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Abstract 

Knowledge of the dielectric properties of biological cells plays an important role in numerical models 

aimed at understanding how high intensity ultrashort nanosecond electric pulses affect the plasma 

membrane and the membranes of intracellular organelles. To this end, using electrical impedance 

spectroscopy, the dielectric properties of isolated, neuroendocrine adrenal chromaffin cells were obtained. 

Measured impedance data of the cell suspension, acquired between 1 kHz and 20 MHz, were fit into a 

combination of constant phase element and Cole-Cole models from which the effect of electrode 

polarization was extracted. The dielectric spectrum of each cell suspension was fit into a Maxwell-Wagner 

mixture model and the Clausius-Mossotti factor was obtained. Lastly, to extract the cellular dielectric 

parameters, the cell dielectric data were fit into a granular cell model representative of a chromaffin cell, 

which was based on the inclusion of secretory granules in the cytoplasm. Chromaffin cell parameters 

determined from this study were the cell and secretory granule membrane specific capacitance (1.22 and 

7.10 µF/cm2, respectively), the cytoplasmic conductivity, which excludes and includes the effect of 

mailto:asabuncu@smu.edu
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intracellular membranous structures (1.14 and 0.49 S/m, respectively), and the secretory granule milieu 

conductivity (0.35 S/m). These measurements will be crucial for incorporating into numerical models aimed 

at understanding the differential poration effect of nanosecond electric pulses on chromaffin cell 

membranes.    

 

Keywords 

Dielectric spectroscopy; Impedance measurement; Chromaffin cells; Dielectric cell modeling; 

Permittivity; Conductivity; Membrane capacitance 
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1. Introduction 

Electric pulse exposure of biological cells causes electroporation of the plasma membrane, allowing 

molecules typically unable to penetrate cell membranes, such as DNA or peptides, to gain access to the cell 

interior (Chang and Reese, 1990). For electric pulses that are nanoseconds in duration, cell responses 

include both permeabilization of the plasma membrane (Vernier et al., 2006, Pakhomov et al., 2007a, 

Pakhomov et al., 2007b, Pakhomov et al., 2009) and permeabilization of the membranes of internal 

organelles such as the endoplasmic reticulum (Scarlett et al., 2009, Semenov et al., 2013a, Semenov et al., 

2013b.), the latter the result of the electric field penetrating into the cell interior (Schoenbach et al., 2001). 

Studies exploring this latter effect have been numerous, driven by the potential for nanosecond electric 

pulses to manipulate cellular function in new ways (Schoenbach et al., 2001). Included in this research 

effort is the use of numerical models to understand the electroporation effects of these pulses on cellular 

membranes (Gowrishankar et al., 2006; Smith and Weaver, 2008).  

 Numerical models take into account the specific electric field parameters of the pulse applied to a cell, 

such as pulse shape, pulse duration and electric field amplitude, as well as the dielectric properties of the 

cell membrane, cytoplasm and intracellular membranous structures. However, these dielectric properties 

are typically unknown for the particular cell type that is under experimental investigation. Thus, the values 

for the dielectric properties used in the models are usually those reported for other cell types (Gowrishankar 

et al., 2006; Smith and Weaver, 2008). One consequence is that numerical modeling predictions of 

permeabilization of membranes of relevant internal organelles, which typically include the nucleus, 

mitochondria and endoplasmic reticulum, may not agree with actual experimental findings. Our 

investigations of the effect of 5-ns, 5-6 MV/m pulses on isolated adrenal chromaffin cells, a well-established 

model of neurosecretion, provide such an example. We found that the experimentally determined electric 

field amplitude that is required to cause intracellular membrane permeabilization is at least twice as great 

as that for causing plasma membrane permeabilization. In contrast, our numerical modeling results 

predicted a similar electric field threshold for electroporation of chromaffin cell membranes regardless of 

their location, that is, intracellular versus the plasma membrane (Zaklit et. al., 2015; Zaklit et. al., 2017). 
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Clearly, knowledge of the actual dielectric properties of chromaffin cells should enable better agreement 

between cell modeling simulations and the experimental findings. This point takes on added significance 

since adrenal chromaffin cells contain, in addition to a nucleus, mitochondria and endoplasmic reticulum, 

a multitude of membrane-delineated secretory granules (7,000 to 41,400 per cell, with an average of 23,500 

granules per cell; (Plattner et al., 1997; Huh et al., 2005a; Huh et al., 2005b)  in their cytoplasm that could 

play a role in how the nanosecond-duration electric field affects internal organelle membranes.  

