 1976, pp. 349-354.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



247

173. Katz,.M ., A ir Pollution Handbook, edited by P.L. M agill, F.R. Holden, 
and C. Ackley, McGraw-Hill, New York, 1956, pp. 2-1 to 2-56.

174. Robinson, E. and Robbins, R.C., "Sources, Abundances, and Fate of 
Gaseous Atmospheric Pollutants," SRI Project PR-6755, Stanford 
Research In s titu te , 1968.

175. Kellog, W.W., Cadle, R.D., A llen, E.R., Lazrus, A .L ., and M arte ll, 
E.A., "The Sulfur Cycle," Science, Vol. 175, No. 4022, February 1972, 
pp. 587-596.

176. Hartstein, A . h .  and Forshey, D.R., "Coal Mine Combustion Products: 
Neoprenes, Polyvinyl Chloride Compositions, Urethane Foam, and Wood," 
U.S. Bureau of Mines Report Investigation, Vol. 7977, No. 15, 1974.

177. Tsifrinovich, A.N. and Lulova, N . I . ,  "Composition of Organo-Sulfur 
Trace Impurites in Gases," Neftepererab Neftekhim, Moscow, Vol. 6, 
1972, pp. 33-35.

178. Tsuji, M. and Okuno, T ., "The GC Analysis of Carbonyl Sulfide 
Emitted by the Viscose Plant," Proceedings of the 13th Symposium 
of the Japan Society of Air Pollution, Tokyo, 1972, p .119.

179. Sandalls, F.J. and Penkett, S.A ., "Measurements of Carbonyl Sulfide 
and Carbon Disulfide in the Atmosphere," Atmospheric Environment,
Vol. 11, 1977, pp. 197-199.

180. Torres, A .L ., Maroulis, P .J ., Goldberg, A.B., and Bandy, A.R., 
"Measurements of Tropospheric OCS on the 1978 GAMETAG Flights,"
EOS, Vol. 59, No. 46, November 1978, p. 1082.

181. Maroulis, P .J ., Torres, A .L ., and Bandy, A.R., "Atmospheric 
Concentrations of Carbonyl Sulfide in the Southwestern and Eastern 
United States," Geophysical Research Letters, Vol. 4, No.11,
November 1977, pp. 510-512.

182. Hanst, P .L ., Speller, L .L ., Watts, D.M., Spence, J.W., and M ille r, 
M.F., "Infrared Measurements of Fluorocarbons, Carbon Tetrachloride, 
Carbonyl Sulfide, and Other Trace Gases," Journal of the A ir 
Pollution Control Association, Vol. 25, 1975, pp. 1220-1226.

183. Bethge, P.O. and Ehrenborg, L . , "Identification of V o latile  
Compounds in Kraft M ill Emissions," Svensk Papperstidning, Vol. 70, 
1967, pp. 347-350.

184. Saijo, T . , Tsujimoto, T . , and Takahaski, T ., "Odor Pollution of 
Kashima D is tric t,"  Taiki Osen Kenkya, Vol. 6, 1971, p. 222.

185. Schlegel, H.G., "Production, Modification, and Consumption of 
Atmospheric Trace Gases by Micro-Organisms," Tellus, Vol. 26,
Nos. 1-2, January-Apri1 1974, pp. 11-20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



248

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

Huntington, A .T ., “The Collection and Analysis of Volcanic Gases 
from Mount Etna," Philosophical Transactions Of the ROyal Society 
of London, Series A, Vol. 274, 1973, pp. 119-128.

Mizutani, H., "Odor Pollution Research in Nagoya C ity," Taiki Osen 
Kenkyu, Vol. 8 , 1973, p. 381.

S la tt, B .J ., Natusch, D .F.S ., Prospero, J.M ., and Savoie, D .L., 
"Hydrogen Sulfide in the Atmosphere of the Northern Equatorial 
A tlantic Ocean and its  Relation to the Global Sulfur Cycle," 
Atmospheric Environment, Vol. 12, No. 5, May 1978, pp. 981-991.

Lovelock, J .E ., "CS0 and the Natural Sulfur Cycle," Nature, Vol. 248, 
No. 5449, April 1974, pp. 625-626.

Maroulis, P.J. and Tandy, A.R., "Measurements of Atmospheric 
Concentrations of 7 in ^ e  Eastern United States," Geophysical 
Research Letters, VoT. 7, No. 9, September 1980, pp. 681-684.

