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ABSTRACT

TOPOLOGY CONTROL, SCHEDULING, AND SPECTRUM SENSING IN 5G
NETWORKS

Prosanta Paul
Old Dominion University, 2020
Director: Dr. Chunsheng Xin

The proliferation of intelligent wireless devices is remarkable. To address phenomenal

traffic growth, a key objective of next-generation wireless networks such as 5G is to provide

significantly larger bandwidth. To this end, the millimeter wave (mmWave) band (20 GHz -

300 GHz) has been identified as a promising candidate for 5G and WiFi networks to support

user data rates of multi-gigabits per second. However, path loss at mmWave is significantly

higher than today’s cellular bands. Fortunately, this higher path loss can be compensated

through the antenna beamforming technique–a transmitter focuses a signal towards a spe-

cific direction to achieve high signal gain at the receiver. In the beamforming mmWave

network, two fundamental challenges are network topology control and user association and

scheduling. This dissertation proposes solutions to address these two challenges. We also

study a spectrum sensing scheme which is important for spectrum sharing in next-generation

wireless networks.

Due to beamforming, the network topology control in mmWave networks, i.e., how to

determine the number of beams for each base station and the beam coverage, is a great chal-

lenge. We present a novel framework to solve this problem, termed Beamforming Oriented

tOpology coNtrol (BOON). The objective is to reduce total downlink transmit power of base

stations in order to provide coverage of all users with a minimum quality of service. BOON

smartly groups nearby user equipment into clusters to dramatically reduce interference be-

tween beams and base stations so that we can significantly reduce transmit power from the

base station. We have found that on average BOON uses only 10%, 32%, and 25% transmit



power of three state-of-the-art schemes in the literature.

Another fundamental problem in the mmWave network is the user association and traffic

scheduling, i.e., associating users to base stations, and scheduling transmission of user traffic

over time slots. This is because base station has a limited power budget and users have very

diverse traffic, and also require some minimum quality of service. User association is chal-

lenging because it generally does not rely on the user distance to surrounding base stations

but depends on if a user is covered by a beam. We develop a novel framework for user asso-

ciation and scheduling in multi-base station mmWave networks, termed the clustering Based

dOwnlink user assOciation, Scheduling, beamforming with power allocaTion (BOOST). The

objective is to reduce the downlink network transmission time of all users’ traffic. On aver-

age, BOOST reduces the transmission time by 37%, 30%, and 26% compared with the three

state-of-the-art user scheduling schemes in the literature.

At last, we present a wavelet transform based spectrum sensing scheme that can simulta-

neously sense multiple subbands, even without knowing how the subbands are divided, i.e.,

their boundaries. It can adaptively detect all active subband signals and, thus, discover the

residual spectrum that can be used by unlicensed devices.
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CHAPTER 1

INTRODUCTION

In recent years we have witnessed a remarkable proliferation of intelligent wireless de-

vices. At the same time, mobile broadband services such as HD video streaming and vir-

tual/augmented reality will continue driving the demand for higher data rates. For instance,

by the Internet of Things (IoT) forecast of Ericsson, there will be 29 billion IoT devices

by 2022, and mobile data traffic (especially video traffic) will grow by 35 percent annually

through 2024 [8]. Next generation wireless networks such as fifth-generation cellular wireless

(5G) will address the phenomenal growth of traffic demands by providing significantly higher

wireless system capacity and reliable communications. 5G is more accurately a collection

of technologies that connects a high volume of mobile users and provides seamless support

for a massive number of applications. Fig. 1 illustrates a triangular use case diagram devel-

oped by the International Mobile Telecommunications (ITU) as 2020 performance targets,

where 5G applications are categorized into three major classes: Enhanced Mobile Broadband

(eMBB), Massive Machine-type Communications (mMTC), Ultra-reliable and Low-latency

Communications (URLLC). Each class is seated in a corner of the triangle and can support

different services with similar performance requirements. For example, industrial automa-

tion and mission-critical communications both require ultra-low-latency, smart city devices

require massive machine type connectivity, and high quality entertainment and media need

enhanced mobile broadband connections. Due to the broad range of technical and business

opportunities, 5G is highly important for our society and economy. For instance, by the

estimation of IHS Markit-a global information provider, the 5G value chain alone will drive

$3.6 trillion of economic output and support 22.3 million jobs by 2035 [9]. To ensure ubiqui-

tous, very high data rate, and faster communications, 5G needs to provide enormous system

capacity.
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Figure 1. International Mobile Telecommunications (IMT)-2020 Performance Targets [2]

1.1 MILLIMETER WAVE (mmWave) FREQUENCY

More spectrum needs to be pressed into service to dramatically increase the system capac-

ity in 5G. This is because while the wireless spectrum efficiency has improved continuously,

such advances cannot meet the requirement for drastic growth in wireless capacity. Today’s

wireless systems mainly operate in the sub-6 GHz microwave spectrum, which is experienc-

ing a severe shortage and has become a precious resource. To this end, massive spectrum

between 20 and 300 GHz, known as millimeter wave (mmWave) band, has been identified

as a potential candidate for 5G to support user data rates of multi-gigabit per second and a

thousand-fold increase in system capacity [10–17].

While the mmWave band promises much higher bandwidth, it also raises a technical

challenge. As illustrated in Fig. 2(a), signals at mmWave frequencies, especially 60 GHz,

120 GHz and 180 GHz with attenuation peak, suffer higher attenuation caused by the atmo-

spheric oxygen absorption. The attenuation caused by atmospheric absorption is 0.012 dB
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(a) (b)

Figure 2. Channel characteristics at mmWave frequencies: (a) Atmospheric and molecular
absorption at mmWave frequencies in dB/km [3, 4] (b) Comparison of distance-based path
loss between“Empirical NYC” at 28 and 73 GHz, “free space propagation” at 28 and 73
GHz, and “3GPP Urban Micro (UMi) model” for 2.5 GHz [5].

over 200 m at 28 GHz and 0.016 dB over 200 m at 38 GHz. Frequencies from 70 to 100 GHz

and 125 to 160 GHz also have small loss [10]. Also, transmission at mmWave frequency suffers

from significantly higher path loss because it is proportional to the square of the frequency

in accordance with the Friis equation (power received ∝ power transmitted/frequency2). For

instance, as shown in Fig. 2(b), path loss measure at 73 GHz is about 30 − 40 dB higher

than today’s cellular bands at 2.5 GHz [11, 12]. Furthermore, penetration loss, diffraction

loss, etc., are also very high at mmWave frequency. For instance, signal attenuation from

mortar, brick, and concrete is 40− 80 dB, the human body and furniture are up to 20− 35

dB. The rain attenuation at 28 GHz has an attenuation of 7 dB/km for very heavy rainfall

of 25 mm/hr (about 1 inch per hour). If cell coverage regions are 200 m in radius, the rain

attenuation will reduce to 1.4 dB [10]. For the above reasons, mmWave communication links

are typically intermittent and the transmission range of the mmWave system is significantly

shorter than the current microwave system. Therefore, we have to adopt new techniques to

reduce losses in the channel and exploit the potentials in the mmWave system.
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Figure 3. Beamforming architectures: (a) Fully-digital beamforming, (b) Analog beam-
forming, (c) Hybrid beamforming.

1.2 BEAMFORMING IN mmWave

To make mmWave communications practical, i.e., achieve a practical range under such

a severe path loss, a critical technology, beamforming, is needed. It uses a reconfigurable

antenna array and controls the amplitude and phase of the signal at each antenna element

to concentrate the transmission power on a narrow beam toward the receiver, to result in

a high signal gain. At the receiver, all received signals are coherently combined using a

different scale factor. As a result, it dramatically increases the signal to interference and

noise ratio (SINR) at the receiver, thus, mitigates the higher path loss at the mmWave

band. This gain in SINR in antenna array systems is called beamforming gain. Owing

to the short wavelengths in the mmWave system, it is possible to pack a large number

of antennas in a small physical dimension (as compared to the antenna arrays at current

3G or LTE frequencies), thus forming narrow beam to achieve high signal gain and very

small interference in the network. Depending on the physical design of the trans-receiver

architecture, beamforming can be categorized into three major categories: Digital, Analog,

and Hybrid beamforming. Next, we will briefly discuss these beamforming architectures and

their use cases.
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1.2.1 DIGITAL BEAMFORMING

Digital beamforming architecture is illustrated in Fig. 3(a), where each antenna element

in the array requires a dedicated baseband-to-RF chain (simply RF chain). The number of

spatial streams (beams) is equal to the number of RF chains. This beamforming architecture

is highly flexible to form a sharp beam for very high data rate applications. However, due to

a large number of the RF chain, this architecture is infeasible because cost, power consump-

tion, and complexity are very high and scale up with the number of antenna elements and

operating bandwidth [18]. Note that each RF chain has an analog-digital converter (ADC)

whose costs also scale up with its resolution (specified in bits to represent the ADC mea-

surement) [19–21]. Channel estimation for digital beamforming is also complex, especially

for a large number of antenna elements, because every antenna pair between the transmitter

and receiver requires us to estimate the channel for digital precoding [22,23]. Therefore, for

a wide bandwidth system such as mmWave and large scale antenna arrays such as massive

MIMO (multiple-input and multiple-output), fully digital beamforming is not suitable due

to high cost and substantial power consumption.

1.2.2 ANALOG BEAMFORMING

Analog beamforming architecture is shown in Fig. 3(b). Unlike digital beamforming,

one RF chain is shared among all antenna elements in the array that can form only one

beam. The signal amplitude at each element is constant, and only phase changes to change

the direction of the beam. This architecture shapes the output beam using the digital phase

shifters connected to each antenna. Electronic switches or lens antenna can be also be used

to replace the digital phase shifters (see [24] more details). This technique is extensively

studied in the MIMO system and already established in many existing standards including

mmWave, WLAN, WPAN, etc.

On the positive side, the requirement for instantaneous channel information at antenna
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arrays can be waived in analog beamforming. Generally, a finite size codebook is designed

to cover certain directions and spatial beam search techniques are used to find the optimal

beam direction between transmitter and receiver [25–27]. Analog beamforming is simple to

design with very low complexity but performance is lower than digital beamforming. In this

technique, only one beam can be formed at a time and user multiplexing within a beam is

not possible, i.e., analog beamforming provides only directivity gain.

1.2.3 HYBRID BEAMFORMING

Hybrid beamforming is a two-stage hybrid (digital and analog precoding) beamforming

architecture as illustrated in Fig. 3(c). This is a promising beamforming design for large

scale arrays in the mmWave system, where the number of RF chains is less than the number

of antenna elements. Here, precoding is performed at both radio frequency (analog) and

baseband (digital) domains. This architecture is well-adopted in mmWave based next gen-

eration mobile networks including 5G. Hybrid beamforming is further sub-divided into two

types according to the design in the RF domain; sub-connected hybrid beamforming and

fully connected hybrid beamforming. In sub-connected hybrid beamforming, a separate an-

tenna array (a subset of an array) is connected to individual the RF chain, i.e., each antenna

element belongs to only one RF chain. On the other hand, each RF chain is connected to

all antennas in the fully connected hybrid beamforming architecture (see [24,28,29] for more

details). In this architecture, digital precoding uses the channel matrix and analog beam-

forming weight to achieve an effective channel gain at the receiver. Here, the analog RF

domain provides directivity gain in each spatially separated beam which helps to compen-

sate the severe path loss in mmWave systems. With the help of advanced signal processing

techniques, interference between adjacent RF chains is taken care of in the digital baseband

domain. The throughput performance of hybrid beamforming can be very close to the digital

beamforming, with fewer RF chains [30]. Due to the reduced energy consumption and pro-

cessing overhead, hybrid beamforming architecture is a popular and widely adopted choice



7

for large scale applications. This dissertation has adopted this beamforming architecture as

well. However, in the rest of the dissertation, “hybrid beamforming” is referred to as simply

“beamforming”.

While beamforming can significantly increase the reach of base stations (BSs), it raises a

great challenge for forming network topology, in particular for multi-BS mmWave networks.

In this dissertation, topology control in the context of a beamforming network is referred to

as the discovery of the number of beams in each BS, the number of user equipment (UE)

per beam, and guaranteeing the coverage of all UEs while maintaining a minimum quality of

service at each UE. Topology control is not a trivial task due to different intermingled factors

including harmful interference between beams in BS. In this dissertation, we first identify

the unique challenges in topology control and then discuss a heuristic, yet efficient, solution

for multi-BS networks. Next, we discuss UE association and scheduling in dense mmWave

networks, where there are a large number of UEs but BSs have insufficient resources (e.g.

transmit power and beamformer in each BS) to cover all UEs simultaneously. In this case,

BSs need to smartly associate UEs and pick a set of UEs for each BS to schedule their traffic

in each time slot. The UE association and scheduling jointly affect the traffic scheduling

performance but are highly challenging tasks due to important factors including beam in-

terference, diverse UE traffic, and their distribution, etc. We discuss a novel framework for

UE association and traffic scheduling in the second part of the dissertation. In the last part

of the dissertation, we discuss a novel spectrum sensing technique for a subdivided licensed

band to enable efficient spectrum sharing in 5G massive and heterogeneous applications.

This technique allows an unlicensed device to smartly utilize the residual spectrum in the

licensed band. We are going to introduce the details of each problem in the next few sections.

1.3 TOPOLOGY CONTROL IN BEAMFORMING NETWORKS

Topology control is challenging because we have to design beams to cover all UEs while

avoiding strong interference to each UE from other beams of the same BS or different BSs.
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This results in a joint beamforming optimization problem among BSs, including UE asso-

ciation among BSs and inter-beam and inter-BS interference reduction. This problem is

fundamentally challenging. Without a careful design, the system performance such as the

sum rate can be poor while consuming significant resources such as transmit power.

Topology control is basically a framework for discovery of the number of beams for each

BS and UE coverage by each beam, and multi-BS beamforming in a mmWave network. In

traditional cellular networks, the omnidirectional antenna is used and the coverage of a BS is

a circular/hexagonal area (cell) based on the communication range of the BS. The topology

control is thus straightforward since it is easy to determine the preferred BS for a UE as well

as the preferred UEs for a BS. Unlike traditional cellular networks, a cell or the coverage area

of a BS in mmWave networks is complicated and usually has an irregular shape. The coverage

area of a BS is essentially the area covered by the beams formed by the BS. The network

connection between a BS and a UE relies on whether there is a beam from the BS to cover

the UE, rather than the distance between them. On the other hand, where and how to form

beams depends on several factors such as the UE spatial distribution, interference between

beams, power budget, etc. Hence, topology control in mmWave networks is fundamentally

challenging. This dissertation discusses a unique topology control framework to solve these

problems.

1.4 UE ASSOCIATION AND SCHEDULING

While beamforming significantly increases the reach of a BS in the mmWave networks,

it raises a great challenge for UE association and scheduling, which is a critically important

problem. In mmWave networks, the UE association generally does not rely on the distance

to surrounding BSs, but depends on if a UE is covered by a beam. This makes the UE associ-

ation and beamforming a joint optimization problem. The problem is even more challenging

as a BS usually cannot support all beams to cover its UEs simultaneously. Instead, it has to

schedule its UEs/beams across multiple time slots, because of the limitation on the power



9

budget, as well as the limited number of beamformers due to the high cost of RF chains.

Note that traditional cellular networks also schedule UEs across time slots, but that is due

to the limited spectrum bandwidth at sub-6 GHz cellular bands.

There are also other critical factors we need to consider during the UE association and

scheduling such as UE traffic load, the quality of service requirement for UEs, beam design,

interference, power and spectrum allocation among UEs in a beam, etc. Those factors are

crucial and intermingled, which makes the UE association and scheduling a fundamentally

challenging joint optimization problem. Here, we develop a unique framework for the UE

association and scheduling, with an objective to reduce the overall downlink latency or

traffic transmission time in the network. Traffic latency is an important feature in 5G as

a large number of applications (e.g. industry automation, self-driving car, mission-critical

applications, etc.) are delay sensitive and require ultra-low latency communications. The

overall transmission time in a network is the total time required to deliver all UEs traffic.

However, a UE traffic transmission time is simply the ratio of its traffic size and data rate

which further is a function of spectrum allocation and received signal to interference and

noise ratio (SINR) at UE. Moreover, a UE SINR relies on the received beamforming gain and

interference, and power allocation in the beam, etc. Therefore, a UE traffic transmission time

highly relies on its association and scheduling in a BS. In the second part of the dissertation,

a novel framework is designed for the UE association and scheduling, which objective is to

reduce the overall transmission time in the network while maintaining a minimum SINR at

each UE.

1.5 SUBDIVIDED BAND SPECTRUM SENSING

One of the biggest challenges for massive connectivity in 5G is the lack of available

spectrum, especially for emerging large scale IoT devices and machine type communications

as illustrated in Fig. 1. Dynamic spectrum sharing between different technologies can relieve

(partially) spectrum scarcity in 5G. Spectrum sensing can be used for spectrum sharing,
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which is usually implemented in the cognitive radio (CR) platform. In CR, secondary users

(SUs) do not have a license to use the spectrum, but they sense the spectrum environment

and dynamically adapt the transmission or reception parameters, and channel access method

to access the partially or completely unused spectrum without causing harmful interference

to primary users (PUs) [31–35]. If the PU band is subdivided, it is challenging for SUs to

detect which sub-bands are occupied by PUs, especially when SUs do not have the knowledge

of the subdivision. For instance, 2.4 GHz WiFi band is divided into 14 channels each with

22 MHz. In fact, many wireless communication systems, such as Bluetooth and cellular

systems, subdivided its band into a number of channels [36].

Most of the existing spectrum sensing techniques focus on opportunistic access of SUs,

i.e., SUs access the PU band when it is absent. The great advantage of a subband spectrum

sensing system is that SUs can sense active subbands by a PU and utilize the unused subbands

to avoid frequent channel switching which can significantly disrupt the SU communications.

However, classical spectrum sensing techniques do not work well in such subdivided licensed

bands. In the last part of the dissertation, we discuss a spectrum sensing technique that

addresses unique challenges in subdivided licensed band spectrum sensing.

1.6 DISSERTATION CONTRIBUTIONS

This dissertation is comprised of three major contributions for future wireless commu-

nication systems such as 5G. The first contribution is that a novel topology control

framework, termed Beamforming Oriented tOpology coNtrol (BOON), is devised to provide

reliable coverage to all UEs in multi-BS mmWave networks. The objective of BOON is to

reduce the total downlink transmit power and interference between beams, and achieve high

sum rate with a minimum SINR at each UE. BOON smartly groups nearby UE into clusters,

constructs sets from UE clusters, and associates UE to BSs and beams. Here, we develop

a beamforming oriented UE clustering algorithm to group UEs with respect to each BS in

the network. The objective of the algorithm is to reduce transmit power and interference
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between beams. Later, we devise a set construction scheme and an interference aware set

covering algorithm that addresses the unique challenges in beamforming to smartly associate

UEs to beams and BSs. Finally, we design an approach to form beams for all BSs with the

objective to reduce the total transmit power and inter-BS interference, subject to coverage

of all UEs and meeting a minimum quality of service.