The goal of this work was to measure the dielectric properties of adrenal chromaffin cells using 

dielectric spectroscopy, a well-accepted non-invasive method for measuring the AC permittivity and 

conductivity of biological cells and their intracellular membranous structures. In this method, a small 

voltage is applied to a cell suspension contained between two electrodes, and the dielectric spectrum over 

a range of frequencies obtained by measuring the resultant current. Here we describe how the dielectric 

properties of chromaffin cells and their intracellular secretory granules were derived using dielectric 

spectroscopy in combination with a constant phase element, Cole-Cole, Maxwell-Wagner mixture models 

and a granular cell model.  

 

2. Methods 

2.1 Isolation and preparation of adrenal chromaffin cells 

Fresh bovine adrenal glands were obtained from a local abattoir (Wolf Pack Meats, Reno, NV) and 

chromaffin cells were isolated from the medulla by collagenase digestion as described previously (Waymire 

et al., 1983; Hassan et al., 2002). Cells were maintained in suspension culture at 36.5°C under a humidified 

atmosphere of 5% CO2. The large aggregates of cells that form in suspension culture were enzymatically 

dissociated into single cells with the protease dispase (Craviso, 2004) prior to dielectric spectroscopy 

measurement. For the impedance measurements, the cells were resuspended at variable volume fractions 

(5.7 to 11.1%, table 1) in a physiological salt solution (PSS) of the following composition: 145 mM NaCl, 

5 mM KCl, 1.2 mM NaH2PO4, 2 mM CaCl2, 1.3 mM MgCl2, 10 mM glucose and 15 mM HEPES, pH 7.4.  
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Figure 1 Details of the microfluidic chamber used to make the dielectric spectroscopy measurements on 
chromaffin cells. Shown in (a) and (b) are schematics of the side-view and top-view, respectively, of the 
microfluidic chamber. Shown in (c) is a photomicrograph (40X) of the chromaffin cell suspensions used 
in the measurements. 
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2.2 Microfluidic chamber fabrication  

Figures 1a and 1b show a schematic of the microfluidic chamber used to measure the impedance 

spectrum of chromaffin cells. The chamber consisted of two parallel glass plates, each containing a circular 

gold electrode (radius = 2 mm). The electrodes were aligned on top of each other and the glass plates joined 

using 250 µm thick double-sided tape, creating a chamber of height 250 µm. Details for the fabrication of 

the chamber, which are given in a previous paper (Koklu et al., 2016), are briefly described here. Glass 

microscope slides were cut into 2.5 x 2.5 cm2 pieces using a diamond cutter and inlet and outlet ports created 

by boring holes into the glass using a diamond drill bit. Glass pieces were cleaned sequentially in an 

ultrasonic bath with deionized (DI) water, 1 M KOH, acetone, followed by a rinse with DI water. The glass 

slides, purged with a stream of nitrogen gas, were dried in a convection oven at 120° C for 10 min. Masking 

tape was then applied to the glass surface as a negative mask to generate the desired circular electrode 

pattern. Chromium was sputter deposited (EMS300TD, Emitech; 120 mA-60 s) onto the glass to serve as a 

seeding layer for the subsequent deposition of gold, which was sputter deposited (120 mA-150 s) to a 

thickness of 75 nm. Because impedance measurements for chromaffin cells would be made in a high 

conductivity (~1 S/m) medium, the surface topology of the electrodes was modified by electrochemical 

deposition of gold using a three-electrode potentiostat/galvanostat system (EZstatPro, Nuvant). This step, 

which increases surface area by generating fractal structures, was necessary to minimize the destructive 

effects of electrode polarization, i.e., charge accumulation at the electrode/electrolyte interface that can 

cause orders of magnitude larger resistance and capacitance than the bulk liquid as ions close to the 

energized electrodes form an electrical double layer. Thus, by increasing the electrode surface area in 

contact with the cell suspension, the electrode polarization shifted to lower frequencies, leading to an 

observable dielectric dispersion signal from the cell suspension (Schwan, 1968; Pajkossy, 1994). 

