2015

Spectroscopy of Li-9 (Lambda) by Electroproduction

G. M. Urciuoli

D. Hayes
Old Dominion University

C. E. Hyde
Old Dominion University

H. F. Ibrahim
Old Dominion University

P. E. Ulmer
Old Dominion University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs

Part of the Nuclear Commons

Repository Citation
https://digitalcommons.odu.edu/physics_fac_pubs/152

Original Publication Citation

This Article is brought to you for free and open access by the Physics at ODU Digital Commons. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Authors

This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/physics_fac_pubs/152
Spectroscopy of 9Li by electroproduction

(Jefferson Lab Hall A Collaboration)

1Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Piazzale A. Moro 2, I-00185 Rome, Italy
2Istituto Nazionale di Fisica Nucleare, Sezione di Bari and University of Bari, I-70126 Bari, Italy
3Florida International University, Miami, Florida 33199, USA
4California State University, Los Angeles, Los Angeles, California 90032, USA
5Université Blaise Pascal/IN2P3, F-63177 Aubière, France
6Department of Applied Physics, University of Sharjah, UAE
7Universität Mainz, Mainz, Germany
8University of Maryland, College Park, Maryland 20742, USA
9Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
10Nuclear Physics Institute, Řež near Prague, Czech Republic
11Temple University, Philadelphia, Pennsylvania 19122, USA
12Istituto Nazionale di Fisica Nucleare, Sezione di Roma, gruppo collegato Sanità, and Istituto Superiore di Sanità, I-00161 Rome, Italy
13University of Virginia, Charlottesville, Virginia 22904, USA
14Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
15Old Dominion University, Norfolk, Virginia 23508, USA
16College of William and Mary, Williamsburg, Virginia 23187, USA
17Physics Department, Cairo University, Giza 12613, Egypt
18Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, I-00146 Rome, Italy
19Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA
20University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
21Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
22Brookhaven National Laboratory, Upton, New York 11973, USA
23Tohoku University, Sendai, 980-8578, Japan
24CEA Saclay, DAPNIA/SPH, F-91191 Gef-sur-Yvette, France
25School of Physics and Astronomy, Sackler Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
26Norfolk State University, Norfolk, Virginia 23504, USA
27Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
28Florida State University, Tallahassee, Florida 32306, USA
29University of Houston, Houston, Texas 77204, USA
30St. Mary’s University, Halifax, Nova Scotia, Canada
31Yerevan Physics Institute, Yerevan, Armenia
32Dept. of Physics, University of Ljubljana, Slovenia
33Kent State University, Kent, Ohio 44242, USA
34Yamagata University, Yamagata 990-8560, Japan
35LPSC, Université Joseph Fourier, CNRS/IN2P3, INPG, F-38026 Grenoble, France

(Received 6 February 2014; revised manuscript received 4 November 2014; published 4 March 2015)

Background: In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei provides information on the details of the effective hyperon-nucleon interaction.

Purpose: To obtain a high-resolution binding-energy spectrum for the 9Be($e,e'K^+$)9Li reaction.

*Deceased.
Method: Electroproduction of the hypernucleus $^9\Lambda Li$ has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a 9Be target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magnets and a ring imaging Cherenkov detector were added to the Hall A standard equipment.

Results: The cross section to low-lying states of $^9\Lambda Li$ is concentrated within 3 MeV of the ground state and can be fit with four peaks. The positions of the doublets agree with theory while a disagreement could exist with respect to the relative strengths of the peaks in the doublets. The Λ separation energy, B_{Λ}, of 8.36 ± 0.08 (stat.) MeV was measured, in agreement with an earlier experiment.

I. INTRODUCTION

Hypernuclei provide a unique laboratory for the investigation of hadronic many-body systems with strangeness -1 and for the study of new aspects of the strong and weak interactions in nuclei. Because direct measurements of hyperon-nucleon (YN) scattering at low energies are prohibited by the short hyperon lifetime, hypernuclear spectra are the only way to study this interaction. Thus, a unique opportunity to obtain this information is provided by observing the fine structure study this interaction. Thus, a unique opportunity to obtain doublet spacings [2]. However, the method is limited to the allowed precise level assignments and the measurement of

In the past, hypernuclear spectroscopy has been carried out with limited resolution only by means of hadronic reactions, such as the strangeness exchange and associated production reactions, that use meson beams and in which a neutron is produced in electroproduction on 9Be. Because direct measurements of hyperon-nucleon (YN) scattering at low energies are prohibited by the short hyperon lifetime, hypernuclear spectra are the only way to study this interaction. Thus, a unique opportunity to obtain this information is provided by observing the fine structure of hypernuclei caused by the specific spin dependence of the hyperon-nucleon interaction. Such characteristics are realized in practice only in Λ hypernuclei and are hardly seen in other hypernuclei. Thus the spectroscopy of Λ hypernuclei has a unique value in strangeness nuclear physics.

In the present, hypernuclear spectroscopy has been carried out with limited resolution only by means of hadronic reactions, such as the strangeness exchange and associated production reactions, that use meson beams and in which a neutron is produced in electroproduction on 9Be. Because direct measurements of hyperon-nucleon (YN) scattering at low energies are prohibited by the short hyperon lifetime, hypernuclear spectra are the only way to study this interaction. Thus, a unique opportunity to obtain this information is provided by observing the fine structure of hypernuclei caused by the specific spin dependence of the hyperon-nucleon interaction. Such characteristics are realized in practice only in Λ hypernuclei and are hardly seen in other hypernuclei. Thus the spectroscopy of Λ hypernuclei has a unique value in strangeness nuclear physics.

In the past, hypernuclear spectroscopy has been carried out with limited resolution only by means of hadronic reactions, such as the strangeness exchange and associated production reactions, that use meson beams and in which a neutron is produced in electroproduction on 9Be. Because direct measurements of hyperon-nucleon (YN) scattering at low energies are prohibited by the short hyperon lifetime, hypernuclear spectra are the only way to study this interaction. Thus, a unique opportunity to obtain this information is provided by observing the fine structure of hypernuclei caused by the specific spin dependence of the hyperon-nucleon interaction. Such characteristics are realized in practice only in Λ hypernuclei and are hardly seen in other hypernuclei. Thus the spectroscopy of Λ hypernuclei has a unique value in strangeness nuclear physics.

