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On the Implementation and Further Validation of a Time Domain Boundary

Element Method Broadband Impedance Boundary Condition

Fang Q. Hu∗

Old Dominion University, Norfolk, VA 23529, USA

Douglas M. Nark†

NASA Langley Research Center, Hampton, VA 23681-2199, U.S.A

A time domain boundary integral equation with Burton-Miller reformulation is pre-
sented for acoustic scattering by surfaces with liners in a uniform mean �ow. The Ingard-
Myers impedance boundary condition is implemented using a broadband multipole impedance
model and converted into time domain di�erential equations to augment the boundary in-
tegral equation. The coupled integral-di�erential equations are solved numerically by a
March-On-in-Time (MOT) scheme. While the Ingard-Myers condition is known to sup-
port Kelvin-Helmholtz instability due to its use of a vortex sheet interface between the �ow
and the liner surface, it is found that by neglecting a second derivative term in the current
time domain impedance boundary condition formulation, the instability can be e�ectively
suppressed in computation. Proposed formulation and implementation are validated us-
ing NASA Langley Research Center Grazing Flow Impedance Tube (GFIT) experimental
dataset with satisfactory results. Moreover, a minimization procedure for �nding the poles
and coe�cients of the broadband multiple impedance model is formulated in this paper by
which, unlike the commonly used vector-�tting method, passivity of the model is ensured.
Numerical tests show the proposed minimization approach is e�ective for modeling liners
that are commonly used in aeroacoustics applications.

I. Introduction

Acoustical liners are an e�ective tool for sound absorption. It is important for computational tools of sound
scattering prediction to include treated surfaces. Acoustical properties of a liner are characterized by the
impedance boundary condition in the frequency domain. Previously, coupling of an impedance boundary
condition with a Time Domain Boundary Element Method (TDBEM) has been studied numerically under
the assumption of no mean �ow.19 In this paper, implementation of a broadband impedance boundary con-
dition with a nonzero mean �ow is considered. In particular, the Time Domain Boundary Integral Equation
(TDBIE) with Burton-Miller reformulation3 is presented with both the acoustic pressure and its surface
normal derivative terms retained for the purpose of implementing the impedance boundary condition.

In the presence of a nonzero uniform mean �ow, the impedance condition is commonly implemented by the
Ingard-Myers formulation.12,16 In this work, the Ingard-Myers formulation is applied and coupled with the
time domain boundary integral equation. The liner impedance as a function of frequency are �rst modeled
by a broadband multipole expansion and then converted into time domain di�erential equations that relate
the pressure and its normal derivative on the liner surface. It is well-known that the Ingard-Myers condition
can support Kelvin-Helmholtz instability waves due to its use of a vortex sheet interface between the �ow
and the liner surface.20 In this study, it is found that by neglecting a second derivative term in the current

∗Professor, Department of Mathematics and Statistics, AIAA Associate Fellow
†Senior Research Scientist, Structural Acoustics Branch, Research Directorate, AIAA Associate Fellow

1 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 F

an
g 

H
u 

on
 A

ug
us

t 1
0,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

28
98

 

 28th AIAA/CEAS Aeroacoustics 2022 Conference 

 June 14-17, 2022, Southampton, UK 

 10.2514/6.2022-2898 

 Copyright © 2022 by F. Q. Hu. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 

 Aeroacoustics Conferences 

Check for 
updates 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2022-2898&domain=pdf&date_stamp=2022-06-13


time domain impedance boundary condition formulation, the Kelvin-Helmholtz instability can be e�ectively
suppressed in computation.

To implement the impedance condition in the time domain, the liner impedance as a function of frequency
is approximated by a broadband multipole expansion that matches the experimentally measured/educed
impedance. In the literature, the multipole model is often computed using the vector-�tting method.9 The
vector-�tting method converts a nonlinear optimization problem to a series of linear least square problems.
However, a drawback of the vector-�tting method is that the passivity condition is not ensured and needs to
be separately checked or enforced.10 In this paper, we describe a minimization method for �nding the poles
and coe�cients of the multipole model in which the passivity is always satis�ed.

To validate the formulation and numerical implementation, an experimental dataset from the NASA Langley
Research Grazing Flow Impedance Tube (GFIT) is used for comparison with computational results.13 The
inherently internal duct propagation problem is cast as an external scattering problem in an open-ended duct
con�guration. The source term for the time domain boundary integral equation is formulated such that an
incident plane wave mode is generated inside the duct. The time domain solution of the plane wave scattered
by a section of liner installed inside the duct is converted to frequency domain solutions and compared with
the GFIT experimental measurements.

The rest of the paper is organized as follows. Detailed derivation of the time domain boundary integral
equation with Burton-Miller reformulation and the time domain impedance boundary condition with a
uniform mean �ow is given in Sec. II. A technique of �nding the poles and coe�cients of the broadband
impedance multipole model is discussed in Sec. III. Sec. IV gives the details on the discretization for the
time domain boundary integral equation coupled with the impedance boundary condition. Sec. V presents a
numerical example of the formulation and discretization discussed in the present paper as well as comparisons
between the computational and experimental results. Sec. VI has the concluding remarks.