The second contribution is that we devise a novel framework for UE association

and scheduling in BS power limited dense mmWave networks, termed the clustering Based

dOwnlink UE assOciation, Scheduling, beamforming with power allocaTion (BOOST). The

objective is to reduce the transmission time for all UE traffic, subject to the power budget

of BSs, number of beamformers of BSs, UE traffic loads, and the required minimum SINR

at each UE. BOOST jointly considers UE association among multiple BS, UE scheduling,

and beamforming altogether, to reduce the transmission time of the entire network. In the

BOOST framework, at first, we develop a clustering algorithm that focuses on unique features

of beamforming to group UEs into clusters to reduce interference for beamforming. Next, we

design a novel UE association scheme that effectively reduces interference and balances UE

traffic loads between clusters and BSs, to decrease the transmission time. Finally, a unique

scheme is developed for joint beamforming, power allocation, and UE traffic scheduling to

reduce the transmission time, subject to the BS power budget, UEs traffic loads, and the

minimum SINR requirement at UEs.

The third contribution is that a novel spectrum sensing technique is devised to use in

unlicensed devices for discovering residual spectrum in a subdivided license band, called expo-

nentially moving average based multi-scale summation (EMAMS). The objective of EMAMS

is to detect all active sub-bands in a PU (license) band so that SUs (unlicensed users) can

utilize the residual spectrum in the PU band to significantly increase spectrum efficiency in

5G. EMAMS does not depend on the number of used sub-bands and adaptively detects ac-

tive signals in a spectrum band measured by a spectrum analyzer. Instead of using synthetic

PU signals such as raised cosine, rectangular pulse, sinusoidal, we use the real world signals
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measure by a spectrum analyzer for performance evaluation.

1.7 ORGANIZATION OF THE DISSERTATION

The remainder of the dissertation is organized as follows. In Chapter 2, we discuss the

BOON framework to minimize the downlink transmit power for UE coverage in mmWave

systems. This chapter presents a detailed architecture of the BOON framework that includes

several heuristic approaches for UE coverage with an optimal beamforming scheme. At the

end of this chapter, the performance of BOON is evaluated and compared with the three

state-of-the-art techniques. Chapter 3 presents the details of the BOOST framework, which

is designed for UE association and scheduling to jointly reduce the overall traffic transmis-

sion time in dense multi-BS mmWave networks. This chapter demonstrates the formulation

of the joint optimization problem, several heuristic algorithms such as UE clustering, traffic

balancing for UE association, and UE traffic scheduling with optimal beamforming. Lastly,

we evaluate the performance of BOOST and compare the results with the three state-of-the-

art schemes in the literature. In Chapter 4, we present the EMAMS scheme that is designed

for spectrum sensing in the subdivided license band. Initially, we discuss several classical

spectrum sensing techniques and their performances for detecting active subbands within a

licensed band. Later, the EMAMS algorithm is discussed in details and a comparative study

is performed with an existing solution using measured-real world signals by a spectrum an-

alyzer. Finally, Chapter 5 summarizes the dissertation with conclusions and future research

directions.
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CHAPTER 2

BEAMFORMING ORIENTED TOPOLOGY CONTROL

In a beamforming based mmWave network, we refer to topology control as the discovery

of the number of beams for each BS and UE coverage by each beam, and multi-BS beamform-

ing. In this chapter, we discuss a topology control framework, called Beamforming Oriented

tOpology coNtrol (BOON). The objective of BOON is to reduce the total downlink transmit

power of BSs and interference between beams while covering all UEs in the network and

maintaining a minimum signal to noise and interference ratio (SINR) at each UE receiver.

Four components of BOON are UE clustering, set construction from cluster, a weighted set

covering, and computation of interference aware beamforming weight vector at the BS an-

tenna. Each component has a specific role in BOON to reduce the overall transmit power

and beam interference. We discuss each component and develop two algorithms: one for

clustering and the other for the set covering. Toward the end, we evaluate the overall per-

formance of BOON in terms of transmit power, network sum rate, signal to interference and

noise ratio, and computation complexity. We compare BOON with three existing topology

control schemes.

The rest of the chapter is organized as follows. Section 2.1 discusses the fundamentals and

background of topology control in the context of mmWave networks. Section 2.2 presents

an overview of the BOON framework. Section 2.3 describes the system model. The BOON

framework is presented in Section 2.4 along with in-depth analysis. The numerical results

are presented in Section 2.5. Finally, Section 2.6 concludes the chapter.

2.1 TOPOLOGY CONTROL FUNDAMENTALS

Topology control is a challenging task in beamforming based mmWave networks. It

is straightforward in traditional cellular networks as BS coverage is usually a circular or
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hexagonal area which is basically determined by the BS transmit power and the distance

between BS and UE. On the contrary, BS coverage in mmWave networks is complicated

and usually has an irregular shape. A BS coverage area is essentially the area covered

by its beams, which depends on a number of factors including transmit power in a beam,

UE spatial distribution, interference between beams, etc. Therefore, topology control in

mmWave networks is fundamentally a challenging problem.

A straightforward approach to form network topology for mmWave networks is to con-

struct a beam to each UE through multi-user beamforming (MUB) [37–41]. However, forming

one beam for each UE can result in significant interference between nearby UEs, thus de-

grading system performance such as the signal to interference and noise ratio (SINR) at

the UEs. Furthermore, as we discussed earlier in Section 1.2, each beam needs a RF chain

or beamformer, which is prohibitively costly or impossible in large scale mmWave networks.

Another straightforward approach for topology control is to construct one beam to cover

all UEs associated with a BS, through multicast beamforming (MCB) [42–44]. However,

this approach cannot form sharp beams, resulting in wasteful energy consumption. Fig. 4

illustrates the MCB and MUB beam patterns for two UEs with 5o angular separation with

respect to a BS, and their average SINR as a function of their separation angle. The BS

transmit power is 4 watt, the UE-BS distance is 100 meters, and the number of antenna

elements in BS is 16. Clearly, for MUB, a large separation angle results in a good SINR,

while a small separation angle results in a poor SINR, due to the strong interference between

the two beams. In contrast, for MCB, a small separation angle results in a good SINR, while

a large separation angle results in a poor SINR because beams are not formed to concentrate

power on UEs.

The BOON framework is designed to combine the benefits of MUB and MCB based

topology control approaches. BOON smartly clusters UEs into groups and form beams based

on the groups. Thus, nearby UEs are covered using the same beam to avoid interference,

while UEs sufficiently separated, i.e., from different groups, are covered by different beams, to
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Figure 4. Beam patterns and average SINR: (a) MCB beam pattern and (b) MUB beam
pattern for two UEs with 5o angle difference with respect to the BS (c) average SINR of UEs
as a function of their angular separation relative to the BS [1].

avoid wasteful energy consumption. Furthermore, BOON smartly associates UEs to different

BSs and beams, and finds appropriate beamforming vectors for all BSs and beams, with the

objective to reduce the interference between BSs and beams. The objective of BOON is to

reduce the total transmit power. BOON can significantly reduce mutual interference between

nearby UEs and between BSs, resulting in lower power consumption, and can reduce system

costs by using significantly fewer beams, compared with the MUB based topology control.

On the other hand, it can form sharp beams to focus energy on the UEs to reduce power

consumption, compared with the MCB based topology control.

There have been several studies on topology control or UE selection in MIMO systems
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in the literature. In [37], the authors studied a UE selection method based on channel or-

thogonality between different UEs, to select a group of UEs with orthogonal channel vectors,

which are then served using the MUB scheme. In [38], the authors discussed a user selec-

tion scheme to maximize the harmonic sum of UE SINR, which prioritizes cell-edge users

to increase throughput, where a UE can receive multiple spatial streams from different BSs.

In [45], UEs are partitioned into UE groups, with each group having similar channel covari-

ances. All UEs in a group are served simultaneously using one precoding vector through an

MCB scheme. In [46], the authors studied a simpler beamforming scheme called switched

beamforming. In [39–41,47], the UEs with uncorrelated or orthogonal channels are grouped

together, and then served using the MUB scheme. In [48, 49], a BS forms a beam in a

random direction, which can cover UEs in that direction. Most of those works focused on

beamforming with one BS, while the UE association among multiple BSs assumed a simple

scheme based on the strongest received signal power. Here BOON not only considers UE

selection for a single BS, but also aims to optimize UE association among BSs, with the

objective to reduce interference between beams of different BSs.

2.2 BOON OVERVIEW

BSs are deployed by wireless operators and are generally connected to a cloud or a backend

management system, through either wired or wireless backhaul connections. Hence, the BSs

information, including locations, the number of antennas, etc., is known to the network

operator. We assume a low mobility UE network where the updating of UE locations at the

BS or the cloud can be on the order of seconds. For a walking speed mobile UE, the channel

fading characteristics remain unchanged for several seconds [45,46]. This means UE tracking

can be done at a slow rate. The message exchange delay is expected to be small, e.g., in

the order of 1 millisecond in 5G networks. In a low mobility network, the BOON algorithm

can be re-run at a frequency in the order of seconds. Both the message exchange delay and

running time of BOON are acceptable compared with such an interval. On the other hand,
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mmWave networks are not well suited for high mobility UE networks [45]. This is because

the Doppler shift in wireless channels increases linearly with the carrier frequency and UE

mobility, and the expected angular spread of UE signals at the BS is also higher in mmWave

frequency [14,45].

In general, there are two approaches for a BS to discover UEs. The first approach is

to utilize beam sweeping [50, 51]. Each BS transmits initial signals in random directions to

sweep the whole angular space, to discover UEs. This approach has a lower system cost,

but may result in a large delay. The second approach utilizes co-existing macrocells for UE

discovery, e.g., LTE towers, to achieve low delay [18]. Given that major cellular operators

all have deployed LTE systems, this approach is a feasible solution. Both LTE towers and

mmWave BSs are connected to a cloud. The mmWave system off-loads data transport, while

the LTE system is used for control and data transport for UEs that cannot be covered by

mmWave BSs. The discovery of UE locations results in some overhead. Nevertheless, this

overhead is not significant, as the message exchange between LTE towers and UEs is fast.

Through UE discovery, the UEs information, including locations, the angle of arrival

(AoA) of UE signals, etc., is also known to the mmWave network operator. BOON resides

in the cloud of the operator to coordinate topology control among BSs and UEs. It finds the

optimal number of beams for each BS, assigns UEs to be covered by each beam, and computes

the beamforming vectors for all beams. The objective is to reduce the total transmit power

and interference between beams and between BSs, while covering all UEs and meeting a

minimum quality of service. As illustrated in Fig. 5, there are four components in BOON: 1)

beamforming oriented UE clustering (BOC), 2) cluster decomposition based set construction

(CDSC), 3) interference aware set covering (IASC), and 4) multi-BS beamforming. BOC

carries out fine granularity UE clustering for each BS among all UEs that can be reached

through beamforming by the BS. Both the angles of UEs relative to the BS and the distance

between UEs are considered in the clustering similarity metric. CDSC decomposes each

cluster formed by BOC into a list of overlapping sets, which can be viewed as a list of
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Figure 5. BOON: (a) UE clustering through the BOC algorithm, (b) set construction
(CDSC), (c) set covering to optimally select UE-BS association and select sets for beam-
forming through the IASC algorithm, (d) beamforming for all BSs based on the selected
sets [1].

overlapping sectors, starting from a BS outward. IASC addresses the unique challenges in

beamforming and solves a weighted set covering problem to select a list of sets among all

sets constructed by CDSC, to jointly cover all UEs, with the objective to reduce interference

between beams and between BSs. The resulted sets from IASC determine the UE association

and BS beam coverage. At last, one beam is formed for each set selected by IASC, with

the objective to reduce the total transmit power of all BSs. The BOC algorithm can be run

either distributedly at each BS, or at the cloud. The CDSC, IASC, and beamforming can

be centrally run in the cloud. However, they can also be implemented in a distributed mode

by exchanging the UE clustering information between BSs.

2.3 SYSTEM MODEL

In this section, we describe the system model for BOON, including mmWave channel
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Table 1. Important notations in BOON

m,n, k index for BS, UE and beam, respectively

B,U , C,B set of BSs, UEs, beams, and UE-clusters, respectively

〈m, k〉 the k-th beam of the m-th BS

θmn, aθmn angle of arrival of UE n signal at BS m array and the corresponding

steering vector, respectively

hmn channel gain vector between BS m and UE n

wmk beamforming weight vector of beam 〈m, k〉

φhpmk half power beamwidth of beam 〈m, k〉

ptmk transmit power of beam 〈m, k〉

prn,m,k received power at UE n from beam 〈m, k〉

K maximum number of beamformers at a BS

In,m,k, rn,m,k, γn,m,k interference, rate, and SINR at UE n when it is served by beam

〈m, k〉

γo minimum required SINR for UEs

modeling, transmit power computation, and UE downlink data rate computation. Table 1

lists major notations used in this section.

2.3.1 mmWave CHANNEL

Let U , B and Cm be the set of UEs, BSs, and beams of BS m (m ∈ B), respectively. Let

Um ⊂ U be the set of UEs that can be covered by BS m, with the maximum range decided by

a beam with the minimum beamwidth and maximum BS transmit power. Throughout this

dissertation, we assume each BS is equipped with an antenna array with L antenna elements,

and each UE has a single antenna. Note that BOON can be extended to accommodate UEs

with multiple antennas.
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Let K be the number of beamformers for each BS. Each beamformer can form one beam.

Note that the required processing power, design complexity and fabrication cost of a BS

grows with the number of beamformers; hence a BS can only have a limited number of

beamformers. For each beam k ∈ Cm, let Umk ⊆ Um be the set of UEs that are inside beam

k of BS m, called beam 〈m, k〉.

Many works on mmWave channel modeling consider both LOS and non-line-of-sight

(NLOS) paths [5, 10–12, 45]. Nevertheless, multiple channel measurement experiments on

mmWave frequency showed that the LOS path dominates the NLOS paths. For instance,

the NLOS path gain is typically 20 dB weaker than the LOS path gain [5, 49, 52, 53] and

the NLOS path exponent was found as large as 5.76 in downtown New York City [10]. In

BOON, we focus on the LOS paths to streamline the algorithm development. NLOS paths

can be addressed to extend this work in future.

Let dmn and ρmn denote the distance, and average LOS path loss, respectively, between

BS m and UE n. Note that ρmn is often modeled as proportional to d−ηmn, where η is the path

loss exponent of the LOS path. Also let θmn be the normalized direction of the LOS path

to reach UE n from BS m, as illustrated in Fig. 6, and αmn be the complex gain of the LOS

path which is modeled using a complex Gaussian distribution, i.e., α ∼ CN (0, 1). Now the

channel vector between the m-th BS with L antennas and the n-th UE (n ∈ Umk) with a

single antenna is given as [5, 48, 49]

hmn =

√
L

ρmn
αmnaθmn , (1)

where aθ is the response vector of the BS antenna array for the signal path in the θ direction.

The response vector for a uniform linear array (ULA) at a BS is expressed as [5, 48,49]

aθ =
1√
L

[
1, e−jπθ, . . . e−jπ(L−1)θ

]T
, (2)
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where (•)T denotes transpose of a vector. Note that the normalized direction θ is a function

of the physical angle of departure of the BS antenna array, denoted by φ ∈ [−π/2, π/2], as

θ = 2∆ sin(φ)
λ

, where λ is the channel frequency wavelength and ∆ is the spacing between two

adjacent antenna elements in a ULA. Concatenated channel matrix formed by all UEs in BS

m is therefore written as

Hm = [hm1,hm2, . . . ,hmn] , n ∈ Um. (3)

The received signals in all UEs under BS m is given by

Ym = HH
mWmxm + z, (4)

where (•)H denotes the complex conjugate transpose, xm ∈ C|Um|×1 is the vector of trans-

mitted signals for UEs in BS m, z ∈ C|Um|×1 is the vector of Additive White Gaus-

sian Noise (AWGN) with zero mean and unit variance, Wm ∈ CL×|Cm| is the beamform-

ing weight matrix formed by concatenating weight vectors, w ∈ CL×1, in BS m, i.e.,

Wm =
[
wm1,wm2, . . . ,wm|Cm|

]
.

2.3.2 DOWNLINK TRANSMIT POWER

In BOON, each BS constructs a set of unit-power beams, denoted by {wm1, . . . ,wm|Cm|},

i.e., the power in each beam ||w||2 = 1. As illustrated in Fig. 6, each beam serves a group of

UEs. Let θ̂mk denote the main lobe direction (boresight angle) of the beam 〈m, k〉 formed by

wmk to serve all UEs in Umk. The effective channel gain of UE n ∈ Umk from beam 〈m, k〉

can be written as [48,49]

|hHmnwmk|2 ≈
|αmn|2

ρmn
FL(θ̂mk − θmn), (5)

where (•)H denotes the complex conjugate transpose, αmn is the complex gain of the LOS
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Figure 6. One beam to cover a group of nearby UEs. θ̂mk and θmn denote the boresight
direction of beam 〈m, k〉 and the direction of UE n, respectively [1].

path between BS m and UE n, ρmn is the average LOS path loss between BS m and UE n,

and FL(x) is the Fejér kernel [48]. If (θ̂mk − θmn)→ 0, the UE channel gain is at maximum.

Let ptmk be the transmit power of beam 〈m, k〉. The received signal power at UE n from

beam 〈m, k〉, denoted as prn,m,k, is written as

prn,m,k = ptmk|hHmnwmk|2, ∀n ∈ Umk. (6)

Let In,m,k denote the total interference at UE n from all beams, if it is covered by beam

〈m, k〉. Let σ2 be the thermal noise at a UE, which is modeled as σ2 = No + 10log(w) + NF,

where w is the system bandwidth, No is the noise power spectral density and NF denotes

the noise figure at the UE receiver. The SINR at UE n from beam 〈m, k〉 is written as

γn,m,k =
prn,m,k

In,m,k + σ2
. (7)

To achieve a certain quality of service for the UE, the SINR at the UE has to be greater
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Figure 7. Inter-BS interference at UE3 and intra-BS interference at UE1 [1].

than or equal to a minimum SINR γo. Thus, we need to have

γn,m,k
γo

≥ 1, ∀n ∈ Umk. (8)

In order to maintain the minimum γ0 at all UEs in a beam, the required transmit power ptmk

is obtained using (6)-(26) as

ptmk ≥
(In,m,k + σ2)γo
|hHmnwmk|2

, ∀n ∈ Umk. (9)

The transmit power vector for all beams of BS m is given by

ptm =
[
ptm1, p

t
m2, . . . , p

t
m|Cm|

]
, (10)

where |x| denote the cardinality of set x. Our objective is to reduce the total transmit power

∑
m∈B,i∈Cm

ptmi. (11)
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2.3.3 DOWNLINK UE RATE

The beam radiation patterns in the real world are complicated. Fig. 7 depicts a network

with 2 BSs and 4 beams, with beam A transmitting to UE2, and beam B transmitting to

UE1 and UE3. While UE1 is covered by beam B, it may receive intra-BS interference from

beam A, e.g., if the null of beam A is not perfectly aligned with UE1. UE3 has inter-BS

interference from beam D.