Challis, E .J ., "The Approach of Industry to the Assessment of 
Environmental Hazards," Proceedings of the Royal Society, Series B, 
Vol. 185, 1974, pp. 183-197.

Dickson, W., Report No. 54, In stitu te  of Freshwater Research, 
Drottningholm, Sweden, 1975, p .8.

Shaw, R.W., "Acid Precipitation in A tlantic Canada," Environmental 
Science and Technology, Vol. 13, 1979, pp. 406-411.

Likens, G.E., "Acid Precipitation," Chemical and Engineering News, 
Vol. 54, No. 48, 1976, pp. 29-44.

Davis, D.D., Smith, G ., and Klauber, G., "Trace Gas Analysis of 
Power Plant Plumes via A ircra ft Measurements: 0 -, NO and S02 
Chertiistry," Science, Vol. 186, No. 4165, November 1974, pp. 733-736.

Davis, D.D. and Klauber, G., "Atmospheric Gas Phase Oxidation 
Mechanisms for the Molecule S02 ," International Journal of Chemical 
Kinetics S.ymposiurn, Vol. 1, edited by S.W. Benson, 1975, pp. 543- 
556. Conference held at Warrenton, V irg in ia , September 16-18, 1974.

Graedel, T .E ., "Sulfur Dioxide, Sulfate Aerosol and Urban Aerosol," 
Geophysical Research Letters, Vol. 3, No. 3, March 1976, pp. 181-
184.

Cotton, F.A. and Wilkenson, G., Advanced Inorganic Chemistry, Wiley, 
New York, 1966.

Burnett, W.E., "Air Pollution From Animal Wastes: Determination of 
Mai odors by Gas Chromatographic and Organoleptic Techniques," 
Environmental Sciences and Technology, Vol. 3, 1969, pp. 744-749.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



249

200. Nashida, K ., Honda, T ., and Tsuji, T ., "The Effects of Ozone 
Deoderization Equipment for the Sewage Odor, Ashkuku no Kenkyu,
Vol. 4, No. 20, 1975, pp. 24-30.

201. SCEP. Man's Impact on the Global Environment, Report of the Study 
of C ritica l Environmental Problems (SCEP), M .I.T . Press, Cambridge, 
Massachusetts, 1970.

202. Smith, G.D., Numerical Solution of Partial D ifferentia l Equations, 
Oxford University Press, London, 1965.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



250

APPENDIX A 

PHOTOCHEMICAL AND KINETIC DATA

The present model includes a total of 12 photolytic reactions and

114 chemical reactions. Table A .l lis ts  the photolytic processes with

their frequencies for a solar zenith angle of 45°. Table A.2 lis ts  the

114 chemical reactions with th e ir rate expressions and references. For

the photolytic processes in Table A.l the unit is inverse seconds (s~^).
3 -1For the reactions in Table A.2 the units are cm s for bimolecular 

processes and crn̂ s"̂  for termolecular processes.

Table A.l Photolytic reactions

Photodissociation
No. Process Rate (z=0), s" (45 )

1 03 + hv + 0 (1D) + 02 6.3 E-6

2 03 + hv -> 0 (3p) + 02 3.0 E-4

3 N02 + hv -* NO + 0 7.6 E-3

4 N03 + hv -*■ N02 + 0 8.2 E-3

5 N03 + hv + NO + 02 2.0 E-3

6 N205 + hv + N02 + N03 2.0 E-5

7 HN03 + hv -»■ OH + N02 1.6 E-7

8 HN02 + hv -* OH + NO 4.8 E-4

9 H202 + hv 2 OH 1.6 E-6

10 CH20 + hv HCO + H 2.0 E-5

11 CH20 + hv ■> H2 + CO 6.6 E-5

12 CH300H + hv ->■ CH30 + OH 1.6 E-6
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Table A.2 Chemical reactions

Reaction Rate expression
No. Reaction__________ (mole - cgs units) Reference

1 c h 4  + o h  -► c h 3 +  h 2 o 2.4E-12*exp(-1710.0/T) (a)

2 CH4 + O^D) CH3 + OH 1.3E-10 (a)

3 CH3 + 02 + M + CH302 + M 2.2E-31*(300.0/T)2,2 (a)

4 c h 3 o 2 +  h o 2 -> c h 3 o o h  +  o 2 3.0E-1l*exp(-500.0/T) (b)