II. Mathematical formulation

II.A. Time domain boundary integral equation with lined surface in �ow

Under the assumption of a constant mean �ow U , propagation and scattering of acoustic pressure p(r, t) is
governed by the convective wave equation:(

∂

∂t
+U · ∇

)2

p− c2∇2p = s(r, t), (1)

where c is the speed of sound, and s(r, t) represents a prescribed acoustic source term. Here, ∇ =
(∂/∂x, ∂/∂y, ∂/∂z). The convective wave equation (1), together with the homogeneous initial conditions,

p(r, t) =
∂p

∂t
(r, t) = 0 as t→ −∞, (2)

can be converted into an integral relation as follows:11

4πp(r′, t′) =
1

c2

∫
Vs

1

R̄
s(r, t′R)dr +

∫
S

[
G0

∂p

∂ñ
(rs, t

′
R)− ∂G0

∂n̄

(
p(rs, t

′
R) +

R̄

cα2

∂p

∂t
(rs, t

′
R)

)]
drs (3)

in which Vs denotes the region where the source term is non-zero, S denotes the scattering surface, and r′

is an o�-surface �eld point. Also in the above,

G0 =
1

R̄(rs, r′)
, R̄(r, r′) =

√
[M · (r − r′)]2 + α2|r − r′|2, t′R = t′ + β · (r′ − rs)−

R̄

cα2
(4)

in which

M =
U

c
, α =

√
1− |M |2, β =

U

c2 − |U |2
=

U

c2α2
=
M

cα2
. (5)
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The modi�ed normal derivative and the combined normal derivative on surface S, denoted respectively by
∂/∂n̄ and ∂/∂ñ, appearing in (3) are de�ned as follows:

∂

∂n̄
=

∂

∂n
−Mn(M · ∇), Mn = n ·M = n ·U/c (6)

∂

∂ñ
=

∂

∂n
− Mn

c

(
∂

∂t
+U · ∇

)
=

∂

∂n̄
− Mn

c

∂

∂t
. (7)

Here, the surface normal vector n is assumed to be in the direction out of the medium and into the scattering
body. A boundary integral equation is formed by the limit r′ → r′s in (3) where r′s denotes a boundary
point on S. When r′s is a smooth point on the scattering surface (such as any interior point on a surface
element), the boundary integral equation can be written as:11

2πp(r′s, t
′)−

∫
S

[
G0

∂p

∂ñ
(rs, t

′
R)− ∂G0

∂n̄

(
p(rs, t

′
R) +

R̄

cα2

∂p

∂t
(rs, t

′
R)

)]
drs = Q(r′s, t

′) (8)

where

Q(r′s, t
′) =

1

c2

∫
Vs

1

R̄
s(r, t′R)dr (9)

For convenience of discussion, we will use pn to denote ∂p/∂ñ in our discussions, i.e.,

pn ≡
∂p

∂ñ
(10)

Eq. (3) shows that when both p and pn are known on the scattering surface S, the solution at any �eld
point r′ can be computed directly by evaluating the integrals on its right hand side. When the scattering
surface S is rigid, we have pn = 0, and p can be found by solving the boundary integral equation (8) as
in [11]. When surface S includes acoustic liners, p and pn are related by an impedance condition, and by
eliminating pn through the impedance condition, the surface pressure p can again be found by the boundary
integral equation (8). A numerical method for the time domain integral equation (8) when coupled with an
impedance boundary condition has been recently studied in [19] for the case of no �ow. The primary focus
of the current paper is to study the case when the mean �ow is present.

While direct numerical solution of (8) is known to be prone to long time instabilities, recent studies have
shown that a Burton-Miller reformulation is e�ective in eliminating the instability.5,7, 11 Time domain
Burton-Miller reformulation involves applying the following operator to (3) and evaluating it at surface
points r′s:

a
∂

∂t
+ bc

∂

∂ñ′

where a and b are two constants such that a/b < 0 (Typically, a = −b = 1). This leads to

a

[
2π
∂p

∂t
(r′s, t

′)−
∫
S

G0(rs, r
′)
∂pn
∂t

(rs, t
′
R)drs +

∫
S

∂G0

∂n̄
(rs, r

′)

(
∂p

∂t
(rs, t

′
R) +

R̄

cα2

∂2p

∂t2
(rs, t

′
R)

)
drs

]

+bc

[
4πpn(r′, t′)− ∂

∂ñ′

∫
S

G0(rs, r
′)pn(rs, t

′
R)drs +

∂

∂ñ′

∫
S

∂G0

∂n̄
(rs, r

′)

(
p(rs, t

′
R) +

R̄

cα2

∂p

∂t
(rs, t

′
R)

)
drs

]
r′→r′

s

= a
∂Q

∂t′
(r′s, t

′) + bc
∂Q

∂ñ′
(r′s, t

′) (11)

To simplify (11), note that we have

3 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 F

an
g 

H
u 

on
 A

ug
us

t 1
0,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

28
98

 