 

2.3 Impedance spectroscopy  

The electrodes of the microfluidic chamber connected to an impedance analyzer (4294A, Agilent) via 

a BNC port. The impedance analyzer interfaced with a computer that acquires the raw measured impedance 
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data, recorded in the frequency range of 1 kHz to 20 MHz. Details about the impedance measurement 

system, the calibration procedure including elimination of the effects of cables and the test fixture are 

available in (Sabuncu et al., 2012). Data were collected in triplicate for each independent experiment and 

expressed as mean ± standard deviation (SD).  

To make the dielectric spectroscopy measurements, chromaffin cells were suspended in the PSS 

described previously (conductivity = 1.35 S/m) and a 10 µl aliquot of the cell suspension was fed into the 

empty chamber at the inlet port using a pipette. The measurement volume was 3.1 µl and the remaining 

portion of the aliquot filled the connecting inlet and outlet channels. For each replication, a new cell 

suspension was aliquoted into the chamber. Figure 1c shows a bright field image of the cells prior to being 

loaded into the chamber. Measurement of the impedance spectrum of the cell suspension was obtained 

during the static state, that is, after the initial flow generated by the introduction of the cell suspension into 

the fluidic channel had stopped. Application of a small test voltage (0.5 V) to the electrodes of the chamber 

allowed measurement of cell suspension impedance as magnitude and phase angle.  

Details of the derivation of the cell complex permittivity from the bulk impedance are in a previous 

publication (Sabuncu et al., 2012) and briefly described here. First, calculation of the dielectric spectrum 

of the cells using the unit and stray capacitance of the microfluidic chamber, the impedance measurement 

of the chamber when empty or filled with DI water, and the measured impedance data, was made. Second, 

the dielectric spectrum of the cells was fit into a combination of a constant phase element and Cole-Cole 

models to extract the effects of electrode polarization and lead impedance (Koklu et al., 2016). The lead 

resistance and inductance of the impedance device were determined using PSS impedance measurements 

between 10 and 20 MHz. The lead resistance and inductance were changed in a fitting routine until the 

conductivity found using the device matched the conductivity measured using a conductivity meter (Orion 

StarTM A322, Fisher Scientific). Third, the dielectric spectrum of the cell suspension was fit into a Maxwell-

Wagner mixture model to extract the Clausius-Mossotti factor, which is a function of the cell complex 

permittivity. Fourth, the cell complex permittivity was calculated using the extracted Clausius-Mossotti 

factor, a granular cell model (described below), and external medium (i.e., PSS) properties. 
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2.4 Granular cell model 

To represent chromaffin cells that contain a large volume fraction of secretory granules in their 

cytoplasm, we used a vesicular cell model that was originally used by Raicu et al. (Raicu et al., 1998) for 

modeling hepatocytes that contain a large volume fraction (30%) of mitochondria in the cytosol (Irimajiri 

et al., 1991). A schematic for the vesicular model (referred to in this paper as the granular cell model) is 

shown in figure 2. Two circular concentric shells representing the cell membrane and nuclear envelope are 

separated by a suspension of granules. According to the model, the cell complex permittivity is given by:  

𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗ = 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚
∗ 2(1−𝜐𝜐𝑚𝑚)𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚

∗ +(1+2𝜐𝜐𝑚𝑚)𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖
∗

(2+𝜐𝜐𝑚𝑚)𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚
∗ +(1−𝜐𝜐𝑚𝑚)𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖

∗        (1) 

where subscripts 𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑖𝑖𝑖𝑖𝑖𝑖 stand for cell membrane and cell interior, respectively. In the above 

equation, 𝜐𝜐𝑚𝑚 = [1 − 𝑑𝑑 𝑅𝑅⁄ ]3 where 𝑑𝑑 is the cell membrane thickness and 𝑅𝑅 is the cell radius. The complex 

permittivity of the cell interior or cytosol is given by: 

𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖∗ = 𝜀𝜀𝐼𝐼𝐼𝐼∗
2(1−𝜐𝜐𝑛𝑛)𝜀𝜀𝐼𝐼𝐼𝐼

∗ +(1+2𝜐𝜐𝑛𝑛)𝜀𝜀𝑁𝑁
∗

(2+𝜐𝜐𝑛𝑛)𝜀𝜀𝐼𝐼𝐼𝐼
∗ +(1−𝜐𝜐𝑛𝑛)𝜀𝜀𝑁𝑁

∗         (2) 

where subscripts 𝑁𝑁 and 𝐼𝐼𝐼𝐼 stand for the nucleus and the material between the cell membrane and the 

nucleus, respectively. In the above equation, 𝜐𝜐𝑛𝑛 = [𝑅𝑅𝑁𝑁 (𝑅𝑅 − 𝑑𝑑)⁄ ]3 where 𝑅𝑅𝑁𝑁  is the radius of the nucleus. 