In the past, hypernuclear spectroscopy has been carried out with limited resolution only by means of hadronic reactions, such as the strangeness exchange and associated production reactions, that use meson beams and in which a neutron is produced in electroproduction on 9Be. Because direct measurements of hyperon-nucleon (YN) scattering at low energies are prohibited by the short hyperon lifetime, hypernuclear spectra are the only way to study this interaction. Thus, a unique opportunity to obtain this information is provided by observing the fine structure of hypernuclei caused by the specific spin dependence of the hyperon-nucleon interaction. Such characteristics are realized in practice only in Λ hypernuclei and are hardly seen in other hypernuclei. Thus the spectroscopy of Λ hypernuclei has a unique value in strangeness nuclear physics.

In the past, hypernuclear spectroscopy has been carried out with limited resolution only by means of hadronic reactions, such as the strangeness exchange and associated production reactions, that use meson beams and in which a neutron is produced in electroproduction on 9Be. Because direct measurements of hyperon-nucleon (YN) scattering at low energies are prohibited by the short hyperon lifetime, hypernuclear spectra are the only way to study this interaction. Thus, a unique opportunity to obtain this information is provided by observing the fine structure of hypernuclei caused by the specific spin dependence of the hyperon-nucleon interaction. Such characteristics are realized in practice only in Λ hypernuclei and are hardly seen in other hypernuclei. Thus the spectroscopy of Λ hypernuclei has a unique value in strangeness nuclear physics.

II. THEORY

As in the previous experiments [4,5], the data are interpreted by using shell-model calculations that include both Λ and Σ hyperons in 0π states coupled to p-shell core wave functions optimized to fit a wide range of p-shell properties [11,12]. The $(e,e'K^+)$ reaction is described with distorted-wave impulse approximation (DWIA) calculations [10] that use the Saclay-Lyon (SLA) model [13] for the elementary $p(e,e'K^+)$ reaction. The SLA model was successfully applied in the analysis of electroproduction experiments on ^{12}C and ^{16}O targets [4,5], which suggests that this model provides a reasonable prediction for the elementary cross section at very small K^+ production angles and at the center-of-mass energy of this experiment.

In a shell-model approach, one can define five $pN\Sigma s$ two-body matrix elements for a hypernucleus with an s-level Λ coupled to a p-shell nuclear core. These can be put into a one-to-one correspondence with the parameters (radial integrals) V, Δ, Σ, Δ_N, and T associated with the average central, spin-spin, Λ-spin-orbit, nucleon-spin-orbit, and tensor components of the in-medium (effective) ΛN interaction [14], given by

$$V_{\Lambda N} = V + \Delta s_N \cdot s_N + 3N_1N_1 \cdot s_N + S_N + T S_{12},$$

where s denotes the spin and I denotes the angular momentum. The constant V simply contributes nV to the binding energy of every p^4s_N configuration and therefore does not affect the spectrum, only the overall binding energy B_{Λ}. The value of $V = -1.23$ MeV used is very close to the value that reproduces the experimental B_{Λ} value (Table 2 of Ref. [12]). In the weak-coupling limit (quite good because the ΛN interaction for s_N is a spatial monopole), only operators that depend on the spin of the Λ particle (Δ, Σ, T) contribute to doublet spacings while S_N contributes to the spacing between doublets. We use values (in MeV)

$$\Delta = 0.43, \quad \Sigma = -0.015, \quad \Delta = -0.39, \quad T = 0.03,$$

that fit the spectrum of the five bound levels of $^9\Lambda Li$ determined from $(\pi^+,K^+\gamma)$ and $(K^-,\pi^-\gamma)$ experiments. The main parameters used for the corresponding $\Lambda N-\Sigma N$ interaction are $V = 1.45$ MeV and $\Delta = 3.04$ MeV, making a total of six YN parameters that affect the spectrum.

The calculated spectrum for $^9\Lambda Li$ is shown in Fig. 1, together with the core states for 8Li (the first four are known and the
TABLE I. Contributions to energy-level spacings (in keV) from the interaction used in the present work are listed in the sixth and seventh columns.

\[
\begin{array}{cccccccc}
J\text{ }^1_{\pi} & J\text{ }^1_{\pi} & \Delta \Sigma & \Delta & S_\Lambda & S_\Sigma & T \\
\hline
2^+ - 2^+ & 116 & 531 & -18 & -18 & -10 \\
1^+ - 1^+ & 79 & -229 & 13 & 11 & 91 \\
3^+ - 3^+ & 90 & 494 & -34 & -15 & -51 \\
2^+ - 3^+ & 63 & 441 & -12 & 56 & -42 \\
1^+ - 2^+ & -6 & 8 & -7 & -77 & -22 \\
\end{array}
\]

TABLE II. The \(C^2S\) values for proton removal from \(^9\)Be. The \(C^2S\) values for proton removal from \(^8\)Li in Fig. 1 are in good agreement with the values from \((d,^{3}\text{He})\) reactions \([16,17]\) (see Table II). From a \((t,\alpha)\) study \([18]\), larger relative values were extracted for the excited 1\(^+\) and 3\(^+\) states of \(^8\)Li. The \(C^2S\) values for the interaction used in the present work are listed in Fig. 1. The values for all the \(p\)-shell interactions derived in connection with these hypernuclear studies are similar and in agreement with those for the Cohen and Kurath \((6-16)\) and \((8-16)\) interactions \([19]\). The values for the other two Cohen and Kurath interactions put more strength in the second 1\(^+\) state than in the first [as noted in Ref. \([19]\)] for the \((8-16)\) interaction. The reason for this is that the 1\(^+\) states are rather pure, \(L = 1, S = 1\), rather than with strongly mixed \(S = 0\) and \(S = 1\) components, as happens for the other interactions. Strength for the 2\(^+\) state would be immediately noticeable in electroproduction because the \(^8\)Li states based on the 2\(^+\) state lie close to the neutron threshold at 3.73 MeV and should therefore be narrow.