∂

∂ñ′

∫
S

G0(rs, r
′)pn(rs, t

′
R)drs =

∫
S

∂G0

∂n̄′
(rs, r

′)pn(rs, t
′
R)drs +

∫
S

G0(rs, r
′)
∂pn
∂t

(rs, t
′
R)
∂t′R
∂ñ′

drs (12)

where we have

∂t′R
∂ñ′

= − 1

cα2

∂R̄

∂n̄′
,

∂R̄

∂n̄′
= −R̄2 ∂G0

∂n̄′
, G0

∂R̄

∂n̄′
= −R̄∂G0

∂n̄′

Furthermore, the limit of r → r′s for the weakly singular integral involving pn in (12) (the �rst term on the
right hand side) can be found as follows:

lim
r′→r′

s

∫
S

∂G0

∂n̄′
(rs, r

′)pn(rs, t
′
R)drs

= lim
r′→r′

s

∫
S

∂G0

∂n̄′
(rs, r

′) {pn(rs, t
′
R)− pn(r′s, t

′)} drs + pn(r′s, t
′) lim

r′→r′
s

∫
S

∂G0

∂n̄′
(rs, r

′)drs

=

∫
S

∂G0

∂n̄′
(rs, r

′
s)pn(rs, t

′
R)drs + 2πpn(r′s, t

′)

where we have used the following results:

1

4π

∫
S

∂G0

∂n̄′
(rs, r

′)drs =


0 r′ ∈ V, exterior of S
− 1

2 r′ = r′s ∈ S
−1 r ∈ V −, interior of S

(13)

Finally, we get the following Burton-Miller reformulation of the time domain boundary integral equation (8):

a

[
2π
∂p

∂t
(r′s, t

′)−
∫
S

G0(rs, r
′)
∂pn
∂t

(rs, t
′
R)drs +

∫
S

∂G0

∂n̄
(rs, r

′)

(
∂p

∂t
(rs, t

′
R) +

R̄

cα2

∂2p

∂t2
(rs, t

′
R)

)
drs

]

+bc

[
2πpn(r′s, t

′)−
∫
S

∂G0

∂n̄′
(rs, r

′
s)

(
pn(rs, t

′
R) +

R̄

cα2

∂pn
∂t

(rs, t
′
R)

)
drs

]

− b

cα4

∫
S

R̄3 ∂G0

∂n̄′
∂G0

∂n̄

∂2p

∂t2
(rs, t

′
R)drs + bc

[∫
S

∂2G0

∂n̄′∂n̄

(
p(rs, t

′
R)− p(r′s, t′) +

R̄

cα2

∂p

∂t
(rs, t

′
R)

)
drs

]

= a
∂Q

∂t′
(r′s, t

′) + bc
∂Q

∂ñ′
(r′s, t

′) (14)

where all the integrals in (11) involving p have been simpli�ed in the same way as in [11] (without the liners).

On rigid surfaces, the Zero Energy Flux (ZEF) boundary condition is applied,11 which leads to

pn =
∂p

∂ñ
= 0.

On treated surfaces, p and pn are coupled through the impedance condition as described below.

II.B. Liner impedance boundary condition with �ow

In this work, we assume that the mean �ow is tangent or nearly tangent to the surface of liner (i.e., we
assume Mn = 0 on liner surfaces). This is expected to be the most common practical situation when liners
are utilized. Consequently, the modi�ed and combined normal derivatives as de�ned in Eqs. (6)-(7) will be
the same as the usual normal derivative (i.e., we have ∂p/∂ñ = ∂p/∂n̄ = ∂p/∂n on liner surfaces).
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In the Ingard-Myers liner impedance model, an in�nitely thin vortex sheet of in�nitesimally small oscillation
is assumed between the mean �ow and the liner surface,12,16 as illustrated in Fig. 1. Let the displacement
of the vortex sheet in the direction of the normal vector n of the liner surface be denoted as

ζ = ζ(r, t). (15)

Then, the displacement velocity on the surface of the liner, in the direction of its normal vector n, denoted
by uw, is

uw =
∂ζ

∂t
(16)

On the other hand, upon applying a linearization procedure, the displacement velocity along the vortex
sheet, denoted by un = u · n where u is the acoustic velocity, on the side of the �uid which is moving with
a mean velocity U is

un =
∂ζ

∂t
+U · ∇ζ. (17)

Eliminating ζ, we get the relation between un and uw as follows:

∂un
∂t

=
∂uw
∂t

+U · ∇uw. (18)

Figure 1. Illustration of Ingard-Myers liner vortex sheet model. un and uw are vertical velocities of the medium and
liner surface, respectively.

Now the impedance on the surface of liner is de�ned such that

p̂(r, ω)

ûw(r, ω)
= Z(ω), (19)

where Z(ω) is the liner surface impedance and ω is the frequency. Here, a caret denotes the frequency
domain variables. In this work, a broadband multipole expansion of the following form is used for modeling
the impedance Z(ω) as a function of frequency ω:

Z(ω) = (−iω)h0 +R0 +
M∑
m=1

Am
λm − iω

+
1

2

L∑
`=1

[
B` + iC`

α` + iβ` − iω
+

B` − iC`
α` − iβ` − iω

]
(20)

where M and L represent, respectively, the number of single and paired poles used in the model. Multi-
pole expansion models like (20) have been used in many recent studies on implementing the time domain
impedance boundary condition.6,14,15,17,20 The parameters in Eq. (20) are found by matching Z(ω) with
given impedance values of the physical liner. Further details will be discussed in Sec. III.

