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Abstract 

 

This study reports that the surface charge density changes in Jurkat cells with the 

application of single 60 nanosecond pulse electric fields, using atomic force microscopy.  Using 

an atomic force microscope tip and Jurkat cells on silica in a 0.01M KCl ionic concentration, we 

were able to measure the interfacial forces, while also predicting surface charge densities of both 

Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions 

varyingly reduced the cells’ surface charge density. This offers a novel way in which to examine 

cellular effects of pulsed electric fields that may lead to the identification of unique mechanical 

responses. Compared to a single low field strength NsPEF (15 kV/cm) application, exposure of 

Jurkat cells to a single high field strength NsPEF (60 kV/cm) resulted in a further reduction in 

charge density and major morphological changes. Both the structure, physics, and chemical 
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properties of biological cells immensely influence their electrostatic force; we were able to 

investigate this through the use of atomic force microscopy by measuring the surface forces 

between the AFM’s tip and the Jurkat cells under different pulsing conditions and also the 

interfacial forces in ionic concentrations. 

 

1. Introduction 

 

The biological effects of pulsed electric fields on cells are of growing interest, and it is 

well reported that pulses that last longer than the membrane charging time can electroporate the 

cell membrane. The effects of electroporation can be temporary and beneficial, but this relies on 

properly monitoring the electric field strength, the number of pulses, and the duration of each 

pulse (Neumann and Rosenheck, 1972; Shoenbach et al., 2001). Normally, the pulses do not last 

more than 100 µs, and sub-kV/cm voltages are used, allowing for non-lethal, but large 

heterogeneous pores to form in the plasma membrane (Gabriel and Teissie, 1999; Gowrishankar 

and Weaver, 2006; Tekle et al., 1990).  

Pulse durations on the scale of nanoseconds are shorter than the charging time of the cell 

membrane and trigger varying biological effects (Beebe, 2015). Nanosecond pulsed electric 

fields (NsPEF) create nanopores within the plasma membrane and organelle membranes, 

disrupting the cytoskeleton and causing externalization of phosphotidylserine proteins 

(Shoenbach et al., 2001; Beebe, 2015; Pakhomov et al.,2009; Aguiló-Aguayo et al 2008). Thus, 

it is very apparent that significant membrane events occur, following application of pulsed 

electric fields that could be measured by changes in membrane surface charge.  



Page 3 of 25

Acc
ep

te
d 

M
an

us
cr

ip
t

3 

 

The atomic force microscope can quantitate surface charge density, with high spatial 

resolution, through the sensitivity of its probe tip due to electrostatic interactions (Binning et al 

1986). The data from multiple groups provide a consensus among AFM measurements of hard 

surfaces concerning surface charge density, pH, electrolyte concentration, and coupled Debye 

Lengths (Ducker et al., 1992; Ducker et al., 1994; Butt et al 2005). Charges from silicon nitride 

surfaces and various biological membranes have been imaged through double-layer-based 

contact scanning based on height differentials (Ducker et al., 1992, 1994; Butt et al., 2005). The 

above results demonstrate the significant qualitative contributions of electrostatics to AFM 

image contrasting. Further contact mode and topographic scanning are necessary for follow-up 

quantitative analysis. 

In this study, we hypothesized that NsPEF will result in changes to surface charge density 

due to disruption of the normal surface bioelectrochemistry. Following exposure of cells to 

NsPEF, we observed an increase in surface charge density that was dependent upon pulsing 

conditions, suggesting that surface charge may be a means of measuring cellular interaction with 

electric fields. 

 

2. Methods 

 

2.1 Silica Sample Preparation  

 

A large silica wafer from Montco Silicon Technologies (San Jose, CA, USA) was used to 

produce the sample surfaces after being cut into 1 cm by 1 cm squares, followed by sonication 

with 1 M KOH for approximately 15 minutes (Acros Organics, New Jersey, USA). Samples 
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were then rinsed with deionized water for at least 2 minutes and sonicated with acetone for 15 

minutes. The samples were then sonicated in isopropanol (Fisher Scientific Education, Pittsburg, 

PA, USA) for 15 minutes, before being rinsed with isopropanol and deionized water for at least 2 

minutes. Samples were then dried with an air gun and placed on a heating plate for 3 minutes at 

120
o 

C. They were then kept in clean boxes to protect against dust deposition prior to 

experimentation.  