The states in the first-excited doublet are predicted to be nearly degenerate, in part because of the contributions from \(\Lambda-\Sigma\) coupling (see Table I). In addition, the 3/2\(^+\) state contains a 35% admixture of a \(\Lambda\) coupled to the \(^8\)Li ground state which lowers the 3/2\(^+\) state by another \(35\) keV. Thus, if the shell-model predictions are reasonable, five peaks should, in principle, be resolved in \(^9\)Li below the particle-decay threshold by an electroproduction experiment with good energy resolution.

III. EXPERIMENT

Hall A at JLab is well suited to perform \((e,e'K^+)\) experiments. Scattered electrons are detected in the High-Resolution Spectrometer (HRS) electron arm while coincident kaons are detected in the HRS hadron arm \([20]\). The disadvantage of smaller electromagnetic cross sections is compensated for by the high-current and high-duty-cycle properties of the beam. Throughout the experiment, the same equipment has been used in very similar kinematical conditions on C, Be, and H\(_2\)O targets. The use of a pair of septum magnets permitted particle
In the present experiment a 92.5 mg/cm² solid Be target with a beam current of ∼100 μA was used at a beam energy of 3775 MeV. Both HRSs were physically positioned at an angle of 12.5°, but the pair of septum magnets yielded an effective angle for both the scattered electron and the hadron detection of ∼6°.

Figure 2 shows the observed binding-energy spectrum of ⁹Li. The broad peak centered at a small positive binding energy corresponds to the ⁹Li states in Fig. 1. Corresponding to the lowest three states of ⁹Li. The rise in cross section starting at 0 MeV corresponds to states with the Λ in a p orbit and, because these states are unbound, the states are broad and no structure is observed. As in Refs. [4,5], the background was determined from the binding-energy spectrum obtained with a coincidence time shifted with respect to the coincidence time between secondary electrons and produced kaons and was rather flat for values of binding energy ranging from 15 to 0 MeV. Its value was calculated as the average of the counts in the range 9.95 MeV ≤ binding energy ≤ 18.35 MeV.

For the calculation of the absolute cross section, we computed the following quantities: detector efficiencies, detector dead time, detector phase space, kaon survival in HRS, integrated luminosity. The calculations of efficiencies for the standard HRS package are well established and implemented in the Hall A analysis software. Therefore, those procedures were used for that purpose. For the RICH and aerogel Cherenkov detectors, we used one detector to determine the efficiency of the other one in the following way: we selected a pure sample of kaons by means of aerogel detectors and we measured the fraction of those kaons detected by the rich and vice versa. The detector dead time was measured by the Hall A data acquisition system. The detector phase space was calculated by using the SMC code [29]. Kaon survival was calculated considering the average path length inside the HRS arm. The integrated luminosity was calculated by means of beam current monitor devices. Then, the cross section was computed according to

\[\frac{d \sigma}{d \Omega_e d \Omega_K d E_{\phi}} = \frac{N}{K_{sur} \epsilon \Omega_L \Omega_T}, \]

where \(N \) is the event number in the experiment, \(\epsilon \) is the global detector efficiency, \(\Omega_L \) is the detector live time, \(P \) is the detector phase space, \(K_{sur} \) is the kaon survival in the HRS, \(L \) is the integrated luminosity, \(d \Omega_{e} \) and \(d \Omega_{K} \) are the solid angular ranges of the detected scattered electrons and produced kaons respectively, and \(d E_{\phi} \) is the energy range of the detected scattered electrons.

Figure 3 shows the background-subtracted experimental binding-energy spectrum, together with Monte Carlo simulations [29] (red curve) and the same simulations with the radiative effects turned off (blue curve). The error bars in the data are statistical. The simulations used the five peak positions and widths listed as configuration \(\alpha \) in Appendix A. The red curve fits the experimental data well with a corresponding \(\chi^2/\text{ndf} \) value of 36.69/35. Several other peak configurations, with different numbers, heights, positions, and widths of the peaks, have been found to reproduce the red curve. All of those are also expected to generate the same spectrum (the red curve of Fig. 3) when radiative corrections are turned off, since radiative corrections are independent of the assumptions regarding the number and type of the peaks that build up the experimental spectrum. In practice, the simulated data do not overlap perfectly with the experimental data, which produces small systematic errors on the radiatively corrected spectrum.

The unfolding for radiative corrections has been done bin by bin. The content of each bin of the radiatively corrected spectrum was obtained by multiplying the corresponding bin of the experimental spectrum by the ratio of the blue and red curves of Fig. 3 for that bin. In order to avoid possible removals of background enhancements or to artificially null the spectrum in the regions where the blue curve is zero, the ratio between the blue and red curves of Fig. 3 was performed after summing the background to each of them. The background value was then subtracted from the result of the product of
the ratio with the corresponding bin. The result is shown in Fig. 4 which presents the radiatively unfolded experimental data (points with statistical errors) compared to a theoretical prediction (thin green line). The band at the bottom of the histogram represents the systematic errors in the radiative unfolding. The theoretical histogram was obtained using the procedure described in Sec. II assuming an energy resolution of 730 keV full width at half maximum (FWHM). Once radiative corrections have been applied, the binding-energy-spectrum resolution is small enough to clearly show a three-peak structure in the spectrum. A more detailed description of the procedure employed to determine the radiatively unfolded spectrum of Fig. 4 is given in Appendix A.