Converting into time domain and assuming e−iωt sign convention, impedance condition Eq. (19) leads to

p(r, t) = h0
∂uw
∂t

+R0uw(r, t) +
M∑
m=1

Amp
(0)
m (r, t) +

L∑
`=1

[
B`p

(1)
` (r, t) + C`p

(2)
` (r, t)

]
(21)

in which
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dp
(0)
m

dt
+ λmp

(0)
m (r, t) = uw(r, t), m = 1, ...,M (22)

dp
(1)
`

dt
+ α`p

(1)
` (r, t) + β`p

(2)
` (r, t) = uw(r, t),

dp
(2)
`

dt
+ α`p

(2)
` (r, t)− β`p(1)` (r, t) = 0, ` = 1, ..., L (23)

where p
(0)
m (r, t), p

(1)
` (r, t) and p

(2)
` (r, t) are auxiliary variables that are often used to facilitate computation.6

Next, by applying the material derivative operator ∂
∂t +U · ∇ to Eqs. (21)-(23), and using (18), we get

∂p

∂t
+U · ∇p(r, t) = h0

∂2un
∂t2

+R0
∂un
∂t

+

M∑
m=1

Amp
(0)
m (r, t) +

L∑
`=1

[
B`p

(1)
` (r, t) + C`p

(2)
` (r, t)

]
(24)

dp
(0)
m

dt
+ λmp

(0)
m (r, t) =

∂un
∂t

, m = 1, ...,M (25)

dp
(1)
`

dt
+ α`p

(1)
` (r, t) + β`p

(2)
` (r, t) =

∂un
∂t

,
dp

(2)
`

dt
+ α`p

(2)
` (r, t)− β`p(1)` (r, t) = 0 ` = 1, ..., L (26)

with auxiliary variables p
(0)
m , p

(1)
` and p

(2)
` replacing their material derivatives for conciseness.

Finally, to arrive at a relation for p and pn as required by the integral equation (14), note that, by the Euler
equations for inviscid �uids, we have the relation between un and ∂p/∂n as

∂un
∂t

+U · ∇un +
1

ρ0

∂p

∂n
= 0 (27)

where ρ0 is the mean density of the �uid. Therefore, by applying again the material derivative operator
∂
∂t +U · ∇ to Eqs. (24)-(26), we get �nally the coupling equations for p and pn as follows:

∂2p

∂t2
+ 2U · ∇∂p

∂t
+ (U · ∇)

2
p = −h0

ρ0

∂2pn
∂t2

− R0

ρ0

∂pn
∂t
−

M∑
m=1

Amp
(0)
m −

L∑
`=1

[
B`p

(1)
` + C`p

(2)
`

]
(28)

dp
(0)
m

dt
+ λmp

(0)
m =

1

ρ0

∂pn
∂t

, m = 1, ...,M (29)

dp
(1)
`

dt
+ α`p

(1)
` + β`p

(2)
` =

1

ρ0

∂pn
∂t

,
dp

(2)
`

dt
+ α`p

(2)
` − β`p

(1)
` = 0, ` = 1, ..., L (30)

where again auxiliary variables p
(0)
m , p

(1)
` and p

(2)
` replaced their negative material derivatives for conciseness.

For convenience of numerical implementation, introduce an auxiliary variable q(r, t) such that

∂q

∂t
= p (31)

Then, equations (28)-(30) can further be written as

∂p

∂t
+ 2U · ∇p+ (U · ∇)

2
q = −h0

ρ0

∂pn
∂t
− R0

ρ0
pn −

M∑
m=1

Amp
(0)
m −

L∑
`=1

[
B`p

(1)
` + C`p

(2)
`

]
(32)

dp
(0)
m

dt
+ λmp

(0)
m =

1

ρ0
pn, m = 1, ...,M (33)
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dp
(1)
`

dt
+ α`p

(1)
` + β`p

(2)
` =

1

ρ0
pn,

dp
(2)
`

dt
+ α`p

(2)
` − β`p

(1)
` = 0, ` = 1, ..., L (34)

where, again for conciseness and without loss of generality, auxiliary variables p
(0)
m , p

(1)
` and p

(2)
` replaced

their temporal anti-derivatives. We note that, in the case of no �ow, time domain impedance equations
(32)-(34) reduces immediately to that presented in [19].

Eq. (14) coupled with Eqs. (32)-(34) forms the integral-di�erential equations for the scattering solutions by
surfaces with impedance boundary conditions in the presence of a uniform mean �ow.

III. Multipole expansion for broadband impedance function

In this section, we describe a simple technique for �nding a multipole model for the acoustic impedance
function. Let the acoustic impedance Z(ω) be denoted as

p(ω)

uw(ω)
= Z(ω) = R(ω)− iX(ω), (35)

where p(ω) and uw(ω) are respectively the pressure and normal velocity on the surface of liner in the
frequency domain. In (35) a time dependency of e−iωt is assumed, and R(ω) is the resistance, X(ω) is the
reactance. Given a set of N measurements Zj = Z(ωj), j = 1, 2, ..., N , suppose the impedance as a function
of ω is to be modeled as a rational function:6,14

Zf (ω) =
a0 + a1ω + · · ·+ aνω

ν

b0 + b1ω + · · ·+ bµωµ
, (36)

which, assuming ν ≤ µ+ 1, may be equivalently expressed as partial fractions as

Zf (ω) = −iωh0 +R0 +

M∑
m=1

Am
λm − iω

+
1

2

L∑
`=1

[
B` + iC`

α` + iβ` − iω
+

B` − iC`
α` − iβ` − iω

]
. (37)