5 CH300H + OH CH302 + H20 6. 2E-12*exp (-750.0/T) (a)

6 c h 3 o 2 + NO c h 2 o  + h n o 2 0.0 (c)

7 c h 3 o 2 +  n o 2 c h 2 o  + h n o 3 0.0 (d)

8 CH302 + NO CH30 + N02 8.0E-12 (a)

9 c h 3 o + 02 ->• CH20 + H02 5 .OE-13*exp(-2000.0 /T) (a)

10 CH20 + OH -»• HCO + H20 1.7E-ll*exp(-100.0/T) (a)

11 HCO + 02 CO + H02 5.0E-12 (a)

12 CO + OH -» C02 + H 1 -3 5 E -W 1  + Patm) (a)

13 CO + H02 -»■ C02 + OH 1.0E-20 (e)

14 H2 + OH -»■ H + H20 1.2E-ll*exp(-2200.0/T) (a)

15 H + 02 + M + H02 + M 5.5E-32*(300.0/T)1,4 ( a )

16 0 ^ 0 ) + H20 -»■ 2 OH 2.3E-10 ( a )

17 0 (1D) + H2 -v H + OH 9.9E-11 ( a )

18 H02 + OH H20 + 0 4 .OE-11 ( a )

19 OH + OH H20 + 0 1.OE-1l*exp(-500.0/T) ( a )

20 h o 2 + h o 2 -*■ h 2o 2 + o2 2.5E-12 ( a )

21 H202 + OH h o 2 + H20 1.0E-ll*exp(-750.0/T) ( a )

22 H02 + NO + OH + N02 3.4E-12*exp(250.0/T) (a)

23 h o 2 + N02 HN02 + 02 3.0E-14 ( f )
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Table A.2 (continued).

Reaction
No. Reaction

24 OH + N02 £  HN03

25 OH + NO S HN02

26 hno3 + oh no3 + h2o

27 HN03 -*■ rainout

28 no2 + o3 no3 + o2
29 NO + 03 -> N02 + 02

30 no3 + no2 3 n2o5

31 no3 + no2 no + no2 + 0

32 N03 + NO + 2 N02

33 NO + N02 + H20 ->■ 2 HN02

34 N205 + H20 -»• 2 HN03

35 n2o5 -> no3 + no2

36 o + o2 + m -*o 3 + m

37 0 (1D) + M 0(3p) + N

38 OH + 03 -»■ H02 + 02

39 H02 + 03 -> OH + 2 02

40 OH + HN02 ■+ N02 + H20

41 0 (] D) + CH4 -► CH20 + H2

42 N2H4 + H N2H3 + H2

43 N2H3 + N2H3 -  2 NH3 + N2

44 n2h3 + N2H3 N2H4 + N2H.

45 N2H3 + H 2 NH2

46 NH3 + 0 -*■ NH2 + OH

47 NH3 + O^D) NH2 + OH

Rate expression
(mole - cgs units) Reference

2.6E-30*(300.0/T)2*9 (a)

2.0E-12 (g)

8.5E-14 (a)

see text (d)

1 .2E-13*exp(2450.0/T) (a)

2.3E-12*exp(-1450.0/T) (a)

3.8E-12 (g)

,2.3E-13*exp(-1000.0/T) (h)

8.7E-12 (1)

6.0E-37 ( j )

1.0E-20 (k)

5.7E-14*exp(-10600.0/T) (g)

6.2E-34*(300.0/T)2,1 (a)

3.2E-11 (1)

1.6E-12*exp(-940.0/T) (a)

1.1E-l4*exp(-580.0/T) (a)

2.1E-12 (m)

1.4E-11 (a)

9.9E-12*exp(-1200.0/T) (n)

K43<< K44 (o)

6.0E-11 (o)

2.7E-12 (o)

6 .6E-12*exp(-3300.0 /T) (n)

2.5E-10 (a)
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Table A.2 (continued)

Reaction Rate expression............
No.' Reaction........... (mole -cgs u n its ).......... ' Reference

48 nh3 + oh -► nh2 + h2o 2 .3E-12*exp(-800.0 /T ) (n)

49 NH3 + H + NH2 + H2 1 .OE-16 (n)

50 NH2 + 0 + HNO + H 1.8E-12 (n)

51 NH2 + 0 -  NH + OH 1.8E-12 (n)

52 nh2 + oh ->■ nh3 + 0 1 .OE-13 (n)