IV. RESULTS

When analyzing the experimental spectrum in Fig. 4 one has to consider that, as explained in Sec. II, the spectrum is made up by doublets and hence that each of the three peaks that appears in it is actually produced by the convolution of two “elementary” peaks. Because the peaks of the spectrum are radiatively corrected, we assumed that all the elementary peaks were well described by Gaussian distributions. Considering the energy resolution to be constant over the whole spectrum range, we assumed in addition that the standard deviations of these Gaussians were equal. Although six Gaussian elementary peaks are expected, the possible existence of nearly degenerate doublets, or of doublets where one peak overwhelmingly dominates the other, could reduce the number of elementary Gaussian peaks needed for the fit procedure following the Occam razor principle. The experimental spectrum in Fig. 4 was fit in order to determine the positions, the heights, and the common standard deviation of the elementary peaks. The best fit was obtained with four Gaussian elementary peaks with a $\chi^2/\text{n.d.f.}$ value of 41.82/41. The energy resolution extracted from the fit, 730 keV (FWHM), is consistent with the value obtained in our previous analysis [30] and is in agreement with the measurements on 12B [4] and 16N [5]. The excitation energies (E_x) and cross sections extracted from the four-peak fit are reported in Table III where they are compared with the results calculated using the procedure described in Sec. II for the six lowest states shown in Fig. 1. A fit with five Gaussian peaks produced the same result as shown in Table III with a $\chi^2/\text{n.d.f}$ value of 41.82/39 and a common FWHM for the peaks of 730 keV. The first three peaks had the same heights and positions of the corresponding peaks in Table III while the fourth and fifth peaks had equal positions, coincident with the binding energy of the fourth peak in Table III and heights whose sum was equal to the cross section value of the fourth peak in Table III. The result of the five-peak fit showed that only the ground-state doublet splitting could be detectable with the energy resolution of the experiment. A fit with three peaks also produced a result consistent with Table III, with a $\chi^2/\text{n.d.f}$ value of 47.52/43 and a common peak resolution extracted from the fit of 970 keV (FWHM). The first peak strength and position were equal (within one standard deviation) to the sum of the strengths and to the baricenter of the positions in the binding-energy spectrum of the first two states of Table III, respectively. The other two peaks had strengths and positions equal (within one standard deviation) to the third and fourth peaks in Table III, respectively. Figure 4 and Table III show that the observed peak positions agree quite well with the predictions of the standard model for p-shell hypernuclei. The first multiplet can be decomposed into two

Table III: Excitation energies, widths, and cross sections obtained by fitting the 9Be(e,e$'$K$^+$)9Li spectrum (first three columns), compared with theoretical predictions (last four columns). The last column gives the summed cross sections for the three doublets, to be compared with the experimental results in the third column.

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>Width (FWHM) (MeV)</th>
<th>Cross section [nb/(sr2GeV)]</th>
<th>E_x (MeV)</th>
<th>J^m</th>
<th>Cross section [nb/(sr2GeV)]</th>
<th>Cross section sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 ± 0.08</td>
<td>0.73 ± 0.06</td>
<td>0.59 ± 0.15</td>
<td>0.00</td>
<td>3/2$^+$</td>
<td>0.18</td>
<td>1.22</td>
</tr>
<tr>
<td>0.57 ± 0.12</td>
<td>0.73 ± 0.06</td>
<td>0.83 ± 0.13</td>
<td>0.59</td>
<td>5/2$^+$</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>1.47 ± 0.09</td>
<td>0.73 ± 0.06</td>
<td>0.79 ± 0.07</td>
<td>1.43</td>
<td>3/2$^+$</td>
<td>0.29</td>
<td>0.59</td>
</tr>
<tr>
<td>2.27 ± 0.09</td>
<td>0.73 ± 0.06</td>
<td>0.54 ± 0.06</td>
<td>1.45</td>
<td>1/2$^+$</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>2.27</td>
<td>5/2$^+$</td>
<td>0.17</td>
<td>2.74</td>
<td>7/2$^+$</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>2.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
peaks with a separation of 570 ± 120 keV that corresponds very well with the theoretical value of 590 keV. On the other hand, there is a systematic disagreement for the multiplet cross sections. In the first multiplet the 0.59 MeV (5/2−) peak does not dominate as theoretically predicted (see Table III). The second and third multiplets are each observed as a single peak. This is probably due to the very close excitation energies of their two constituents (see Table III), although for the third multiplet it might be due to the fact that the strength of the 2.27 MeV (5/2+) peak dominates over that of the other state.

In terms of the cross section, the spin-spin interaction (Δ) tends to deplete the spin-flip strength to the ground-state doublet and increase the non-spin-flip strength (see Fig. 1). The full reaction calculations include a number of spin-flip and non-spin-flip amplitudes, making the cross sections sensitive to the choice of the elementary reaction model. The SLA model was selected from the various isobar models because it gives the best results for the cross section. Spin-flip amplitudes are dominant in the SLA model which favors states in Fig. 1 with large ΔS = 1 structure amplitudes. It is then clear that a model with larger non-spin-flip amplitudes might increase the relative cross sections for the 3/2− and 5/2− states and provide better agreement with the results of the experimental analysis. The cross section depends very much on the proton removal spectroscopic factors for 9Be but, as is evident from Table II, theory agrees very well with the relative C2S values derived from the analysis of two (d,3He) studies, a reaction that has proven to be very reliable for such a comparison.

From the binding-energy spectrum of Fig. 4, a Λ separation energy ΒΛ of 8.36 ± 0.08 (stat.) ±0.08 (syst.) MeV was obtained. This value agrees very well with the value 8.50 ± 0.12 MeV from emulsion data [31]. To determine this value the missing-mass scale needed to be calibrated in terms of the cross section, the spin-spin interaction (Δ) that have statistically compatible values and the separation energy ΒΛ of 8.36 ± 0.08 (stat.) ±0.08 (syst.) MeV was obtained, in good agreement with the emulsion value.

ACKNOWLEDGMENTS

We want to remember F. Cusanno, who enthusiastically and greatly contributed to this paper before his untimely death. We acknowledge the Jefferson Lab Physics and Accelerator Division staff for the outstanding efforts that made this work possible. This material is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 by the Italian Istituto Nazionale di Fisica Nucleare, by the Grant Agency of the Czech Republic under Grant No. P203/12/2126, and by the French CEA and CNRS/IN2P3.