This will be referred to as the broadband multipole model. It containsM +2L poles in the complex ω-plane.
In (37), all parameters h0, R0, λm, Am, α`, β`, B`, C` assume real values. For such a model to be physical,
function Zf (ω) should satisfy the conditions for causality, realty, and passivity,8,18 or be a positive-real

function as de�ned in [1]:

1. (Causality) Zf (ω) is analytic (no poles) in open upper half-plane Im{ω} > 0

2. (Realty) Zf (ω̄) = Z̄f (ω) (an overbar denotes complex conjugate)

3. (Passivity) Re {Zf (ω)} ≥ 0 for Im {ω} ≥ 0

These conditions lead immediately to the requirements that:1,4

h0, R0, λm, α` ≥ 0 and ν ≤ µ+ 1 (38)

Currently, a common practice for �nding the coe�cients and the poles of the multipole model (37) has been
to use the vector-�tting method.9 The vector-�tting method converts a nonlinear optimization problem to a
series of linear least square problems. However, a drawback of the vector-�tting method is that the passivity
condition is not ensured and needs to be separately checked or enforced.10 In what follows, we describe a
minimization method for �nding the poles and coe�cients of the multipole model in which the passivity is
always satis�ed.

We note that for the partial fraction terms in (37) we have:

Am
λm − iω

=
Amλm + iAmω

λ2m + ω2
(39)
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1

2

[
B` + iC`

α` + iβ` − iω
+

B` − iC`

α` − iβ` − iω

]
=

[
(α`B` + β`C`)

(
α2
` + β2

`

)
+ (α`B` − β`C`)ω

2
]
+ i

[(
2α`β`C` + (α2

` − β
2
` )B`

)
ω +B`ω

3
](

α2
` + (β` − ω)2

) (
α2
` + (β` + ω)2

)
(40)

Therefore, passivity of each partial fraction term in (37) (those in bracket in case of paired poles), hence
Zf (ω) itself, will be ensured if we require further that

Am > 0, α`B` + β`C` > 0, α`B` − β`C` > 0 (41)

in addition to the requirements stipulated in (38).

Based on this observation, we propose the following minimization problem for �nding the parameters of the
multipole model (37):

For a given choice for M and L, �nd h0, R0, λm, Am, (m = 1, ...,M), α`, β`, γ`, δ`, (` = 1, ..., L) such that

N∑
j=1

|Zf (ωj ;h0, R0, λk, Ak, α`, β`, B`, C`)− Zj |2 = MINIMUM (42)

subject to

(i) h0, R0, λm ≥ 0; (ii) Am, α`, γ`, δ` > 0 (43)

where γ` and δ` are related to B` and C` as

B` =
γ` + δ`

2α`
, C` =

γ` − δ`
2β`

(44)

In the current study, the minimization problem (42) is solved using a genetic algorithm implemented in
Python.

IV. Discretization

We now consider the discretization of time domain boundary integral equation (14) coupled with the
impedance boundary condition formulated in Eqs. (32)-(33). Let surface S be discretized into bound-
ary elements Ej , j = 1, 2, ..., Ne, where Ne denotes the total number of elements, and let the solutions for
p(rs, t) and pn(rs, t) be expanded as follows:

p(rs, t) =

Nt∑
n=0

Ne∑
j=1

unj ϕj(rs)ψn(t) (45)

pn(rs, t) =

Nt∑
n=0

Ne∑
j=1

vnj ϕj(rs)ψn(t) (46)

where Nt denotes the total number of time steps. For any element Ej on a rigid surface, we have of course
vnj = 0.

For the present study, the spatial and temporal basis functions appearing in (45)-(46) are as follows:

ϕj(rs) =

1, rs on element Ej that contains node rj

0, otherwise
(47)

and

ψn(t) = Ψ

(
t− tn

∆t

)
(48)
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where

Ψ(τ) =



1 + 11
6 τ + τ2 + 1

6τ
3 −1 < τ ≤ 0

1 + 1
2τ − τ

2 − 1
2τ

3 0 < τ ≤ 1

1− 1
2τ − τ

2 + 1
2τ

3 1 < τ ≤ 2

1− 11
6 τ + τ2 − 1

6τ
3 2 < τ ≤ 3

0 other

(49)

We note that with these basis functions, the value for p(rs, t), and similarly for pn(rs, t), at a time t =
tn − η∆t, 0 ≤ η < 1, is found by the following interpolation scheme:

p(rs, t) = ϕj(rs)
[
unj Ψ(−η) + un−1j Ψ(1− η) + un−2j Ψ(2− η) + un−3j Ψ(3− η)

]
(50)

Substituting (45)-(46) to the integral equation (14), and evaluating the equation at each nodal point rj and
at time level tn, the system of discretized equations can be cast into the following matrix form:

B0u
n +C0v

n = Qn −B1u
n−1 −C1v

n−1 −B2u
n−2 −C2v

n−2 − · · · −BJu
n−J −CJv

n−J (51)

where uk and vk denote respectively all unknowns
{
ukj , j = 1, 2, ..., Ne

}
and

{
vkj , j = 1, 2, ..., Ne

}
, at time

level tk, and Q
nstands for the contribution from the source term (9). In Eq. (51), J represents the maximum

time history required for the solution of the boundary integral equation.