53 NH2 + H2 -*■ NH3 + H 1.0E-16 (n)

54 NH2 + NO + N2 + H20 2.1E-11 (n)

55 mh2 + nh2 n2h4 1 .OE-10 (o)

56 NH + NO + N2 + 0 + H 4.7E-11 (n)

57 NH + 02 ->■ NO + OH 0.0 (P)

58 NH + NO -»■ N2 + OH 3.9E-11 (q)

59 HNO + 02 -v NO + H02 2.1E-20 (n)

60 HNO + M + NO + H + M 5 .0E-08*exp(-24500.0/T) (n)

61 HNO + M -»■ NO + H2 5.0E-14 (n)

62 HNO + HNO -»• N20 + H20 4 .OE-15 (n)

63 h + h + m -> h2 + m 8.3E-33 (n)

64 H2S + OH -> HS + H20 1.05E-ll*exp(-200.0/T) (a)

65 HS + 0 + SO + H 1.6E-10 (n)

66 HS + 02 -  SO + OH 1 .OE-13 (n)

67 HS + NO products 1.0E-12 ( r )

68 SO + 02 ->- so2 + 0 7.5E-13*exp(-3250.0/T) (n)

69 SO + N02 -*■ S02 + NO 1.5E-11 (s)

70 cs2 + 0 -»■ SO + CS 3.1E-ll*exp(-640.0/T) ( f ?0 = 0 .8 )(a )

71 cs2 + 0 s + COS 3.1E-11*exp(-640 .0/T) ( f 7] = 0 .1 ) (a)

72 CS2 + 0 ^ S2 + CO 3.1E -ll*exp(-640.0 /T ) ( f ?2 = 0 .1 )(a )
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Reaction
No. Reaction

73 CS + 0 S + CO

74 CS + 02 SO + CO

75 CS + o2 cos + 0

76 S +  02 so + 0

77 S02 + OH (+M) -  HS03- (+M)

78 S02 + H02 + S03 + OH

79 S02 + CH302 S03 + CH30

80 S03 + H20 -  H2S04

81 S02 + 0 -► SO + 02

82 HS + H S + H2

83 S + H2 -  HS + H

84 H2S + H -*• HS + H2

85 COS +  H -»■ HS +  CO

86 COS +  OH -*■ HS +  C02

87 CS2 +  OH +  HS +  COS

88 s +  cs2 -»■ s 2 + CS

89 S + COS -*• s 2 + CO

90 SO +  SO -  S +  S 02

91 SO + S03 -*■ 2 S02

92 S02 +  CH3 (4M ) CH3S02

93 HS +  HS -*■ H2S +  S

94 CH3SH +  0 CH3 +  HSO

95 CH3SH +  0 CH3 S0 +  H

96 ch3sh + 0 + CH3 S0H

97 CH3SH +  OH products

(continued)

Rate expression
(mole -c g s  units) Reference 

2.2E-11 (n)

<3.OE-18 (s)

<3.0E-18 (s)

2.2E-12 ( t )

(8.2E-13*M)/(7.9E17 + M) (u)

2.OE-17 (v)

<3.3E-15 (w)

9.1E-13 (n)

(2 .1E -l0 /T0 .5 )*exp(-9980.0 /T )(n) 

2.5E-11 (n)

2.2E-25 (n)

1.29E-ll*exp(860.0/T) (n)

2.2E-14 (n)

5.7E-14 (a)

1.9E-13 (a)

6.5E-13 (n)

2 .8E-12*exp(>2050.0/T) (n)

3.0E-15 (n)

2.0E-15 (n)

3.0E-13 (n)

1.2E-11 (n)

1.9E-12 (x)

1.9E-12 (x)

1.9E-12 (x)

3.4E-11 (y)
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Table A,2 (continued).