APPENDIX A: RADIATIVE CORRECTIONS

The procedure of unfolding radiative effects from an experimental spectrum does not depend on the choice of the peak structure used to fit the spectrum itself, providing that the fit describes the data reasonably well. This property is very useful when the peak structure underlying an experimental spectrum is unknown as in Fig. 3, where several peak structures fit the experimental spectrum quite well and it is not obvious which of these structures is “the right one.” To demonstrate the independence of radiative corrections from the energy spectrum structure, we define Exp(E) as the function that describes the experimental spectrum. Exp(E′dE is proportional to the number of events whose corresponding energy is in the interval E ± dE. We define S(E′) as the function that describes the experimental spectrum in the absence of radiative effects. Lastly, we define R(E′ − E) as the probability that an event whose corresponding energy in the absence of radiative effects would have been E′ has, because of the radiative effects, an energy equal to E. Exp(E), S(E′), and R(E′ − E) are related by

\[\text{Exp}(E)\,dE = dE \int dE′ R(E′ − E) S(E′). \] (A1)

For the sake of simplicity, we suppose in the following that S(E′) is equal to a sum of Gaussian peaks

\[S(E′) = \sum_{k=1}^{N} A_k e^{-\frac{(E′ - E_k)^2}{2\sigma_k^2}}, \] (A2)

where \(A_k \), \(E_k \), and \(\sigma_k \) are the amplitude, central value, and standard deviation of the \(k \)th peak, respectively.

Let us assume two different peak configurations \(\alpha \) and \(\beta \), with \(N \) and \(M \) peaks, respectively, that produce two functions \(S^\alpha(E′) \) and \(S^\beta(E′) \) that are equal within the statistical error

\[S^\alpha(E′) = \sum_{k=1}^{N} A_k e^{-\frac{(E′ - E_k)^2}{2\sigma_k^2}} \approx \sum_{l=1}^{M} A_{\beta l} e^{-\frac{(E′ - E_{\beta l})^2}{2\sigma_{\beta l}^2}} = S^\beta(E′). \] (A3)

This implies that for every value of \(E′ \), \(S^\alpha(E′) \) and \(S^\beta(E′) \) have statistically compatible values and the \(\chi^2 \) test

\[\chi^2 = \sum_j \frac{(S_j^\alpha - S_j^\beta)^2}{S_j^\alpha}, \] (A4)
FIG. 5. (Color online) One peak of the excitation energy spectrum of the hypernucleus 9Li obtained through the reaction 9Be($e,e'K^+$$\gamma$)9Li as predicted by the Monte Carlo SIMC when including all effects (red curve) and “turning off” the radiative effects (blue curve). Arbitrary units. The position of the peak has been made acceptable within our confidence level. In Eq. (A5), $S_{\alpha,\beta}$ is the experimental spectrum, that is, $\text{Exp}(E)$.

Equation (A8) means that β produce two statistically compatible spectra $[\text{Exp}(E) = \text{Exp}(E')]$ then $S_{\alpha}(E') = S_{\beta}(E')$. In fact, defining

\[
\text{Exp}_i = \int_{E_{i-1}}^{E_i} dE \text{Exp}(E),
\]

and

\[
R_{ij} = \int_{E_{i-1}}^{E_i} dE \frac{R(E' - E)}{E' \in [E_{j-1}; E_j]},
\]

we have from Eq. (A1)

\[
\int_{E_{i-1}}^{E_i} dE \text{Exp}(E) = \int dE' S(E') \int_{E_{i-1}}^{E_i} dE R(E' - E).
\]

Equation (A8) means that

\[
\text{Exp}_i = \sum_j R_{ij} S_j.
\]

or, defining the arrays $\overrightarrow{\text{Exp}} \equiv \{\text{Exp}_1, \text{Exp}_2, \ldots, \text{Exp}_i, \ldots\}$ and $\overrightarrow{S} \equiv \{S_1, S_2, \ldots, S_j, \ldots\}$, and the matrix $R \equiv \{R_{11}, R_{12}, \ldots, R_{ij}, \ldots\}$

\[
\overrightarrow{\text{Exp}} = R \overrightarrow{S}.
\]

Defining at last R^{-1} as the inverse of the matrix R, we have

\[
\overrightarrow{S} = R^{-1} \overrightarrow{\text{Exp}}.
\]

From Eq. (A11) it follows that if $\text{Exp}^\alpha(E) = \text{Exp}^\beta(E)$ then $S^\alpha(E') = S^\beta(E')$. In fact,

\[
\text{Exp}^\alpha = \text{Exp}^\beta \Rightarrow 0 = R^{-1}(\overrightarrow{S^\alpha} - \overrightarrow{S^\beta})
\]

\[
\Rightarrow \overrightarrow{S} - \overrightarrow{S} \Rightarrow S^\alpha = S^\beta
\]

means that the spectrum with the radiative effects subtracted $[S'(E')]$ does not depend on the peak configurations α, β, \ldots as long as all the configurations considered $\text{Exp}^\alpha, \text{Exp}^\beta, \ldots$ fit the experimental spectrum with no radiative effects applied. It has to be noted that only two assumptions were made in deriving the conclusion quoted above:

(i) The single intervals $[E_{j-1}; E_j]$ are so small that R_{ij} defined by Eq. (A7) is constant in it.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Peak Positions MeV</th>
<th>Peak Amplitudes Arbitrary units</th>
<th>χ^2</th>
<th>35 ndf</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.00</td>
<td>2.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.64</td>
<td>3.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>1.32</td>
<td>1.90</td>
<td>36.685</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.71</td>
<td>2.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.35</td>
<td>2.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>0.00</td>
<td>2.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.58</td>
<td>3.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>1.54</td>
<td>3.38</td>
<td>38.247</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.37</td>
<td>2.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϵ</td>
<td>1.49</td>
<td>3.78</td>
<td>46.088</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.36</td>
<td>3.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>1.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.54</td>
<td>3.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.49</td>
<td>3.00</td>
<td>39.068</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.36</td>
<td>2.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>1.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.65</td>
<td>3.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.43</td>
<td>3.00</td>
<td>39.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.39</td>
<td>2.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(ii) The matrix R is invertible. This is usually the case considering that usually $R_{ii} \neq 0$ and $R_{ji} = 0$ if $R_{ij} \neq 0$ and $i \neq j$.