 

2.2 Cell Culture 

 

Cell culturing was followed as in the prior work, Dutta et al 2015 (Dutta et al., 2015). 

Jurkat E6-1 clones from ATCC were cultured in RPMI 1620 media from Atlanta Biologicals 

with 10% FBS, 2 mM L-glutamine, 50 IU/mL penicillin, and 50 mg/mL streptomycin (Gibco) at 

12 
o
C and 5% CO2 in a humidified incubator.  Cultures were maintained within T75 flasks and 

fresh medium was added every 2-3 days, when cells reached a density of ∼3 × 10^6 cells/ml. 

Cell resuspension was at 1 x 105 g following suspension centrifugation at 200 × g for 5 min. 

 

2.3 Pulsed electric field exposures. 

 

NsPEF exposures utilized a blumline system as was extensively reported (Frey et al., 

2006) and calibrated using growth media prior to cellular exposure. Jurkat cells were placed in 

curvettes (Biosmith, Vandergrift, PA) with 1 mm gaps and then exposed to one 60-nanosecond 

pulse with field strengths of 0, 15, and 60 kV/cm.  The Jurkat cells were immediately fixed, post-

exposure, with 4% paraformaldehyde and then were transferred to poly-L-lysine coated 
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coverslips (Sigma-Aldrich, St. Louis, MO) before being washed in PBS and imaged through 

AFM.  

 

2.4 Atomic Force Microscopy 

 

We used a Multiview-200 multiple probe AFM from Nanonics Imaging to obtain height, 

phase, and Near Field Scanning Optical Microscopy images. NWS and WSxM 5.0 imaging and 

processing software were used respectively for interfacing with the fixed cells on the AFM stage 

through the use of a 20 nm parabolic quartz tip in tapping mode (Stacey et al., 2013). The 

tapping mode involves a cantilever oscillation that allows for soft characterizations as the AFM 

scans (Whited and Park, 2014; Zweyer et al., 2008). The cantilever’s spring constant was 800 

µN/um, with a resonance frequency of 33.97 kHz. Image calibration was performed using a 

standard silicon grid and was further verified with a profilometer. Silicon and 

polydimethylsiloxane (PDMS) were used to process and verify the force measurements.  

 We used a force separation curve to determine the local molecular forces of the biological 

cells under hydration with AFM. Interaction forces between the duration of the AFM tip 

approaching, contacting, and retreating from a given sample are recorded in terms of the force by 

distance. This process can be exploited to yield many properties as they relate to the mechanical, 

chemical, electrical, and biological properties of the cell. Furthermore, this task caters well to 

AFM in that is useful for sensitive work to the level of picoNewtons (Cai et al., 2009; Hsiao et 

al., 2008) 
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2.5 Surface Charge Density Mapping 

 

 

We investigated the electrostatic force of samples in aqueous media since water can 

charge surfaces through dissociating surface groups or by the surface adsorption of ions, which 

causes an electric field to decrease exponentially as the surface distance is increased 

(Mclaughlin, 1977).  This occurs even without the presence of free electric charges on the AFM 

tip, due to electrostatic interaction from polarization charges at the tip-electrolyte interface. 

Changes in osmotic pressure that occur on the tip and that can contribute to tip repulsion as the 

surface charges attract counter-ions and trigger ionic concentration increases near the sample 

need to be considered.  The electrostatic force encountered is represented by the equation below, 

(Parsegian and Gingell, 1977). 

 

2
2 2
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                                                                             (1)            

 

R is the AFM tip radius,  is the dielectric constant of the medium, 0 is the vacuum permittivity, 

s is the surface charge density of sample, t  is the surface charge density of tip, and D is the 

Debye length, which can be written in the following equation  
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Bk  is the Boltzmann constant, T is the temperature, c is the concentration, and e are the charges.    
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      An algorithm, based on the least square fitting method, was developed to measure the 

biological cells charge density; it was verified with Matlab’s CFtool, and both gave similar 

results. The experimental data was fitted with equation 1 using our code. Equation 1 has two 

fitting parameters; one is the AFM probe charge density, and the second is the surface charge 

density. A students t-test was used to show statistical significance. 

