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ABSTRACT 

IMPROVING EFFICIENCY IN ENGINEERING DESIGN USING 
AUGMENTED D-OPTIMAL DESIGNS: 'SYNTHETIC JET' DESIGN 

OPTIMIZATION STUDY 

Fatih Erdogan 
Old Dominion University, 2006 

The purpose of this thesis is to study the efficiency of several "design of 

experiments" (DOE) approaches used for the analysis and optimization of 

engineering designs. A literature review is conducted to study various "design 

of experiments" methods and the advantages and limitations of each method 

are discussed. 

As an application, Augmented D-Optimal designs are utilized for a design 

study of 'synthetic jet'. 

With the objective of improving efficiency and providing a minimum point 

experimental design model, computer-aided D-optimal method is preferred for 

this study. For setting up the design of the experiments and for performing 

the analysis of results, the "DOE" software-JMP is used. 

In flow control studies, performance of the system is generally reached by 

the use of computerized analysis programs. In this study, the experiments are 

performed using a NASA-developed flow simulation program, CFL3D 

(Computational Fluids Laboratory 3-Dimensional flow solver). The D-optimal 

design in this study is enhanced by applying the augmentation method. For 

augmenting the design, additional experiments are statistically placed in the 

model. During the analysis of outputs of the experiments, logarithmic 



transformation is used for better fitting the data to the formation of 

mathematical model. 

Results indicate that utilizing the augmented D-Optimal designs have led 

to improving efficiency significantly in the design, analysis and optimization 

studies performed in this thesis. 

Members of Advisory Committee: Dr. Rafael Landaeta (Member) 
Dr. C. Ariel Pinto (Member) 
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1.1. Background 

CHAPTER 1 

INTRODUCTION 

1 

Design optimization is essential in the design and evaluation of products 

or processes in view of the fact that it has an important impact on quality, 

performance and cost. The objective in design optimization is to search the 

design space efficiently to determine the values of design variables that 

optimize performance characteristics subject to system constraints [1]. In 

various aerospace studies such as a "synthetic jet" design, the experiments 

are generally performed by the use of computer programs that use complex 

algorithms which may need a long time to run the experiments. 

Sir Ronald Fisher is accepted to be the pioneer of statistical experimental 

design. He used DOE method in agricultural studies. Since Fisher, numerous 

methods have been developed by other researchers. In this study, some 

common methods are reviewed from the recent literature. These methods 

include OFAT (one-factor-at a time) approach, full factorial design, fractional 

factorial design, response surface model design (central composite designs 

and Box-Behnken designs), D- optimal designs and 'augmentation of 

experiment' design techniques. 

OFAT (one-factor-at a time) approach seems the least efficient one of 

the methods reviewed. However, it is widely used in parametric design 

studies. The OFAT approach does not take the interactions into consideration 

between parameters or between disciplines in a multidisciplinary design 

study. Thus, it may produce sub-optimal results. 
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Full factorial designs take all the possible combinations of design 

parameters and levels and interactions into account. However, the number of 

experiments increases drastically as the number of parameters increases, 

especially with multiple levels. Execution of high numbers of experiments may 

be significantly expensive and time consuming. 

Fractional factorial designs use the fractions of full factorial designs and 

estimate main effects and some interactions proportional to a fraction ratio. 

Namely, fractional factorial design is a systematically arranged subset of the 

full factorial design. 

Response surface designs and optimal designs are efficient methods of 

DOE. 

To explore the relationship between design parameters and performance 

characteristics, building a mathematical model is the approach of response 

surface designs. In this approach, design analyses are performed at 

statistically selected points specified by an experimental design matrix. The 

resulting data from the experiments construct response surface approximation 

models using multivariate least-squares regression analysis [2]. 

In this study, Optimality criteria for the above approaches and its different 

forms are briefly reviewed. Then, D-optimal criterion is studied in more detail 

since they appear to have the most promise in improving efficiency in design, 

analysis and optimization for aerospace systems. 

For the application part of the study, minimum point D- optimal design 

method is applied to a 'synthetic jet' design study since it may be the 

appropriate design method for the case. 
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Another point studied is 'augmentation'. Augmentation allows the 

designer to statistically add runs to original model to improve the efficiency of 

the predetermined design. After performing experiments, the statistical results 

may be improved by the use of logarithmic transformations in model building. 

The fitness of the model and the statistical values of the analysis of main and 

interaction effects may be improved. Consequently, a better mathematical 

model that approximates the response surface may be constructed. When the 

appropriate transformations are performed, better statistical values can be 

obtained. Consequently, the optimum parameter values and a better 

mathematical model can be achieved thanks to the transformation methods. 

1.2. Purpose of the Study 

The purpose of this study is to utilize minimum point experimental 

designs, specifically D-optimal designs, for computer-aided design 

optimization applied to the design of "synthetic jet" used in the aerospace 

industry. 

In the aerospace field, the design effort may be costly and time 

consuming. In this research, minimum point, D-optimal, experimental design 

is utilized to reduce the design effort and improve efficiency. The method is 

applied to a 'synthetic jet', design case study. The approach provides 

minimum point designs in an efficient and flexible way. 

1.3. Research Question 

There are limited numbers of applications of the D-optimal experimental 

design methods in the aerospace field. In addition, this approach utilizes 
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augmentation of experimental data by adding points to a pre-selected 

minimum point D-optimal design. This may save significant amounts of 

computing time, and may allow including points that are of special interest and 

may lead to a better assessment of model accuracy. This research proposes 

to study how the augmented D-optimal designs would be applicable to a 

'synthetic jet' design to improve the design efficiency. 

1.4. Scope of the Research 

This research comprises the following assumptions: 

- In spite of using a computer simulation programs, the execution of 

experiments for the design of a 'synthetic jet' takes a long time. 

- The selection of the method should use minimum points of design. In other 

words, the minimum number of experiments should be performed for the 

most efficient design in terms of cost and efficiency. 

- By augmenting the design, there may be added terms to the original model 

which may lead to new optimal test runs with regards to this expanded 

model. 

- Transformation of the results of the experiments to another form may be 

beneficial in terms of fitness of the model. 

For better understanding the nature of design of experiments (DOE), the 

following methods are reviewed: 

- OFAT- one factor at a time 

- Full factorial designs 

- Fractional factorial designs 

- Response surface designs 
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- D- optimal designs 

- Augmentation of D-Optimal Designs 

For the application of the design of the experiments, JMP [3] computer 

software is used to perform statistical analyses and generate D-Optimal 

experimental designs. This program is also used for the analysis and 

optimization of outputs obtained after performing the experiments. 

Implementation of experiments for the design of 'synthetic jet' is performed 

using CFL3D (Computational Fluids Laboratory 3-Dimensional flow solver}, a 

computer program developed by NASA Langley Research Center. 



CHAPTER2 

LITERATURE REVIEW 

2.1. Design of Experiments (DOE) 

Definitions of DOE: 

6 

DOE is a statistical technique that allows to determine the best 

experiments to run for fitting a particular mathematical model [4]. 

DOE is a branch of applied statistics dealing with planning, conducting, 

analyzing and interpreting controlled tests for evaluating the factors that 

control the values of a parameter or a group of parameters [5]. 

Sir Ronald Fisher, in the 1920s, developed the techniques of factorial 

Design of Experiments. He is accepted to be the pioneer of statistical 

experimental design. He applied these techniques to agricultural experiments. 

In an experiment, one intentionally changes one or more parameters (or 

factors) with the purpose of observing the effect that the changes have on 

response variables. The design of experiments (DOE) is an efficient 

procedure for planning experiments in order that the data obtained may be 

analyzed to get valid and objective conclusions. 

2.2. Benefits of DOE 

Design of experiments (DOE), used in many industrial sectors, can be 

applied to most of the product and process design applications at research, 

development and production phases. 

In a competitive market it is crucial to obtain products/processes of high 

quality and low cost. After performing the design, it may be very expensive to 
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redesign or make major changes in case of undesired conditions. A major 

part of the life cycle cost of a product occurs in the design phase. If this cost is 

optimized by providing the quality, that would give a great opportunity in terms 

of competitiveness. There are many engineers unaware or lacking knowledge 

of design of experiments. An efficient way of performing a design with low 

cost and high quality is 'design of experiment' methods [6]. 

The advantage of DOE is that it provides an organized approach; this 

way it is easier to address experimental problems whether they are simple or 

complex. Once the experimental objectives are determined, the best fitting 

experimental design method may be selected and successively, a set of 

experiments can be designed in terms of objectives. 

It is obvious that DOE requires a lesser number of experiments than any 

other techniques. "Since these few experiments belong to an experimental 

plan, they are mutually connected and thereby linked in a logical and 

theoretically favorable manner" [6]. 

Thus, by means of DOE, one obtains more useful and more precise 

information about the studied system since the joint influence of all factors is 

assessed. Once the fitness of the model is verified, the effects of the 

parameters are evaluated using regression analyses for setting up a math 

model [6]. 

Steps for Implementation of DOE 

I. Define the product or process to be studied. 

2. Identify main function- state the problem. 

3. Determine the response(s) - Y and identify the quality characteristics to 

be observed. 
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4. Determine the Measurement System for the response(s). 

5. Identify main factors - Xi. 

6. Determine the levels for the selected factors. 

7. Select the experimental design. 

8. Design the matrix experiment and define data analysis methods. 

9. Conduct the experiments according to the design and collect data. 

10. Analyze the results and draw conclusions. 

11. Determine optimum levels. 

12. Document the new settings and run a confirmation experiment [7] [8]. 

Figure 1 shows the relationship between design factors, response(s), 

and noise factors in a design. 