To determine the spectrum with the radiative effects "turned off" (blue curve of Fig. 3) the Monte Carlo SIMC was employed [29]. The red curve of Fig. 5 shows a single peak of the ^9Li excitation energy spectrum as predicted by SIMC for the reaction $^8\text{Be}(e,e'K^+)\Lambda^1\text{Li}$ when using the E94-107 experimental apparatus (position and amplitude of the peak are arbitrary). The blue curve of Fig. 5 shows the same peak when the radiative effects in the Monte Carlo SIMC are turned off. Several peak configurations, made up by a number of peaks like the one of Fig. 5 red curve, fit the experimental ^9Li excitation energy spectrum after being normalized to it. Table IV quotes five of them. Their corresponding excitation energy spectra (normalized to the experimental data) are shown in Fig. 6. For each configuration, Table IV quotes the position and relative amplitude of the peaks (here and in the following the amplitude of a peak is defined as the integral of the peak over the whole energy spectrum) and the value of the χ^2 test,

$$\chi^2 = \sum_i \frac{(C_i^{\text{conf}} - \text{Exp}_i)^2}{\text{Exp}_i},$$

(A13)

where conf = α, β, γ, δ, or ϵ. Exp_i is the number of counts in the ith interval of the experimental excitation energy spectrum, and C_i^{conf} is the number of counts in the same interval as predicted by the normalized peak configuration conf. The χ^2 tests were performed in the interval $-1.515 \text{ MeV} < \text{excitation energy} < 3.735 \text{ MeV}$, corresponding to 35 degrees of freedom.

Because of the properties of the subtraction of radiative effects from spectra quoted above, all the peak configurations α, β, γ, δ, and ϵ produce the same "radiatively corrected" spectrum. The spectra of Fig. 7 are obtained from Fig. 6 by turning off the radiative effects, that is replacing the “Fig. 5 red-curve-like” peaks with “Fig. 5 blue-curve-like” peaks, without changing positions and amplitudes of the peaks. All plots of Fig. 7 are quite equal, as confirmed by the χ^2 test,

$$\chi^2 = \sum_i \frac{(C_i^{\text{conf}_1} - C_i^{\text{conf}_2})^2}{C_i^{\text{conf}_1}},$$

(A14)

with conf$_1$ and conf$_2$ = α, β, γ, δ, or ϵ. In the worst case (conf$_1$ = α and conf$_2$ = γ) Eq. (A14) yielded a value of 28.387 with 40 degrees of freedom.

In Figs. 8(a), Figs. 7(a) (dashed line) and 7(c) (continuous line) are shown together. Because the configurations α and γ produce the two most different "radiatively corrected" SIMC results, the difference between the two curves plotted in Fig. 8(a) was chosen as the systematic error due to the ambiguity of the peak structure underlying the energy spectrum. As shown in Fig. 8(b) this error is small compared to the statistical error.

FIG. 6. ^9Li excitation energy spectra as predicted by the Monte Carlo SIMC for the peak configurations α, β, γ, δ, and ϵ quoted in Table IV [panels (a)–(e), respectively].
FIG. 7. $^9\Lambda$Li excitation energy spectra as predicted by the Monte Carlo SIMC for the peak configurations α, β, γ, δ, and ϵ quoted in Table IV, when the radiative effects are “turned off” [panels (a)–(e), respectively].

The method to obtain radiative corrected spectra described in this appendix was used, in the analysis of the $^9\Lambda$Li spectrum, because of the difficulties in establishing the peak structure underlying the experimental spectrum. Its reliability is based on Eq. (A11), that is mathematically correct, and on the fact that the uncertainties on the radiative corrected spectrum S derived by Eq. (A11) are small because they originate from the very small uncertainties on the experimental spectrum and on the function R^{-1} (“detector function” in the following). The uncertainties on the experimental spectrum \vec{S}_{Exp} in the E94-107 experiment are very small, because the hypernuclei were generated in point-like targets and the experimental binding energy spectra were obtained by the measurements of the momenta and the scattering angles of the secondary electrons and of the produced kaons in the reaction $Z(e,e'K^+)Z-1$. These momenta and scattering angles were determined very precisely by magnetic spectrometers (at the level of 10^{-4} for the momenta measured by HRS arms). Besides, the energy

FIG. 8. (a) The spectrum of the configuration α (dashed line) and of the configuration γ (continuous line) as predicted by the Monte Carlo SIMC when the radiative effects are turned off. (b) The statistical errors (error bars) and the systematic errors (full band) as a function of the excitation energy. The systematic error was defined as the difference between the dashed line and the continuous line of panel (a); see text for details.
losses of the secondary electrons and of the produced kaons inside the target and along the path to the detectors were small. Moreover, thanks to the excellent particle identification apparatus employed, the experimental spectrum of the experiment E94-107 was practically background free, the only small background coming from kaons from accidental coincidences. The uncertainties on the detector function R^{-1} in Eq. (A11) are very small, too, because of the simple geometries involved, the small uncertainties on the scattering angles of the detected particles and of the very-well-known QED cross sections. The uncertainties on the detector function R^{-1} in Eq. (A11) are very small, too, because of the simple geometries involved, the small uncertainties on the scattering angles of the detected particles and of the very-well-known QED cross sections. All these considerations make the method to obtain radiative corrected spectra described in this appendix even much more reliable of the formally similar and widely used method of determining neutron spectra from the proton-recoil energy measurement (see, for example, Refs. [32,33]) that is affected by sometimes non-negligible uncertainties on the measured recoil proton energy (and consequently on the experimental spectrum) and on the detector function that depends on the geometry (and on the connected problem of the determination of the scattering angle of the detected proton) and on the degree of knowledge of the differential n-p scattering cross section.