The complex permittivity of the nucleus is given by: 

𝜀𝜀𝑁𝑁∗ = 𝜀𝜀𝑛𝑛𝑛𝑛∗
2(1−𝜐𝜐𝑛𝑛𝑛𝑛)𝜀𝜀𝑛𝑛𝑛𝑛∗ +(1+2𝜐𝜐𝑛𝑛𝑛𝑛)𝜀𝜀𝑛𝑛𝑛𝑛∗

(2+𝜐𝜐𝑛𝑛𝑛𝑛)𝜀𝜀𝑛𝑛𝑛𝑛∗ +(1−𝜐𝜐𝑛𝑛𝑛𝑛)𝜀𝜀𝑛𝑛𝑛𝑛∗
       (3) 

where subscripts 𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛 stand for nuclear envelope and nucleoplasm, respectively. In the above 

equation, 𝜐𝜐𝑛𝑛𝑛𝑛 = [1 − 𝑑𝑑𝑁𝑁 𝑅𝑅𝑁𝑁⁄ ]3 where 𝑑𝑑𝑁𝑁  is the nuclear envelope thickness. The complex permittivity of 

the material between the nucleus and the cell membrane is given by the following equation that also 

accounts for the granules in the cytoplasm:  

𝜀𝜀𝐼𝐼𝐼𝐼∗ = 𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐∗ 2�1−𝜐𝜐𝑔𝑔𝑔𝑔𝑔𝑔�𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐∗ +�1+2𝜐𝜐𝑔𝑔𝑔𝑔𝑔𝑔�𝜀𝜀𝑔𝑔𝑔𝑔𝑔𝑔∗

�2+𝜐𝜐𝑔𝑔𝑔𝑔𝑔𝑔�𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐∗ +�1−𝜐𝜐𝑔𝑔𝑔𝑔𝑔𝑔�𝜀𝜀𝑔𝑔𝑔𝑔𝑔𝑔∗        (4) 

where subscripts 𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑔𝑔𝑔𝑔𝑔𝑔 stand for cytoplasm and granules, respectively. In the above equation, 𝜐𝜐𝑔𝑔𝑔𝑔𝑔𝑔 is 

the volume fraction of granules in the region between the nucleus and the cell membrane. The complex 

permittivity of a granule is given by: 
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𝜀𝜀𝑔𝑔𝑔𝑔𝑔𝑔∗ = 𝜀𝜀𝑔𝑔𝑔𝑔∗
2�1−𝜐𝜐𝑔𝑔𝑔𝑔�𝜀𝜀𝑔𝑔𝑔𝑔∗ +�1+2𝜐𝜐𝑔𝑔𝑔𝑔�𝜀𝜀𝑔𝑔𝑔𝑔

∗

�2+𝜐𝜐𝑔𝑔𝑔𝑔�𝜀𝜀𝑔𝑔𝑔𝑔∗ +�1−𝜐𝜐𝑔𝑔𝑔𝑔�𝜀𝜀𝑔𝑔𝑖𝑖
∗        (5) 

where subscripts 𝑔𝑔𝑔𝑔 and 𝑔𝑔𝑔𝑔 stand for granule membrane and granule milieu, respectively. In the above 

equation, 𝑣𝑣𝑔𝑔𝑔𝑔 = �1 − 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔⁄ �3 where 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔 and 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔 are the granule membrane thickness and granule 

radius, respectively. The above equations essentially describe a simplified cell model where the complex 

permittivities of internal organelles and the cytosol are replaced by an effective complex permittivity term, 

which has frequency-independent permittivity and conductivity terms. Once the permittivity spectrum of 

the cell complex was found, the equivalent cell suspension permittivity was calculated through the 

Maxwell-Wagner mixture model (Sabuncu et al., 2012) that is given by: 

𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠∗ = 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚
∗ 1+2𝑝𝑝𝑓𝑓𝑐𝑐𝑐𝑐

1−𝑝𝑝𝑓𝑓𝑐𝑐𝑐𝑐
         (6) 

where subscripts 𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚 stand for cell suspension and extracellular medium, respectively. In the 

above equation 𝑓𝑓𝑐𝑐𝑐𝑐 is the Clausius-Mossotti factor, and 𝑝𝑝 stands for volume fraction of the cells. Scripts 

written in MATLAB® (2016a, Mathworks) were used to extract the dielectric properties of chromaffin 

cells and their intracellular granules. 