DESIGN OF EXPERIMENTS 

CONTROLAllLE 
FACTORS 

( 
X factors are the 
variables changed In 
experiments to 
evaluate to obtain best 
fitting results. 

XI 

X2 

X3 
X4 

XS 

Y= f(xl ,x2,x3,x4,x5) 

y 
RESPONSE 

) 
l l I 

Output of the experiments 

NOISE FACTORS 

L_ The uncontrollable factors that are difficult 
or expensive to control. 

Figure 1. Factors -Response(s) in DOE 
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2.3. Selecting the Design Method 

The number of variables and the objective(s) of the experiments identify 

the selection of the experimental design. According to the objectives, the 

classification of methods can be reviewed in five categories [9]: 

► Comparative Objective: 

If the primary aim of the design is to make a decision about one 

important parameter among all the parameters, comparative design may be a 

good choice. For different levels of this primary parameter, the changes in the 

response are observed and then it can be decided whether it has significant 

effect to the design or not. 

► Screening Objective: 

Among many parameters, if the few important ones are to be screened 

out, screening design which is also called 'the main effect design' is suitable 

for the purpose. 

► Response Surface Objective: 

If the interactions and quadratic terms of the parameters are to be 

observed, the response surface method giving the shape of the surface can 

be used for the design. In most designs there exist interactions between 

parameters and sometimes non-linearity in parameter(s). In these cases, 

RSM designs are useful [9]. 
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► Mixture Objective: 

If the factors are proportions of a mixture, for finding the "best" 

proportions of the factors in order to get optimum response, mixture designs 

may be appropriate choices. 

► Regression Model Objective: 

If the goal is to make the mathematical model of the factors and estimate 

the parameters without bias and with minimized variance, the regression is 

useful. 

Randomized designs are comparative objective designs, full factorial or 

fractional factorial designs are screening objective designs and central 

composite designs and Box-Behnken designs are response surface objective 

designs [9]. 

2.4. Common DOE Methods 

The DOE methods below have been reviewed for the purpose of 

literature review. The advantages and disadvantages of each are be 

discussed. These methods are: 

- OFAT- one factor at a time 

- Full factorial design 

- Fractional factorial design 

- Response surface model (Central Composite Design and Box-behnken 

Design) 

- D- optimal design 

- Augmentation of D-Optimal Designs 
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2.4.1. One Factor At a Time Approach 

The One Factor At a Time (OFAT) approach refers to changing only one 

factor at each experiment for finding the best value of each factor. It is very 

simple approach to understand and to apply. 

The OFAT method consists of selecting a baseline set of levels for each 

factor, followed by successively varying each factor over its range with the 

other factors staying constant at the baseline level. After completion of all the 

tests, a series of graphs are generally constructed showing how the response 

variables are affected by varying each factor while all other factors stay 

constant. The OFAT approach is regarded as healthier than the trial-and-error 

approach of experimentation, and has been perceived by some as a scientific 

method. Despite the fact that this approach is used frequently, it has some 

significant limitations: 

Limitations of OFAT Approach 

• The major disadvantage of the OFAT strategy is that it doesn't consider 

any possible factor interactions. 

• Compared to the factorial design, it is less efficient and may require 

more trials. 

• Limited use of test data. 

• Unable to generate reproducibility of results -not balanced. 

• Biased information on each level. 

If it is assumed that the effects of the factors are independent, then one 

can model the result by changing several factors at once, and can find the 

optimal strategy which consists of the best combination of the factors. 
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However, in most engineering experiments, interactions between factors exist 

and as OFAT doesn't respond to the interactions, there may be poor and 

sometimes disastrous results. 

This method is believed to be a standard, systematic, and accepted 

method of design experimentation by many people including experienced 

engineers. However, OFAT is a poor approach, consequently one needs a 

better design such as factorial design, which takes interactions in to 

consideration [1 O]. 

2.4.2. Factorial Design 

The One factor at a time technique of experimentation was actually 

outdated in the 1920s with the discovery of much more efficient methods of 

experimentation using factorial designs by Sir Ronald A. Fisher. These 

studies by Fisher further developed by including fractional factorial designs, 

orthogonal arrays, and response surface methodology [1 O]. 

The factorial design approach has the following advantages over varying 

one factor at a time: 

• A better precision is obtained for estimating the overall main factor 

effects. 

• All factors may be simultaneously varied to deal with interactions and 

maximize efficiency. 

• All or a fraction of interactions between different parameters can be 

taken into consideration. 
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• Inclusion of additional factors may extend the validity of conclusions 

extracted [11]. 

• The experiments may be performed in a random order for maximizing 

accuracy and reduce the probability of incorrect conclusions [1 O]. 

2.4.2.1. Full Factorial Design 

"A design, in which all factor combinations appear with every setting of 

every other factor, is a full factorial design"[12]. In other words, full factorial 

designs measure the response of every possible combination of factors and 

factor levels. These responses are analyzed for providing information about 

each main effect and each interaction effect [13]. 

Full factorial designs are ideal from a mathematical point of view, 

because they make minimal assumptions about the factor interactions, 

assuming their existance [14]. 

However, the sample size grows exponentially with the number of 

factors. As can be seen in table 1, when the number of investigated factors is 

5 or greater, a full factorial design requires a large number of runs and is not 

efficient. This is the most conservative design approach, but testing all 

combinations becomes too expensive and time-consuming with five or more 

factors [13]. It is recommended that a fractional factorial design be used for 5 

or more factors when the experimental effort is high [12]. 

The sample size is the product of the number of levels and factors. For 

instance, a full factorial experiment with five factors at three-level has 35 =243 

runs [3]. 
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A sample size of factorial designs with only two-level factors is a power 

of two. 'When there are three factors, the factorial design points are at the 

vertices of a cube. For more factors, the design points are the vertices of a 

hypercube" [3]. 

In Table 1, it can be concluded that full factorial designs are not so 

efficient, especially for 3k designs. 

l~umber 

16. !j64 11129 

11 ...................... J12a .. ll,--21-a1 ___ , 
Table 1: Number of Runs for a 2K and 3K Full Factorial Design 

2.4.2.2. Fractional Factorial Designs 

Fractional factorial design is "a factorial experiment in which only an 

adequately chosen fraction of the treatment combinations required for the 

complete factorial experiment is selected to be run" [15] [12]. 

Fractional factorial design includes only a fraction of the corners of a 

hypercube and typically fits interaction models that include only 2-factor 

interactions. 

Fractional factorial designs use only a portion (fraction) of the full 

factorial design to estimate main effects and lower order interactions [6]. This 

design is a carefully arranged subset of a full factorial design and includes 

selected combinations of factors and levels [13]. 
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In a full factorial design, the number of experiments increases drastically 

as the number of factors increases. The solution to this problem is using a 

fraction of the runs designated by the full factorial design. It reduces the total 

number of runs required. Generally, it is preferred to choose a fraction such 

as ½, ¼, etc. of the runs required for the full factorial design. Various 

strategies are used which ensure an appropriate choice of runs [12]. 

A disadvantage of fractional factorial approach is the possibility of 

confounding interaction effects with main effects [16]. 

By decreasing the number of runs, a fractional factorial DOE is not able 

to evaluate the impact of some of the factors independently. Usually, higher­

order interactions are confounded with main effects or lower-order 

interactions, because there tends to be a hierarchy in strength of interactions. 

In terms of absolute magnitude, 2-factor interactions tend to be larger than 3-

factor interactions, 3-factor interactions tend to be larger than 4-factor 

interactions and so on. As higher order interactions are rare, it can be 

assumed that their effect is minimal and that the observed effect is caused by 

the main effects or lower-level interactions [13]. 

2.4.3. Response Surface Model 

Response surface methodology (RSM) is one of the most common 

methods pertaining to developing, improving and searching or hunting for an 

optimum of a running system by using mathematical and statistical techniques 

in Design Optimization, and also is employed to design, develop, and 

formulize new products. The application of RSM is applicable in the industrial 

world, especially when several input variables potentially influence some 
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quality characteristic or performance measures of the product or process. By 

using RSM, one can find the local maximum response variable, which means 

that there could be more than one peak in the function, and one of them may 

be greater than the response variable (Y) [41]. Response surface 

methodology was developed in the early 1950s by Box and Wilson and by 

Box and Hunter, and later by Cornell [42]. 

In response surface models, the experiments are designed to estimate 

interactions and even quadratic effects, and consequently give us an idea 

about the shape of the response surface that we are inspecting. Therefore, 

they are called response surface method (RSM) designs [9]. 

"Under some circumstances, a model involving only main effects and 

interactions may be appropriate to describe a response surface when: 

- Analysis of the results revealed no evidence of "pure quadratic" curvature in 

the response of interest (i.e., the response at the center approximately equals 

the average of the responses at the factorial runs). 

- The design matrix originally used included the limits of the factor settings 

available to run the process. 

In other circumstances, a complete description of the process behavior 

may require a quadratic or cubic model" [12]. 



Quadratic model 

(Equation 1) 

Cubic model 

y = quadratic model+ b 123 x 1x 2x 3 + b 112xf x 2 + b 113xf x 3 + b 122 x 1xi 

+ h133X1Xi + h223xix3 + b233X2Xi + h111xf + h222X~ + b333Xi 

(Equation 2) 

17 

These equations refer to full models, including all possible terms, but 

generally all the terms are not needed in applications [12]. 