Reaction Rate expression
NO. Reaction..................  (mole -  cgs units) Reference

98 CH3SCH3 + 0 -*• CH3SO + ch3, 4.8E-11 (z)

99 CH3SCH3 + 0 -  CH2S + CH3C1 6.3E-11 (X)

100 CH3SCH3 + OH -*• products 6 .08E-12*exp(134.0 /T) (aa)

101 COS + 0 -v SO + CO 2.1E -l1*exp(-2200.0/T) (a)

102 K2 + 0 -»■ HS + OH 2.4E-12*exp(-1300.0/T) (a)

103 SO + O3 -*• so2 + o2 2.5E-12*exp(-1050.0/T) (n)

104 S02 + 0 + M -»■ S03 + M 3 .4E-32*exp(-l130.0/T) (n)

105 HSO3 + OH -*• SO3 + H20 i . o e -1 1 ( b b )

106 S02 +  washout 3.8E-6*(10-z)/10 ( b b )

107 HSQ3-* washout 2.3E-5*(10-z)/10 ( b b )

108 H2S04 *  washout 2.3E-5*(10-z)/10 ( b b )

109 c h 3 o 2 + c h 3 o 2 2 c h 3 o + o 2, 2.6E-13 (a)

110 HNO3 + 0 N03 + OH 3.0E-17 (a)

111 NO + H02 -► HN03 1.4E-13 (a)

112 N03 + H20 -► HNOg + OH 2.3E-26 (a)

113 H + HNO3 products 1 .OE-13 (a)

114 h n o 2 +  O3 -  h n o 3 + o2 5.OE-19 (a)

References fo r kinetic data:

(a) Chemical Kinetic and Photochemical Data fo r Use in Stratospheric 
Modeling, Evaluation Number 2 , JPL Publication 79-27. (Available 
from NASA).

(b) Levy, H ., I I ,  "Photochemistry of Minor Constituents in the 
Troposphere," Planetary and Soace Science, Vol. 20, No. 6, June 
1973, pp. 575-WTi

(c) Pate, C .T ., Finlayson, B .J ., and P itts , J .N ., J r . ,  "A Long Path 
Infrared Spectroscopic Study of the Reaction of Methyl-Peroxy 
Free Radicals with N itr ic  Oxide," Journal of the American Chemical 
Society, Vol. 96, No. 21, October 1974, pp. 6554-6558.
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Table A.2 (continued).

(d) Chameides, W.L. and Stedman, D.H., "Tropospheric Ozone: Coupling 
Transport and Photochemistry," Journal'Of Geochemical Research,
Vol. 82, No. 12, April 1977, pp'.' 1787-1794.

(e) Davis, D.D., Payne, W.A., and S tie f , L .J ., "The Hydro-Peroxyl 
Radical in Atmospheric Chemical Dynamics: Reaction with Carbon 
Monoxide," Science, Vol. 179, No, 4070, January 1973, pp. 280- 
282.

( f )  Chemical Kinetics and Photochemical Data for Modeling 
Atmospheric Chemistry, edited by R.F. Hampson and D .G arvin ,
NBS Technical Note 866, National Bureau of Standards, Gaithersburg, 
Maryland.

(g) Baulch, D .L., Drysdale, D.D., Horne, D.G., and Lloyd, A.C., 
Evaluated Kinetic Data for High Temperature Reactions. Homogene­
ous Gas Phase Reactions of the H?-N2-0? System, Vol. 2 , Chemical 
Rubber Company Press, Cleveland, Ohio, 1973.

(h) Chemical Kinetics Data Survey 7 , Tables of Rate and Photochemical 
Data fo r Modeling the Stratosphere, edited by D. Garvin and R.F. 
Hampson, Report NBSIR 74-430, National Bureau of Standards, 
Gaithersburg-, Maryland, 1974.

( i )  Harker, A.B. and Johnston, H.S., "Photolysis of Nitrogen Dioxide 
to Produce Transient 0, NO,, and N?0,-," Journal of Physical 
Chemistry, Vol. 77, No. 9, April 1973, pp. 1153-1156.

( j )  Chan, W.H., Nordstrum, R .J ., Calvert, J .G ., and Shaw, J .H ., "An
IRFTS Spectroscopic Study of the Kinetics and the Mechanism of
the Reactions in the Gaseous System H0N0,H0, H0?, H?0," Chemical 
Physics Le tte r, Vol. 37, No. 3, February 1976, pp. 441 -456"!

(k) Morris, E.D ., J r . ,  and N ik i, H ., "Mass Spectrometric Study of 
the Hydroxyl Radical with Formaldehyde," Journal of Chemical 
Physics, Vol. 64, August 1971, pp. 1991-1992.