 
 
Figure 2 Schematic of the granular cell model. The model includes a cell membrane, cytoplasm, nucleus, 
and multiple granules in the cytoplasm. 
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2.5 Determination of the fit parameters 

The dielectric spectra of the cell suspension were calculated using equations (1) to (6), which are 

functions of the cell dielectric properties, specifically the complex permittivities of the plasma membrane, 

granule membrane, granule milieu, cytoplasm, nuclear envelope, and nucleoplasm. The experimental data, 

on the other hand, include the impedances of the cell suspension, electrode/electrolyte interface, and the 

stray effects. Once the unit and stray capacitances of the measurement chamber were determined, the 

experimental impedance data were simulated using the cell model.  

A sensitivity analysis was performed to determine which cellular dielectric parameters could accurately 

be extracted from the experimental impedance data. In their current form, equations (1) to (6) have 22 

variables, which include the volume fraction of cells in suspension, volume fraction of granules in the 

cytosol, geometrical and dielectric properties of intracellular components and extracellular medium. The 

fitting of equations (1) to (6) to experimental impedance data in the interfacial (β) dispersion range, which 

occurs due to cell membrane charging, represents an underdetermined system where the number of 

unknowns (22) exceeds the total number of variables that are solvable. Given the experimental impedance 

data, the interfacial polarization could be characterized by six parameters including the extracellular 

conductivity. Therefore, we decreased the number of unknowns in the system by fixing some parameters 

either to independently measured or to assumed quantities whose variations do not affect the spectra 

(Polevaya et al., 1999). By performing the sensitivity analysis, we determined the six variables that can be 

accurately extracted from dielectric spectroscopy measurements. The cell dielectric properties that 

minimized the residual between the simulated and experimental impedance data were used to characterize 

chromaffin cells. A fitting algorithm was utilized to perform the optimization using the nested lsqonlin 

function in MATLAB to minimize the sum of the squares of the residuals, defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ �1 − 𝑙𝑙𝑙𝑙𝑙𝑙𝜀𝜀𝑡𝑡ℎ,𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖⁄ �2𝑖𝑖 + ∑ �1 − 𝜎𝜎𝑡𝑡ℎ,𝑖𝑖 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖⁄ �2𝑖𝑖 �
0.5

  (7) 

where subscripts 𝑡𝑡ℎ and 𝑚𝑚𝑚𝑚𝑚𝑚 stand for theory and measurement, respectively, and subscript 𝑖𝑖 represents 

different frequency points. In the fitting routine, each parameter in equations (1) to (6), except the 
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independently measured parameters such as the volume fraction of cells (𝑝𝑝) and cell radius, was varied in 

an expected range that was determined based on a range of reference values reported in the literature 

(Polevaya et al., 1999; Sabuncu et al., 2012; Stacey et al., 2014), and the resulting cell suspension dielectric 

spectra were analyzed. All parameters, including the geometric properties (𝜐𝜐𝑚𝑚, 𝜐𝜐𝑛𝑛𝑛𝑛, 𝜐𝜐𝑛𝑛, 𝜐𝜐𝑔𝑔𝑔𝑔) in equations 

(1) to (6), that were fixed to constant values are tabulated in table 1.  