We quantify both intra-BS interference and inter-BS interference for a UE. For UE n

served by beam 〈m, k〉, the total interference In,m,k is the summation of intra-BS interference

I ′n,m,k and inter-BS interference I ′′n,m,k given as follows.

In,m,k = I ′n,m,k + I ′′n,m,k =
∑

i∈Cm\k

prn,m,i +
∑
j∈B\m

∑
l∈Cj

prn,j,l

=
∑

i∈Cm\k

ptmi|hHmnwmi|2 +
∑
j∈B\m

∑
l∈Cj

ptjl|hHjnwjl|2 (12)

In (25), the first term I ′n,m,k is the summation of powers received by UE n from all beams in

Cm except the serving beam k. The second term I ′′n,m,k is the sum of powers received from

the beams of other BSs, i.e., except the serving BS m. Note that we compute the received

power for a UE using (6).

The throughput capacity of the downlink channel has to be shared among all UEs in

a beam. UEs in the same beam can use any multiplexing scheme to share resources, e.g.,

TDMA (time division multiple access), OFDMA (orthogonal frequency division multiple

access), or NOMA (non-orthogonal multiple access). In the ensuing discussions, we assume

the OFDMA system, but it can be similarly done for NOMA and TDMA. Similar to LTE

we assume a fair resource allocation i.e., the OFDM sub-carriers are shared equally among

UEs in a beam. If UE n is scheduled in beam 〈m, k〉, the rate of UE n in each downlink

frame is given as

rn,m,k = wn log2(1 + γn,m,k), (13)
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where wn is the sum of the frequency spectrum from all downlink sub-carriers assigned to UE

n in the beam, and γn,m,k is the corresponding SINR given by (24). If w is the total system

bandwidth, wn = w/|Umk|, where |Umk| denotes the number of UEs in the beam 〈m, k〉. The

sum rate of the network is given as

∑
m∈B,1≤k≤K,n∈〈m,k〉

rn,m,k (14)

2.4 BEAMFORMING ORIENTED TOPOLOGY CONTROL (BOON)

The objective for topology control is to reduce the total transmit power in (29), subject to

coverage of all UEs, maintaining the minimum SINR at each UE by (27), and using no more

than the maximum number of beamformers at each BS. Moreover, for a given transmit power

that meets those constraints, we aim to increase the sum rate in (14). We take a heuristic

approach to achieve these two objectives. To reduce the transmit power, we first group UEs

together through a beamforming oriented UE clustering (BOC) algorithm. This clustering

is with regard to each BS assuming the maximum range and the clusters are formed with a

radial shape with the center at a BS. The clusters of different BSs may overlap with each

other, i.e., some UEs are included in clusters of different BSs. To associate those overlapped

UEs to the right BSs, we divide each cluster into finer granularity sets through a cluster

decomposition based set construction (CDSC) algorithm. Next, we associate these sets to

the BSs through an interference aware set covering (IASC) algorithm, which selects a list of

sets that cover all UEs, but do not overlap. Such UE/set association thus avoids or reduces

interference between BSs, which reduces the transmit power of the BSs and increases the

sum rate. At last, one beam is formed to cover each set by its associated BS. In the following,

we describe each of those steps, which form the four components of BOON.
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2.4.1 BEAMFORMING ORIENTED UE CLUSTERING (BOC)

From the topology control perspective, clustering is a process of organizing UEs into

groups based on a similarity or cost metric. Clustering is in general NP-hard [54]. In this

section, we develop a heuristic algorithm to find the number of clusters and their UEs for a

BS, with the objective to reduce the transmit power of the BS. UEs are grouped based on

their angles relative to the BS and the UE-UE distance.

Algorithm 1 illustrates the BOC algorithm that iteratively clusters UEs for a BS. BOC

is a heuristic greedy algorithm which iteratively reduces the total clustering cost in each

successive stage. It starts with each UE as one cluster. Two or more clusters are merged

into one cluster in each successive stage, until the number of clusters is up to the number of

beamformers K of a BS or the cost does not decrease anymore. The output is the optimal

number of clusters and UE set Umk in each cluster. In order to assess if we should merge two

clusters i and j into a new cluster (i, j) in an iteration, we compute the cost metric for the

new cluster. The cost metric determines the performance of BOC. Here we use a cost metric

based on energy efficiency (EE) in bit/joule. EE measures the amount of downlink rate that

a beam can deliver with per unit energy in joules it consumes. The clustering cost metric is

the inverse of EE since the goal is to reduce transmit power in the network. Specifically, the

cost of cluster (i, j) is defined as

c(i,j) =
pt(i,j)∑

n∈U(i,j) wn log2

(
1 +

pt
(i,j)
|hH

n w(i,j)|2

In,(i,j)+σ
2

) , (15)

where pt(i,j) is the transmit power, In,(i,j) is the received interference at UE n given by (25),

and w(i,j) is the weight vector.

While it is straightforward to consider all possible pairs of clusters for merging, in practice

the beamforming gain is negligible when the main lobe is very wide. For instance, the

approximate beamforming gain is π2/(φhp)2, where φhp is the solid angle for both the azimuth
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and elevation plane [55]. We choose a feasible value of ϕ beyond which the UE channel gain

is very small and beamforming becomes inefficient. Hence, in line 8 of Algorithm 1, we

actually do not need to consider all possible pairs. Instead, for a cluster, we only consider

the next few clusters within angle ϕ in the angular space for possible merging. At last, we

choose one pair to merge into one cluster which yields the lowest cost.

A challenge for BOC is that the UE set in the merged cluster (i, j) is not necessarily the

combined UEs from clusters i and j together. This is different from classic clustering. Let

U(i,j) denote the UE set of the new cluster (i, j). For classic clustering, if an object x /∈ Ui

and x /∈ Uj, then we must have x /∈ U(i,j). However, in BOC, there may exist a UE x such

that x /∈ Ui and x /∈ Uj, but x ∈ U(i,j). As an example, we consider three clusters (or beams)

A, B, and C, in the network illustrated in Fig. 7. Suppose clusters A and C are selected to

be merged. Then to avoid beams overlapping, we have to let the new cluster (A,C) to serve

UE3, even though it is not in cluster A or C. Therefore, in line 10, we check if a cluster in

between needs to be merged with clusters (i, j).

A benefit of the above cost metric is that it can help to automatically find the optimal

number of clusters, which corresponds to the lowest clustering cost. There is a trade-off

between the number of UEs in a cluster and the total number of clusters for a BS. More UEs

in a cluster reduce the spectral share per UE, which results in a higher clustering cost. On

the other hand, more clusters mean fewer UEs in a cluster, which increases the UE spectral

share. Nevertheless, this in turn increases the interference between beams, also resulting

in a higher clustering cost. By ‘minimizing’ the clustering cost, BOC automatically selects

the optimal number of clusters. This is done through continuously merging clusters even

after the number of clusters reaches K, the number of beamformers at a BS. The algorithm

terminates when the total cost
∑

c does not decrease anymore, i.e., the clustering cost of

the current iteration
∑

c is higher than the one of the previous iteration
∑

c̄ in line 4.

If N UEs are distributed separately from each other in the angular space with regards

to the BS, such that the difference between two neighbor UEs is greater than ϕ, each UE
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Algorithm 1: Beamforming oriented clustering (BOC) for a BS [1]

1 Input: UE set U and maximum number of beams K

2 Let each UE be a cluster, with the set of clusters B = {{1}, {2}, . . . {|U|}}

3 Let v = K, and Let cost vectors c = 0 and c̄ = 0

4 while |B| ≥ v or
∑

c <
∑

c̄ do

5 B̄ ← B, c̄← c

6 if |B| = 1 then

7 break out of loop

8 For each cluster s and the next clusters k within angle ϕ in the angular space,

compute c(s,k) using (15)

9 Select two clusters (i, j) = argmin
s,k

c(s,k)

10 Update B: create a new cluster h for B to replace clusters i, j in B. If the beam

to cover UEs in cluster h also covers a UE in a different cluster (not i or j),

then merge that cluster into cluster h

11 Update c to be the cost vector of clusters in B

12 Output B̄ as the set of clusters

forms one cluster, where K is the number of beamformers for the BS, and ϕ is the threshold

for the main lobe width of a beam. BOC only needs to compute the clustering cost for each

of the N UEs once. Thus, the time complexity is Θ(N). However, in the worst case, BOC

may need to run N − 1 iterations for merging clusters. In each iteration, BOC needs to

compute Θ(Nj) cost metrics, where Nj is the number of clusters in the jth iteration, since

for each cluster s, we only need to consider the next few clusters, as discussed above. Thus,

the worst-case time complexity of BOC is O(N2).
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2.4.2 CLUSTER DECOMPOSITION BASED SET CONSTRUCTION (CDSC)

The BOC algorithm groups UEs into clusters for each BS independently. In a multi-

BS network, we cannot form beams directly based on those clusters, because clusters from

different BSs can overlap with each other, which causes significant inter-BS interference.

Therefore, we develop a cluster decomposition based set construction (CDSC) scheme to

decompose each cluster into a number of sets. The objective is to avoid inter-BS interference

for formed beams. For instance, in Fig. 8(a), UE a can be covered by both BS1 and BS2,

and thus is clustered by both BS1 and BS2. If we form beams directly based on clusters,

the two beams interfere with each other. Through constructing sets as in Fig. 8(c) or (d),

we can let BS1 form a beam to cover set B, which then eliminates interference between BS1

and BS2.

Different set construction schemes produce different beams which result in different trans-

mit power. A naive approach is the exhaustive set construction (ESC). With ESC, we start

from the closest UE of a cluster in the radial direction and contiguously construct one set

per UE outward, with each set being a true superset of the previous set. For instance,

suppose there are three UEs (1, 2, 3) in a cluster for a BS, with UE 1 the closest to, and

UE 3 the farthest from the BS. The ESC scheme constructs three sets from this cluster,

C = {1}, B = {1, 2}, and A = {1, 2, 3}. While ESC is easy to implement, it may generate a

large number of sets, which results in a large running time for set covering in the next step

of BOON. Hence, we develop another scheme, called shrinkable set construction (SSC), to

reduce the number of sets generated by set construction.

Fig. 8 illustrates ESC and SSC with six UEs (a, b, c, d, e, f) forming four clusters with

four BSs. For each cluster of a BS, we first identify the intersections between this cluster and

the clusters of other BSs, by looking at the common UEs between them. Then the cluster is

partitioned into intersection areas and non-intersection areas, as illustrated in Fig. 8(b). The

intuition behind partitioning UEs into intersection and non-intersection areas is that UEs in



30

Intersection area

BS1 BS1 BS1 BS1

Non-Intersection
area

ESC SSC

(a) (b) (c) (d)

A

B

C

D
E

A
BS2

BS3
B

a
b

c
d
e
fBS4

a
b
c
d

e
f

Figure 8. Exhaustive set construction (ESC) and shrinkable set construction (SSC) [1].

the intersection areas can be associated with either BS, but UEs in the non-intersection area

can be associated with only one BS. For example, in Fig. 8, UE a forms an intersection area

and can be associated with either BS1 or BS2. UE d forms a non-intersection area, and can

be associated with BS1 only. We group the UEs in an intersection area into an atomic set.

The UEs in a non-intersection area are also grouped into an atomic set. For example, there

are five atomic sets in Fig. 8(b). Three atomic sets {a}, {b, c}, {e} are formed by intersection

areas and two atomic sets {d}, {f} are formed by non-intersection areas. We then treat each

atomic set as a UE, and apply the ESC scheme to construct sets, as illustrated in Fig. 8(c).

Note that each set is constructed by concatenating a sequence of contiguous atomic sets

starting from the one closest to the BS and going outward.

The intersection between clusters can be more complicated than the case in Fig. 8. We

illustrate three complicated intersection cases: partial intersection, crossing intersection, and

overlapping intersection in Fig. 9. With partial intersection, we can extend the intersection

area to become a full intersection, illustrated by the extended dotted line in Fig. 9(a). This

is done by letting the BS slightly increase the transmit power to cover the UEs in the dotted

line. The scenario with crossing intersection is treated the same as full intersection. For the

overlapping intersection with two or more other BSs, as illustrated in Fig. 9(c), we start

from the intersection area closest to the BS, and let all UEs in this area be an atomic set.
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Figure 9. Intersection areas [1].

We remove the overlapped part of this intersection area with the next intersection area, and

let the remaining UEs in the next intersection area be the next atomic set, as illustrated in

Fig. 9(d).

The main idea of the SSC scheme is to remove some sets formed by ESC to reduce the

total number of sets, as illustrated in Fig. 8(d). This may significantly reduce the running

time of the set covering algorithm in the next section. First of all, we define the concept

‘shrinkable’. A set Y is shrinkable to its direct subset X, iff the atomic set s = Y \ X

is an intersection area. The core idea of SSC is that if Y is shrinkable to X, then X can

be removed, without affecting the set covering result. We explain the intuition through an

example illustrated in Fig. 8. As discussed earlier, an atomic set in a non-intersection area

is covered by only one BS, but an atomic set in an intersection area can be covered by

more than one BS. If the set covering algorithm (to be discussed in the next section) first

selects the outermost atomic set {a} of set A to be covered by BS2, then for BS1, set A will

automatically shrink to set B. Hence, in the very beginning, we do not need to have set B

in the initial sets for the set covering algorithm. That is, the set covering result does not

change even if we remove set B in the initial sets. On the other hand, if the set covering

algorithm selects atomic set {e} in set C to be covered by BS4, then set C cannot shrink to

set D or E because the atomic set {d} in C has to be covered by BS1. In summary, a set
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Y is shrinkable to its direct subset X, iff the atomic set s = Y \X is an intersection area.

The following theorem states whether a set can be removed before feeding the sets to the

set covering algorithm.

Theorem 1. Consider a set Y and its direct subset X constructed from the same cluster,

i.e., Y \X contains only one atomic set. We can remove X without affecting the set covering

results, if any of the following conditions are satisfied.

1. X is not shrinkable.

2. X is shrinkable, but Y is not shrinkable.

Proof. First of all, with condition 1, we must have that set Y is shrinkable. It is not possible

that both X and Y are not shrinkable, based on the construction of beamforming sets. This

is because if this is the case, then the outmost two atomic sets in set Y are both in non-

intersection areas, which is in conflict with the partitioning of a cluster into intersection and

non-intersection areas. We use an example to illustrate X and Y . Consider sets B and C in

Fig. 8(c), which correspond to Y and X. Furthermore, let set Z denote the set from another

cluster that intersects with the outmost atomic set of set Y . With set Y as shrinkable, if

the set covering algorithm selects set Z first (before selecting Y ), set Y can shrink to set X.

That is, even if set X was removed, shrinking Y essentially re-creates set X, which could

be selected by the set covering algorithm later. Thus the set covering is not affected even

if set X was removed. On the other hand, if the set covering algorithm selects set Y first,

we do not have to keep set X since set X would not be selected anyway by the set covering

algorithm, because selecting set Y implies the UEs in set X are already covered. Hence

condition 1 is a sufficient condition to remove set X.

With condition 2, the outmost atomic set s in Y , where s = Y \X, is in a non-intersection

area. Hence the UEs in the atomic set s cannot be served by another BS, so the BS that

set Y belongs to has to cover atomic set s, which implies that set Y is covered. This in turn
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implies set X would not be selected by the set covering algorithm later on. It is possible

that if we do not remove set X, the set covering algorithm may select set X before selecting

set Y . However, eventually the set covering algorithm has to select set Y or its superset, to

cover the atomic set s. Thus, set X would be removed since its superset is selected. That

is, we can remove set X in the beginning, without affecting the set covering result. �

2.4.3 INTERFERENCE AWARE SET COVERING (IASC)

While set covering is a classic problem, the inter-beam interference raises a great challenge

to applying set covering for beamforming. A major difference is that, in classic set covering,

the objects in the selected set in a given step are removed from the remaining sets, which is

a key technique to optimize performance in classic set covering. Unfortunately, IASC cannot

use this technique, as removing UEs from the remaining sets may cause strong interference

in the later beamforming stage. In fact, with IASC, there is only one scenario where we

can remove a UE from the remaining sets. That is, if a remaining set is shrinkable, we can

remove a UE from it. This is because, when the set shrinks, the cost of the remaining set is

recalculated and updated. If it results in a strong interference, the cost will be high. Hence

this shrunk set is unlikely to be selected in future steps of set covering.

Algorithm 2 illustrates the IASC algorithm. Let Si denote the ith SSC set after applying

the CDSC scheme in BOON. Note that
⋃
i Si = U . All SSC sets of all BSs are denoted as

F = {Si}. We use (15) to compute the cost for set Si, denoted as c(Si). The objective

of IASC is to find an index subset J ⊆ {1, 2, . . . , |F|} such that
∑

i∈J c(Si) is minimum,

subject to
⋃
j∈J Sj = U . Initially, the algorithm lets C be empty. IASC picks a set S with

the minimum cost in each iteration, and removes UEs of this set from U (note: not from

other remaining sets in F). The selected set S is then removed from F . Next, we check

whether any x ∈ F is “shrinkable“ if we remove UEs of S from x. If x can “shrink”, we

remove the common UEs in both S and x, i.e., x = x\S, and update the cost c(x). If x
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Algorithm 2: Interference aware set covering (IASC) [1]

1 Input: Set family F , set costs c(S), UE set U

2 C = ∅

3 while U 6= ∅ do

4 S = argminx∈F c(x)

5 Remove UEs of S from U

6 F ← F \ S

7 for each set x ∈ F do

8 if x shrinks when we remove S then

9 Remove all UE i ∈ x ∩ S from x and update c(x)

10 Remove any set h in C if h ⊂ S

11 Add set S to C

12 return C

cannot shrink, we do not remove any UE from x even though a UE is already covered by S,

based on earlier discussions. Next we check if set S covers all UEs in a previously selected

set h. If yes, we remove set h from C. Finally S is added to C. The algorithm outputs a list

of sets with the minimal total cost, while all UEs are covered by those sets. In summary,

IASC tries to reduce the overall network cost while minimizing the set overlapping such that

each UE is associated with one beam.