(1) Davidson, J .A ., Sadlowski, C.M., S ch iff, H . I . ,  S tre it , G.E.,
Howard, C .J ., Jennings, D.A., and Schmeltekopf, A .L ., "Absolute 
Rate Constant Determinations for the Deactivation of 0( D) by 
Time Resolved Decay of 0( D) -*■ 0( p) Emission," Journal of 
Chemical Physics, Vol. 64, No. 1, January 1976, pp. 57-62.

(m) Cox, R.A., "The Photolysis of Gaseous Nitrous Acid - A Technique 
for Obtaining Kinetic Data on Atmospheric Photo-Oxidation 
Reactions. Proceedings of the Symposium on Chemical Kinetics 
Data for the Lower and Upper Atmosphere, edited by S.W. Benson, 
Wiley -  Interscience, New York, 1975, pp. 379-398.
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(n) Reaction Rate'and'Photochemical Data'fo r 'Atmospherie' Chdrnistr.y - 
1977, edited by R.F. Hampson and D. Garvin, National Bureau*of 
Standards Special Publication 513, U.S. Government Printing 
Office, Washington, D.C., 1978.

(o) Atreya, S .K ., Donahue, T.M ., and Kuhn, W.R., "The Distribution
of Ammonia and Its  Photochemical Products on Jupiter," Icarus, 
Vol. 31, No. 3, July 1977, pp. 348-355.

(p) McConnell, J .C ., "Atmospheric Ammonia," Journal of Geophysical
Research, Vol. 78, No. 33, November 1973, pp. 7812-7821.

(q) Gordon, S ., Mulac, W., and Nangia, P ., "Pulse Radiolysis of
Ammonia Gas, 2, Rate of Disapperance of the NH?(X B-.) Radical," 
Journal of Physical Chemistry, Vol. 75, No. 14, July 1971, pp. 
2087-2093.

(r )  Bradley, J .N ., Trueman, S .P ., Whytock, D.A., and Zaleski, T .A ., 
"Electron Spin Resonance Study of the Reaction of Hydrogen Atoms 
with Hydrogen Sulfide," Journal of the Chemical Society of 
London, Faraday Transactions I ,  Vol. 69, No. 2, February 1973, 
pp. 416-425.

(s) Schofield, K ., "Evaluated Chemical Kinetic Rate Constants for
Various Gas Phase Reactions," Journal of PhySical Chemistry 
Reference Data, Vol. 2, No. 1, January 1973, pp. 25-84.

( t )  Davis, D.D., Klemm, R.B., and P illin g , M., "A Flash Photolysis- 
Resonance Fluorescence Kinetics Study of Ground-State Sulfur 
Atoms: I .  Absolute Rate Parameters for Reaction of S( p) with 
0o( z ) ,"  International Journal of Chemical Kinetics, Vol. 4,
NS. 4, July 1972, pp. 367-382.

(u) Moortgad, G.K. and Junge, C.E., "The Role of S02 Oxidation for
the Background Stratosphere Sulfate Layer in the Light of New 
Reaction Rate Data," Pure and Applied Geophysics, Vol. 115, Nos. 
4-6, 1977, pp. 759-773"

(v) Burrows, J .P ., C l i f f ,  D . I . ,  Harris, G.W, Thrush, B.A., and
Wilkinson, J .P .T ., World Meteorological Organisation Technical 
Note No. 511, 1978, pp. 25-28. (Available from W.M.O., Geneva, 
Switzerland).

(w) Whitbeck, M.R., A Kinetic Study of CHgOp and ,(CH3)3C02 Radical 
Reactions by Kinetic Flash Spectroscopy. Paper presented at 12th 
Informal Conference on Photochemistry, National Bureau of 
Standards, Gaithersburg, Maryland, June 28, 1976.-

(x) Slagle, I .R . ,  Graham, R.E., and Gutman, D ., "Direct Id en tifica ­
tion of Reactive Routes and Measurements of Rate Constants in 
the Reactions of Oxygen Atoms with Methanethiol, Ethanethiol, 
and Methylsulfide," International Journal of Chemical Kinetics, 
Vol. 8 , No. 3, May 1976, pp. 451-458.
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(y) Atkinson, R ., Perry, R.A., and P itts , J .N ., J r . ,  "Rate constants 
for the Reactions of the OH Radical with CH-SH and CH3NH? over 
the Temperature Range 299-426 K," Journal of Chemical Physics,
Vol. 66, No. 4, February 1977, pp. 1578-1581.