 

3. Results 

          NsPEFs are known to significantly alter cell membrane properties and this phenomenon 

has been extensively studied computationally and experimentally with regards to pore formation, 

membrane elasticity, and morphological changes (Gowrishankar and Weaver, 2006; Pakhomov 

et al., 2009; Aguiló-Aguayo et al., 2008; Frey et al., 2006; Zweyer et al., 2008, Dutta et al., 

2015). However, changes in the surface charge of cells, post-exposure to high energy/ low 

duration electrical fields, is not well documented.  

 

3.1 AFM measurement of charge density 

 

          We tested the applicability of the electrostatic force theory with force-distance curves as 

used by AFM. To do this we developed our own code to fit the theory and experimentally tested 

this through measurements of the surface force between the AFM tip and the control silica 

surface within a 0.01 M KCl solution. In tests, our experimental data fit well with theoretical 

expectations via equation 1 as shown in figure 1a. From these results, the Debye length was 

independently computed with the use of equation 2. During the AFM probe’s approach to the 

silica surface through all electrical pulsing conditions, continuously increasing repulsive forces 
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were constantly observed which were found to be a result of similarly charged particles meeting 

and counter-ion osmotic pressure. At 0 kV/cm, as shown in figure 2a, measurable forces 

occurred as far as 20 nm from the surfaces of the cells while the tip was able to interact with the 

cell from as far as 5 nm away, reaching a magnitude of 6.5 nN upon touching the surface of the 

cells. The surface charge density of Jurkat cells at 0 kV/cm in 0.01 M KCl solution was -0.00852 

(±0.00671) C/cm
2
. At 15kV/cm (figure 3a), the tip was able to interact with the cell from as far 

as 4 nm away, reaching a magnitude of 4.3 nN upon touching the cell surfaces. The surface 

charge density of Jurkat cells at 15 kV/cm in 0.01 M KCl solution was measurably more positive 

compared to unexposed cells at -0.00159 (±0.00195) C/cm
2
. The field strength of 60 kV/cm 

(figure 4a) allowed the tip to interact with the cell at 3 nm, reaching a magnitude of 2 nN upon 

touching the cell surfaces and with a further measurable increase in positive value at +0.00176 

(±0.00043) C/cm
2
. As seen in figures 3a and 4a, the surface charge density of the cells was 

changed when exposed to a field strength of 15 kV/cm, and this change was even more 

noticeable with exposure to a field strength of 60 kV/cm. This showed that very high electrical 

pulsing conditions contributed to an environment in which hydrophilic and hydrophobic cell 

properties decreased when exposed to low pulsing. In contrast, the unexposed control showed 

only hydrophobic properties of the cells.  

  

Figure 5 shows three experimental curves fitted and in good agreement with their theoretical 

pairs.  In each curve pairing, the magnitude is decreased with an increasing pulsing condition as 

ionic concentration decreased above the cellular surfaces. Through biochemical measurements 

where 0 kV/cm functioned as a control, an 81% decrease in the charge density was found when 

Jurkat cells were exposed to a field strength of 15 kV/cm (Figure 6); with an even larger change 
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of 125% decrease of the charge density at surface force measurements through the application of 

a 60 kV/cm field strength NsPEF (Figure 6). From the data of each experiemental condition, a 

significant change in charge density due to nanopore formation can be seen through a separation 

distance decrease and an increase in the force magnitude. The result at 15 kV/cm yielded a 

significance at p<0.001 while the result at 60 kV/cm yielded a significance at p<0.0001. The 

standard deviations and mean value shown in table 1 show respective changes of -0.00159 

(±0.0019) for 15 kV/cm and 0.00176 (±0.0004) for 60 kV/cm versus -0.00852 (±0.0067) at 0 

kV/cm. These results show significant variations in the cell surface charge under different 

pulsing conditions. 