The non-zero entries of matrices Bk and Ck, k = 1, 2, ..., J , in (51) are:

{Bk}ij = 2πaδijψ
′
n−k(tn) + a

∫
Ej

∂G0

∂n̄

(
ψ′n−k(tnR) +

R̄

cα2
ψ′′n−k(tnR)

)
drs + bcδijδk0Di

+ bc

∫
Ej

∂2G0

∂n̄′∂n̄

(
ψn−k(tnR)− δijψn−k(tn) +

R̄

cα2
ψ′n−k(tnR)

)
drs +

b

cα4

∫
Ej

R̄3 ∂G0

∂n̄′
∂G0

∂n̄
ψ′′n−k(tnR)drs (52)

{Ck}ij = −a
∫
Ej

G0ψ
′
n−k(t′R)drs + 2πbcδijψn−k(tn)− bc

∫
Ej

∂G0

∂n̄′

(
ψ′n−k(tnR) +

R̄

cα2
ψ′′n−k(tnR)

)
drs (53)

Here, primes over the temporal basis functions indicate derivative. In (52)-(53), δij and δk0 are Kronecker
delta functions and Di in (52) denotes the following integral:11

Di = −
∫
S−Ei

∂2G0

∂n̄′∂n̄
(rs, ri)drs

To discretize the liner di�erential equations (32)-(34), we expand the auxiliary variables on every collocation

point on the liner surface as:

p(0)m (t) =

Nt∑
n=0

wn0,mψn(t), m = 1, 2, ...,M (54)

p
(1)
` (t) =

Nt∑
n=0

wn1,`ψn(t), p
(2)
` (t) =

Nt∑
n=0

wn2,`ψn(t), ` = 1, 2, ..., L (55)

q(t) =

Nt∑
n=0

qnψn(t) (56)
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where wn0,m,w
n
1,`, w

n
2,`, and q

n are the expansion coe�cients and the time basis function ψn(t) is as given in
(48). In particular, we note that ψn(tk) = δnk for the temporal basis function given in (48).

Eqs. (32)-(34) are now discretized as follows:

1

∆t

3∑
k=0

un−k
j Ψ′(k)+2 [U · ∇p]nj +

[
(U · ∇)2q

]n
j
+

h0

ρ0∆t

3∑
k=0

vn−k
j Ψ′(k)+

R0

ρ0
vnj +

M∑
m=1

Amw
n
0,m+

L∑
`=1

[
B`w

n
1,` + C`w

n
2,`

]
= 0

(57)

1

∆t

3∑
k=0

wn−k0,m Ψ′(k) + λmw
n
0,m =

1

ρ0
vnj , m = 1, ...,M (58)

1

∆t

3∑
j=0

wn−j1,` Ψ′(j) + α`w
n
1,` + β`w

n
2,` =

1

ρ0
vnj ,

1

∆t

3∑
j=0

wn−j2,` Ψ′(j) + α`w
n
2,` − β`pn1,` = 0, ` = 1, ..., L (59)

This is akin to discretizing Eqs. (32)-(34) by the third-order backward di�erence scheme.2,19

In the above, [U · ∇p]nj and
[
(U · ∇)2q

]n
j
denote respectively the discretized pressure stream-wise derivative

term and the term for the second stream-wise derivative of q, hereby referred to as the q-term, for element
Ej at time tn.

Introduce a vector s̄ of dimension M + 2L that contains all auxiliary variables at a liner point as

s̄n ≡
[
wn0,1 wn0,2 ... wn0,M wn1,1 wn2,1 wn1,2 wn2,2 ... wn1,L wn2,L

]T
Then, Eq. (57) can be written succinctly as the following iteration scheme for a node on element Ej and
time tn:

d0u
n
j +e0v

n
j +d1u

n−1
j +e1v

n−1
j +d2u

n−2
j +e2v

n−2
j +d3u

n−3
j +e3v

n−3
j +fT0 s̄

n+[2U · ∇p]nj +
[
(U · ∇)2q

]n
j

= 0

(60)
and Eqs. (58)-(59) can be written as

H̄0s̄
n + d1s̄

n−1 + d2s̄
n−2 + d3s̄

n−3 + vnj g0 = 0 (61)

where the coe�cients are the following:

d0 =
1

∆t
Ψ′(0), e0 =

1

ρ0
h0d0 +

1

ρ0
R0; dk =

1

∆t
Ψ′(k), ek =

1

ρ0
h0dk, k = 1, 2, 3

[f0, g0] =

[
A1 A2 ... AM B1 C1 B2 C2 ... BL CL

− 1
ρ0
− 1
ρ0

... − 1
ρ0
− 1
ρ0

0 − 1
ρ0

0 ... − 1
ρ0

0

]T

H̄0 = d0I +



γ1

...

γM

α1 β1

−β1 α1

...

αL βL

−βL αL


(M+2L)×(M+2L)
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where I is the identity matrix and a superscript T indicates matrix transpose.