(z) Lee, J .H ., Timmons, R.B., and S tie f, L .J ., "Absolute Rate
Parameters for the Reaction of Ground State Oxygen with Dimethyl 
Sulfide and Episulfide," Journal of Chemical Physics, Vol. 66,
No. 4, February 1977, pp. 1578-1581.

(aa) Kurylo, M., "Flash Photolysis Resonance Fluorescence Investigation 
of the Reaction of OH Radicals with Dimethyl Sulfide," Chemical 
Physics Letters, Vol. 58, No. 2, September 1978, pp. 233-237.

(bb) Turco, R.P., Hamill, P ., Toon, O.B., Whitten, R.C., and Kiang, 
C.S., "A One-Dimensional Model Describing Aerosol Formation and 
Evolution in the Stratosphere: I .  Physical Processes and 
Mathematical Analogs," Journal of the Atmospheric Sciences, Vol. 
36, No. 4, April 1979, pp. 699-717.
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APPENDIX B 

THE CONTINUITY EQUATION

The continuity equation can be written in either number density form 

or mixing ra tio  form. In the present one-dimensional tropospheric 

photochemical model, the mixing ra tio  form is used. The vertical pro file  

of a long-lived species is then expressed as

| i = V n j )  -  (B .l)

- 2  1where <|>. is the vertical flux (molecules cm“ s" ) of the ith  species,

Q ^nj) are the chemical production terms, and (n^)Mf^ are the chemical

loss terms of the ith  species; M is the total number density (molecules 
-3cm ) ,  f .  is the mixing ra tio  of the ith  species, and M and f  are related  

by the expression

f  ni
i = jvf" (B.2)

where n. is the number density of the species under consideration. The 

vertical flux of the ith  species, 4>. can be written in terms of a

parameterization, Kz

*1 = -K_ Ml
[ J ] (B.3)

2 -1The term Kz is an empirical constant (cm s ) usually called the 

eddy diffusion coeffic ient. The word "eddy" is somewhat of a misnomer 

since i t  indicates that the diffusive process occurs on a small scale. 

On the contrary, most vertical transport in the troposphere takes place
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on a very large scale. Substitution of Equation (B.3) into Equation (B .l)  

yields

_9
3z Kz M

r
3Z = -Qi (nd) + L1(nj ) Mf. (B.4)

Because Equation (B.4) usually depends on many species other than the ith  

i t  is a highly coupled, nonlinear, partia l d iffe re n tia l equation that has 

to be solved numerically.

In the case of short-lived species, the chemistry dominates the 

vertical d is trib u tio n . For these species the vertical transport terms 

[ i .e .  the terms on the left-hand side of Equation (B .4)] can be neglected. 

This condition is known as photochemical equilibrium (PCE). I f  the PCE 

assumption is ju s t if ie d , the solution of Equation (B.4) is sim plified  

considerably since we can solve e x p lic itly  for f .

Q-j (n -)
f  = ]  ' (B-5)

i  Lj (Oj)M

Hence, in the cases where PCE can be used, a high degree of computational 

effic iency, both in terms of time and money, can be reached.

The present one-dimensional global tropospheric photochemical model 

calculates the continuity equation in the mixing ra tio  form, previously 

given in Equation (B .4 ). By expanding on the derivative with respect to 

altitude and rearranging the terms in Equation (B.4) we obtain

2

Kz M *  i  (K, I T -  -  Hfi + V " j >  ■ 0

After dividing this equation by M we obtain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



261

(B.7)

Equation (B.7) defines a system of equations for each species, f .  

A fin ite -d iffe ren ce  scheme is used to solve the equations [202]. 

The fin ite -d iffe re n c e  equations are defined as

32f f k+I " f k + f k -l

I?
(fo r second order equations) (B.8)

and

~ * '̂ 2az o^der equations)3 2  '  9  A t  v I w i  I I I  J k  “ I  ™  c v ^ u u o i u i i o ;  ( B .  9 )

Substituting these equations into equation (B .4 ), rearranging terms 

and dropping the species index i and subscript z on K , we obtain

k+1 [ 4 ^ 1Az 2Az
+ f,

2K.
- L

Az
+ f k-1

Kk A = S- (B.10)

i 3(K_ M)
The term A represents: — » and the index k refers to the

spatial derivative z . Equation (B.10) can be written in fin ite -d iffe ren ce  

form as

t  ’ f k+1 + t  * f k + t  * f k-1 = ff ( B . l l )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