Linear Function Quadratic Function ICubic Function 

Figure2: Linear-Quadratic and Cubic Functions 

2.4.3.1 Regression Analysis and RSM 

Regression analysis is a statistical technique which is used to find 

relationships between input parameters in order to predict future values. In the 

experiments, several input parameters (X1, X2, X3, etc.) are imposed to the 

subjects in order to influence the response(s)-Y. The response variables are 
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dependent to the input parameters. In other words, changing one input 

parameter causes change in the response variable. The parameters can be 

either qualitative or quantitative. In regression, input parameters and response 

variables are called the regressor variables and the dependent variable 

respectively. Given a collection of data from the experiment, regression 

analysis may be employed to get a mathematical equation which shows the 

relationship in the quantitative way. 

There is a relationship between regression analysis and RSM. The basic 

regression model is the linear regression model (the first-order model is 

Y = b0 + b1 X 1 + ... +bkXk + e where e is normally distributed with mean zero and 

the linear regression coefficients are bk) which describes a very simple 

response surface. In some cases, if one considers maximizing yield, or 

minimizing defects, using simple linear and interaction models are not proper. 

These systems are considered as curvature having a local maximum, and 

then a model such as the second-order model is 

k k 

Y=b0 + L bi Xi+ L bii Xi 2+ L L bij Xi Xj+ e Equation 3 
i=I IS.j 

Equation 4 

where b;X; denote linear terms for all factors, b;;X( denote squared terms for 

all factors, and e is the error term. These models are called response surface 

designs. 

The applications of RSM include designing the experiment, selecting the 

input parameters, getting the relationship between the response and input 

parameters through a mathematical equation by using regression analysis, 
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and optimizing the response variable by optimization techniques. 

2.4.3.2. RSM Designs 

The first step in RSM is finding an approximation for the true relationship 

between the response and the input variables, since the form of the 

relationship between them is unknown. Suppose the response variable is 

defined as Y, and the response function, f, as the complex form, then the 

model is 

Equation 5 

where xi,x2 , ... ,xk denote the k control parameters and e is the error vector. 

In RSM, the two most common designs are central composite design 

and Box-Behnken design. The inputs may be at three or five distinct levels in 

these designs. However all combinations of these levels do not appear in the 

design [9]. 

The following designs are used to produce specific response surface 

designs: 

► Central Composite Designs (CCD) 

It is common to use CCD in quadratic response surface modeling for 

design of experiments. It was first introduced by Box and Wilson and is used 

to estimate the unknown parameter vector. 

In CCD designs, one starts with an imbedded factorial or fractional 

factorial design with center points and then adds "star" points in order to 
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estimate curvature [9]. In CCD, if there are k factors, then the number of star 

points equals to 2k, and in the design, the new low and high extreme values 

are represented by star points for each factor [17]. 

In CCD, the number of design parameters should be small in order to 

have a practical CCD since it contains factorial designs. However, one should 

reduce the trial number by reducing the factorial part in case the number of 

design parameters is large. 

The advantages of CCD: 

1. Efficient. 

2. The numbers of experimental design points are significantly less than 

required by Taguchi's three-level orthogonal array and three-level full or 

fractional factorial designs. 

3. All parameter interactions can be captured. 

4. Second order non linearity (quadratic) can be captured [7]. 

Limitations of CCD: 

1. In some cases, the number of design points must be kept to an absolute 

minimum (conducting a design study may be expensive). 

2. CCD matrices may contain row(s) with parameter value combinations 

resulting in unfeasible solutions (excluding a row destroys orthogonality). 

3. A second order (quadratic) approximation model may be inadequate in 

highly nonlinear cases [third order (cubic) or higher order polynomials may 

have to be utilized for an accurate representation] [7]. 
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► Box-Behnken Design (BBD) 

For fitting a full quadratic RSM, this type of design is an efficient three 

level design. It is based on the construction of balanced incomplete block 

designs. The difference between CCD and BBD is that three evenly spaced 

levels are achieved by BBD. It was introduced by Box and Behnken in 1960 

[12]. 

2.4.4. Computer-Aided Designs 

In many cases, standard designs respond to the purposes and can be 

constructed with several statistical software packages. However, sometimes 

they are not appropriate or practical. These classical designs may be 

inappropriate in some situations. According to Engineering Statistics 

Handbook [12], they do not work where: 

1. "The required blocking structure or blocking size of the experimental 

situation does not fit into a standard blocked design. 

2. Not all combinations of the factor settings are feasible, or for some other 

reason the region of experimentation is constrained or irregularly shaped. 

3. A classical design needs to be 'repaired'. This can happen due to improper 

planning with the original design treatment combinations containing 

forbidden or unreachable combinations that were not considered before 

the design was generated. 

4. A nonlinear model is appropriate. 

5. A quadratic or response surface design is required in the presence of 

qualitative factors. 
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6. The factors in the experiment include both components of a mixture and 

other process parameters. 

7. There are multiple sources of variation leading to nested or hierarchical 

data structures and restrictions on what can be randomized. 

8. A standard fractional factorial design requires too many treatment 

combinations for the given amount of time and/or resources" [12]. 

If the situations above exist, computer-aided designs work better. 

Moreover, in some situations, computer-aided designs may be the only 

option. 

Computer-aided designs are designs generated from a computer 

algorithm. Experimental designs which are generated on the basis of a 

particular optimality criterion are referred to as computer-aided designs. They 

are generally optimal for a particular model. The computer algorithms 

generate the design runs by choosing from a candidate set of possible 

combinations. This candidate set includes all the possible combinations that 

can be taken into consideration in an experiment [12]. 

In table 2, numbers of runs for full factorial design, 3-level orthogonal 

design, CCD design and D-optimal design are shown. It can be seen that D­

optimal experimental design requires the least number of experiments as 

compared to the others. 
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NUMBER OF FULL 3-LEVEL CCD D-OPTIMAL 
FACTORS FACTORIAL ORTHOGONAL DESIGN DESIGN 

DESIGN (3k) ARRAY 

3 27 27 15 10 

4 81 81 25 15 

5 243 81 43 21 

6 729 ------- 77 28 

7 2187 ------- 143 36 

EQUATION 3" 2"+2n+1 (n+1) (n+2)/2 

Table 2: Numbers of Runs for Most Common Models 

2.4.5. DOE Using Minimum Point Designs 

"A design is called 'minimum point' when the number of design points is 

exactly equal to the number of terms in the model to be fitted" [40]. Minimum 

point design methods generate efficient and flexible experimental designs. 

These powerful design approaches enable a designer to compute a proper 

design which can be conducted with minimum numbers of observations. 

These parameters can be either qualitative or quantitative. In addition, the 

optimal method can fit any type of model whether it is linear or nonlinear [18]. 

Characteristics of Minimum Point D-Optimal Designs: 

• They may be used in place of CCD when there are a large number of 

parameters and point design effort is very expensive. 

• They work well in initial screening situations. 

• Number of design points can be reduced to minimum. 

• Second order or cubic response surface polynomials can be constructed. 

• May lead to poor coverage of the region of interest. 
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• Design matrices containing row(s) resulting in unfeasible solutions can be 

avoided [7]. 

• Unlike standard classical designs such as factorials and fractional 

factorials, minimum point design matrices are usually not orthogonal and 

effect estimates are correlated [12]. 

• No degrees of freedom left to estimate fitted model accuracy. 

Standard factorial or fractional factorial designs may require too many 

runs for the amount of resources or time allowed for some experiments. In 

Chapter 3, D-optimal model is explained in detail. 

Optimality Criteria 

There are various forms of optimality criteria that are used to select the 

points for a design. The definitions of the optimal designs below come from 

the Engineering Statistics Handbook [12]. 

"D-Optimality 

The most common criterion is the D-optimality, which seeks to maximize 

IX'XI, the determinant of the information matrix X'X of the design. This 

criterion results in minimizing the generalized variance of the parameter 

estimates based on a pre-specified model. 

A-Optimality 

Another criterion is the A-optimality, which seeks to minimize the trace of 

the inverse of the information matrix. This criterion results in minimizing the 

average variance of the parameter estimates based on a pre-specified model. 
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G-Optimality 

A third criterion is the G-optimality, which seeks to minimize the 

maximum response variance, i.e., minimize max. [d=x'(X'X)"1x], over a 

specified set of design points. 

V-Optimality 

A fourth criterion is V-optimality, which seeks to minimize the average 

prediction variance over a specified set of design points" [12]. 

2.4.6. Augmented Designs 

By augmenting the design, it is possible to add runs using a model 

having more terms than the original model. Adding runs to a design is efficient 

because one can achieve response surface objectives by changing a linear 

model to a full quadratic model. For instance, suppose one starts with a two­

factor, two-level four-experiment design. If one adds quadratic terms and five 

new points to the model, there can be generated the 3 by 3 full factorial as the 

augmented optimal design by means of DOE software. D-optimal 

augmentation is a powerful tool for sequential design via which there can be 

added terms to the original model and the optimal new test runs with regard to 

this expanded model can be found. It is also possible to group the two sets of 

experimental runs into separate blocks that optimally blocks the second set 

with respect to the first [3]. 

The augment designer in JMP [3] software modifies an existing design 

data table, supporting an iterative process. It gives the following choices: 

"• Replicate the design a specified number of times. 
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• Add center points. 

• Allows doing statistical analysis extensively for minimum point designs. 

• Create a fold over design. 

• Add axial points together with center points to transform a screening design 

to a response surface design. 

• Add runs to the design using a model that can have more terms than the 

original model" [3]. 

2.5. Data Transformation 

Transformations are a remedy in the case of having problem with the 

data as outliers, failures of normality (e.g.skewness), and unequal variation. 

The most common and recommended transformations are shown graphically 

in Figure 3. 