Table 1. Geometric and dielectric properties that were fixed to constant values while 
modeling the experimental data. 
Cell Radius, 𝑅𝑅 (µm) 8a 
Cell Membrane Thickness, 𝑑𝑑 (nm) 5 
Cell Membrane Conductivity, 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 (S/m) 8.3 x 10-10 
Extracellular Water Relative Permittivity, 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚  (S/m) 80 
Cytoplasm Relative Permittivity, 𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐 80 
Volume Fraction of Cells, 𝑝𝑝 (%) 5.7, 9.4, 11.1b 
Nucleus Radius, 𝑅𝑅𝑁𝑁 (µm) 2.5c 
Nuclear Envelope Thickness, 𝑑𝑑𝑁𝑁 (nm) 10 
Nuclear Envelope Relative Permittivity, 𝜀𝜀𝑛𝑛𝑛𝑛 10 
Nuclear Envelope Conductivity, 𝜎𝜎𝑛𝑛𝑛𝑛 (S/m) 10-4 
Nucleoplasm Relative Permittivity, 𝜀𝜀𝑛𝑛𝑛𝑛 80 
Nucleoplasm Conductivity, 𝜎𝜎𝑛𝑛𝑛𝑛 (S/m)  1 
Granule Membrane Thickness, 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔 (nm) 5 
Granule Radius, 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔 (µm) 0.14 
Intra-granular Milieu Relative Permittivity, 𝜀𝜀𝑔𝑔𝑔𝑔 80 
Granule Membrane Conductivity, 𝜎𝜎𝑔𝑔𝑔𝑔 (S/m) 8.3 x 10-10 

a Obtained from the cell diameter measured using light microscopy. 
b Measured by pelleting the cell suspension in a hematocrit tube, and measuring the volume of packed cells in the 
tube. The values are for three independent experiments.  
c Obtained from (Plattner et al., 1997) 

 

3. Results and Discussion 

In this work, we measured the dielectric properties of chromaffin cells, which include the cell 

membrane capacitance, cytosol conductivity, granule membrane capacitance and granule milieu 

conductivity, using microfluidic dielectric spectroscopy (Sabuncu et al., 2012). To the best of our 

knowledge, there are no previous dielectric measurements conducted in chromaffin cells. Details on the 

electrode polarization parameters, impedance spectra of salt solutions, fitting algorithm, uniqueness of the 

fitting and Clausius-Mossotti factors are described in previous publications (Koklu et al., 2016; Sabuncu et 

al., 2012). 
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Figure 3 Changes in relative permittivity and conductivity spectra of the simulated chromaffin cell 
suspension with changing cell membrane and cytoplasm parameters. The cell suspension spectra were 
simulated using equations (1) to (6). The suspension parameters that were incrementally changed in the 
simulations are the cell membrane permittivity (a) and (b), and cytoplasmic conductivity (c) and (d). 

 

3.1 Effect of cellular dielectric properties on the dielectric spectra of the chromaffin cell suspension  

At low extracellular conductivity values (~0.01 S/m) dielectric spectroscopy has been shown to be 

sensitive to changes in cell membrane conductivity (Sabuncu et al., 2012; Stacey et al., 2014; Polevaya et 

al., 1999).  However, when cells are suspended in a high conductivity medium (~1 S/m), such as in this 

study, the dielectric spectra are not sensitive to changes in the conductivity of the cell membrane that is a 

poor conductor (conductivity less than 10-5 S/m). In fact, results obtained from the sensitivity analysis 

indicated that the cell membrane conductivity was a parameter that could not be extracted accurately from 

dielectric spectroscopy measurements performed in high conductivity media (results not shown). This result 

has also been demonstrated in a previous study (Beving et al., 1994). Therefore, in fitting the granular cell 

model to the experimental data, membrane conductivity was set to a fixed quantity.  
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Figure 4 Changes in relative permittivity and conductivity spectra of the simulated chromaffin cell 
suspension with changing granule parameters. The cell suspension spectra were simulated using equations 
(1) to (6). The suspension parameters that were incrementally changed in the simulations are conductivity 
of the granule milieu (a) and (b), granule membrane permittivity (c) and (d), and granule volume fraction 
in the cell interior (e) and (f). The small changes in (a) and (b) are shown in the supporting information 
figure S1. 
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Figures 3 and 4 show the effect of each parameter that had the highest influence on the dielectric spectra 

of the cell suspension. These parameters are the cell membrane permittivity (𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚), cytoplasmic 

conductivity (𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐), granule membrane permittivity (𝜀𝜀𝑔𝑔𝑔𝑔), granule milieu conductivity (𝜎𝜎𝑔𝑔𝑔𝑔) and volume 

fraction of granules (𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔).  