Set covering is an NP-hard problem. The IASC algorithm is a heuristic greedy algorithm

to solve the weighted set covering problem. In each iteration, the time is mainly on updating

the set cost on line 7, which requires O(|F|) time. The worst case run time of IASC is

O(|U||F|).
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2.4.4 BEAMFORMING

We adopt the linearly constrained minimum variance (LCMV) beamforming scheme [56,

p.513]. It is able to constrain the beamforming output to achieve a given gain in the directions

of intended UE signals while minimizing the power response toward UE directions in other

beams and BSs. To achieve a complex gain g∗ in the UE direction θ, the beamforming

weight vector is subject to aHθ w = g∗, where a(•) is given by (21). Let Aθ = [aθ1 , . . . , aθk ]

be the constraint matrix for total k UEs of a BS, with AoAs θ1, . . . , θk, and f be the k-

dimension single column response vector. The covariance of the k UE signals R = E
[
hhH

]
=

L|α|2
ρ

AθA
H
θ , where h is the k UE channel vectors given in (20), L is the number of antenna

elements in the BS, ρ is the path loss and α is the complex gain of the signal. The LCMV

beamforming to minimize transmit power is formulated as

min{wHRw} such that AH
θ w = f . (16)

The solution of (41) is obtained as follows using the Lagrange multiplier method

w = R−1Aθ(A
H
θ R−1Aθ)

−1f . (17)

By clustering UEs into groups and choosing an appropriate beamforming weight vector for

each group, it is possible to approximately eliminate or significantly reduce the inter-beam

interference. The time complexity of the LCMV beamforming in (42) is Θ(max(kL2, L2.373))

assuming L ≥ k, where L2.373 is the matrix inverse time for an L× L matrix.

We use the channel vector hmn between BSm and UE n in (20) to compute a beamforming

weight vector w for each set in C output by IASC, to serve all UEs in this set. Let Ui denote

the UEs contained in the ith set in C. Also let mi denote the corresponding BS of set

Ci, i.e., the ith set in C. For each UE set Ui, we construct the constraint matrix Aθ, the

corresponding covariance matrix R, and the response vector f . Then we use (42) to compute



36

Table 2. Simulation parameters in BOON

Parameter Value

System operating frequency (GHz) 73

Network dimension (m2) [400× 200]

Number of antennas in ULA per BS 16

Adjacent antenna spacing ∆ in ULA λ/2

Maximum number of beamformers K per BS 10

System bandwidth (FDD duplex mode) (MHz) 500

LOS path loss exponent η 2.2

Minimum required SINR γo at UE (dB) 1 to 15

Noise power spectral density No (dBm/Hz) −174

Noise figure NF at UE receiver (dB) 6

|C| number of weight vectors w1, . . . ,w|C|, where wi is associated with set Ci. Then using

(27), the transmit power allocated to the signal for set Ci is computed as

pti = max

(
(In + σ2)γo
|hHmi,n

wi|2

)
, ∀n ∈ Ui, i ∈ C (18)

where hmi,n is the channel vector between BS mi and UE n, γo is the required minimum

SINR threshold for all UEs, and σ2
n is the noise power in the AWGN channel for UE n. Note

that interference In in (18) is close to zero because IASC finds the best sets of UEs to avoid

interference. Furthermore, the beamformer constraint and response vector are applied to

form null in the direction of UEs of other sets.

2.5 PERFORMANCE EVALUATION

We compare BOON with MUB, MCB based topology control, and a state-of-the-art
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Figure 10. Average sum rate versus transmit power of 50 experiments: (a) spread UE
distribution (b) grouped UE distribution, (c) dense UE distribution. γ0 = 1 to 15 dB [1].

scheme JSDM [45]. All schemes use the same beamforming technique, LCMV. Note that

both MUB [37,38,49,57] and MCB [42–44,58] are special cases of BOON. The former treats

each UE as a set, forming one dedicated beam for each UE, while the latter treats all UEs in
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one set, i.e., forming one beam to serve all UEs. In JSDM, UEs are partitioned into groups

with approximately similar channel covariances. All UEs in a group are served simultaneously

using one beamforming vector. We assume all BSs are configured with a ULA, while each

UE is equipped with a single antenna. The OFDMA system is assumed for spectrum sharing

among UEs in a beam. We consider a frequency division duplex (FDD) mode where 80% of

the system bandwidth, i.e., 400 MHz, is used for downlink data signal transmission and the

remaining 20% is used for control signal purposes. The system parameters used in simulations

are summarized in Table 2. The performance metrics we use are the BS transmit power, sum

rate of all UEs, SINR, and computation complexity. The sample networks are in a [400×200]

m2 outdoor area, with 6 BSs and 40 UEs. There are 10 blockages in four different shapes:

rectangle, square, hexagon, and pentagon. The reference signal received power based UE

association is used in MUB, MCB, and JSDM. The BSs are evenly distributed in the network

area. UEs are distributed by three patterns; spread, grouped, and dense. In the spread UE

distribution, UE locations are randomly distributed. In the grouped UE distribution, 40 UEs

form into 10 UE groups, each with 4 UEs. The center of each group is randomly generated,

and the 4 UE locations are randomly generated, but closely located to the center. In the

dense UE distribution, UEs form into one to two groups around each BS. The group center

and UE locations are generated similarly as in the grouped UE distribution.

We have generated 50 networks for each UE distribution pattern, respectively. We record

the average transmit power and sum rate for each network. The required minimum SINR γo

varies in a range of 1 to 15 dB. In simulations, we first find the transmit power for BOON

to meet a minimum SINR γo at every UE and record the corresponding sum rate. Then

we apply the same transmit power in MUB, MCB and JSDM to find their SINR and sum

rate. Fig. 10 illustrates the scatter plot of the average sum rate versus transmit power for 50

networks/experiments in each UE distribution pattern, using different seeds for simulations.

Each data point in the figure indicates the required transmit power for each scheme to

achieve a given sum rate. The average error bar length (95% confidence interval) of BOON,
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MUB, MCB, and JSDM is 2.3, 3.2, 3.5, and 4.8 dBW, respectively. They are not plotted in

the figure as the error bars of different schemes overlap with each other significantly, which

makes them hard to be viewed. Overall, BOON significantly outperforms other schemes,

thanks to the effective BOC clustering, and the IASC algorithm which smartly associates

UEs to BSs to avoid inter-BS interference. BOON not only uses less transmit power, but

also has a smaller error bar. In the dense UE distribution, BOON performs similarly as

MCB as it is best to form one or two beams in this case. They perform significantly better

than MUB and JSDM, as the latter form multiple beams even for one group, and results in

significant interference between UEs. In summary, BOON smartly adapts to different UE

distributions to achieve the best performance in all scenarios. Other schemes cannot adapt

to different UE distributions, and thus perform well in certain scenarios, but perform poorly

in other scenarios.

Table 3. Average required transmit power of BOON (in %) with respect to MUB, MCB,
and JSDM, to achieve the same average sum rate

UE Pattern Gbps vs. MUB vs. MCB vs. JSDM

Spread 31.2 15.08 % 2.71 % 50.37 %
Grouped 15.05 10.87 % 12.9 % 20.6 %

Dense 8.03 3.3 % 80.4 % 2.9 %

In Table 3, we average the percentage transmit power BOON uses in all experiments,

compared with MUB, MCB, and JSDM, to achieve the same sum rate. On average, BOON

requires 10%, 32%, and 25% transmit power of MUB, MCB, and JSDM, respectively, to

achieve an average 0.45 Gbps per UE rate. In other words, BOON achieves 90%, 68% and

75% gain in transmit power compared with MUB, MCB, and JSDM, respectively.

Fig. 10 only gives the average result among 50 experiments. Next we examine how

spread the performance is across experiments. Fig. 11 plots the probability density distri-

bution (PDF) of the sum rate obtained from the results of the 50 experiments for each UE

distribution pattern, when the required minimum SINR γo = 10 dB. The PDF of the sum
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Figure 11. Probability density distribution of the sum rate, (a) spread UE distribution,
(b) grouped UE distribution, and (c) dense UE distribution, γ0 = 10 dB [1].

rates with different values of γo have similar trends and are omitted due to space limitation.

From Fig. 11, BOON not only achieves a higher average sum rate than MUB, MCB and

JSDM, which can be verified by Fig. 10, but also has a much narrower spread on the sum

rate overall. This indicates that for the 50 experiments, BOON can achieve most sum rates



41

14 16 18 20 22 24 26 28

Transmit power (dBW)

-10

-5

0

5

10

15

20

25

M
ea

n 
S

IN
R

 (
dB

)
BOON
MUB
MCB
JSDM

(a)

8 10 12 14 16 18 20 22

Transmit power (dBW)

-20

-15

-10

-5

0

5

10

15

20

M
ea

n 
S

IN
R

 (
dB

)

BOON
MUB
MCB
JSDM

(b)

2 4 6 8 10 12 14 16

Transmit power (dBW)

-30

-25

-20

-15

-10

-5

0

5

10

15

20

M
ea

n 
S

IN
R

 (
dB

)

BOON
MUB
MCB
JSDM

(c)

Figure 12. The mean SINR versus transmit power of 50 experiments, (a) spread UE
distribution, (b) grouped UE distribution, and (c) dense UE distribution. γ0 = 1 to 15
dB [1].

close to the average sum rate. In contrast, for JSDM and MUB, the average sum rate is

not only smaller, but also the sum rates are much more spread out. This means that for

some networks, their sum rates are very poor, significantly smaller than the average, while
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Figure 13. Probability density distribution of mean SINR, (a) spread UE distribution, (b)
grouped UE distribution, and (c) dense UE distribution, γ0 = 10 dB [1].

for some other networks, their sum rates are much higher than the average. In other words,

their performance highly relies on the specific UE location distribution. This is another

demonstration that BOON smartly adapts to all network scenarios or UE location distri-

butions, to achieve a good performance in all scenarios, while other schemes cannot adapt
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to different network scenarios well. Note that although MCB also has a relatively narrow

spread, its sum rate is much lower than BOON, except in the dense UE distribution pattern.

Fig. 12 plots the average value of the mean SINR of the 50 experiments in each UE

distribution pattern. BOON clearly outperforms JSDM and MUB. The average error bar

length of BOON, MUB, MCB, and JSDM is 0.5, 3.8, 3.0, and 4.7 dB, respectively. They are

not shown in the figure due to significant overlapping, which makes it hard to view them.

Clearly BOON has a much smaller error bar than other schemes, i.e., it has a more stable

performance for different scenarios. On average, the SINR gain of BOON is about 8 dB

over JSDM, and about 20 dB over MUB. MCB performs better than BOON on the UE

SINR in the spread UE distribution pattern. However, this is at the expense of a lower sum

rate, which can be seen from Fig. 10(a). This is because all UEs of a BS share one beam.

Although the SINR is high, the spectral share per UE is small, and thus the sum rate is not

high. On the other hand, BOON smartly adapts to the UE distribution and determines the

approximately optimal number of beams to be formed by each BS. Thus, even though the

SINR is not as high as that of MCB, the spatial reuse of the spectral resource results in a

higher sum rate for BOON compared with MCB.

The PDF of the mean SINR of all UEs for the 50 experiments is illustrated in Fig. 13,

with γo = 10 dB. The PDF results of the mean SINR with different values of γo also have

similar trends and hence are omitted due to space limitations. Similar to Fig. 11, overall

the mean SINR of BOON has a much smaller deviation from the average value than other

schemes. MCB has a higher SINR than BOON in the spread UE distribution pattern, but

it has a lower sum rate. This is because MCB forms one beam per BS and avoids the inter-

beam interference in a BS. Thus it achieves a high SINR. Nevertheless, the sum rate is the

smallest as all UEs share the same beam, and thus the spectral share for each UE in a beam

is small. MUB has the worst performance on SINR because forming one beam per UE causes

excessive interference among beams.

Table 4 compares the computation complexity of BOON, MUB, MCB, and JSDM, where
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Table 4. Computation complexity of BOON, MUB, MCB, and JSDM [1]

BOON MUB MCB JSDM

Time complexity Θ(L2
∑

1≤i≤|B| qiQi) Θ(L2
∑

1≤i≤|B| k
2
i ) Θ(L2|U|) Θ(L2

∑
1≤i≤|B| kiGi)

L is the number of elements of the BS antenna, |U| is the total number of UEs, |B| is the

number of BSs, ki is the number of UEs for BS i in MUB, MCB and JSDM, Gi is the number

of UE groups/beams for BS i in JSDM, qi and Qi are the number of UEs and beams for BS i

in BOON, respectively. Note that generally qi 6= ki and Qi 6= Gi since the UE association and

clustering of BOON and JSDM are different. The ki is the same for MUB, MCB, and JSDM

as they use the same user association scheme, the reference signal received power based UE

association. The beamforming operation in (41–42) of Section 2.4.4 has to be conducted

for every beam of each BS. Its time complexity is Θ(max(kL2, L2.373)), where k is the total

number of UEs for a BS. For MCB, the time complexity is Θ(|U|L2) assuming the number of

UEs for each BS is larger than L0.373, which is 2.8, 3.6, 4.7 when L = 16, 32, 64, respectively.

For MUB, the time complexity is Θ(L2
∑

1≤i≤|B| k
2
i ). For JSDM, the UE grouping based on

channel covariance takes Θ(
∑

1≤i≤|B| k
2
i ) time and the beamforming takes Θ(

∑
1≤i≤|B| kiL

2Gi)

time. In general, ki < L2Gi. Hence the time complexity of JSDM is Θ(L2
∑

1≤i≤|B| kiGi). For

BOON, the UE clustering takesO(
∑

1≤i≤|B| q
2
i ) time. The set covering by the IASC algorithm

has a time complexity O(|U||F|). The time for CDSC is small and dominated by the set

covering time. The beamforming takes Θ(
∑

1≤i≤|B| qiL
2Qi) time. Again, generally qi < L2Qi.

Moreover, the set covering time O(|U||F|) is typically smaller than Θ(
∑

1≤i≤|B| qiL
2Qi).

Hence the BOON time complexity is Θ(L2
∑

1≤i≤|B| qiQi). From Table 4, in general the

computation complexity of MCB is the lowest, while the one of MUB is the highest. The

computation complexities of BOON and JSDM are comparable and both are between the

ones of MCB and MUB.

Fig. 14 illustrates the average execution time of the experiments in each UE distribution,
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Figure 14. Average execution time of the experiments in each UE distribution: (a) spread
UE, (b) grouped UE , (c) dense UE [1].

on a workstation with an Intel Core i7 CPU and 32 GB RAM. The execution time of BOON

and JSDM are comparable and their time is between the ones of MCB and MUB. This is

consistent with the time complexity comparison in Table 4. MUB uses much more time than

BOON and JSDM in all scenarios. MCB uses less time than BOON and JSDM, but has

much poorer performance on average.

2.6 CHAPTER SUMMARY

In this chapter, we discuss a topology control framework called Beamforming Oriented

tOpology coNtrol(BOON), which has an objective to reduce the total transmit power of all

BSs while forming beams to cover UEs. The BOON framework includes four components

such as UE clustering, set construction, set covering, and beamforming. BOON has been
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compared with the multi-user and multicast beamforming based topology control schemes,

and a state-of-the-art scheme JSDM on transmit power, sum rate, SINR, and computation

complexity. The results indicate that overall BOON significantly outperforms them. For

instance, BOON uses only 10%, 32% and 25% transmit power on average, of the other three

schemes, respectively, to achieve the same sum rate in the network.
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CHAPTER 3

UE ASSOCIATION AND TRAFFIC SCHEDULING

In the previous chapter, we discussed the BOON framework to efficiently reduce the

downlink transmit power in order to cover all UEs in the network. However, when a BS has

a limitation on the transmit power and number of beamformers, covering all UEs simulta-

neously may not be possible, especially for dense mmWave networks. Therefore, BSs need

to associate and schedule UEs over different time slots. This UE association and scheduling

raises a great challenge due to the limited power budget and beamformers in BS, diverse

user traffic loads, user quality of service requirement, etc.

In this chapter, we present a novel framework to reduce the downlink traffic transmission

time in multi-BS mmWave networks, called clustering Based dOwnlink UE assOciation,

Scheduling, beamforming with power allocaTion (BOOST). The objective of BOOST is to

reduce the overall downlink transmission time, subject to the BS power budget, the number

of beamformers at BS, UE traffic loads, and the minimum SINR requirement at each UE.

BOOST consists of three principal components: UE clustering, UE-base station association,

and beamforming and traffic scheduling. In this chapter, each component is discussed and

three heuristic algorithms are developed to achieve the overall goal. At last, the performance

of BOOST is evaluated and compared with three existing state-of-the-art user selection and

scheduling schemes. The performance metrics are traffic transmission time, sum rate, and

user fairness.

The rest of the chapter is structured as follows: Section 3.1 presents background and

some related works, system model is discussed in Section 3.2, traffic scheduling problem

is formulated in Section 3.3, the BOOST framework is broadly presented in Section 3.4,

performance of BOOST is evaluated in Section 3.5 and Section 3.6 concludes the chapter.
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3.1 BACKGROUND AND RELATED WORK

Unlike typical cellular networks, UE association in mmWave networks does not depend

on the distance between BS and UE, but depends on if a UE is covered by a beam. This

makes the UE association and beamforming a joint optimization problem, which is even

more challenging as BS is power limited and cannot cover all its UEs simultaneously. Each

BS usually schedules a set of UEs in each time slot and forms beams to transmit the UE

traffic. The UE association and scheduling also has to consider various other factors including

heterogenous UE traffic loads, the quality of service requirement for UEs, as well as the

beam interference, power allocation, UE fairness, etc. More importantly, those factors are

intermingled, which makes the UE association and scheduling a fundamentally challenging

joint optimization problem. In this chapter, we develop a novel framework for UE association,

scheduling, and beamforming in mmWave networks, called the clustering Based dOwnlink UE

assOciation, Scheduling, beamforming with power allocaTion (BOOST). The objective is to

reduce the transmission time for all UEs traffic, subject to the power budget of BSs, number

of beamformers of BSs, UE traffic loads, and the required minimum SINR for each UE. Note

that reducing traffic transmission time or latency is a key objective of 5G. Moreover, in the

context of this work, reducing transmission time also contributes to increasing the network

capacity, another key objective of 5G.

Most existing works on UE scheduling focus on choosing a set of UEs for a time slot to

maximize the sum rate given the BS power budget. Several works chose a group of UEs

with orthogonal channels to maximize the sum rate (e.g., see [39–41]). The semi-orthogonal

user selection (SUS) chooses a UE with the largest channel gain at first, and then in each

subsequent iteration, selects a UE such that its channel has the largest orthogonal component

to the subspace spanned by the previously chosen UEs [59–61]. In [45], UEs are partitioned

into groups, with each group having similar channel covariance. In [1], a UE clustering

and set covering based scheme was developed to minimize the transmit power in multi-BS
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networks. In [38], a scheme was presented to maximize the harmonic sum of UEs SINR in

order to prioritize cell-edge UEs. The switched random beamforming has also been studied in

the literature [48,49], where a BS forms a beam in a random direction. The channel chordal

distance (Chord-Dis) based scheme aims to maximize the sum rate, where UEs are chosen

based on their channel chordal distances, which are a measure of orthogonality between

UE channels (e.g., see [62–65]). The UE partitioning and beamforming (MUBFP) scheme

maximizes the group-average sum rate for a single BS MU-MIMO system [37].