SQUARE 
ROOT 

I LOGARITM I 

Figure 3. Common Transformation Forms [19] 

REFLECT AND 
SQUARE 
ROOT 

REFLECT AND 
LOGARITM 

REFLECT AND 
INVERSE 
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To find the most appropriate transformation form for the selected data, the 

steps below are followed: 

- Choosing one of transformation forms. 

- Then applying it to the actual data set. 

- Checking whether the new data set is distributed normally or near-

normally. 

- If not, picking another transformation until the data set has the fewest 

outliers or zero skewness [19]. 

Some terms related with the transformation are outlier, skewness and 

Heteroscedasticity. Outlier is a single observation "far away" from the rest of 

the data [20]. Skewness is the measure of the degree of the distribution for 

asymmetrical distributions. There are two types of skewness as left-skewed 

and right-skewed which has the tail widely spread apart at the left side and 

the right side respectively. If the two tails are equal, it is considered symmetric 

and to have zero skewness [21]. Heteroscedasticity is the unequal variation of 

data. 

► Log Transformation 

Log Transformation is one of the common transformations. If there are 

problems with the data like skewed data, outliers and heteroscedasticity 

(unequal variation), the log transformation is one of the convenient 

transformations to apply, but does not guarantee to solve these problems. In 

order to do log transformation, three steps are followed: 

1. Taking the logarithm of each data value. 
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2. Analyzing the resulting data. 

3. Transforming the results back [15]. 

If a variable is skewed to the right as shown clearly in Figure 4, log 

transformation is used to produce a data set closer to symmetric. If the 

variable is symmetric or skewed to the left, log transformation may not be a 

good idea to apply. 

Right tail 

Left tail 

Figure 4. Right Skewed Distribution 

If there are outliers on the high end, log transformation can be used to 

solve the problem. Log transformation squeezes the larger values, so it might 

help the high ended outliers. But it is not proper to use log transformation if 

there are outliers on the low end. If there is an unequal variation problem in 

the data, tests and confidence intervals may not be true. In this case, log 

transformation is convenient to apply. The log transformation equalizes the 

variation by squeezing the groups with the larger standard deviations [22][23]. 
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2.6. Summary of Literature Review 

Various DOE methods were studied in this chapter. These methods are 

put in order in terms of their complexity and efficiency. These methods are 

OFAT- one factor at a time method, full factorial design, fractional factorial 

design, response surface model (CCD-central composite design and box­

behnken design), D- optimal design and augmentation of optimality criterion. 

The OFAT approach works only when there is no interaction between 

parameters of the model. However in most cases, interactions exist. 

Ignorance of these interactions prevents the designer from reaching to optimal 

values and setting up a proper mathematical model. 

The full factorial method uses all main and interaction effects, but works 

well only when the number of parameters and level of each parameter are 

low. Otherwise time and cost of the design may be prohibitive and inefficient. 

The fractional factorial design uses a fraction of full factorial design 

assuming that some quadratic effects are of the less importance. 

The response surface model (RSM) is a second-order model which uses 

all two-parameter interactions and captures the curvature or nonlinearities. 

Therefore, RSM gives an idea about the shape of the response surface of the 

design. Using this design method, optimal design setting may be found and 

consequently the design may be improved, the problems and weak points of 

the design may be determined, and the design may become more robust. 

Two most common RSM designs are 'CCD-central composite design' and 

'Box-Behnken design'. 

There are various optimality criteria. The definition of D, A, G, and V 

optimality criteria are given. Then, D-optimality criterion is explained. D-
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optimal criteria which is the most common one, has several advantages. 

Therefore, it was used for the application of this research. Minimum point 

design is selected for the application and the augmentation is applied to the 

selected design. 

2. 7. Contributions 

The purpose of this study is to do several contributions to the application 

of minimum point design of experiments. These contributions are: 

2.7.1. Augmentation 

With the purpose of constructing minimum point D-optimal design, the 

least number of experiments is selected. However, by using augmentation 

method, the selected D-optimal design can be improved. Thus, it can be 

possible to apply the choices mentioned in section 2.4.6. 

2. 7 .2. Transformation 

In JMP [3], after acquiring the results of the experiments, the fit of the 

model can be performed for analysis of the results. In case there is a lack in 

the fittness of the model, the desired math model may not be achieved. The 

transformation technique provides better fitting of the model by converting the 

results of the experiments to different forms. By transforming result data, 

better analysis values may be attained. Common transformation forms are 

square root transformation, inverse transformation and logarithmic 

transformation. The aim is to form a better mathematical model by testing 

each transformation form. 
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2. 7 .3. Application in Aerospace Field to the 'synthetic jet' design 

There is limited number of studies using DOE methods for the design in 

aerospace. Synthetic jet is an active control device which controls the air flow 

on any surface. The design studies on 'synthetic jet' are quite new and the 

optimization of this device is not defined properly. 

There is nonlinearity and strong interactions between design parameters 

of 'synthetic jet'. The statistical DOE approach to this design would be quite 

efficient. Applying the augmented minimum point D-optimal design method to 

this design problem may be a proper approach than the OFAT currently used 

by some. Efficiency and fitness will be evaluated. 



CHAPTER 3 

METHODOLOGY 

APPLICATION OF D-OPTIMAL METHOD TO 'SYNTHETIC JET' DESIGN 

3.1. Synthetic Jet 
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Synthetic jet is a device which controls the air flow on any surface. While 

active control methods require an expenditure of energy, the main advantage 

of synthetic jet is that it can respond rapidly to the changes in the flow surface 

with low energy. Despite the fact that continuous-blowing and suction have 

side effects, intermittent blowing and suction in the form of synthetic jet have 

shown their effectiveness in controlling the flow separation [24]. 

Flow control methods are classified in terms of the expenditure of 

energy. Passive or active flow control devices are used to control the flow 

on a surface. With the help of these devices, a considerable treatment on 

the flow area may be acquired. The passive control devices control the 

flow without external energy expenditure. There has been much research 

about passive control devices. Passive techniques can be in different forms; 

• Changing the shape geometrically to control the pressure gradient. 

• Using mechanical vortex generators for controlling the separation. 

• Using longitudinal riblets or grooves on the flow surface to reduce 

drag [25]. 
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The studies about active control devices are relatively new. Active 

devices use external energy or auxiliary power to affect the flow area. The 

'synthetic jet' is an active flow control device and can be used on any surface 

where flow exists. There have been studies on devices which controls the 

flow by only absorbing or only blowing the air. However, the 'synthetic jet' 

which is used in our design of experiments study, both absorbs and blows the 

air respectively. 

"Synthetic jets are composed entirely of entrained ambient fluid 

synthesized by the formation of a time-harmonic train of vortices that are 

created at the sharp edges of an orifice of an enclosed cavity" [24]. The usage 

purpose of the 'synthetic jet' is to control the air flow on any surface. Here, the 

word control either means decreasing or increasing the effect of the vortices. 

Figure 5 shows the main parts of a 'synthetic jet'. The device draws the 

fluid into its cavity and than blows it out in sequence. The membrane at the 

bottom which is a piezoelectric part of the synthetic jet moves periodically up 

and down. At the orifice, the net mass flux is zero since all the air drawn is 

pushed by the oscillation of the membrane. 
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Figure 5. Synthetic Jet 

The main parameters having an effect on the performance of synthetic 

jet design are in table 4. The goal of this study is to find maximum momentum 

value by changing these main parameters with D-optimal design. These 

parameters are displacement frequency of the membrane, displacement 

range of the membrane (amplitude), width of the cavity, width of the orifice 

and height of the cavity. The changes in the measures of these parameters 

give different amount of flow displacement from the cavity. In this study, the 

purpose of the design is to maximize the momentum value generated by the 

'synthetic jet'. For each parameter, it was determined three levels and the 

different combinations of parameters were designed for the experimentation 

by the use of the software. 
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3.2. Statement Of The 'Synthetic Jet' Design Problem 

The studies about synthetic jets are rather new and the design phase of 

this device may need time-consuming studies and plenty of experiments. To 

find the optimal values of parameters, the "one factor at a time approach" or 

the full factorial approach is not appropriate. The major limitation of OFAT 

approach is that it does not consider any possible factor interaction. Full 

factorial designs require high number of experiments unless the number of 

parameters is small. The limitations of common DOE methods were 

mentioned previously in chapter 2. 

Since this study requires minimum point experimental design, applying 

the D-optimal method might be a good choice. 

3.3. Determination of the Response - Y, And The Quality Characteristics 
To Be Observed 

The purpose of this study was to maximize the momentum value 

generated by synthetic jet. On behalf of generating maximum momentum by 

consuming minimum energy, the design parameters were needed to be 

optimized. For enabling the 'synthetic jet' to generate maximum momentum, 

the five parameters: width of the synthetic jet, width of the orifice, height of the 

orifice, amplitude and frequency are set into the design in order to get their 

optimum values. 

3.4. Main Factors and Feasible Ranges 

There are five main parameters affecting the output value (momentum of 

the synthetic jet). Among these parameters, the most complex one seems to 

be the frequency as it does not change linearly. So, it was determined to 

conduct some experiments to find the global maximum value and to select the 
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range of frequency. During the execution of these pre-experiments, the values 

of other four parameters were kept fixed at mid-values while changing 

frequency values. The table 3 and figure 4 show the frequency values 

acquired from the experiments conducted for this purpose. 