262

APPENDIX C

BOUNDARY CONDITIONS

Two types of boundary conditions are available to solve the 

continuity equation. We can either specify a mixing ra tio  f .  or a flux  

9 upward or downward a t the upper or lower boundaries. In general, 

the boundary condition can be written as

ar £ - +bi • fi -<=1 (c-d
I f  we specify a mixing r a t io 'f .  at the lower boundary, â  = 0, b̂  = 1, 

and equation (C .l)  becomes

^  = ci (C.2)

or, in fin ite -d iffe ren c e  form

V  f t  ■ (c -3>

where the subscript £ is used to denote lower boundary. I f  a mixing 

ra tio  is specified at the upper boundary, â  = 1, b.. = 0, and equation 

(C .l)  becomes

3f

* t ' i r , c i  ( c - 4)

In fin ite -d iffe ren ce  form (with subscript u for upper boundary):

t  * f  + t  ’ f  = ft (C.5)u u u u u v '

This result is obtained from an expansion of equation (C.4)

f jL Z w = L - %  <c -«>

This can be rearranged to

f U -  f u - l  ■ Cu 42  <C- 7 >
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which in fin ite -d iffe ren ce  form can be written as equation (C .5 ), with

f u - 1, t u -  0, and 6U = cu az.

For an upward or downward flux across the upper boundary, the 

boundary condition reduces to 

3 f($ )u
— 3FJ L a c (* )u (C.8)

The fin ite -d iffe ren ce  form looks sim ilar to equation (C.5)

S(4>)u * f fo )u + £ ( * ) u * f fo )u = fifo )u (C.9)

In this case, 3(<J>)U = 1, ?(<f>)u = -1 , ft(<fr)u = ^(4»)u + £(4>)u Az, and 

(̂<!>)u = 0. For a f lu x , upward or downward, across the lower boundary, 

equations (C.8) and (C.9) are s t i l l  va lid , except in this case 

$ ( * ) 4 a - l f  t($ )A» 1, lf(<fr)A = t(<j))Jl Az, and ft($)A = 0.

Equation (B .l l )  from Appendix B, together with equations (C.3) 

and (C .5), forms a so-called "block tridiagonal" system of equations 

given by

§ * *  0 •
f 2 t 2 0

3̂ 3̂

0

0

0

V A - ,
o t .

V l

■ “
1 

-h

1

^  I

CM 52

f 3

II

ff3

V l *u -l

, f u  .

----------r

(C.10)

There are several numerical techniques available to solve the t r i -  

diagonal matrix described by equation (C.10). In the present model, 

a Gaussian elimination method without pivoting is used [202:].
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APPENDIX D

CONVERGENCE CRITERIA

The model imposes two separate convergence c r ite r ia , one fo r  

the species in photochemical equilibrium and one for the species that 

are calculated using the continuity equation. The number of ite ra ­

tions neede is a strong function of the in it ia l  profiles that are 

prescribed. In general, the flow of the calculations of the model is 

as follows: First,- the in it ia l  profiles for a ll species are prescribed. 

Secondly, the reaction rate constants are calculated. Next, the 

incident solar radiation is calculated, and based on these resu lts , the

photodissociation rates are computed. The model then calculates the
*

vertica l profiles of the short-lived species in;.photochemical e q u ili­

brium. F in a lly , the long-lived species that are transported are 

calculated. The vertica l profiles that are obtained for the species 

are compared to the previous ite ra tio n  and recalculated until the 

convergence c r ite r ia  is achieved. For the short-lived species, the 

convergence c r ite r ia  is

(ni )l
TnTT2 < 10-6 (D . l )

and for the transported species the c r ite r ia  is

1
(ni ) 1 < 10“4 (D.2)T ^ 2

Computationally, the photochemical equilibrium species are calculated 

much more rapidly than the transported species; therefore, a somewhat 

more stringent convergence c r ite r ia  can be imposed on the PCE species. 

With reasonably close in i t ia l  guesses of the vertical profiles ( i . e . ,
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vertical profiles within a couple of orders of magnitude of the fin a l 

p ro file s ), convergence is achieved a fte r three or four iterations for  

the short-lived species and five  to six iterations for the long-lived 

speci es.
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