Most existing works focused on BS-UE channels for selecting UEs to maximize the sum

rate. However, this often results in a large transmission time to deliver all UEs traffic,

because to achieve a high sum rate, UEs with good channels (high SINR) would be allocated

with much more network resources such as the transmit power and bandwidth. As a result,

the transmission time for UEs with poor channels can be very large. Moreover, most of those

works focused on one BS, while the UE association among multiple BSs assumed a simple

scheme based on the received signal power. BOOST jointly considers UE association among

multiple BS, UE scheduling, and beamforming altogether, to reduce the transmission time

of the entire network.

3.2 SYSTEM MODEL

We assume BSs are connected to a cloud or a backend management system of the network

operator, through either wired or wireless backhaul connections. The BSs information,

including the location, number of antennas, etc., is known to the cloud which manages UE

association and scheduling. We also assume all BSs and UEs are synchronized on both time

and frequency for each time slot, in which a set of UEs are scheduled for traffic transmission.

Table 5 lists major notations.

3.2.1 MMWAVE CHANNEL

Let N , M and K be the set of UEs, BSs, and beams, respectively. Let Nm ⊆ N be the
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set of UEs that can be covered by BS m under the maximum range, which is determined by a

beam with the minimum beamwidth and the maximum BS transmit power. Throughout this

chapter, we assume each BS is equipped with an antenna array with L antenna elements, and

each UE has a single antenna. Nevertheless, BOOST can be easily extended to accommodate

UEs with multiple antennas. Let K be the number of beamformers (or RF chains) for a

BS. Each beamformer can form one beam. Note that the required processing power, design

complexity and fabrication cost of a BS grows with the number of beamformers; hence a BS

can only have a limited number of beamformers. Let Km ⊆ K denote the set of beams of

BS m. For each beam k ∈ Km, let Nmk ⊆ Nm denote the set of UEs that are inside beam k

of BS m, called beam 〈m, k〉.

Let dmn and PLmn denote the distance and average LOS path loss, respectively, between

BS m and UE n. According to the 3GPP UMi-street canyon LOS model, the large scale

path loss in dB is given as [66]

PLmn[dB] = 10η log10

(
dmn
d0

)
+ 20 log10

(
4πd0 × 109

c

)
+ 20 log10 (f) + XσSF

, (19)

where η is the path loss exponent of the LOS path, d0 is the close-in free space reference

distance which is usually 1, c is the speed of light, f is the system frequency in GHz, and

XσSF
is a zero-mean Gaussian random variable with a standard deviation σSF in decibels.

Let θmn be the angle of arrival (AoA) of UE n, i.e., the direction of the downlink signal to

UE n with regard to the BS m antenna, and αmn be the complex power gain of small-scale

fading between BS m and UE n, which is modeled using a complex Gaussian distribution,

i.e., αmn ∼ CN (0, 1). We assume a block fading channel between UEs and BSs, as in the

existing cellular and WLAN standards [45]. The channel characteristics are about the same

in the order of seconds. The channel vector between BS m with L antenna elements and UE

n (n ∈ Nmk) with a single antenna is given as [48]
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hmn =

√
L

PLmn
αmna(θmn), (20)

where a(θ) is the response vector of the BS antenna when the UE AoA is θ. The response

vector for a uniform linear array (ULA) at a BS is given as

a(θ) =
1√
L

[
1, e−j2πθ, . . . , e−j2π(L−1)θ

]T
, (21)

where (•)T denotes the transpose of a vector. The concatenated channel matrix formed by

all UEs covered by BS m is therefore written as Hm =
[
hm,1, . . . ,hm,|Nm|

]
. The received

signals at all UEs covered by BS m are given as

Ym = HH
mWmxm + z, (22)

where (•)H denotes the complex conjugate transpose, xm ∈ C|Nm|×1 is the vector of trans-

mitted signals to UEs of BS m, z ∈ C|Nm|×1 is the total noise, including the interfer-

ence and the Additive White Gaussian Noise (AWGN) with zero mean and unit variance,

Wm =
[
wm,1, . . . ,wm,|Km|

]
∈ CL×|Km| is the beamforming weight matrix of BS m, formed

by concatenating individual weight vectors w.

3.2.2 DOWNLINK TRANSMISSION TIME

In BOOST, each BS m constructs a set of unit-power beams, denoted as

{wm,1, . . . ,wm,|Km|}, with the power of each beam ||w||2 = 1. As illustrated in Fig. 15(d),

each beam serves a group of UEs in a time slot. Let θ̂mk denote the direction of the main

lobe of beam 〈m, k〉, formed by wmk to serve the UEs in Nmk. For a beam covering mul-

tiple UEs, the beam direction θ̂mk may not be aligned exactly with the AoA of a UE. Let

θn,m,k = |θ̂mk − θmn| denote the difference between the beam direction θ̂mk and the UE AoA

θmn. By the cosine antenna pattern of the ULA antenna, the effective channel gain of UE n
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Table 5. Major notations in BOOST

m,n, k index for BS, UE and beam, respectively

M,N ,K set of BSs, UEs, and beams, respectively

〈m, k〉 the k-th beam of the m-th BS

θmn, a(θmn) angle of arrival of UE n signal from BS m, and the corresponding steering

vector

bn, tn,m,k traffic load of UE n, and its transmission time when served by beam 〈m, k〉

hmn channel gain vector between BS m and UE n

wmk beamforming weight vector of beam 〈m, k〉

pmk, po transmit power of beam 〈m, k〉 and power budget in each BS

K maximum number of beamformers at a BS

In,m,k, λn,m,k, interference, rate, and SINR at UE n when it is

γn,m,k served by beam 〈m, k〉

γo minimum required SINR for UEs

covered by beam 〈m, k〉 can be written as [67,68]

|hHmnwmk|2 ≈


L|αmn|2
PLmn

cos2
(
Lπθn,m,k

2

)
if θn,m,k ≤ 1

L
,

0 otherwise

(23)

where (•)H denotes the complex conjugate transpose, αmn is the complex gain of the LOS

path between BS m and UE n, and PLmn is the average LOS path loss between BS m

and UE n. In (23), the UE channel gain is at maximum when θn,m,k = 0, i.e., when the

beam direction perfectly matches the UE AoA. The cosine antenna pattern provides a good

approximation for the main lobe gain [67, 68]. Note that the main impact of sidelobes is to

cause interference to other beams, which can be efficiently suppressed if there is a sufficient
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angular distance between two beams, e.g., using the linearly constrained minimum variance

beamforming technique (to be discussed later). Therefore, in this chapter, we do not consider

sidelobes.

Let pmk be the transmit power of beam 〈m, k〉. Let In,m,k denote the total interference at

UE n (n ∈ Nmk) from all beams. Let σ2 be the thermal noise at a UE, which is modeled as

σ2 = No + 10 log(v) + NF, where v is the system bandwidth, No is the noise power spectral

density and NF denotes the noise figure at the UE. The received SINR at UE n from beam

〈m, k〉 is given as

γn,m,k =
pmk|hHmnwmk|2

In,m,k + σ2
, ∀n ∈ Nmk. (24)

The total interference In,m,k is the summation of intra-BS interference and inter-BS interfer-

ence given as follows.

In,m,k =
∑

i∈Km\k

pmi|hHmnwmi|2︸ ︷︷ ︸
intra-BS interference

+
∑

j∈M\m

∑
l∈Kj

pjl|hHjnwjl|2︸ ︷︷ ︸
inter-BS interference

, (25)

where M denotes the set of BSs and Km denotes the set of beams of BS m.

To achieve a certain quality of service for a UE, the SINR at the UE has to be greater

than or equal to a minimum SINR γo, i.e.,

γn,m,k ≥ γo, ∀n ∈ Nmk. (26)

In order to maintain the minimum γo at all UEs in a beam, the required transmit power pmk

is obtained using (24)-(26) as

pmk = max
n∈Nmk

(In,m,k + σ2)γo
|hHmnwmk|2

. (27)

The transmit power vector for all beams of BS m is given as
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pm =
[
pm1, . . . , pm|Km|

]
. (28)

In each time slot, the transmit power from all beams of a BS must not be larger than the

power budget po, i.e.,

∑
k∈Km

pmk ≤ po, ∀m ∈M. (29)

We assume each UE n has a downlink traffic load bn that needs to be delivered with a

minimum SINR γo. Let ∆t be the length of each time slot. The minimum number of time

slots needed to carry the traffic load bn to the UE is
⌈

bn
vn,m,k∆t log2(1+γn,m,k)

⌉
, where vn,m,k is the

sum of spectrum from all downlink sub-carriers assigned to UE n and γn,m,k is the received

SINR.

3.3 PROBLEM STATEMENT

As stated in the preceding section, we assume all BSs in the network are synchronized on

time and frequency at each time slot. BSs schedule a set of UEs for downlink transmission in

each slot. Our goal is to minimize the total number of time slots required to complete delivery

of all UEs traffic loads, subject to the BS power budget, the minimum SINR requirement

at UEs, and the number of beamformers of BSs. If there is more than one UE in a beam,

the throughput capacity of the downlink channel is shared among all UEs. The UEs can use

a multiplexing scheme to share resources, e.g., the time division multiple access (TDMA),

orthogonal frequency division multiple access (OFDMA), or non-orthogonal multiple access

(NOMA). In the ensuing discussions, we assume OFDMA is used. Nevertheless, BOOST

can be extended for NOMA and TDMA.

If UE n is scheduled in beam 〈m, k〉, the data rate for UE n in slot t, denoted as λ
[t]
n,m,k,

is given as
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λ
[t]
n,m,k = v

[t]
n,m,k log2(1 + γ

[t]
n,m,k), (30)

where v
[t]
n,m,k is the sum of spectrum from all downlink sub-carriers assigned to UE n in the

beam, and γ
[t]
n,m,k is the SINR at UE n in time slot t. Let x

[t]
nmk ∈ {0, 1} be a binary variable

to indicate whether UE n is covered by beam 〈m, k〉 in time slot t. If x
[t]
nmk = 1, then the

remaining traffic of UE n to be transported in the next slot t+ 1 is given as

b[t+1]
n = max(0, b[t]

n −∆tλ
[t]
n,m,k). (31)

To reduce the number of slots required to transmit traffic from all UEs, we formulate the

objective function to minimize the remaining UE traffic in each slot given in (31). For the

ease of description, we drop the time slot index t in the formulation below. We want to find

the values of xnmk, pm (transmit power) in (28), and Wm (beamforming weight matrix) in

(22) for each BS. Let X denote the matrix [xnmk]. The UE association and scheduling can

be formulated as a nonlinear programming problem as below

min
X,pm,Wm

∑
n∈N

[bn − xnmkvn,m,k∆t log2(1 + γn,m,k)] (32)

s. t. C1 :∀n ∈ N ,
∑
m∈M

∑
k∈Km

xnmk ≤ 1

C2 :∀n ∈ N ,m ∈M, k ∈ Km, γn,m,k ≥ xnmkγo

C3 :∀m ∈M,
∑
k∈Km

pmk ≤ po

C4 :∀m ∈M, |Km| ≤ K

C5 :∀m ∈M, k ∈ Km,
∑

n∈Nmk

xnmkvn,m,k ≤ v

C6 : ∀n ∈ N ,m ∈M, k ∈ Km, vn,m,k∆t log2(1 + γn,m,k) ≤ xnmkbn.

Constraint C1 guarantees each UE is associated with only one BS and only one beam. C2
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ensures the received SINR at each UE is greater than the threshold. C3 ensures the power

allocated in all beams of a BS cannot surpass the power budget po. C4 ensures the number

of beams in a BS is less than the number of beamformers K in a BS. C5 ensures that the sum

of allocated spectrum for all scheduled UEs in a beam must be not more than the available

system bandwidth v. C6 guarantees that the allocated spectrum to a UE is no more than it

needs to carry its traffic load in a time slot. The second term of (32) is the weighted sum rate

maximization problem which has been proven NP-hard [37, 67]. Therefore, in this chapter,

we develop a heuristic framework, BOOST, to solve the optimization problem (32).

3.4 BOOST FRAMEWORK

In the literature, the UE discovery usually can be conducted through two approaches:

beam sweeping [50, 51] or coexisting macrocells [18]. With the first approach, each BS

sweeps the whole angular space and transmits initial signals, to discover UEs. This approach

may result in a large delay. With the second approach, the co-existing macrocells such as

LTE towers are used to discover UEs and send the information to the cloud of the network

operator, which can achieve a low delay. Given that major cellular operators all have deployed

LTE systems, this is a practical approach.

Through UE discovery, the UEs information, including locations and AoAs, is known

to the network operator. BOOST resides in the cloud of the operator to optimize UEs

association and scheduling. Specifically, for given UE traffic loads, BOOST finds the optimal

number of beams for each BS, assigns UEs to be covered by each beam, computes the

beamforming vectors, and allocates spectrum for UEs and power for all beams in each slot,

until the traffic of all UEs is delivered. The objective is to reduce the network transmission

time, i.e., the total number of time slots required to deliver the UEs traffic, subject to the

BS power budget, number of beamformers for BSs, and minimum UE SINR.

As illustrated in Fig. 15, BOOST contains three stages: 1) UE clustering for interference

control (CIC), 2) traffic balancing UE association (TUA), and 3) beamforming and UE traffic
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Figure 15. BOOST framework: (a) a mmWave network with 2 BSs and 10 UEs, (b)
UE clustering to reduce intra-BS interference, (c) UE association to balance traffic and
reduce inter-BS interference, (d-e) scheduling UE traffic into two slots and forming beams,
constrained by the power budget and UE SINR requirement [6].

scheduling (BAS). In our experiments, we have observed that if a group of UEs are close to

each other, then forming multiple beams to individual UEs creates significant interference

between those beams. Therefore, for each BS, we first group its UEs into clusters with a CIC

algorithm, based on their AoAs and spatial distances. The clusters have a radial shape with

the BS as the center, as illustrated in Fig. 15(b). In the CIC stage, the UEs of a BS refer

to the UEs that can be reached with the maximum range of the BS through beamforming.

Many UEs may be reached by two or more BSs. Hence, different BSs can have overlapping

clusters due to such UEs. For example, in Fig. 15(b), CIC forms nine clusters for a network

with ten UEs and two BSs. The three clusters of BS2 are all overlapped with clusters of

BS1. There are 7 overlapping UEs included in these overlapping clusters.
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While the BS association for non-overlapping UEs is straightforward, since each of them

can be reached by only one BS, it is a challenge to properly associate overlapping UEs such

that the network transmission time is minimized while the inter-BS interference is avoided or

significantly reduced. As illustrated in Fig. 15(c), TUA smartly associates overlapping UEs

to the clusters based on the cluster transmission time, to achieve this objective. The CIC

and TUA algorithms are re-run when there is a significant change to the channel. Typically

the channel characteristics between a UE and a BS remain about the same in the order of

seconds. Therefore, the CIC and TUA algorithms do not result in significant overhead.

Due to the power budget constraint, and the minimum SINR requirement, a BS often

cannot form beams to cover all clusters simultaneously, with one beam to cover one cluster.

Hence, BAS has to schedule the beams of a BS across a number of time slots. For example,

the clusters in Fig. 15(c) have to be covered across two slots illustrated in Fig. 15(d) and (e).

In each slot, BAS computes beamforming vectors for selected clusters, allocates the transmit

power for each beam, and allocates spectrum for each UE in the beam to carry its traffic.

At last, some beams may each have to be scheduled across multiple time slots, as the traffic

transportation for the covered UE set cannot be finished in one slot. For example, in Fig.

15(d) and (e), the beams covering UE sets {3, 4}, {6, 7}, and {8, 9} are scheduled across

two time slots while the beams covering sets {1, 2}, {5}, and {10} are scheduled in one slot.

The objective of BAS is to minimize the network transmission time, i.e., the number of slots

to finish traffic delivery for all beams/UEs. Next, we describe each component of BOOST

in detail.

3.4.1 UE CLUSTERING FOR INTERFERENCE CONTROL (CIC)

Clustering is generally NP-hard [54]. Hence, in practice, heuristic algorithms are widely

used. The challenge for clustering UEs is that unlike classic clustering that typically uses

the spatial distance, we have to take beamforming into account. Furthermore, we also have

to design the CIC algorithm to help achieve the objective of BOOST, reducing latency. In
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this chapter, we design a heuristic clustering algorithm to reduce the interference between

beams, and increase the average SINR at UEs in each cluster, both of which help to increase

capacity and reduce latency. Moreover, UEs are grouped based on both AoAs (with regard

to the BS) and the spatial distance.

Algorithm 3 describes the CIC algorithm. At the beginning each UE is treated as a

cluster with the corresponding AoA for the beamforming direction. We use the equal power

allocation for all clusters of a BS to compute the UE SINR. In each successive iteration, the

CIC algorithm identifies two best candidate clusters such that merging them could increase

the UE SINR (line 7–9). We select two candidate clusters with the minimum angular dis-

tance, which also needs to be not larger than 1/L (line 4), because the beamforming gain

approaches zero by (23) if it is larger than 1/L. This process continues until we cannot find

such candidate clusters or all UEs are processed. The CIC algorithm output is the set of

UE clusters in K. Note that we do not limit the number of beams, nor consider the inter-BS

interference between beams in the CIC stage, which will be taken care of by TUA and BAS.

Both CIC and TUA use the cosine pattern channel gain given in (23) to compute the

UE interference and SINR by (25) and (24), respectively, while BAS computes the actual

channel gain and SINR using the beamforming vector.

3.4.2 TRAFFIC BALANCING UE ASSOCIATION (TUA)

In BOOST, the CIC algorithm groups UEs into clusters for each BS independently,

assuming the maximum range for the BS. Nevertheless, we should not directly form beams to

cover those clusters, because clusters from different BSs can overlap with each other, resulting

in significant inter-BS interference. TUA selects a unique BS (or the corresponding cluster)

for each overlapping UE (belonging to more than one cluster), so that each overlapping UE

goes to one cluster only and there is no overlapping anymore between clusters. The objective

of TUA is to reduce transmission time, which is closely relevant to the traffic load. This is

achieved through two techniques. First, to reduce the network transmission time, BOOST
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Algorithm 3: UE Clustering for Interference Control [6]

Input: UE set Nm of BS m, AoAs θ̂, transmit power po

1 Let each UE be a cluster, with the set of clusters Km = {{1}, . . . {|Nm|}}, and their

AoAs θ̂ = {θ̂1, . . . , θ̂|Nm|}

2 X ← ∅

3 while Nm \ X is not empty do

4 Select two clusters (i, j) = argmin
(s,k)∈Km,s 6=k

|θ̂s − θ̂k| such that |θ̂s − θ̂k| ≤ 1/L

5 if (i, j) is empty then

6 break

7 Find the UE SINR in the combined cluster h = (i, j) and other clusters in Km

except i and j, each with power po
|Km|−1

using (24)

8 if min. SINR for UEs in cluster h is greater than the min. SINR in both clusters

i and j then

9 Use cluster h to replace clusters i, j in Km, and accordingly update the AoAs

θ̂.