Rank Frequency Momentum Rank Frequency Momentum 

1 50 0,5862 16 800 110,75 
2 100 4,90149 17 850 123,953 
3 150 30,0603 18 900 99,7321 
4 200 28,0291 19 950 105,215 
5 250 23,0771 20 1000 113,382 
6 300 32,4175 21 1100 93, 1196 
7 350 49,6327 22 1200 59,6707 
8 400 57,0544 23 1300 48,5596 
9 450 49,4609 24 1400 44,5394 
10 500 64,5708 25 1500 34,6157 
11 550 80,876 26 1600 23,8932 
12 600 100,75 27 1700 22,3652 
13 650 88,8147 28 1800 21,252 
14 700 108,181 29 1900 12,0854 
15 750 141,336 30 2000 11,9202 

Table 3. Momentum Values for Different Frequency Values 
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Since the purpose of the study was to maximize the momentum, the 

momentum values were tested between 50 Hz and 2000 Hz frequency 

values. As shown in figure 5, among several local maximums, the global 

maximum was obtained at 750 Hz resulting as 141,336 kg.m/sec2 momentum 

value. According to these results, the frequency range was determined 

between 300 Hz and 1300 Hz. For the accuracy of the design of experiments 

of synthetic jet, these pre-experiments are necessary and beneficial in order 

to arrange the parameter range robustly. 

As opposed to 243 experiments required for full factorial design, five 

synthetic jet parameters and 15 two-parameter interactions were studied at 

three levels by conducting 21 design experiments. By adding eight runs for 

the augmentation and by adding 1 center point, the total number of 

experiments reached to 30. The aim here is to determine the best values of 

the design parameters that maximize the momentum value. The five design 

parameters are given in table 4. 

RANGES 
PARAMETERS LOW HIGH 

WIDTH 15 25 

AMPLITUDE 0,2 0,8 

ORIFICE HEIGHT 0,4 1,6 

ORIFICE WIDTH 0,4 1,6 

FREQUENCY 300 Hz 1300 Hz 

Table 4, Ranges of Parameters 
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3.5. Determination of the Levels for the Selected Factors 

The equation 6 represents the construction of a second-order response 

model for the D-optimal design. 

Using the custom design tool of JMP [3] software, an augmented D­

optimal experimental design was constructed with 30 experiments. In this 

design matrix, the five parameters were studied at three levels (values). 

These levels were represented in coded form by, (-1 ), 0 and (+1 ). To illustrate, 

(-1) for amplitude represents to 0.2 (lower bound); 0 represents to 0.5 (mid 

value); and +1 represents to 0.8 (upper bound). For the conduction of the 

experiments, these coded values were transformed into actual parameter 

values. 

ORIFICE ORIFICE 
WIDTH AMPLITUDE HEIGHT WIDTH FREQUENCY 

-1 15 0.2 0.4 0.4 300 

0 20 0.5 1 1 800 

1 25 0.8 1.6 1.6 1300 
Table 5. Coded Values of Parameters 

3.6. Measurement System for the Response(s) 

There are 3 types of measurement systems, these are: 

1- Computer models (simulation) 

2- Set of equations 

3- Actual hardware experiments 
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In this study, a computer program CFL3D was used for the simulation of 

the experiments. 

► CFL3D 

The CFL3D is a Reynolds-Averaged thin-layer Navier-Stokes flow solver 

for solving 2-D or 3-D flows on structured grids. It was developed in the 

1980's in the Computational Fluids Laboratory at NASA Langley Research 

Center. The name of the code is an acronym for the Computational Fluids 

Laboratory 3-Dimensional flow solver. This program solves the time­

dependent conservation law form of the Reynolds-averaged Navier-Stokes 

equations [26]. 

To avoid units of measurement such as feet, meters, pounds, grams, etc. 

while coding the equations, the CFL3D solves the Nervier-Stokes equations 

nondimensionally. Flow-field parameters are nondimensionalized by reference 

values. For example, all points on a synthetic jet may be nondimensionalized 

by the length of the orifice [26]. 

3. 7. Selection of the Experimental Design 

For the design of the experiments, the D-optimal model was selected. If 

the number of design points is equal to the number of terms in the model to 

be fitted it refers to "minimum point design". Since the number of design 

points can be reduced with this model to minimum, it can be a good choice 

when the number of variables tends to be large. By using the D-optimal 

model, it is possible to observe quadratic and cubic response surface 

polynomials. Besides, the design matrices of D-optimal design are usually not 
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orthogonal and the estimates of effects are correlated and also, the design 

matrices containing unfeasible rows can be avoided. 

The second order approximation model which was used for the synthetic 

jet design takes non-linearity (square terms) and interactions (cross terms) 

into account to better explore the design space. 

These approximation models can be used to determine the effect of 

varying design parameter values on momentum value. Another major 

advantage of this approach is that, while doing sensitivity analysis, it does not 

require re-analyzing the entire system after changing any parameter value in 

the model [27]. 

The math model of the design was constructed based on the equation 6 

representing the second-order approximation model. 

Equation 6 

In equation 6 the Xi terms represent the input variables which influence 

the response Y. The b0 , bi, and bij are the estimated regression coefficients. 

The cross terms represent two-parameter interactions and the square terms 

represent second-order non-linearity. Design parameters should be studied at 

least at three levels for constructing a second-order model in order to estimate 

the coefficients in the model. Therefore, 3n factorial experiments may be 

necessary [28] [40]. 

In contrast to full factorial design, the second-order approximation model 

can be constructed efficiently by utilizing minimum point D-optimal 

experimental design. In the regression analysis, the predicted response 
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variable(Y) is obtained in the most accurate way by the given input variables 

(X) with the equation called the least squares regression equation. This model 

estimates the minimum generalized variance of coefficients. For constructing 

a quadratic model by using minimum point designs, D-optimality criterion 

which leads to minimized variance of the least squares estimates, is a proper 

approach [28]. 

To simply explain the logic of D-optimal method, the estimation of the 

coefficients using least squares regression analysis of a linear approximation 

model, is shown below. 

Equation 7 

The matrix notation of equation 7 can be displayed as: 

Y=XB+e Equation 8 

In equation (8) Y represents the vector of observations, e is the vector of 

errors, X is the design matrix and B is the vector of model coefficients ( b0 

and h; ). "The design matrix is a set of combinations of the values of the coded 

variables, which specifies the settings of the design parameters to be 

performed during experimentation. B can be estimated by using the least 

squares method as" [27]: 

B = (X'Xf1 X'Y Equation 9 

A measure of accuracy of the column of estimators B is the variance­

covariance matrix that is defined as [28]. 

Equation 10 

In equation 10, cr2 represents the variance of the error. V(B) matrix is 

the statistical measure of the goodness of the fit. V(B) is a function of 
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(X'xr1 and consequently, to improve the quality of the fit (X'xr1 should be 

minimized. Statistically minimizing (X' xr1 is equivalent to maximizing the 

determinant of (X' X) [40]. Thus, generating a design matrix enabling us to 

construct a good least squares approximation model, translates to maximizing 

the determinant of the X' X matrix. Experimental designs which maximize 

IX' X I are referred to as □-optimal designs. "D" is the symbol of the 

determinant of the X' X matrix of the model [28] [40]. This analysis can easily 

be extended to the quadratic model given by equation 6, with the same 

conclusion for □-optimality. 

3.8. Design of the Matrix Experiment 

The matrix was designed as minimum point □-optimal model with 21 

experiments. Eight experiments for augmenting the design and one center 

point were added to the design. Thus, the total number of experiments came 

up to 30. The design in table 6 was formed by the aid of software. 



WIDTH do/he FREQ. AMPL. ho/he 
1 1 1 -1 -1 
1 1 1 0 0 

-1 1 -1 -1 -1 
1 1 -1 -1 1 
0 -1 -1 -1 -1 
-1 -1 -1 1 -1 
1 -1 1 1 -1 
0 1 0 0 -1 
-1 -1 1 -1 -1 
-1 1 1 -1 1 
-1 -1 -1 -1 1 
1 -1 0 -1 0 
1 -1 -1 1 1 
-1 1 -1 1 1 
-1 1 1 1 -1 
1 0 0 1 1 
1 0 -1 0 -1 
0 0 1 -1 0 
-1 -1 1 1 1 
1 -1 1 -1 1 
1 1 -1 1 -1 

-1 0 -1 0 0 
1 1 1 1 1 
-1 1 0 -1 1 
1 -1 -1 -1 -1 
0 -1 1 0 1 
0 1 -1 1 0 
0 0 1 1 -1 
-1 -1 0 1 0 
0 0 0 0 0 

Table 6. Five Parameter Augmented D-Optimal Experimental Design 

3.9. Data Analysis Method and Computerized Analysis Code Used 

► JMP 
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JMP [3] is software which performs simple and complex statistical 

analyses. It links statistics with graphics to explore, understand, and visualize 

the data. It also allows the user to click on any point in a graph, and see the 

resultant data point highlighted in the data table, and other graphs. 

JMP [3] software provides a wide-ranging set of statistical tools like 

design of experiments and statistical quality control. It can work with a wide 

range of data formats, such as text files, Microsoft Excel files, SAS datasets, 

and ODBC(open database connectivity)-compliant databases [29]. 
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A cost-beneficial one of the methods for quality improvement and 

productivity may be the statistical design of experiments. The aim of 

experimental design is to characterize, predict, and then cost effectively 

improve the behavior of any product or process. JMP [3] software's custom 

designer is a good way to describe the design process and create a design 

that works for any situation. When using the custom designer, after entering 

the process variables and constraints, JMP [3] tailors a design which suits to 

that unique case. This approach requires less experience and expertise 

supporting the statistical design of experiments. With custom design, any type 

and any number of factors can be studied. It is also possible to control the 

number of runs, being any number greater than or equal to the number of 

unknowns of the model. This makes custom design flexible and cost effective 

[3]. For these reasons, this software was selected for this study. 