When Eqs. (60)-(61) are applied to all liner points, we get the following algebraic system as a result of the
liner impedance boundary condition:

D0u
n + E0v

n + F 0s
n + 2X1u

n + X2q
n = −D1u

n−1 −E1v
n−1 −D2u

n−2 −E2v
n−2 −D3u

n−3 −E3v
n−3 (62)

G0v
n + H0s

n = −D1s
n−1 −D2s

n−2 −D3s
n−3 (63)

where vectors un, vn and sndenote the variables of all collocation points on the liner surface at time level
tn, namely, respectively for {uni , i = 1, 2, ..., Nl}, {vni , i = 1, 2, ..., Nl} and {sni , i = 1, 2, ..., Nl} in which Nl is
the total number of liner nodal points. The matrices in (62)-(63) are the following:

F 0 = I ⊗ fT0 , G0 = I ⊗ gT0 , H0 = I ⊗ H̄0; Dj = I ⊗ dj , Ej = I ⊗ ej , j = 0, 1, 2, 3

where I stands for the identity matrix and ⊗ is the matrix Kronecker product notation. Also, matrices X1

and X2 in Eq. (62) denote the discretization matrix operators for the pressure derivative term [U · ∇p]nj and

the q-term
[
(U · ∇)2q

]n
j
respectively. For the current work, second-order central di�erence schemes are used

for spatial derivative approximations.

Eqs. (51) and (62)-(63) form the discretization scheme for the time domain boundary integral equation and
time domain impedance condition.

V. Numerical example

Formulation and implementation of a time domain broadband impedance boundary condition as outlined
in previous sections will be validated using the GFIT experimental database.13 To this end, the inherently
internal duct propagation problem is cast as an external scattering problem in an open-ended duct con-
�guration. A duct geometry is constructed where its interior surfaces reproduce the ducted environment
in the GFIT experiments while external and terminating surfaces are added such that a closed scattering
body surface is formed, as shown in Figure 2. In addition, the source function s(r, t) in (9) is so formulated
such that an incident plane wave is generated in the ducted region. The time domain impedance boundary
condition is applied on a section of the duct interior surface where the acoustic liner is installed. In this
way, propagation and scattering of the plane wave mode by the liner section are computed as a time domain
scattering problem. The acoustic �eld by computation will be compared to that by the experiment.

Figure 2. Modeling of an internal ducted environment as an external scattering problem. Liner section inside the duct
is noted by the darkened area.
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V.A. Formulation of incident plane wave

To impose an incident plane wave (zero-th order mode) inside the duct as in the GFIT experiments, the
source term for the wave equation (1) is chosen to be

s(r, t) = Φ′0(t)δ(x− x0), (y, z) ∈ [0, Ly]× [−Lz/2, Lz/2] (64)

where Φ0(t) is some chosen function of t and a prime denotes the time derivative, x0 is the x-coordinate
for the location (referred to as the source plane, where the plane wave is to be introduced), and Ly and Lz
denote the dimensions of the duct cross section in y and z directions, respectively. For the results reported
in this section, the boundary element model for the duct extends from x = −2.5 to x = 2.0. Throughout
this section, the length unit is meters (m). The duct cross section is such that Ly = 0.0635 and Lz = 0.0508
as in the GFIT experiments. A liner section is installed at the upper surface of the duct from x = 0.2125
to x = 0.8125 and y = Ly. The source location is x0 = −0.1, su�ciently away from the leading edge of
the liner section. Solving wave equation (1) with a source term as given in (64), it can be shown that the
acoustic pressure p(r, t) generated by (64) inside a duct of solid surfaces is of plane waves of the form

p(r, t) = Φ0

(
t+ β(x− x0)− |x− x0| /α2c

)
=

Φ0

(
t− x−x0

U1+c

)
x > x0

Φ0

(
t− x−x0

U1−c

)
x < x0

, (y, z) ∈ [0, Ly]× [−Lz/2, Lz/2]

(65)
Eq. (65) represents two independent plane waves (zero-th order mode) propagating at a speed of U1 + c
and U1 − c to the right and left, respectively, of the source plane location x = x0. Here, U1 denotes the
stream-wise uniform mean �ow velocity inside the duct.

For the current computation, the source time function in (64) is taken to be the following broadband Gaussian
function:

Φ0(t) = e−σt
2

(66)

where σ = 1.42/(3∆t)2.With the given source term (64), the source integral (9) reduced to a double integral
over the source plane at x = x0 which is evaluated using high-order quadrature. While the plane waves
will eventually be re�ected at both ends of the duct, the time domain solution is to be stopped before the
re�ected waves reach the measurement zone which is located at the side of the duct opposite to the liner
section from x = 0 to x = 1.

V.B. Numerical results and comparison with experimental data

In the GFIT experiments used in the current comparison,13 the mean �ow is non-uniform with a center-line
Mach number of 0.3. For the results reported here, a uniform mean �ow of Mach number 0.2 is assumed for
computation as a constant mean �ow is required for the boundary integral equation formulation. The liner
in the study consists of a 1.5-inch deep core covered with a wire mesh face-sheet with DC �ow resistance
Rf = 1.3ρ0c. Microphones are mounted on the lower wall (y = 0) opposite the liner section from x = 0 to
x = 1 to measure the pressure �eld. Based on the experimental measurements, the impedance of the liner
is educed at a set of discrete frequencies from 400Hz to 3000Hz. The resistance and reactance of the liner
used here are plotted in symbols in Fig. 3.