APPENDIX B: MISSING-MASS SCALE

In the Hall A experimental setup, scattered electrons and produced kaons of the reactions $^9\text{Be}(e,e'K^+)\gamma\text{Li}$ and $^{12}\text{C}(e,e'K^+)\gamma\text{B}$ were detected by the High-Resolution Spectrometer (HRS) electron arm and by the HRS hadron arm, respectively, while the primary electrons were provided by the CEBAF accelerator. The CEBAF accelerator electron beam energy and the central momenta and angles of the HRS electron and hadron arms were set according to the kinematics of the reactions and are taken as constant for the course of the experiment (their variations being of the order of 10^{-5} for the CEBAF electron-beam energy and the central momenta of the HRS electron and hadron arms, and practically zero for the spectrometer central angles). However, the actual values of the CEBAF accelerator electron-beam energy and of the central momenta and angles of the HRS electron and hadron arms, although constant, differ by unknown amounts from the nominal set values, and are referred to as “kinematical uncertainties.” Although small (the experimental uncertainties on the CEBAF accelerator electron-beam energy and on the spectrometer central momenta being of the order of 10^{-4} to 10^{-3} and those on the spectrometer central angles of the order of 10^{-5}), these kinematical uncertainties cause a global shift in the binding-energy spectrum that hence has to be calibrated. In fact, the binding energy is expressed as

$$E_{\text{bind}} = -\sqrt{(E_m)^2 - (P_m)^2} + M_{\text{residue}} + M_A,$$

(B1)

with

$$E_m = M_{\text{Target}} + E_e - E_{e'} - E_K,$$

(B2)

and

$$\vec{P}_m = \vec{P}_e - \vec{P}_{e'} - \vec{P}_K,$$

(B3)

where E_e, \vec{P}_e, $E_{e'}$, $\vec{P}_{e'}$, E_K, and \vec{P}_K are the energies and the momenta of the primary electron, of the scattered electron, and of the produced kaon respectively, M_A is the A mass, M_{Target} is the target mass, and M_{residue} is the mass of the residual nucleus, that is, of the nucleus with $A - 1$ nucleons and $Z - 1$ protons (where A is the number of nucleons and Z is the atomic number of the target, respectively).

The change in the binding-energy spectrum, ΔE_{bind}, caused by the kinematical uncertainties can be expressed by the formula

$$\Delta E_{\text{bind}} = \frac{\partial E_{\text{bind}}}{\partial E_e} \Delta E_e + \frac{\partial E_{\text{bind}}}{\partial P_e} \Delta P_e + \frac{\partial E_{\text{bind}}}{\partial P_{e'}} \Delta P_{e'} + \frac{\partial E_{\text{bind}}}{\partial P_K} \Delta P_K + \frac{\partial E_{\text{bind}}}{\partial \phi_{e'}} \Delta \phi_{e'} + \frac{\partial E_{\text{bind}}}{\partial \phi_K} \Delta \phi_K,$$

(B4)

where E_e is the CEBAF electron beam energy, $P_{e'}$ and P_K are the central momenta of HRS electron arm and HRS hadron arm, $\phi_{e'}$ and ϕ_K are the central angles (defined as the angles between the central axes and the CEBAF beam line) of HRS electron arm and HRS hadron arm, and ΔE_e, ΔP_e, $\Delta P_{e'}$, $\Delta \phi_{e'}$, and $\Delta \phi_K$ are the kinematical uncertainties, that is, the differences between the nominal and the actual values of the CEBAF electron beam energy and of the central momenta and the central angles of HRS electron and HRS hadron arms. \vec{P}_e, E_e, \vec{P}_e, E_K, and \vec{P}_K in Eqs. (B1)–(B3) are functions of E_e, P_e, $\phi_{e'}$, P_K, ϕ_K, and $\phi_{e'}$, as well as (with the exception of P_K) of the scattering variables. For example, the components normal to the beam line in the horizontal plane of P_e and P_K, respectively (called here $P_{e'}$ and P_K, respectively) are given by the expressions $P_{e'} = P_{e'}(1 + \delta_{e'}) \cos(\theta_{e'}) \sin(\phi_{e'} + \phi_{e'})$ and $P_K = P_K(1 + \delta_K) \cos(\theta_K) \sin(\phi_K + \phi_K)$, while $E_e = E_{e'}(1 + \delta_{e'})$ and $E_K = [(P_{e'}(1 + \delta_{e'}))^2 + m_K^2]^{1/2}$, where $\delta_{e'}(\delta_K)$ is the percentage difference between the momentum of the scattered electron (produced kaon) and the central momenta of the HRS electron arm (HRS hadron arm), $\phi_{e'}(\phi_K)$ is the angle between the electron (produced kaon) direction in the horizontal plane and $\phi_{e'}(\phi_K)$, $\theta_{e'}(\theta_K)$ are the angles between the electron (produced kaon) direction in the vertical plane and the CEBAF beam line, and m_K is the kaon mass.

Considering Eqs. (B1)–(B3), Eq. (B4) is equal to
For the kinematics of the experiment E94-107 (see the nominal values of E_e, E_e', and E_K at the end of this appendix) or if $M_{\text{Target}} \gg E_e, E_e', E_K$, the change in the binding-energy spectrum, ΔE_{bind}, caused by the kinematical uncertainties is

$$\Delta E_{\text{bind}} \sim S + T,$$

where

$$S = -\Delta E_e + \Delta P_{E,\text{Arm}} + \Delta P_{H,\text{Arm}},$$

and

$$T = M_{\text{Target}}^{-1} \frac{f}{2}.$$

The term S does not depend on the target mass and causes a global shift of the binding-energy spectrum without changing the peak shapes and relative positions, while the term T is equal to zero only when $0 = \Delta E_e = \Delta P_{E,\text{Arm}} = \Delta P_{H,\text{Arm}} = \Delta \phi_{E,\text{Arm}} = \Delta \phi_{H,\text{Arm}}$. When this condition is not fulfilled, the main effect of T on the binding-energy spectrum is to broaden the peaks because, in this case, depending on scattering variables through P_m, it produces nonzero, scattering-variable-dependent values of ΔE_{bind} and, as a consequence, an unphysical dependence on the scattering variables of the binding energy that broadens the peaks corresponding to the bound states. Because of the presence of the coefficient M_{Target}^{-1}, the effect of T on the position of the peaks is negligibly small.