3.1 O. Conduction of the Experiments 

The experiments were conducted by using NASA-developed CFL3D 

(Computational Fluids Laboratory 3-Dimensional flow solver) [26]. Old 

Dominion University, Aerospace Engineering Department's Computer 

Laboratory was used for this purpose. The results of the experiments are in 

table 7. 
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WIDTH do/he FREQ. AMPL. ho/he RESULTS 

1 25 0,4 300 0,8 1,6 58,16926 

2 25 1 800 0,8 1,6 227,3849 

3 15 0,4 300 0,8 0,4 83,69798 

4 25 0,4 1300 0,8 0,4 75,47368 

5 20 0,4 300 0,2 0,4 16,21742 

6 15 1,6 300 0,2 0,4 9,525087 

7 25 1,6 300 0,2 1,6 11,28429 

8 20 1 300 0,8 1 122,4258 

9 15 0,4 300 0,2 1,6 12,24956 

10 15 0,4 1300 0,8 1,6 83,73629 

11 15 0,4 1300 0,2 0,4 20,81844 

12 25 0,4 800 0,2 1 20,64893 

13 25 1,6 1300 0,2 0,4 14,51937 

14 15 1,6 1300 0,8 0,4 358,615 

15 15 1,6 300 0,8 1,6 51,17152 

16 25 1,6 1300 0,5 1 59,83274 

17 25 1 300 0,5 0,4 83,04012 

18 20 0,4 800 0,5 1,6 55,09334 

19 15 1,6 1300 0,2 1,6 19,38202 

20 25 0,4 1300 0,2 1,6 5,221729 

21 25 1,6 300 0,8 0,4 106,7702 

22 15 1 800 0,5 0,4 98,38415 

23 25 1,6 1300 0,8 1,6 98,51434 

24 15 0,4 1300 0,8 1 90,05769 

25 25 0,4 300 0,2 0,4 18,85215 

26 20 1 1300 0,2 1,6 10,75915 

27 20 1,6 800 0,8 0,4 260,5051 

28 20 1,6 300 0,5 1,6 32,73228 

29 15 1,6 800 0,2 1 69,8165 

30 20 1 800 0,5 1 156,4131 

Table 7. D-optimal Design with Actual Values and Results of Experiment 

The pictorial demonstrations of the results for three experiments are in 

figure 7. These three experiments are the 14th, 30th, and ]1h experiments and 

are arranged from top to down in terms of the amount of momentum created 
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in synthetic jet. The yield in 14th experiment is the highest one as 

358,615kg.m/sn2
, the 30th experiment which is the center point, yielded as 

1564131 kg.m/sn2 momentum value and the ]1h experiment's result is 

11,28429 kg.m/sn2
. 

>-

X 

>-

X X 

Figure 7. the pictorial demonstration of the momentum created by synthetic jet 
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CHAPTER4 

ANALYSIS & RESULTS 

4.1. Analysis 

After getting the output values (momentum) of the experiments as in 

table 8, the model was fitted with the results by using 'analyze' tool of JMP [3]. 

Results of the Experiments 
1 58,16926 16 59,83274 
2 227,3849 17 83,04012 
3 83,69798 18 55,09334 
4 75,47368 19 19,38202 
5 16,21742 20 5,221729 
6 9,525087 21 106,7702 
7 11,28429 22 98,38415 
8 122,4258 23 98,51434 
9 12,24956 24 90,05769 

10 83,73629 25 18,85215 
11 20,81844 26 10,75915 
12 20,64893 27 260,5051 
13 14,51937 28 32,73228 
14 358,615 29 69,8165 
15 51,17152 30 156,4131 

Table 8. The Actual Results of Experiments 

The result tables and figures of the analysis acquired using software are 

in appendix A. These are actual by predicted chart, summary of fit table, 

analysis of variance table, parameter estimates table, scaled estimates table 

and prediction profiler table. 

The contours showing the change of the results are plotted and illustrated 

in different shades in figure 8. The result contours were plotted by taking the 

amplitude as 1 and by changing frequency and width of the orifice which are 
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the most dominant parameters.min figure 9 similarly, the amplitude and 

frequency are the changing parameters while width is taken as 1. 
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Figure 8. Contour Plot for Results AMPL=1 
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Figure 9. Contour Plot for Results WIDTH=1 

4.1.1. Construction of the Math Model and Estimation of Optimal 

Parameter Values 

Using the analysis tables in Appendix A which were derived from JMP 

[3], the second-order response surface math model and the design of the 

parameter values that optimize the response were calculated. 



Term 
Intercept 

WIDTH 
do/he 
FREQ. 
AMPL. 

ho/he 
0NIDTH-0,03333)*(WIDTH-0,03333) 
0NIDTH-0,03333)*do/hc 

do/hc*do/hc 
0NIDTH-0,03333)*FREQ. 
do/hc*FREQ. 
FREQ.*FREQ. 

0AflDTH-0,03333)*AMPL. 
do/hc*AMPL. 
FREQ.*AMPL. 
AMPL.*AMPL. 

0Af I DTH-0 ,03333)*(ho/hc+0 ,03333) 
do/hc*(ho/hc+0,03333) 
FREQ.*(ho/hc+0,03333) 
AMPL.*(ho/hc+0,03333) 

(ho/hc+0, 03333 )* (ho/hc+0, 03333) 

Table 9. Estimate Coefficients 

WIDTH 
do/he 
FREQ. 
AMPL. 
ho/he 

y 

-1 
1 

-1 
1 
1 

336,4148 

Estimate 
125,77134 

-7,871838 
53,904522 
-16,22137 
23,68415 

17,997165 
-11,65854 
-7,255338 
26,820486 
14,909413 
-14, 14407 
7,8448763 
-10,05746 
18,77267 

-15,21522 
-43,95075 

-19,81922 
20,747031 
-12,80102 
19,662471 

-41,47709 

Table 10. Parameter Values That Optimize the Model 
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The second-order math model of the design was formed by using 

equation6. The 'b' coefficients obtained from the parametric estimate 

coefficients table (table 9) and coded values of parameters assigned to table 

10 are used for the formation of the math model. For maximization of 

response-Y, the 'solver' tool of excel was used. Between (-1) and (+1) 
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parameter ranges, by changing each parameter and using the formula below, 

the optimum parameter values and momentum value were obtained. 

Equation 6 

The second-order math model of the design is; 

Y=125,7713+(-7,87184)*( width)+ 53,90452*(do/hc)+ -16,2214*(freq)+ 

23,68415*(amp )+17,99717*(ho/hc)+(-11,6585)*(width)*(width)+(-7,25534)* 

(width)*(do/hc)+26,82049*(do/hc)*(do/hc)+14,90941 *(width)*(freq)+(14, 1441 )* 

(do/hc)*(freq)+ 7,844876*(freq)*(freq)+(-10,05)*(width)*(amp )+18,77267* 

(do/hc)*(amp )+( 15,2152)*(freq)*(amp )+(43,9508)*(amp )*(amp )+(19,8192)*(wi 

dth)*(ho/hc)+20, 7 4 703*(do/hc)*(ho/hc)+ 12,801 *(freq)*(ho/hc)+19,66247*(amp 

)* (ho/hc)+(-41,4771)* (ho/he)* (ho/he) 

Y= 336,4148 

The purpose of the study was to maximize the momentum generated by 

the synthetic jet. According to the optimum values of parameters, the 

maximized result of math model is 336,4148 kg.m/sec2
. The result of the 

experiment which shows the center point (the experiment that takes center 

point values of the design parameters) of the design is 156,41 kg.m/sec2
. 

Regarding to center value, 336,4148 kg.m/sec2 is pretty good. This shows 

that the model was improved more than double. The coded parameter values 

of the 14th experiment match the optimum parameter values acquired by the 

'solver'. Consequently, it is not required to do a confirmation experiment and 

358,615 can be accepted as the confirmed value of 336,4148 kg.m/sec2
. 



51 

However, the math model might be improved by applying transformation 

technique to the result data. 

First, the type of transformation to be used should be decided on. 

According to the results of the experiments, the mean and the median of the 

results are 77.7104 and 59.001 respectively. Since the mean is greater than 

the median, there is an outlier as seen in figure 10 and the data set is skewed 

to the right. 

12 

Logarithmic 
distribution line 

33 

Figure 10. Histogram of the Actual Predicted Results 

When the skewness is to the right, log transformation is appropriate. By 

using log transformation, it is possible to get the new results as distributed 

normally or near-normally. For this purpose, the logarithm of each data value 

was taken as in table 11 and the histogram of these logarithmic data was 

formed as in figure 11 . 



ln(y) 
1 4,063357 16 4,091553 
2 5,426644 17 4,419324 
3 4,427215 18 4,009029 
4 4,323784 19 2,964346 
5 2, 786086 20 1,652829 
6 2,253929 21 4,670679 
7 2,423411 22 4,58888 
8 4,807505 23 4,590202 
9 2,50549 24 4,50045 

10 4,427672 25 2,936627 
11 3,035839 26 2,375757 
12 3,027664 27 5,562622 
13 2,675484 28 3,488362 
14 5,882249 29 4,24587 
15 3,935183 30 5,052501 

Table 11. The Logarithmic New Data 
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The new transformed data set has the mean as 3.83 which is slightly 

equal to the median as 4.07. This means that the new histogram is roughly a 

symmetrical distribution as shown in figure 11. 