10 else

11 Add all UEs in clusters i and j to X

12 Output: Km as the set of clusters of BS m

smartly balances UE traffic load between BSs. Second, to reduce the transmission time

for a cluster, BOOST balances the transmission times of UEs in the cluster, i.e., avoids the

situation where while some UEs in the cluster have completed traffic transmission, other UEs

still have significant residual traffic to be transmitted. In other words, we would like the

transmission time for every UE in the cluster to be the same. Hence we allocate spectrum for

each UE in proportion to its traffic load and received SINR. Next, we find the transmission
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time for a cluster.

Let Smk ∈ Km denote the k-th UE cluster of BS m obtained by the CIC algorithm. The

UEs in cluster Smk are covered by the corresponding beam 〈m, k〉 from BS m. Let γn,m,k

and bn denote the received SINR and traffic load of UE n ∈ Smk, respectively.

Theorem 2. Let v denote the total system bandwidth. If the system bandwidth is allocated to

UEs of Smk in proportion to their traffic loads and SINR, i.e., bn
log2(1+γn,m,k)

, the transmission

time for cluster Smk, denoted as t(Smk), is equal to the transmission time of every UE, and

is given as

t(Smk) =
∑
i∈Smk

bi
v log2(1 + γi,m,k)

. (33)

Proof. Let vn,m,k denote the spectrum share for UE n ∈ Smk, the required transmission time

for UE n, denoted as tn,m,k, is given by

tn,m,k =
bn

vn,m,k log2(1 + γn,m,k)
. (34)

If we allocate spectrum for each UE in proportion to its traffic load and received SINR,

then the spectrum share for UE n can be written as

vn,m,k =
βnv∑
i∈Smk

βi
, (35)

where βn is the coefficient used for spectrum share of UE n, and is computed using its traffic

load and SINR as below

βn =
bn

log2(1 + γn,m,k)
. (36)

After substituting βn into (35), the spectrum share for UE n is derived as follows
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vn,m,k =
vbn
∏

i∈Smk,i 6=n log2(1 + γi,m,k)∑
i∈Smk

bi

[∏
j∈Smk,j 6=i log2(1 + γj,m,k)

] . (37)

After substituting vn,m,k into (34), the transmission time for UE n, tn,m,k, becomes

tn,m,k =
bn

vn,m,k log2(1 + γn,m,k)
=
∑
i∈Smk

bi
v log2(1 + γi,m,k)

. (38)

It is clear that by (38), the transmission time to complete traffic delivery to every UE in

Smk is the same, i.e., t1,m,k = · · · = t|Smk|,m,k. Hence, (38) also denote the transmission time

t(Smk) for cluster Smk. �

Next, we use the cluster transmission time in (33) as the cost metric for UE association,

to balance traffic amount and UEs between BSs, with the objective to reduce the network

transmission time. For a BS, some of its clusters may be overlapped with clusters of other

BSs, while others are not, as illustrated in Fig. 16. Note that the clusters of the same BS do

not overlap with each other. Let L denote the set of UE clusters of all BSs which is obtained

by the CIC algorithm. Let R denote the set of non-overlapping clusters in L, i.e.,

R ={Si | Si ∈ L and ∀Sj ∈ L\Si, j 6= i, Si ∩ Sj = ∅}. (39)

Let Rm ⊆ R denote the set of non-overlapping clusters of BS m. We define the cost of BS

m, denoted as cm, as the transmission time of the BS, which is the maximum transmission

time of its clusters. This is used in the TUA algorithm to determine which BS an overlapping

UE should be associated to. However, the challenge is that we do not know the transmission

times of overlapping clusters until the association of overlapping UEs is completed. Hence,

during the execution of the TUA algorithm, we set the BS cost as the maximum transmission

time of its clusters that have been processed so far. Initially, the BS cost is set as the

maximum transmission time of the non-overlapping clusters, i.e.,
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cm = max
s∈Rm

(t(s)), or 0 if Rm = ∅. (40)

It is updated whenever an overlapping cluster of the BS is processed in the TUA algorithm.

That is, cm dynamically changes whenever a UE is associated to BS m.

TUA only needs to be applied on UEs in overlapping clusters. TUA associates an overlap-

ping UE (belonging to more than one cluster) to the right cluster, such that the interference

between BSs is reduced. In the ensuing discussions, for the ease of description, we inter-

changeably refer to UE association to a cluster as to the BS of the cluster. Algorithm 4

illustrates the TUA algorithm. The main idea is that for each overlapping UE n, we asso-

ciate it with the cluster that results in the lowest BS cost. This in turn results in a smaller

network transmission time. In the algorithm, X denotes the UEs that have been associated

so far. In each iteration, TUA picks a cluster S∗ that has the highest traffic load. Then it

chooses an unprocessed UE n∗ in cluster S∗ with the highest channel gain. Next, TUA finds

all other clusters that overlap due to UE n∗, denoted as {S̄1, . . . , S̄j, . . . , S̄J | n∗ ∈ S̄j ∈ L̄}.

UE n∗ is associated to the cluster that results in the lowest BS cost (lines 9–13). While

associating n∗, we bundle it with the UEs with a higher channel gain as they are likely

to be associated together. Hence, in Algorithm 4, {S1, . . . , Sj, . . . , SJ} are used instead of

{S̄1, . . . , S̄j, . . . , S̄J}.

Fig. 16 illustrates the main idea of TUA, where S1 and S2 are overlapping clusters, with

UE b being an overlapping UE. Fig. 16(b) illustrates the BS costs before processing UE

b, which are the transmission times of clusters S3 and S4, respectively. Fig. 16(c) and (d)

illustrate the BS cost change if we associate b to cluster S1 or S2. In option 1, the BS1 cost

changes to the transmission time of cluster S1, as it is larger than the transmission time of

cluster S3. However, this is still lower than the BS2 cost. Hence the network transmission

time is still the BS2 cost, which slightly increases due to the power splitting to cover UE

c. In option 2, UE b is associated to cluster S2. To cover both b and c, BS2 needs to split
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Algorithm 4: Traffic Balancing UE Association (TUA) [6]

Input: Clusters L from CIC, UE set N

Output: Clusters L̄ with UEs uniquely associated

1 L̄ ← L \ R. X =
⋃
S∈R S

2 Compute the initial cost vector c of |M| BSs by (40)

3 while X 6= N do

4 Select a cluster S∗ = argmax
S∈L̄

∑
n∈S bn and S∗ \ X 6= ∅

5 Select a UE n∗ = argmax
n∈S∗\X

‖hn‖2

6 Let {S̄1, . . . , S̄j, . . . , S̄J | n∗ ∈ S̄j ∈ L̄} denote the clusters in L̄ that include n∗

7 For 1 ≤ j ≤ J , Sj = {n∗}
⋃
{n|n ∈ S̄j, ‖hn‖2 > ‖hn∗‖2}

8 if n∗ is an overlapping UE, i.e. J > 1 then

9 For 1 ≤ j ≤ J , compute the temporary cost of the BS of Sj,

c′m(Sj) = max(cm(Sj), t(Sj))

10 j∗ = argmin
1≤j≤J

c′m(Sj)

11 For any S ∈ L̄, S 6= Sj∗ , S ← S \ Sj∗

12 Update BS m(Sj∗) cost cm(Sj∗ ) = c′m(Sj∗ )

13 X = X
⋃
Sj∗

14 else

15 If t(S1) > cm(S1), let cm(S1) = t(S1)

16 X = X
⋃
S1

more power; hence, the transmission time of S4 increases further, which results in a higher

network transmission time compared with option 1. Hence TUA selects option 1.
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Figure 16. UE association by TUA, (a) a 2-BS network, (b) before processing UE b, (c)
associating b to S1, (d) associating b to S2 [6].

3.4.3 BEAMFORMING AND UE TRAFFIC SCHEDULING (BAS)

Given the UE clusters obtained by TUA, the BAS algorithm schedules which clusters

into a time slot. Then it computes the BS beamforming weight vectors, and allocates power

for each beam. Through scheduling as much traffic as possible into every slot, BAS aims to

reduce the number of time slots required to deliver traffic of all UEs subject to the BS power

budget, UE SINR requirement, and UE traffic loads.

Beamforming Weight Vector

Similar to the previous chapter, we use the linearly constrained minimum variance

(LCMV) scheme to compute beamforming weight vectors [56, p.513]. LCMV is able to sup-

press the power response toward the directions of other beams if there is a sufficient angular

space from those beams. To achieve a complex gain g∗ in the UE direction θ, the weight vec-

tor w needs to satisfy a(θ)Hw = g∗, where a(θ) is given in (21). Let Aθ = [a(θ1), . . . , a(θk)]

be the constraint matrix for total k UEs of a BS, with AoAs θ = {θ1, . . . , θk}. Let f be the

k-dimension single column response vector of the k UEs. The covariance matrix of the k

UE signals R = E
[
hhH

]
= L|α|2

PL
AθA

H
θ , where h is a matrix consisted of the k UE channel

vectors given in (20), L is the number of antenna elements of a BS, PL is the path loss vector
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of the k UEs, and α is the complex gain vector of the k UE signals. The LCMV beamforming

to minimize the transmit power is formulated as

min{wHRw} subject to AH
θ w = f . (41)

The closed-form solution of (41) is obtained as follows using the Lagrange multiplier

method

w = R−1Aθ(A
H
θ R−1Aθ)

−1f . (42)

By choosing an appropriate weight vector for each UE cluster, it is possible to approxi-

mately eliminate or significantly reduce the interference between beams, as long as they are

sufficiently separated in the angular space. The time complexity of the LCMV beamforming

in (42) is Θ(max(kL2, L2.373)) assuming L ≥ k, where L2.373 is the matrix inverse time for

an L× L matrix.

Interference Controlled Power Allocation

While BAS schedules a cluster into a time slot, it may select to cover only a subset of

UEs in the cluster. Let F denote the list of UE sets to be scheduled in a slot. Let Fi

denote the ith set in F . Let mi denote the corresponding BS for set Fi. For the UE sets Fi

(1 ≤ i ≤ |F|), we construct the constraint matrix Aθ, the corresponding covariance matrix

R, and the response vector f . Then we use (42) to compute |F| number of normalized weight

vectors w1, . . . ,w|F|, where wi is for set Fi. By (27), the transmit power allocated to the

beam to cover set Fi is computed as

pi = maxn∈Fi

(
(In + σ2)γo
|hHmi,n

wi|2

)
, ∀ 1 ≤ i ≤ |F| (43)
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where hmi,n is the channel vector between BS mi and UE n, γo is the required minimum

SINR threshold for all UEs, and σ2 is the noise power in the AWGN channel at the UE.

The power computed by (43) is the minimum power to ensure the SINR threshold for

UEs. If a BS has more power than needed for its beams, the following theorem states that

the residual power can be allocated to the beams in proportion to their minimum power,

while achieving higher SINRs for all UEs.

Theorem 3. Let pm denote the power vector of the beams of BS m computed by (43) and

pmi denote the power of beam < m, i >. Let γn,m,i(pm) denote the SINR of UE n in beam

< m, i > under power allocation pm. If
∑

i pmi < po, the power allocation p′m = po∑
i pmi

pm

meets the BS power constraint po, while the UE n SINR γn,m,i(p
′
m) is larger than the original

SINR γn,m,i(pm).

Proof. The total transmit power of the BS under p′m is
∑

i
po∑
i pmi

pmi = po∑
i pmi

∑
i pmi = po.

Hence it meets the power budget requirement. With BS power vector pm, the SINR at UE

n is given by (24) as γn,m,i(pm) = pmi|hH
mnwmi|2

In,m,i+σ2 , where σ2 is the noise power and In,m,i is the

sum of intra-BS and inter-BS interference at UE n given by (25). As the CIC algorithm

ensures that AoAs of UEs in different clusters of the same BS are spatially separated by

at least 1/L, where L is the number of antennas at BS, the constraint in (41) guarantees

negligible interference between UEs in different clusters of the same BS. That means the

normalized intra-BS interference at UE n from other beams 〈m, j〉, j 6= i, is approximately

0, i.e.,

∑
j∈Km\i

|hHmnwmj|2 =
∑

j∈Km\i

L|αmn|2

PLmn
|aH(θmn)wmj|2 ≈ 0,

where αmn is the signal path complex gain, PLmn is the path loss, and aH(θmn) is the

BS m antenna response vector toward the direction of UE n. For clusters from different

BSs, the inter-BS interference becomes very high if the angular spatial separation between

those clusters is small. Line 12 of Algorithm 5 (to be discussed) effectively prevents such
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significantly interfering beams of different BSs from being scheduled in the same slot. This

technically reduces the inter-BS interference to close to zero. Thus, the normalized inter-BS

interference at UE n from beams 〈k, l〉, k 6= m, is

∑
k∈M\m

∑
l∈Kk

L|αkn|2

PLkn
|aH(θkn)wkl|2︸ ︷︷ ︸

≈0

≈ 0.

As a result, increasing power in one beam does not cause significant interference to

another beam since both interference I ′n,m,i with power p′m and interference In,m,i with power

pm are very small. If
∑

i pmi < po, we have p′mi > pmi by the allocation of residual power.

Therefore, we have

γn,m,i(p
′
m) =

p′mi|hHmnwmi|2

I ′n,m,i + σ2
≈ p′mi|hHmnwmi|2

σ2
>
pmi|hHmnwmi|2

σ2
≈ pmi|hHmnwmi|2

In,m,i + σ2
= γn,m,i(pm).

�

UE Scheduling

The UE scheduling has two components. First, for each BS, it selects which UE clusters

for transmission in the current slot, subject to the BS power budget and number of beam-

formers. We use a greedy scheme to select clusters with larger traffic loads. Second, for a

selected cluster for the current slot, depending on its total traffic load, the UE scheduling

may select all UEs in the cluster, or a subset of UEs, or even a single UE for transmission.

We introduce two propositions for selecting UEs in a cluster.

Proposition 1. Let ∆b denote the traffic load that can be delivered with SINR γo in a slot

duration. If the total traffic load of a cluster S is less than ∆b, i.e.,
∑

n∈S bn ≤ ∆b, the

transmission time for cluster S can be reduced by (|S| − 1) slots if a single beam is formed

to cover all UEs in S rather than one beam per UE (multi-user beamforming).

Proof. If one beam per UE is formed for all UEs simultaneously, the interference between
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beams is typically very high as those UEs are very close to each other. Hence, the minimum

SINR cannot be met. To avoid interference, each UE has to be scheduled into a different

slot. Note that even though the transmission of the traffic of one UE needs only a fraction

of slot duration, it is usually not possible to form a beam for another UE in the middle of a

slot [69]. This results in total |S| slots. In contrast, if one beam is formed to cover all UEs in

the cluster, the total traffic can be transmitted in one slot, reducing the transmission time

by (|S| − 1) slots. �

Proposition 2. For a cluster S, if maxn∈S bn < ∆b and
∑

n∈S bn > ∆b, i.e., the traffic load

of any single UE is smaller than ∆b but the total load is larger than ∆b, then a subset of

UEs S ′ = argmin
s⊆S

(
[∆b −

∑
n∈s bn] ≥ 0

)
can be scheduled into the current slot. This helps to

reduce the cluster S transmission time.

Proof. The total UE traffic load of S ′ is not larger than ∆b. Hence by Proposition 1, the

traffic transmission to all UEs in S ′ can be completed in one slot, by forming one beam to

cover all UEs. Moreover, scheduling S ′ into the current slot minimizes the remaining traffic

of cluster S to be transmitted in future slots. If such scheduling is repeatedly applied on

cluster S, the total cluster transmission time is effectively reduced. �

Algorithm 5 illustrates the BAS algorithm. In each iteration, BAS chooses a cluster s∗

with the maximum traffic load (line 3). It then schedules UEs of s∗ to the current slot as

follows. First, if the maximum-load UE n∗ has a traffic load larger than ∆b, then schedule

only UE n∗ in the current slot (line 7). Otherwise, if the total traffic load of all UEs in s∗ is

larger than ∆b, then by Proposition 2, schedule a subset s′ ⊂ s∗ to this slot (line 9). Lastly,

if the total traffic load of all UEs in s∗ is smaller than ∆b, then by Proposition 1, schedule

the entire s∗ to this slot. The beamforming weight vectors and transmit power vectors for

all clusters in F are then computed (line 11). Next, every BS is checked and enforced for the

power budget constraint (line 12). This is a critical step to prevent significant interference

between beams from different BSs to transmit in the same slot, as such interference likely
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Algorithm 5: Beamforming and UE Traffic Scheduling [6]

Input: UE clusters L̄, UE traffic b[t] at slot t

Output: Remaining UE traffic b[t+1] for slot t+ 1

1 F ← {∅}. L = L̄ ∪R

2 while L 6= ∅ do

3 s∗ = argmax
s

(∑
n∈s,s∈L b

[t]
n

)
4 if # of clusters in F for the BS of s∗ < K then

5 Let s′ = s∗ and select a UE in s′ with max. traffic, i.e., n∗ = argmax
n∈s′

(
b

[t]
n

)
6 if b

[t]
n∗ ≥ ∆b then

7 s′ = {n∗}

8 else if
∑

n∈s∗ b
[t]
n > ∆b and b

[t]
n∗ < ∆b then

9 s′ = argmin
s⊆s∗

(
[∆b −

∑
n∈s b

[t]
n ] ≥ 0

)
10 F ← F ∪ {s′} // Add s′ to F

11 Compute w1, . . . ,w|F| and p =
[
p1, . . . , p|F|

]
by (42) and (43)

12 if sum of power of all beams of any BS is greater than po then

13 F ← F \ s′

14 L ← L \ s∗

15 For all m ∈M, update pm as pm = po∑
i pmi

pm by Theorem 3

16 Compute the SINR γ
[t]
n , bandwidth w

[t]
n , and remaining traffic b

[t+1]
n for each UE in

the clusters in F by (24), (37), and (31)

17 Remove a UE from N and all clusters in L̄ ∪R if its traffic delivery can be finished

in this slot
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Table 6. System parameters in BOOST

Parameter Value

System operating frequency 73 GHz

Number of BSs 4

Number of UEs 100

Network dimension [300× 300] m2

Number of antennas in ULA 64

Adjacent antenna spacing ∆d in ULA λ/2

Number of beamformers K per BS 10

System bandwidth (FDD duplex mode) 400 MHz

Time slot duration ∆t 0.125 ms

LOS path loss exponent η 2.1

Minimum required SINR γo at UE 15 dB

Noise power spectral density No −174 dBm/Hz

Noise figure NF at UE receiver 6 dB

results in violation of the BS power constraint. The power allocation in line 15 follows

Theorem 3. The BAS algorithm continues for the next time slot, until the traffic of all UEs

is scheduled.