The actual values of E_e, $P_{E,\text{Arm}}$, $P_{H,\text{Arm}}$, $\phi_{E,\text{Arm}}$, and $\phi_{H,\text{Arm}}$ are hence those for which $S = T = 0$ (which places a peak at its known position in the binding energy spectrum and minimizes its FWHM).

To determine the Λ binding energy of the hypernucleus $^9\Lambda$Li produced in the reaction $^9\text{Be}(e,e'K^+)\Lambda$Li, we took advantage of the fact that the experiment used the same setup employed for the study of the $^{12}\Lambda$B hypernucleus. The values of E_e, $P_{E,\text{Arm}}$, $P_{H,\text{Arm}}$, $\phi_{E,\text{Arm}}$, and $\phi_{H,\text{Arm}}$ were thus the same in the productions of both $^9\Lambda$Li and $^{12}\Lambda$B and were determined by positioning the $^{12}\Lambda$B ground state at its known position of 11.37 ± 0.06 MeV [31] in the binding-energy spectrum and minimizing its FWHM. When minimizing the $^{12}\Lambda$B ground-state FWHM, it has to be taken into account that this ground state is actually a doublet whose energy splitting, assumed to be equal to the $^{12}\Lambda$C ground-state energy splitting, is 161.6 ± 0.2 keV [34,35]. Minimizing the $^{12}\Lambda$B ground-state FWHM implies hence some sort of distortion because it artificially narrows the positions of the peaks making up the doublet. However, the $^{12}\Lambda$B ground-state doublet energy splitting is small enough with respect to the energy resolution of the experiment to make the approximation of assuming the $^{12}\Lambda$B ground state as a single peak still valid. No attempt to minimize the FWHM was performed on the other peaks of the $^{12}\Lambda$B binding-energy spectrum. Another possible source of distortion comes from the term T in Eq. (B7), which, although small because of the presence of the factor M_{Target}^{-1} in it [see Eq. (B9)], can potentially change the positions of the excited states with respect to each other and with respect to the ground state. During all the process of minimization of the kinematical uncertainties, the positions of the peaks of the $^{12}\Lambda$B energy spectrum as resulted from a fitting procedure were checked to ensure that the relative peak positions did not change within the errors (the error of a position peak being defined as the standard deviation resulting by the fitting procedure). It has to be stressed that the term S in the expression of ΔE_{bind} given by Eq. (B7) dominates because of the presence of the factor M_{Target}^{-1} in the term T [see Eq. (B9)]. The positioning of the $^{12}\Lambda$B ground state at its known value in the binding spectrum was thus mainly performed choosing a set of values ΔE_e, $\Delta P_{E,\text{Arm}}$, and $\Delta P_{H,\text{Arm}}$ that produced a value of S equal to the difference between the measured and the expected position of the $^{12}\Lambda$B ground state. The minimization of the $^{12}\Lambda$B ground-state peak FWHM produces only second-order effects on the position of the peaks in the binding-energy spectrum and was performed mainly to choose the right set of values ΔE_e, $\Delta P_{E,\text{Arm}}$, and $\Delta P_{H,\text{Arm}}$ among the 10^2 sets of values that produced the desired value of S. Things are much different for the reaction $p(e,e'K^+)\Lambda$, where the target mass is small and the minimization of the FWHM of the peak (which is a single peak) plays a role as important as the positioning of the peak in the binding-energy spectrum to its zero value.

The procedure described above resulted in the set of values $E_e = 3775.38$ MeV, $P_{E,\text{Arm}} = 1573.63$ MeV, $P_{H,\text{Arm}} = 1955.79$ MeV, $\phi_{E,\text{Arm}} = -5.940^\circ$, and $\phi_{H,\text{Arm}} = 6.050^\circ$. Replacing with these values the nominal ones $E_e = 3774.96$ MeV, $P_{E,\text{Arm}} = 1570$ MeV, $P_{H,\text{Arm}} = 1960$ MeV, $\phi_{E,\text{Arm}} = -5.873^\circ$, and $\phi_{H,\text{Arm}} = 6.131^\circ$ in the E_{bind} expression, a value of 8.36 ± 0.08 (stat.) MeV was obtained for the $^9\Lambda$Li ground state.

The statistical error of ± 0.08 MeV is the error in the position of the first peak in the four-Gaussian fit of the $^9\Lambda$Li binding-energy spectrum (see Fig. 4 and Table III). When evaluating the systematic error of the $^9\Lambda$Li binding energy, one has to consider that, as quoted above, the term S in ΔE_{bind} dominates the effects of the term T. When neglecting the energy loss in the target, this means that, if the single values of ΔE_e, $\Delta P_{E,\text{Arm}}$, and $\Delta P_{H,\text{Arm}}$ were wrong, the $^9\Lambda$Li binding energy would not be affected significantly as long as the sum S (and hence the position of the $^{12}\Lambda$B ground state) is correctly reproduced. The major source of systematic error is hence due to the energy loss in the target. The difference between the shifts of the ground-state position in the $^{12}\Lambda$B and $^9\Lambda$Li binding-energy spectra due to the energy loss in the targets of $^{12}\Lambda$C and $^9\Lambda$Be, respectively, was evaluated to be equal to 50 keV through the use of the Monte Carlo code SIMC [29]. This value was added in quadrature to the error of 60 keV quoted for the $^{12}\Lambda$B ground-state binding energy [31] to give a 80 keV systematic error on the $^9\Lambda$Li binding energy.