0,50 

0,40 £ 
0,30 Cl) 

C 

0,20 
Q) 

0 

33 0,10 

1 2 3 4 5 6 

Figure 11. Histogram of Logarithmic Data 

As can be seen in Figure 11, the new data has no outlier, and is roughly 

symmetrical. With new logarithmic values, the analyses were performed once 
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again and new analysis tables and figures of logarithmic data were obtained 

[Appendix A]. By the use of these tables, the new math model was formed. 

The estimate values of parameters which were transformed to 

logarithmic form in table 12, are the ones maximizing the response Y. These 

optimum values were obtained by running 'solver' in excel. The response 

value 6,021353472 was in the logarithmic form. For getting the actual value, 

the exponent of this logarithmic value was calculated as 412, 1360329. 

ln(Y)= 6,021353472 

elnY = eS,021353472 

Y= 412, 1360329 

WIDTH -1 
do/he 1 
REQ. -0,38838687 
AMPL. 0,588642814 
ho/he 0,430572498 
Y 6,021353472 

15 
0,676593 
1,258343 

1,6 
605,8066 

EXP(Y) 412,1360329 139,784 
Table 12. Logarithmic Parameters that Optimize the Model 

The estimated Y value derived from the optimization as 412, 1360329 

kg.m/sn2 is considerably a good value. The highest momentum result of the 

experiments was 358,615 kg.m/sn2
. The estimated value 412,1360329 

kg.m/sn2 versus this highest result shows that a good improvement was 

acquired by the help of transformation. This means that the math model of the 

design would provide a better fitting model after transformation. However, a 

confirmation run is required for observing the fitness of the mathematical 
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model. Only after this confirmation experiment the accuracy of the math 

model can be evaluated. 

4.2. Verification 

► Running a Confirmation Experiment 

The optimized parameter values were transformed into actual values and 

a confirmation run was performed. The result value was obtained as 139,784 

kg.m/sn2
. This value is very low in proportion to 412, 1360329, in other words 

the result is not as high as predicted with the math model. There may be two 

reasons of this lack of accuracy of the model. 

- There might be another parameter affecting the performance of the 

synthetic jet than those studied. The parameters thought to be the most 

important ones were chosen for the design. However, there might be 

another strong parameter which is not included into the model. 

- Another reason might be the discontinuous topology of the response 

surface. This application was applied to the 'synthetic jet' design which 

includes nonlinear parametric values. For that reason, the interactions 

and quadratic effects were taken in to consideration for covering 

nonlinearity, but the math model did not fit well to the surface. This may 

be because of the discontinuous topology of the response surface. In 

case of discontinuity, some parts of the surface may be indeterminate 

and the predictions can be accurate only at specific areas of the 

surface. 
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4.3. Summary 

Design of experiments (DOE) is a beneficial statistical set of methods 

that allows the designer to optimize various products or processes. 

There are several DOE methods in literature. The usual ones have been 

reviewed and advantages and limitations of each method were explained. 

These methods are OFAT- one factor at a time approach, full factorial design 

fractional factorial design, response surface model [central composite design 

(CCD) and Box-Behnken design], D-optimal design and augmentation of 

optimality criterion. 

This research demonstrates that application of augmented D-optimal 

design method to the 'synthetic jet' design is a time and cost efficient and 

especially a powerful tool for the optimization of the design. 

The D-optimal method is a computer-aided design based on optimality 

criterion. For this study D-optimal method was used since it mainly enables to 

construct minimum point experimental designs. 

In this study two different computer programs were used. The JMP [3] 

software which enables statistical design and analysis applications was used 

for the design of the experiments and the analysis of the results. The CFL3D 

(computational Fluids Laboratory 3-Dimensional flow solver) computer 

algorithm [26], developed by NASA- Langley Research center was used for 

the execution of the experiments. 

The design was prepared by the use of the JMP [3] and the experiments 

were conducted using the CFL3D. The results of experiments were evaluated 

in 'analyze' tool of the JMP [3]. Using the data derived from analysis, the math 

model was set up and optimum values of parameters and the optimum result 
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of math model were found. These optimum values were evaluated as being 

high enough in terms of improving the design more than double. However, 

statistical analysis values of the model were not high enough to fit well the 

model. 

For improving statistical values, the transformation method was applied 

to the result data. By the use of logarithmic transformation, the skewness of 

the distribution of result data was made near normal distribution and the 

regression data was improved considerably. However, the result of the 

confirmation run did not match with the new math model. The possible 

reasons for this incompatibility are explained in section 4.2. The most 

probable one of these reasons is that the response surface of the data was of 

discontinuous topology. This means that the math model works well only at 

specific points scattered on the response surface. 

In spite of the discontinious topology, a good momentum value which is 

more than double of the center point value of the design could be reached 

using augmented minimum point D-optimal methods. 

4.4. Contributions, Conclusions Future Work Potential Application 

4.4.1. Contributions 

With this study, it was aimed to make several contributions by applying 

D-optimal design of experiments method to the design of the "synthetic jet". 

4.4.1.1. Application in Aerospace to the 'Synthetic Jet' Design 

For controlling the air flow, a great quantity of studies on passive control 

methods have been applied for years. Active control methods are rather new. 
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Synthetic jet is an active control device which controls the air flow on any 

surface. The design studies on 'synthetic jet' are being conducted for only a 

few years. 

It was determined that statistical approach to this design would be quite 

efficient in terms of time and efficency. Instead of doing random experiments 

at high number of runs, statistics based augmented minimum point D-optimal 

method yielded a good model . 

4.4.1.2. Augmentation 

In addition to 21 experiments required for the minimum point D- optimal 

design, by adding eight more experiments and a center point, the design was 

augmented with the purpose of improving its efficiency. By this way, a more 

robust and flexible design was acquired and after getting the results of 

experiments, the augmentation allowed to do improved analysis. 

4.4.1.3. Transformation 

In the first results table, the statistical indicators such as R-square, 

adjusted R-square and p-value were not high enough to make a good 

estimate. The mathematical model was setup according to these values and 

then optimized using 'solver'. The result of the optimized math model was 

336,4148 which is a higher value of the results of experiments except one. 

But the aim here was to get good statistical values and to form a math model 

that yield a higher value than the results of the experiments. For that reason, 

with the purpose of increasing the fitness of the design with improved 

statistical values and consequently acquiring a higher output, the data were 
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transformed to logarithmic form and the analyses were performed in this form. 

By means of this transformation, a better fitting model was acquired. By using 

the new logarithmic values, 412, 1360329 kg. m/sn2 momentum value could 

be reached. 

4.4.2. Conclusions 

Several methods of DOE (design of experiments) have been reviewed in 

terms of their basic principles, limitations and advantages prior to the 

selection of the application method. 

Experiments for the synthetic jet design study take a long computer time 

since they are conducted by complex computer algorithms. Consequently, 

applying minimum number of runs was the main constraint for this study. 

Regarding to literature review and taking the constraints and objectives in to 

consideration, it was thought that the minimum point D-optimal design was 

more appropriate than others for this case. D-optimal designs give flexibility in 

choosing the number of experiments. However, when the number is minimum, 

the resulting design is saturated which means that there are no degrees of 

freedom for error. To avoid this limitation, the model was improved by 

applying augmentation to the minimum point D-optimal design. 

An augmented minimum point D-optimal design was applied to the 

design of synthetic jet and the results have shown that the model has been 

improved more than double in proportion to the center point of the design. 

Despite having a good result, it was considered that a better prediction 

model might be acquired since the statistical result data did not show a strong 

fit. For the purpose of improving the fitness of the model, logarithmic 
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transformation was applied to the result data of the experiments. The 

skewness of the distribution was chanced and a higher statistical accuracy 

was achieved with logarithmic transformation. The new prediction of the 

response value turned to be higher. However, the confirmation run didn't 

yield a result as predicted in the math model. The main cause of this 

difference is evaluated that the response surface of the model might be of 

discontinuous topology. In this topology the model fits to the response surface 

only at some narrow parts. Except these parts, it does not give meaningful 

results. 

Another cause might be the extinction of a strong parameter in the 

model. For preventing the probability of not including a strong parameter into 

design, a 2-stage design is considered to be useful as explained in future 

work potential application. 

4.4.3. Future Work Potential Application 

The main parameters were selected among many parameters in terms of 

the degree of their effect. However, there may exist a missed important 

parameter and its absence may cause the failure of the model. To be able to 

include all important parameters, a slightly different approach may be applied. 

This approach refers to separating the design into two stages; analyzing the 

parameters in 2-level with few experiments and after that switching to 3-level 

design. It is not efficient to include many parameters at 3-level design as it 

requires a lot of experiments. However, at 2-level it may be possible to include 

more parameters with less number of experiments in proportion to 3-level 

design. After performing 2-level design experiments and analysis, the stronger 
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ones can be selected for 3-level experimental design. Thus, the parameters 

can be chosen not based on prediction or on expert judgment but according to 

the experimental analysis. 
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This appendix includes the tables of the analysis for normal and logarithmic 

transformed data. Both include: actual by predicted figure, summary of fit 

table, analysis of variance table, parameter estimates table, scaled estimates 

table and prediction profiler table. 