Using the experimentally educed impedance data, a liner impedance function is approximated by the broad-
band multipole impedance model Eq. (20) with �tted parameters using one single pole and three paired poles
(i.e., M = 1, L = 3). The minimization problem formulated in (42)-(44) is solved using a genetic algorithm
implemented in Python. The resistance and reactance predicted by the multipole model are also plotted in
Fig. 3. The parameters for the multipole model are (non-dimensionalized by ρ0c for impedance, c/L for
frequency where length scale L = 1(m)):

R0 = 0.1, h0 = 0.04, λ = 4.75, A1 = 36.55, α1 = 7.46, β1 = 36.98, B1 = 6.74, C1 = 1.33
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α2 = 6.6, β2 = 44.96, B2 = 7.25, C2 = 0.85, α3 = 7.67, β3 = 24.51, B3 = 11.32, C3 = 0.52

Figure 3. An example of broadband multipole impedance model (20) �tted for a liner of perforated plate with cavity
of depth 1.5 in and wired mesh face sheet of resistance R = 1.3ρ0c. Symbols denote the measured impedance value and
dashed lines denote the broadband impedance model. Here frequency is non-dimensionalized by c/L where L=1(m)
and c=343 (m/s).

Fig. 4 shows an example of computed pressure time history at coordinates r = (0.5, 0, 0) on the duct surface
opposite to the liner section. The solution without the liner impedance condition are plotted as the dotted
line. It is simply a Gaussian-shaped pulse as predicted by (65). The numerical solution computed with the
liner impedance condition but without the q-term is shown in solid line and that with the q-term is shown in
dashed line. Due to the e�ects of liner, the magnitude of the incident pressure pulse is signi�cantly reduced
as expected. However, the solution computed with the q-term eventually becomes exponentially large due to
the Kelvin-Helmholtz instability that is intrinsic to the vortex sheet included in the Ingard-Myers impedance
condition for a liner with �ow. On the other hand, the numerical solution computed without the q-term
remained stable. More importantly, both solutions matched very well until the on-set of the exponentially
growing solution. This suggests that neglecting the q-term in the impedance boundary condition formulation
(32) would not substantially alter numerical simulation results for the interaction of acoustic waves and the
liner, but could e�ectively suppress the Kelvin-Helmholtz instability that is intrinsic in the Ingard-Myers
condition.
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Figure 4. pressure time history at a point on the duct surface opposite to the liner section at coordinates r = (0.5, 0, 0).
The solution without the liner impedance condition are plotted in the dotted line. The numerical solution computed
with the liner impedance condition but without the q-term is shown in solid line and that with the q-term is shown in
dashed line.

Figure 5 shows stacked snapshots of pressure variation along the duct interior surface opposite to the liner
section. As one of the plane wave pulses propagates to the right of the source location, the e�ects of liner
on the incident pressure pulse are clearly seen and captured by computation. Also visible are the re�ections
of the incident plane wave by the leading edge of the liner section.

Figure 5. Stacked snapshots of pressure along the ducted side-wall opposite to the side of the liner at selected times
as indicated. A broadband plane wave is introduced near the liner section as indicated.
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Figure 6. Left: SPL v.s. x at selected frequencies as indicated; Right: Phase v.s. x. Flow Mach number is M = 0.2.
Perforated plate liner has cavity depth of 1.5 in and face-sheet DC �ow resistance Rf ≈ 1.3ρ0c. Line: computation;
Symbol: experiment.

With time domain solution, the frequency domain results can be obtained readily by FFT (Fast Fourier
Transform) or the following summation:

p̂(r, ω) = ∆t
[
p(r, t1)eiωt1 + p(r, t2)eiωt2 + p(r, t3)eiωt3 + · · · · · ·+ p(r, tNt

)eiωtNt

]
(67)

Figure 6 shows a comparison of computed and experimental results for the pressure distribution along the
wall opposite to the liner section at selected frequencies. For the results shown, the time domain solution
is computed without the q-term. Very good agreement is seen for all the frequencies, demonstrating the
validity of the current formulation.

VI. Conclusions

A time domain boundary integral equation, with Burton-Miller type reformulation, has been presented for
acoustic scattering by lined surfaces in a uniform mean �ow. The Ingard-Myers liner impedance boundary
condition has been implemented using a time domain broadband multipole model for the impedance which
results in additional di�erential equations that augment the boundary integral equation. While the Ingard-
Myers condition is known to support Kelvin-Helmholtz instability due to its use of a vortex sheet interface
between the �ow and the liner surface, it is found that by neglecting a second derivative term in the current
time domain impedance boundary condition formulation, the instability can be e�ectively suppressed in
computation without substantially impact the solution for the acoustic pressure. In fact, it can be shown
that neglecting the q-term in the time domain impedance condition formulation (32)-(34) is equivalent to
equating un and uw in the liner model, thereby romving the vortex sheet, and using a mean �ow that is twice
of its actual value. This may provide potentially a simple and practical way for circumventing the intrinsic
instability in the Ingard-Myers impedance formulation. Discretization of the coupled integral-di�erential
equations by a time domain boundary element method has been described. The current formulation and
implementation are validated using a NASA Langley GFIT experimental dataset.

Moreover, a minimization procedure has been proposed for �nding the poles and coe�cients of the multipole
impedance model. Unlike the vector-�tting method, passivity of the model is ensured. Numerical test cases
have shown that the proposed approach is e�ective for �tting the resistance and reactance of liners that are
commonly used in aeroacoustics applications.
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