 

4. Discussion 

  

          This study shows the measurement of nanosecond pulsed electric field effects on surface 

charge density measurements, and is the first of its kind. We explored how NsPEFs influence 

cellular surface charge density, through the use of AFM. We performed surface force 

measurements, on cells and standard silica surfaces, and the results from experimental curves 

probing the separation of forces over distance were well within the agreement with the electrical 

double layer theory. 

          The AFM was our main investigational tool due to its ability to simultaneously acquire 

local surface and interaction force property measurements, allowing us to determine that cells 

have a large negatively charged surface density that changed following exposure to NsPEFs. We 

have previously shown that the AFM has a powerful ability to detect mechanical changes, and 

now we show the ability of AFM to detect bioelectrochemical changes.  
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          Typically, the effects on the cell membrane are reduced as the pulse duration decreases 

due to pulses being shorter than the cell membrane charging time. Cell membrane effects, 

however, are still described following NsPEF, including nanopore formation and externalization 

of the protein phosphatidylserine (Pakhomov et al., 2009; Beebe, 2015; Vernier et al., 2004), 

effects that are not thermally induced. The fact that NsPEFs can directly affect protein structure 

was demonstrated by inactivation of the catalytic activity of the cAMP-dependent protein kinase 

whose function is highly dependent on structure. (Beebe, 2015; Frey et al., 2006; Pakhomov et 

al., 2009; Beebe et al., 2004). Similar to our results, greater effects were seen at 60kV/cm 

compared to 20kV/cm. Other examples of NsPEF induced changes to protein structure can be 

found although effects are dependent upon pulsing conditions (Aguiló-Aguayo et al., 2008; Li et 

al., 2007; Xu et al., 1996). Importantly changes in protein structure may expose different charged 

moieties that can be measured at the cell surface. Plasma membrane voltage changes induced by 

NsPEF in Jurkat cells (Frey et al., 2006) showed differences dependent upon the orientation of 

the cell to the electric field, with greater effects at the side facing the cathode. Further work is 

warranted using our device to more fully characterize differential charge events that are likely 

dependent upon the orientation of the cell to the NsPEF (Pakhomov et al., 2009). Future work 

involves investigating the electrical energy measurements of the cells under differing NsPEF 

regimes.   

          In conclusion, our data demonstrates that NsPEFs significantly can change cell membrane 

surface charge densities. Under both NsPEF regimes, surface charge density increased, but this 

occurred more so with the high field strengths. Our experimental data may potentially help the 

development of nanomedicine for cancer and other disease therapies. This goes especially for 
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therapies relying on novel exploitation of cell surface properties and the nanoenvironment 

surrounding the cells.   
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Figure 1: Silica surface AFM imaging 
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Figure 1a: Surface force measurements between AFM probe and Silica in 0.01 M KCl solution 
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Figure 2: Jurkat Cells (0 kV/cm) AFM imaging 
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Figure 2a: Surface force measurements between AFM probe and Jurkat Cells (0 kV/cm) in 0.01 

M KCl solution 
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Figure 3: Jurkat Cells (15 kV/cm) AFM imaging 
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Figure 3a: Surface force measurements between AFM probe and Jurkat Cells (15 kV/cm) in 0.01 

M KCl solution 
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Figure 4: Jurkat Cells (60 kV/cm) AFM imaging 
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Figure 4a: Surface force measurements between AFM probe and Jurkat Cells (60kV/cm) in 0.01 

M KCl solution 
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Figure 5: Comparison of all 3 surface force measurements between AFM probe and Jurkat Cells 
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Figure 6: Surface charge density measurements in cells pulsed for 60 ns at 0, 15, and 60 kV/cm 

(n = 3 for all conditions) 
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Cells Surface Charge Density 

Conditions 0 kV/cm 15 kV/cm 60 kV/cm 

Average (SD) -0.00852 (±0.0067) -0.00159 (±0.0019) 0.00176 (±0.0004) 

% of reduction from 0 kV/cm - 81%** 125%*** 

 

Calculated charge density in C/cm
2
 

** Statistically significant (p<0.001) 

*** Statistically significant (p<0.0001) 
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