3.5 PERFORMANCE EVALUATION

We evaluate the performance of BOOST comparatively with three state-of-the-art UE

scheduling schemes in the literature: MUBFP [37], Chord-Dis [62], and SUS [60]. Those

three schemes use multiuser beamforming, where one beam is formed for each UE. Table 2

lists system parameters used in simulations. We assume BSs have a ULA antenna with 64

elements. UEs are equipped with a single antenna. The sample networks are in a [300×300]
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Figure 17. Transmission time vs. BS power budget under 3 UE distributions: (a) spread,
(b) grouped, and (c) dense [6]

m2 outdoor area, with 4 BSs and 100 active UEs. The BS positions are evenly distributed in

the network. The UEs are distributed in three patterns: spread, grouped, and dense. With

the spread UE distribution, UE locations are randomly generated in the network area. With

the grouped UE distribution, 20 UE groups are created first and then each of the 100 UEs

randomly selects a group. Each BS is assigned with 5 groups. Note that this assignment

of groups to BSs is for the sole purpose of generating UE locations, irrelevant to the actual

UE association. For each group, we randomly generate a 20 or 25-degree sector with regard

to its BS. For each UE, we generate a random angle within the sector of its group, and
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Table 7. Transmission time improvement of BOOST

UE Pattern vs. MUBFP vs. Chord-Dis vs. SUS
Spread 29% 29% 24%

Grouped 41% 32% 28%
Dense 40% 30% 28%

a random distance between 10 m and 106 m from the BS of its group. The dense UE

distribution is similar to the grouped UE distribution, but with 3 UE groups for each BS.

In the experiments, the LCMV beamforming scheme is used. The reference signal received

power based UE association is used in MUBFP, Chord-Dis, and SUS. The OFDMA scheme

is assumed for spectrum sharing among UEs in a beam. The time slot duration is assumed to

be 0.125 ms, which is one of the slot durations defined in 3GPP [70]. The required minimum

SINR γo is set to 15 dB which is needed to use high rate modulation schemes [69]. The traffic

load of each UE is randomly generated between 12.5 KB and 250 KB, following a uniform

distribution. Note that this is not the UE data rate, but the traffic amount of the UE. As

the UE location from the UE discovery may be inaccurate, we use a Gaussian distribution

with a zero mean and 0.5 m standard deviation to model the error on the UE X and Y

coordinates from the UE discovery [71]. The location error of UEs, i.e., the distance between

the actual UE location and the reported location by the UE discovery, ranges from 0.1 m

to 1.6 m. The experiment results using larger standard deviation values have similar trends

and are omitted due to space limitations.

Fig. 17 illustrates the average network transmission time as a function of the BS power

budget po, for 50 experiments using different seeds for UE location generation. Each data

point indicates the network transmission time to complete delivery of the traffic loads of all

UEs. Overall, BOOST significantly outperforms other schemes, thanks to its effective UE

clustering, association, and scheduling, which altogether make it possible to form beams with

significantly reduced interference. Moreover, BOOST not only achieves lower transmission
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Figure 18. Sum rate vs. BS power budget under 3 UE distributions: (a) spread, (b)
grouped, and (c) dense [6]

time but also a better confidence interval. The 95% confidence interval of the transmis-

sion time from the 50 experiments is 0.15, 0.54, 0.33, and 0.53 ms for BOOST, MUBFP,

Chord-Dis, and SUS, respectively. From the ‘spread’ to the ‘dense’ UE distribution, the

transmission time increases. This is because the interference between beams increases. Thus

a smaller number of beams can be scheduled in each slot to maintain the minimum SINR

requirement at UEs. Table 7 illustrates the percentage decrease of the average transmission

time of BOOST, with respect to MUBFP, Chord-Dis, and SUS. Averaging over the three

UE distributions, BOOST reduces transmission time by 37%, 30%, and 26%, respectively.
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Table 8. Sum rate increase of BOOST

UE Pattern vs. MUBFP vs. Chord-Dis vs. SUS

Spread 36% 41% 29%
Grouped 67% 46% 36%

Dense 65% 41% 36%

Next we evaluate the sum rate of UEs with regard to the BS power budget, as plotted

in Fig. 18. BOOST clearly outperforms other schemes on the sum rate as well. Table 8

illustrates the percentage increase of the average sum rate of BOOST compared with other

schemes. On average, BOOST achieves 56%, 43%, and 34% gain, respectively. From the

‘spread’ to the ‘dense’ UE distribution, the sum rate decreases in all schemes, due to the

higher interference as discussed above.

The above discussions are for the average performance among 50 experiments under each

UE distribution. Next we examine how dispersed the results of individual experiments are.

Figs. 19 and 20 plot the probability density distribution (PDF) of the network transmission

time and UE SINR, respectively, obtained from 50 experiments under each UE distribution,

given the BS power budget po = 35 dBm. The PDF results with different values of simulation

parameters such as the power budget, minimum SINR, and slot duration exhibit similar

trends and are omitted. As shown in Fig. 19, BOOST has a smaller spread on both the

transmission time and SINR. This indicates that BOOST can smartly adapt to different

networks to achieve good performance in all scenarios. In contrast, other schemes cannot

adapt to different networks well, i.e., their performance is good for some networks, but poor

for others. In particular, the spread of UE SINR for BOOST is much smaller than other

schemes. This demonstrates the advantage of BOOST–it effectively guarantees a required

SINR for each UE while wisely providing just enough SINR to all UEs, through smartly

clustering and associating UEs to different clusters/beams. In contrast, other schemes result

in highly dispersed SINR for different UEs.
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Figure 19. PDF of transmission time under (a) spread, (b) grouped, and (c) dense UE
distribution, with po = 35 dBm [6]

Lastly, we evaluate the UE fairness on the transmission time using the Jain index, which

ranges from 0 (worst fairness) to 1 (best fairness). It is at the maximum when the transmis-

sion time for all UEs is the same regardless of their traffic loads and locations in the network.

Fig. 21 plots the mean and 95% confidence interval of the Jain index from all experiments.

BOOST clearly outperforms other schemes, on both the Jain index value and the confidence

interval. Furthermore, the fairness of BOOST is similar among all three UE distributions.

Together with the much better confidence interval in all three cases, again, this indicates

that BOOST can smartly adapt to different networks and achieves similar fairness. On the
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Figure 20. PDF of UE SINR under (a) spread, (b) grouped, and (c) dense UE distribution,
with power budget po = 35 dBm [6]

other hand, other schemes have significantly worse confidence intervals as well as dispersed

fairness across three UE distributions, which means the fairness has a large variance across

different networks.

3.6 CHAPTER SUMMARY

In this chapter, we have discussed a novel clustering Based dOwnlink UE assOciation,

Scheduling, beamforming with power allocaTion (BOOST) framework for mmWave networks,

with the objective to reduce the network transmission time for given UE traffic loads, subject
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Figure 21. Average Jain index of transmission times with 95% confidence interval under
(a) spread, (b) grouped, and (c) dense UE distribution, with power budget po = 35 dBm [6]

to the BS power budget, minimum UE SINR requirement, and number of beamformers.

The BOOST framework includes three components, UE clustering, UE association, and

beamforming, power allocation and UE scheduling. We have compared BOOST with three

state-of-the-art schemes on the transmission time, sum rate, SINR, and UE fairness. The

results indicate that overall BOOST significantly outperforms them. On average, BOOST

reduces transmission time by 37%, 30%, and 26%, and achieves a sum rate gain of 56%,

43%, and 34%, respectively, compared with the other three schemes.
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CHAPTER 4

SUBDIVIDED BAND SPECTRUM SENSING

mmWave communications and dynamic spectrum sharing have widely been recognized

as two important features to realize the full benefits of envisioned 5G and beyond. Spectrum

sensing is the foundation of a dynamic spectrum sharing system that is usually implemented

in the cognitive radio domain. In cognitive radio, SUs constantly sense the spectrum en-

vironment and dynamically adapt the transreception parameters to access the partially or

completely unused spectrum without causing harmful interference to PU.

In this chapter, we first briefly discuss some major spectrum sensing methods to detect

PU signals on a single band. These spectrum sensing methods typically are difficult to use

for sub-divided band spectrum sensing, which aims to identify all idle sub-bands in a sub-

divided band. Hence, we further introduce sub-divided band spectrum sensing methods,

which are mostly based on wavelet transform, such as the wavelet transform multi-scale

summation (WTMS), wavelet transform multi-scale product (WTMP), wavelet transform

modulus maxima (WTMM), etc. The objective of sub-divided band spectrum sensing is

to find the edges of the signals, i.e., the start and the end frequencies of each signal, on

the frequency domain. Hence, wideband spectrum sensing is also called edge detection.

The existing wideband spectrum sensing methods often have difficulty to accurately detect

both the presence of the signals and the locations of the signal edges, in particular for real

world signals. As such, as the last part of this chapter, we present a new wavelet based

wideband spectrum sensing algorithm, called the exponentially moving average based multi-

scale summation (EMAMS), to effectively address this issue.
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4.1 BACKGROUND AND RELATED WORKS

Spectrum sensing plays an important role in cognitive radio techniques which is vital in

5G to enable spectrum sharing. There are two main objectives for spectrum sensing. First,

SUs perform spectrum sensing to identify the unused PU frequency bands for opportunistic

spectrum access for SU communications. Second, SUs need to detect the presence of PU

signals on a frequency band so that the PU transmission is protected from the interference

of SU communications. For a sub-divided licensed band, such as an unlicensed WiFi band,

existing works face a challenge to detect the presence of PU. To detect which sub-bands are

active or signals with unpredictable start and end frequencies, usually, the received signal in

the time domain is transformed into the frequency domain to get the power spectral density

(PSD) of the signal, e.g., through the (Fast Fourier Transform) FFT. The PSD signal in

the frequency domain gives information about the start and end frequencies for each signal,

which are called the edges of a signal. However, the PSD of sub-band signals can be highly

irregular and unpredictable in the real world. Hence, detecting the edges of such signals in

real time requires a precise and efficient edge detection algorithm. The WTMP is a widely

used edge detection algorithm. It utilizes the adjacent scale multiplication to detect the edges

in PSD signals. When the wavelet transform scale increases, the edges of the PSD signal

get more visible as the noise is reduced. However, the edge locations also shift. Therefore,

WTMP often cannot accurately detect the true start and end frequency of a signal.

Here we devise an exponential moving average based multi-scale sum (EMAMS) spectrum

sensing approach to decompose the PSD signal and extract the edges of signals, by assigning

exponentially changing weights to the different scales of the wavelet transform. Compared

with WTMP, the EMAMS approach effectively avoids the edge shifting issue, and successfully

detects the active sub-bands in a licensed band so that SUs can utilize the unused sub-bands.

This would dramatically reduce the band switching of SUs, since SUs do not have to evacuate

from a licensed band when there is a PU signal on the band. Only if all sub-bands are used
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by PUs, SUs need to switch to a different band.

In recent literature, several spectrum sensing works based on wavelet transform can be

found. In [72], the authors discussed the WTMS based signal edge detection method for

wide band or sub-divided band. It detects the sharp variation points, called singularities,

of synthetic cosine shaped PSD signal in the entire wide band to classify the sub-bands as

occupied or vacant. The authors in [73] studied the DWPT based energy detection algorithm

under uncertain noise. The algorithm estimates the received signal noise level by performing

DWPT and then uses energy detection over the wide band to detect the sub-band signal.

They claimed that DWPT is better than wavelet transform (WT) for estimating the un-

certain noise power, because it can decompose both low and high frequency components

simultaneously in every scale. In [74], the authors studied a wavelet transform based wide-

band spectrum sensing method using the Hilbert transform. They examined the rectangular

shape PSD signal with additive noise for edge detection. In [75], the authors discussed

an edge detection based spectrum sensing technique by using the phase-field segmentation.

They claimed that their sensing performance results can be improved by properly setting

the phase-field segmentation parameters.

The existing works detect the edges of synthetic PSD signals with regular shapes, such

as cosine or rectangle, by using the wavelet transform. However, in practice, the real world

signals have a highly irregular shape in the frequency domain. Moreover, real world noise

is also unpredictable. Hence, it requires a robust and precise edge detection scheme to

accurately detect edges of the signals in the frequency domain. Our objective is to detect

the sub-channel signals within a licensed band using edge detection. As such, we develop

the exponential moving average based multiscale sum approach.

4.2 PROBLEM STATEMENT AND SYSTEM MODEL

Fig.22 illustrates the PSD power of a received signal along the frequency domain at a

specific time. It can be seen that there are three signals on this band. Note that there may
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Figure 22. Illustration of three active PSD signals in a licensed band: Three active signals
present in the licensed band at any specific time. Edges are the start and end frequencies of
each active signal represented by D and E, respectively [7].

be multiple signals sitting on several consecutive sub-bands, so that those signals may appear

like one single signal. Each signal has a start frequency and an end frequency, which are called

edges of the signal. The objective of edge detection of spectrum sensing is to detect the start

and the end frequency of each signal. The PSD shape of a real world signal is significantly

different from a regular cosine or rectangular form that has been assumed in most existing

studies of edge detection. Therefore, precise localization of the edges of a signal is a great

challenge in designing an edge detection scheme. The DWT signal decomposition has a good

localization property at the low scale, but performance degrades when the scale increases.

This is because the edges of a signal are dislocated in the frequency axis at higher DWT

scales. On the other hand, there may be many false edges due to random noise at lower DWT

scales. In this dissertation, we present a reliable and robust signal edge detection algorithm

which is able to preserve start and end frequency edges structures of the PSD signal even at

higher DWT scales; hence, performance of signal detection improves with good localization

accuracy.

The DWT will be used in our work for multi-scale time-frequency analysis to extract

the start and end frequencies of the PSD signal in a specific band. The wavelet transform
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can effectively separate the detail and the approximation of a signal. The detail is the high

frequency component of a signal, while the approximation is the low frequency component.

The edge features of the PSD signal are hidden in detail or high frequency component

parts of the DWT decomposed PSD signal. As mentioned earlier, PSD signal edges are

not clearly distinguishable from noise components at lower DWT scale detail parts. In

DWT successive scale decomposition, noise dilutes, but at the same time, the high frequency

component, i.e., edges of the PSD signal becomes imprecise. In the literature, there are some

edge detection techniques including WTMP, WTMS, wavelet transform multi-scale modulus

maxima (WTMM), etc. The performance of signal detection in real-world PSD signals with

these existing techniques is not satisfactory. More specifically, these edge detectors are prone

to miss the narrow width PSD signal and/or dislocate the corresponding edges frequency at

higher DWT scale decomposition.

Directly summing up or multiplying the transformed signals at adjacent scales, as adopted

in most existing works, results in unwanted noise in the edge features. Moreover, the edges

are shifted in the frequency domain, which leads to dislocated edges of a signal. The EMAMS

approach can effectively address this issue and detect the edges of signals. The basic idea is

that the recent DWT scale results obtain strict priority over the previous scale; hence, noise

is suppressed with a low weight at a low scale. The edges are detected in two stages. In

the first stage, the wavelet transform results are compared with a power threshold to detect

signals. In the second stage, some spurious edges are discarded by a bandwidth threshold.

4.3 EXPONENTIALLY AVERAGED MULTI-SCALE SUM

In this section, we first describe the main idea of wavelet transform. Then we describe the

EMAMS approach. Lastly, we discuss how to use an adaptive threshold to achieve excellent

performance in edge detection.
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4.3.1 WAVELET TRANSFORM

A function Ψ(x) is called a wavelet if its average is zero and has the orthogonal property

as shown in (1) and (2).

∫ ∞
−∞

Ψ(x)dx = 0, (44)

〈Ψl(x),Ψm(x)〉 = δl,m =

 1, if l = m

0, if l 6= m
(45)

where l,m are integers which represent two translated versions Ψl(x) and Ψm(x) of wavelet

function Ψ(x), and δl,m is the Kronecker delta. For signal edge detection, it is highly desir-

able that the wavelet basis function has the singularity property. We use the Daubechies

wavelet basis function with the 4th vanishing moment which has a good singularity property.

Vanishing moment is a criterion about how a function decays toward infinity. The wavelet

function Ψ(x) has v vanishing moments if

∫ ∞
−∞

xhΨ(x)dx = 0 for 0 ≤ h ≤ v. (46)

Without loss of generality, we consider signal edge detection in one licensed band that is

subdivided into Nc sub-bands by PUs. SUs do not need to have the subdivision knowledge

of the licensed band. Specifically, SUs do not need to know Nc. Let F [n] (1 ≤ n ≤ M)

denote the PSD of the combination of all signals on the licensed band at a specific time.

Here, we consider F as a discrete function, for efficient computation. That is, the PSD of the

licensed band is sampled with a frequency resolution ∇, with total M number of samples.

F [1] is the PSD at the first sample, and F [M ] is the PSD of the last sample. A continuous

PSD function over the licensed band can also be used, but it usually consumes significantly

longer computation time.
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For a given function f(t), the wavelet transform for high frequency decomposition of this

function means to apply a certain wavelet function to this function through a convolution,

denoted as Wsf(t), where s denotes the scale of the wavelet transform. Specifically, Wsf(t)

indicates the strength of a wavelet scaled by s at time t. The wavelet extends for only a

short period, so its effect is limited to the area immediately surrounding t. The wavelet

transform gives information for the strength of a signal in the frequency domain at a given

time [76]. However, the wavelet function is achieved from the scaling function which is used

for approximation decomposition of a signal.

The scaling and wavelet functions, denoted as Φ(t) and Ψ(t), are given as [77]

Φ(t) =
∞∑

i=−∞

hφ[i]
√

2Φ(2t− i), (47)

Ψ(t) =
∞∑

i=−∞

hψ[i]
√

2Φ(2t− i). (48)

The hφ[i] and hψ[i] are scaling and wavelet vectors, respectively. For instance, the discrete

time-domain representation of the scaling vector or low pass filter for the Daubechies wavelet

with 2nd vanishing moment is written as

hφ[i] =

√
2 +
√

6

8
δ[i] +

3
√

2 +
√

6

8
δ[i− 1] +

3
√

2−
√

6

8
δ[i− 2] +

√
2−
√

6

8
δ[i− 3]. (49)

Note that the minimum filter size is two times the vanishing moment. The corresponding

wavelet vector or high frequency filter hψ[i] is just a mirror filter of hφ[i]. The high frequency

filter hψ[i] is written as

hψ[i] = (−1)ihφ[1− i].