Analysis Tables for Normal Data 

Actual b Predicted Plot 
400...--------~----

iill // 
:{l 150 .... /' ............................ . 

a:: 1 ~: ::::::::::::::::::::-" .::.:;i,::~·.................. .. ............................ .. . , .... 
0-+-'--+---.-----.---,,---,r--~...--.....--1 

-50 0 50 100 150 200 250 300 350 400 

Results Predicted P=0,0065 
RSq=0,92 RMSE=40,531 

Summary of Fit 

RSquare 
RSquare Adj 
Root Mean Square Error 
Mean of Response 
Observations (or Sum Wgts) 

Analysis of Variance 

0,923436 
0,753294 
40,53053 

77,7104 
30 

Source DF Sum of Squares 

Model 20 178315,74 
Error 9 14784,51 
C. Total 29 193100,25 

Mean Square 

8915,79 
1642,72 

F Ratio 

5,4274 
Prob> F 

0,0065 
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Parameter Estimates 
Term Estimate Std Error t Ratio Prob>ltl 
Intercept 125,77134 23,96328 5,25 0,0005 
WIDTH -7,871838 8,714192 -0,90 0,3899 
do/he 53,904522 8,576381 6,29 0,0001 
FREQ. -16,22137 8,521106 -1,90 0,0894 
AMPL. 23,68415 8,571243 2,76 0,0220 
ho/he 17,997165 8,92823 2,02 0,0746 
WIDTH*WIDTH -11,65854 20,09483 -0,58 0,5760 
(WIDTH)*do/hc -7,255338 9,437221 -0,77 0,4617 
do/hc*do/hc 26,820486 21,78015 1,23 0,2494 
WIDTH*FREQ. 14,909413 9,660238 1,54 0, 1571 
do/hc*FREQ. -14, 14407 9,335353 -1,52 0,1640 
FREQ.*FREQ. 7,8448763 20,35825 0,39 0,7089 
WIDTH*AMPL. -10,05746 9,590979 -1,05 0,3217 
do/hc*AMPL. 18,77267 9,40336 2,00 0,0770 
FREQ.*AMPL. -15,21522 9,454465 -1,61 0,1420 
AMPL.*AMPL. -43,95075 22,5532 -1,95 0,0831 
WIDTH*ho/hc -19,81922 9,556157 -2,07 0,0679 
do/hc*ho/hc 20,747031 9,515577 2,18 0,0571 
FREQ. *ho/he -12,80102 9,536166 -1,34 0,2124 
AMPL.*ho/hc 19,662471 9,314043 2,11 0,0640 

ho/hc*ho/hc -41,47709 21,78883 -1,90 0,0894 



Scaled Estimates 
Continuous factors centered by mean, scaled by range/2 

Term Scaled Plot Estimate Std Error t Ratio Prob>ltl 
Estimate 

Intercept 124,90904 23,92034 5,22 0,0005 
WIDTH -7,871838 I • 8,714192 -0,90 0,3899 
do/he 53,904522 8,576381 6,29 0,0001 
FREQ. -16,22137 I - 8,521106 -1,90 0,0894 
AMPL. 23,68415 8,571243 2,76 0,0220 
ho/he 17,997165 I - 8,92823 2,02 0,0746 
WIDTH*WIDTH -11,65854 I ■ 20,09483 -0,58 0,5760 
WIDTH*do/hc -7,255338 I • 9,437221 -0,77 0,4617 

do/hc*do/hc 26,820486 21,78015 1,23 0,2494 

WIDTH*FREQ. 14,909413 - 9,660238 1,54 0, 1571 

do/hc*FREQ. -14, 14407 - 9,335353 -1,52 0,1640 

FREQ.*FREQ. 7,8448763 I 20,35825 0,39 0,7089 

WIDTH*AMPL. -10,05746 ■ 9,590979 -1,05 0,3217 

do/hc*AMPL. 18,77267 - 9,40336 2,00 0,0770 

FREQ.*AMPL. -15,21522 - 9,454465 -1,61 0,1420 
AMPL.*AMPL. -43,95075 22,5532 -1,95 0,0831 

WIDTH*ho/hc -19,81922 I - 9,556157 -2,07 0,0679 
do/hc*ho/hc 20,747031 I ■■ 9,515577 2,18 0,0571 

FREQ.*ho/hc -12,80102 I 1111 9,536166 -1,34 0,2124 
AMPL.*ho/hc 19,662471 I 1111111! 9,314043 2, 11 0,0640 

(ho/hc*ho/hc -41,47709 21,78883 -1,90 0,0894 

Prediction Profiler 
400 i i 

J!?~~ 300 

~ at ;: 200 
Q)"' • 
0:: C\I ;:g 

100 
! ___k ~ ~ _.-r-

....... -=--r: · · · -- ·······7········ ······==+--: •••• p···· ······~··· ~ +I 

0 
lf.?. "';" LO .. 0 U) .. T"" IO .. LO .. "';" lO .. 0 ID .. ..- LO .. lO .. "';" lO .. 0 lO .. ..- LO .. IO .. "';" Lq_ 0 lO .. ..- .. LO .. "';" lO .. 0 lO .. T"" lO,. 
"';" 9 0 T"""';" 9 0 T"""';" 9 0 T"""';" 9 0 ..-"';" 9 0 ..-

0,0333 

WIDTH 

0 

do/he 

0 

FREQ. 

0 
AMPL. 

-0,0333 

ho/he 
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Analysis Tables for Logarithmic Data 

Actual b Predicted Plot 

5 

2 

1-l"--...:..,--"""T""---r----r-------1 

1 2 3 4 5 

ln(y) Predicted P<.0001 

RSq=0,97 RMSE=0,3116 

6 

Summary of Fit 

RSquare 
RSquare Adj 
Root Mean Square Error 
Mean of Response 
Observations (or Sum Wgts) 

0,974749 
0,918635 
0,311561 
3,838351 

30 

Analysis of Variance 
Source DF Sum of Squares 
Model 20 33,724267 
Error 9 0,873633 
C. Total 29 34,597900 

Mean Square 
1,68621 
0,09707 

F Ratio 
17,3710 
Prob> F 

<,0001 
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Parameter Estimates 
Term Estimate Std Error t Ratio Prob>ltl 
Intercept 4,9276565 0,184208 26,75 <,0001 
WIDTH -0,092125 0,066987 -1,38 0,2023 
do/he 0,9783403 0,065927 14,84 <,0001 
FREQ. -0,200574 0,065502 -3,06 0,0135 
AMPL. 0,1736159 0,065888 2,64 0,0271 
ho/he 0, 1379362 0,068632 2,01 0,0754 
WIDTH*WIDTH 0,054344 0,15447 0,35 0,7331 
WIDTH*do/hc 0,0739049 0,072545 1,02 0,3349 
do/hc*do/hc -0, 170937 0, 167426 -1,02 0,3339 
WIDTH*FREQ. -0,034355 0,074259 -0,46 0,6546 
do/hc*FREQ. -0,030692 0,071762 -0,43 0,6789 
FREQ.*FREQ. -0,25462 0,156495 -1,63 0,1382 
WIDTH*AMPL. 0,0152994 0,073727 0,21 0,8402 
do/he* AMPL. 0,0747933 0,072284 1,03 0,3278 
FREQ.*AMPL. 0,0408482 0,072677 0,56 0,5878 
AMPL.*AMPL. -0,264933 0,173368 -1,53 0,1608 
WIDTH*ho/hc -0,249477 0,073459 -3,40 0,0079 
do/hc*ho/hc 0,1090492 0,073147 1,49 0,1702 
FREQ.*ho/hc -0,057867 0,073305 -0,79 0,4502 
AMPL.*ho/hc 0,2198397 0,071598 3,07 0,0133 
ho/hc*ho/hc -0,752886 0,167492 -4,50 0,0015 



Scaled Estimates 
Continuous factors centered by mean, scaled by range/2 

Term 

Intercept 
WIDTH 
do/he 
FREQ. 
AMPL. 
ho/he 
WIDTH*WIDTH 
WIDTH*do/hc 
do/hc*do/hc 
WIDTH*FREQ. 
do/hc*FREQ. 
FREQ.*FREQ. 
WIDTH*AMPL. 
do/he* AMPL. 
FREQ.*AMPL. 
AMPL.*AMPL. 
WIDTH*ho/hc 
do/hc*ho/hc 
FREQ.*ho/hc 
AMPL.*ho/hc 
(ho/hc*ho/hc 

Prediction Profiler 

0,0333 

WIDTH 

Scaled Plot Estimate 
Estimate 

4,9199878 
-0,092125 I 
0,9783403 
-0,200574 I 
0,17361591 
0,1379362 I 

0,054344 
0,0739049 
-0,170937 I 
-0,034355 
-0,030692 

-0,25462 I 
0,0152994 
0,0747933 
0,0408482 
-0,264933 I 
-0,249477 I 
0,1090492 j 

-0,057867 
0,2198397 I 
-0,752886 

0 

do/he 
0 

FREQ. 

I 

■ 

■ 

I 

• 

-
--I 

■ 

Std Error t 
Ratio 

0,183877 26,76 
0,066987 -1,38 
0,065927 14,84 
0,065502 -3,06 
0,065888 2,64 
0,068632 2,01 

0,15447 0,35 
0,072545 1,02 
0, 167426 -1,02 
0,074259 -0,46 
0,071762 -0,43 
0,156495 -1,63 
0,073727 0,21 
0,072284 1,03 
0,072677 0,56 
0, 173368 -1,53 
0,073459 -3,40 
0,073147 1,49 
0,073305 -0,79 
0,071598 3,07 
0,167492 -4,50 

0 

AMPL. 
-0,0333 

ho/he 
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Prob>ltl 

<,0001 
0,2023 
<,0001 
0,0135 
0,0271 
0,0754 
0,7331 
0,3349 
0,3339 
0,6546 
0,6789 
0,1382 
0,8402 
0,3278 
0,5878 
0,1608 
0,0079 
0,1702 
0,4502 
0,0133 
0,0015 
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