Let Ψj[n] denote the dyadic dilation of Daubechies wavelet basis function Ψ[n] in the
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discrete frequency domain. Then Ψj[n] is given as

Ψj[n] = 2−2jΨ[2−jn] (50)

The wavelet basis function Ψ[n] gets stretched with a factor of 2j in every successive DWT

signal decomposition. Since we are only interested in the detail part of the PSD signal in

the decomposition, the detail coefficient of the DWT decomposition for F [n] at dyadic scale

2j is defined as:

WjF [n] = F ∗Ψj[n], (51)

where ∗ denotes the convolution.

4.3.2 EDGE DETECTION BY EXPONENTIAL MOVING AVERAGE BASED

MULTI-SCALE SUMMATION (EMAMS)

Most existing work on signal edge detection uses the multi-scale product which multiplies

the wavelet transform results at two adjacent scales, WjF , and Wj+1F . Specifically, the

multi-scale product Pj[n] is computed as follows.

Pj[n] = WjF [n]Wj+1F [n] (52)

Then Pj[n] is used to detect the edges of signals (see [76] for more details). The multi-scale

product technique exploits the adjacent DWT scale correlation. However, this approach

has difficulty detecting a signal if its bandwidth is relatively narrow. For example, in our

experiments, we found that if the bandwidth of the signal is less than 5 MHz, then this

approach has difficulty detecting the signal, i.e., it cannot find the edges of the signal.

An alternative way of extracting the edge information is to sum up the DWT scale details.

Nevertheless, this approach also has a problem as it accumulates noise from the low scale to

the high scale, i.e., the summation of the DWT results at multiple scales contains a high level
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of noise mixed with the signal edge information. To address this issue, we need to develop

an approach to preserve the signal edge information while suppressing the noise from low

DWT scales.

Our developed approach utilizes an exponential moving average of DWT scale details. As

discussed earlier, on the detail of the higher scale, the noise is low; hence, it is easier to detect

the signal edges. Nevertheless, the location of the edges are also shifted in the frequency

domain. In other words, with the detail at the higher scale, we can detect the existence of

signals, but cannot find the accurate start and end frequencies of the signals, as they are

shifted. On the other hand, on the detail of the lower scale, the noise is high; hence, it is often

difficult to detect the existence of the signal. Nevertheless, once the existence of a signal is

detected, the edges of the signal can be often precisely detected, as the locations of the signal

edges are not shifted on the detail of the lower scale. Therefore, we devise the exponential

moving average based multi-scale summation approach to intelligently combine the details at

both lower and higher scales so that both the signal edge information is preserved while the

noise is low. The exponential moving average based multi-scale summation for the wavelet

transform of function F [n] is written as:

Sj+1[n] = (1− a)Sj[n] + aWj+1F [n], (53)

where a is a weighting factor. Eq. (53) represents the EMAMS results after j + 1 scales.

Specifically, the EMAMS results are as follows.
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S0[n] = 0

S1[n] = aW1F [n]

S2[n] = a(1− a)W1F [n] + aW2F [n]

S3[n] = a(1− a)2W1F [n] + a(1− a)W2F [n] + aW3F [n]

...

Sj[n] = a(1− a)j−1W1F [n] + a(1− a)j−2W2F [n] + · · ·+ aWjF [n]

Here, W1F [n],W2F [n], · · · ,WjF [n] are high frequency components of the PSD signal

decomposed by DWT. If the weighting factor a is large, the higher scale detail weighs more

than the lower scale detail. This exponential moving average based multi-scale summation

can mitigate the noise effect at lower scales while it assigns a larger weight to the higher scale

details. To further remove noise and the false signal edges, we design adaptive thresholds for

our approach to detect signal edges and be adaptable to the noise variance and bandwidth.

4.3.3 ADAPTIVE THRESHOLDS

The EMAMS approach uses two thresholds: the power threshold TP , and the bandwidth

threshold TB. The power threshold is used to detect if there is a signal on a frequency. The

bandwidth threshold is used to detect the edges of a signal after observing the existence

of a signal. We assume that the noise is additive white Gaussian noise (AWGN) with zero

mean and variance σ2. Let N0 denote the single sided power spectral density of AWGN

and B denote the total bandwidth of the interested frequency band in the unit of Hz. The

noise variance is then given as σ2 = N0B
2

. The power threshold for the EMAMS detector is

calculated as TP =
k
√

(σ2)

max(Sj+1[n])
where k is a constant with a typical value 20.

In general, there is a tradeoff to setting the value for TP . If TP is too high, some signals
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Algorithm 6: EMAMS Edge Detection [7]

Require: F [n] (1 ≤ n ≤M), j, TP , TB

Ensure: K,α(k), β(k) (1 ≤ k ≤ K)

1: K = 0

2: Compute Sj from F [n] using Eq. (53)

3: for n = 1 to M do

4: if Sj[n] ≥ TP then

5: E[n]← 1

6: else

7: E[n]← 0

8: end if

9: end for

10: {Add two auxiliary values to facilitate edge detection}
11: Let G[0] = 0 and G[M + 1] = 0

12: n = 1

13: while n ≤M do

14: if G[n] = 1 and G[n− 1] = 0 then

15: {Find a segment of consecutive 1’s in G }
16: Find m such that n ≤ m ≤M , G[n], G[n+ 1], . . . , G[m] are all equal to 1, and

G[m+ 1] = 0

17: if m− n+ 1 ≥ TB then

18: K = K + 1

19: α(K) = n

20: β(K) = m

21: n = m+ 1 {continue to scan from G[m+ 1]}
22: end if

23: end if

24: n = n+ 1

25: end while

may be missed. However, with a lower TP , some noise impulses may appear as signals. As

a matter of fact, we have conducted extensive analysis for spectrum measurement data and

found that many noise impulses have even higher PSD magnitude than signals. Thus, those
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noise impulses will be treated as signals. Fortunately, from our observation of the spectrum

measurement data, the bandwidth of the noise impulses is very narrow, typically in the range

of a few kHz. This is much lower than the bandwidth of a signal. This observation motivates

us to introduce another threshold, the bandwidth threshold, to distinguish between signals

and noise impulses. Let λB denote the minimum bandwidth for any signal. We compute the

bandwidth threshold TB as follows.

TB =

⌈
λB
∇

⌉
(54)

where ∇ is the frequency resolution of the discrete PSD signal F [n]. For example, if F [n] is

the values sampled at every 30 Hz on the continuous PSD of a signal, then ∇ = 30.

4.3.4 EMAMS ALGORITHM

Algorithm 6 describes how to detect the start and end frequencies of signals using the

EMAMS method. The input is the PSD function F [n], the number of scales j, the power and

bandwidth thresholds TP and TB. The output is the number of signals K, and the start and

end frequency indices α(k) and β(k) for each signal k. At first, it computes the multiscale

summation by the exponentially moving average, Sj. Then the algorithm uses the power

threshold TP to detect the existence of signals at each frequency, which is recorded in vector

G[n]. Next, the bandwidth threshold is utilized to filter out the spurious noise impulses, and

the start and end frequencies of real signals are recorded in α(k) and β(k).

EMAMS is a reliable and robust signal edge detection algorithm which is able to preserve

the start and end frequency edge structure of the PSD function even at higher DWT scales.

Hence, the performance of signal detection improves. Compared with WTMP, EMAMS

effectively avoids the edge shifting issue, and more accurately detects the active sub-bands

in a licensed band.



91

Figure 23. The PSD signal measured at ODU Kaufman Building in the 2.4 GHz ISM
band [7]

4.4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the EMAMS signal detection approach.

We compare the performance of EMAMS with the performance of the widely used WTMP

edge detection (e.g., see [76]). Two performance metrics, false alarm and true detection, will

be used for the performance evaluation.

In the first experiment, we measure the PSD signal of 2.4 GHz industrial, scientific, and

medical radio (ISM) band (2.4 GHz to 2.5 GHz) using a spectrum analyzer in the Kaufman

Engineering building at Old Dominion University (ODU). A total of 6000 time samples
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Figure 24. One sample of the measured PSD signal at a specific time [7]

are measured with a 1 second interval. Fig. 23 shows the measured PSD signal in three

dimensions, frequency, time, and PSD, which indicates the spectrum usage in the WiFi

band that varies in both time and frequency domains. The received signal attenuation is 10

dB. The PSD signal reference is −50 dBm. The total measured bandwidth B is 100 MHz,

from 2.4 GHz to 2.5 GHz.

Fig. 24 illustrates one sample from the measured PSD signal at a specific time. It can

be seen that there are four signals and those signals do not have the ideal sinusoidal or

rectangular shapes. In fact, signals usually have large fluctuations in the PSD magnitude.

There are also noise impulses that have high a PSD magnitude but narrow bandwidth.

Next we decompose the PSD sample in Fig. 24 to get the details at multiple scales using

Eq. (51), as illustrated in Fig. 25. We have shown the details of the first 4 scales from the

decomposition. In the first scale decomposition, the features of signals are not clear since

there is a high level of noise. When the scale increases, the details of the signal become

apparent and the noise power remarkably attenuates. However, it is difficult to accurately

detect the edges of PSD signals from the higher detail decomposition since the edges shift
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Figure 25. The detail at multiple scales resulted from the decomposition of the PSD sample
in Fig. 24 using Eq. 51 [7]

in the frequency axis. In fact, in the 4th scale detail, it seems that there are 5 signals.

Now we evaluate the EMAMS edge detection and compare it with the widely used WTMP

edge detection. Fig. 26 depicts the signal edge detection results using 5 scales, by the

EMAMS and WTMP approaches, respectively.

The single sided noise PSD N0 is −90 dBm. The threshold constant k is 20, and the

weight constant a is 0.5. The measured PSD signal frequency resolution ∇ is 217 kHz. The

λB is set as 868 kHz. There are four signals in this sample PSD signal. Both EMAMS and

WTMP have detected these four signals and the edges of signals are shown by vertical solid

lines. However, WTMP often cannot give accurate locations for the signal edges. Fig. 27 is

the zoomed-in version of Fig. 26 in the 2.465 GHz to 2.485 GHz frequency range. There are

2 signals in this frequency range. However, the edges detected by WTMP have a frequency
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Figure 26. Signal edge detection for the PSD sample in Fig. 24 by EMAMS and WTMP:
(a) signal edges detected by EMAMS after 5th scale DWT decomposition; (b) signal edges
detected by WTMP after 5th scale decomposition [7].
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Figure 27. Zoomed-in version of Fig. 26 in the 2.465 GHz to 2.485 GHz frequency range:
(a) signal edges detected by EMAMS, and (b) signal edges detected by WTMP [7].

localization problem, i.e., WTMP fails to extract the correct frequency location of signal.

Specifically, the right edge detected by WTMP for the first signal in Fig. 27(b) is not at

the correct location. It actually sits on the left of the true right edge. In addition, WTMP

found three edges for the second signal which makes it difficult to determine the correct left
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Figure 28. (a) Number of signals in 31 PSD signal samples versus the number of detected
signals by EMAMS and WTMP, (b) False detection for the PSD samples in (a) [7]

and right edges, as any of them could be a false edge.

Next we examine the number of true detections and false alarms. The number of true

detections denotes the number of signals that has not been correctly detected, while the

number of false alarms denotes the number of ‘false’ signals that has been detected, but are
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Figure 29. (a) Number of signals in the second data set, versus the number of detected
signals, (b) False detection for the PSD samples in (a) [7]

actually not true signals. Fig. 28(a) illustrates the number of signals of 31 PSD signal sam-

ples, and the corresponding number of detected signals by EMAMS and WTMP, respectively.

To present the results better, we have sorted the sample indices in ascending order of the

number of occupied signals in each PSD signal sample. We can see that the EMAMS edge
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detection approach outperforms the WTMP approach in existing works. EMAMS misses 6

signals while WTMP misses 13 signals.

Fig. 28(b) plots the number of false alarms for the same PSD signal samples in Fig. 28(a).

The figure shows that with regard to the false alarm, EMAMS significantly outperforms

WTMP. There are 60 false alarms with WTMP, while there are only 6 false alarms with

EMAMS. Figs. 29(a) and 29(b) plot the number of true detections and false alarms for a

different set of 31 samples measured at a different date. For this PSD sample set, EMAMS

misses 8 signals while WTMP misses 14 signals. With regard to false alarms, there are 46

false alarms with WTMP, while EMAMS has only 5 false alarms. In conclusion, the EMAMS

edge detection approach significantly outperforms the WTMP approach.

4.5 CHAPTER SUMMARY

In this chapter, we first outline the spectrum sensing problem on a wide band or a sub-

divided licensed band to identify all idle sub-bands, which offers greater potential for SUs to

exploit the spectrum. Then we discuss the major techniques for wideband spectrum sensing,

the wavelet transform based spectrum sensing methods. The wideband spectrum sensing is

reduced to detecting edges of signals on the frequency domains, i.e., finding the start and end

frequencies of each signal. Hence, the wavelet transform based wideband spectrum sensing

is also called edge detection. Lastly, we present a new edge detection algorithm based

on exponentially moving averaged multi-scale summation, called EMAMS. The designed

algorithm intelligently summates the details of multiple scales after the wavelet transform

of the power spectral density measure. This preserves the edge information of signals while

suppressing the noise so that both the existence of the signals and corresponding edges can be

accurately detected. The simulation results indicate that EMAMS outperforms the existing

wavelet transform based edge detection algorithms.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In previous chapters, we have studied beamforming based topology control and scheduling

in mmWave networks and spectrum sensing for dynamic spectrum sharing in 5G. In this

chapter, we will present a summary of the contributions of the dissertation. We will also

discuss future research directions and ideas.

5.1 CONCLUSIONS

The envisioned 5G network will address the phenomenal traffic demand from emerging

intelligent wireless devices and a large number of internet applications. The key objective in

5G is to utilize the massive spectrum in mmWave frequency to drastically increase system

capacity and UE data rate. The path loss in the mmWave is significant which can be fully

compensated for by using an antenna array beamforming technique. However, topology

control, UE association and scheduling are challenging with beamforming. This dissertation

developed several novel techniques and algorithms to solve these challenges. We also devised

a novel spectrum sensing technique for subdivided licensed band which can be used for

spectrum sharing in 5G. The main contributions discussed in the dissertation are listed

below.

• A novel topology control framework has been designed for multi-BSs mmWave net-

works, called Beamforming Oriented tOpology coNtrol (BOON). The objective of

BOON is to reduce the total transmit power of all BSs while forming beams to cover

UEs with a minimum SINR. BOON includes four major components: UE clustering, set

construction, set covering, and beamforming. Here, we have developed a beamforming

oriented UE clustering algorithm to group UEs, with the objective to reduce transmit
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power and interference between beams. We have devised a set construction scheme

and an interference aware set covering algorithm that addresses the unique challenges

in beamforming to smartly associate UEs to beams and BSs, with the objective to

reduce interference between beams. We have designed an approach to form beams for

all BSs with the objective to reduce the total transmit power and inter-BS interference,

subject to coverage of all UEs and meeting a minimum quality of service. At last, we

have compared BOON with the multi-user and multicast beamforming based topology

control schemes, and a state-of-the-art scheme JSDM on transmit power, sum rate,

SINR, and computation complexity. The results indicate that overall BOON signifi-

cantly outperforms them. For instance, BOON uses only 10%, 32% and 25% transmit

power on average, of the other three schemes, respectively, to achieve the same sum

rate in the network.

• A novel framework, called clustering Based dOwnlink UE assOciation, Scheduling,

beamforming with power allocaTion (BOOST), has been discussed for UE association

and scheduling. The main objective of BOOST is to reduce the downlink network trans-

mission time, subject to the BS power budget, number of beamformers per BS, user

traffic loads, and the quality of service requirement at UEs. The BOOST framework

has the following three unique schemes: (1) a UE clustering scheme that capitalizes

on unique features of beamforming to group UEs into clusters to reduce interference

for beamforming, (2) a novel UE association scheme that effectively reduces interfer-

ence and balances UE traffic loads between BSs to decrease the transmission time, and

(3) a scheme for joint beamforming, power allocation, and UE scheduling to reduce

transmission time, subject to the BS power budget, UEs traffic loads, and the mini-

mum SINR requirement at UEs. We compare BOOST with three state-of-the-art user

scheduling schemes. On average, BOOST reduces the transmission time by 37%, 30%,

and 26%, and achieves a sum rate gain of 56%, 43%, and 34%, respectively.



100

• For sub-divided band spectrum sensing, a novel technique has been developed through

wavelet transform, called exponentially moving average based multi-scale summation

(EMAMS). EMAMS can be used in 5G as a potential technique to detect unused

subbands in the PU spectrum. EMAMS does not depend on the number of used

sub-bands and adaptively detects active signals in a spectrum band measured by a

spectrum analyzer. Here, we have developed an exponentially averaged multi-scale

sum algorithm to effectively detect the active sub-bands in a licensed band so that

SUs can utilize the residual spectrum in the licensed band to significantly increase

spectrum utilization. Further, instead of using synthetic PU signals such as raised

cosine, rectangular pulse, sinusoidal, we have used the measured real world signals by

a spectrum analyzer for performance evaluation. The simulation results indicate that

EMAMS outperforms the existing wavelet transform based edge detection algorithms.

5.2 FUTURE WORKS

In this section, future research directions will be discussed. We have identified several

research areas that can be explored in the future to improve the results presented in this

dissertation. The following lists some possible directions for future directions.

• In the BOON and BOOST framework discussed in Chapter 2 and Chapter 3, we

assumed line of sight (LOS) signal propagation and formulated the channel between

multi-antenna BS and single-antenna UE. One of the research directions is to explore

the possibility of incorporating (non-line of sight) NLOS paths and consider the multi-

antenna system at both BS and UE. In this case, a UE can also form beam(s) to

increase received signal gain and cancel interference from other beams by directing

nulls toward them. Moreover, it is possible to extend the study on how to efficiently

adjust the UE clustering, set covering, and beamforming in BOON to avoid re-running

the entire process for a small number of UEs moving out of the original beams. Such
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improvements will strengthen BOON to efficiently address the UE mobility.

• In the BOOST framework presented in Chapter 3, it is assumed that each UE has fixed

downlink traffic in the queue of BS. Another possible research direction could be the

case when UE traffic is a continued arrival process, instead of fixed size traffic. In this

case, we need to study how to efficiently adjust the UE association, beamforming, and

scheduling when UE’s new traffic needs to be considered for scheduling if it finishes

in the current slot. It is also possible to extend the study considering the case when

each UE forms multiple beams to receive coordinated spatial streams from different

BSs simultaneously, similar to the carrier aggregation technique in LTE-advance. Such

improvements will strengthen BOOST.

• Both BOON and BOOST frameworks are designed for low UE mobility use case sce-

narios where channel characteristics remain unchanged for several seconds (coherence

time). It is still an open challenge to design topology control and UE scheduling tech-

niques for high UE mobility mmWave networks. In this case, coherence time will be

very small; thus, we need to re-run the algorithms frequently which results in a large

system overload. A robust and fast beam tracking technique will be required to adjust

the UE association and scheduling. Such improvements will strengthen our frameworks

and improve the results presented in the dissertation.
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