As shown in figures 3a and 3b, the cell membrane permittivity substantially affects the cell suspension 

spectra at frequencies below 10 MHz, specifically by changing the low frequency permittivity and the 

dielectric dispersion time constant of the cell suspension. In addition, figures 3c and 3d indicate that the 

cytosol conductivity also affects the time constant of the dielectric dispersion of cell suspensions similar to 

how the cell membrane permittivity affects the time constant of the dispersion. 

The effects of changing the granule parameters on the cell dielectric spectra are shown in figure 4. 

These results show that while the granule milieu conductivity (figures 4a and 4b) and the granule membrane 

permittivity (figures 4c and 4d) affect the cell suspension spectra at frequencies above 10 MHz, varying the 

granule volume fraction (figures 4e and 4f) affects the time constant of the dielectric dispersion of cell 

suspensions. In addition, varying the granule volume fraction causes an effect that is similar to that caused 

by varying the cytoplasmic conductivity, which is a change in the time constant of the dielectric dispersion. 

A zoomed-in view of the small changes in figures 4a and 4b is shown in the Supplementary material, figure 

S1.  

Taken together, the results shown in figures 3 and 4 indicate that the cell suspension spectra are the 

least sensitive to changes in granule milieu conductivity and granule membrane permittivity.  

 

3.2 Determination of chromaffin cell parameters 

3.2.1 Cell membrane capacitance 

The dielectric properties of chromaffin cells, obtained using the fitting algorithm, are tabulated in table 

2. In this table, the membrane capacitance was calculated using the following formula: 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚𝜀𝜀𝑜𝑜/𝑑𝑑, 

where 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 = 6.8 is the measured average cell membrane relative permittivity, 𝑑𝑑 is the membrane 
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thickness and 𝜀𝜀𝑜𝑜 is the permittivity of free space. The measured membrane capacitance value of chromaffin 

cells (1.22 µF/cm2) is close to that found for blood cells (0.91 to 1.62 µF/cm2), breast cancer cell lines (1.44 

to 2.75 µF/cm2), and a melanoma cell line (1.85 µF/cm2) but less than the cell membrane capacitance of 

xenopus oocytes (6.3 to 11.9 µF/cm2) and other excitable cells such as cardiomyocytes (6.83 µF/cm2) 

(Stacey et al., 2014; Polevaya et al., 1999; Methfessel et al., 1986; Kado et al., 1981; Kusano et al., 1982; 

Gascoyne et al., 2013). In addition, measurements obtained from patch-clamped chromaffin cells showed 

that the dielectric permittivity of the cell membrane is 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 = 5.7 (Yoon et al., 2016), a value that agrees 

to within 20% with that obtained in this study. Therefore, we conclude that the chromaffin cell membrane 

capacitance determined in this study using the dielectric spectroscopy technique is reasonably accurate.  

Table 2. Measured dielectric properties of chromaffin cells. The properties were calculated using properties listed 
in table 1 and by fitting experimental data to the granular cell model described in section 2.4. 
 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 

(µF/cm2) 
𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 

(S/m) 
𝐶𝐶𝑔𝑔𝑔𝑔 

(µF/cm2) 
𝜐𝜐𝑔𝑔𝑔𝑔𝑔𝑔 

 
𝜎𝜎𝑔𝑔𝑔𝑔 

(S/m) 
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 
(S/m) 

Mean 1.22 1.14 7.10 0.44 0.35 1.35 
SD 0.16 0.25 4.04 0.08 0.12 0.07 

 

3.2.2 Cytoplasmic conductivity 

The cytoplasm dielectric properties 𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐 and 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 shown in tables 1 and 2 exclude the effect of the 

nucleus and large number of secretory granules normally found in the cytosol of chromaffin cells. In order 

to provide an effective conductivity and permittivity value for the cell interior that takes into account the 

presence of these structures, the dielectric spectrum of the chromaffin cell interior was calculated using 

equations (2) to (5) and the results are shown in figure 5.  

Figures 5a and 5b show the relative permittivity and conductivity spectra of the chromaffin cell interior, 

respectively. A dielectric dispersion due to the electrical mismatch between the granular membrane and the 

cytosol is evident around 5 MHz. The relative permittivity of the cell interior (figure 5a) decreases from the 

low frequency value of 880 to a relative permittivity value that is close to that of water (𝜀𝜀𝑟𝑟 = 80) at 20 

MHz. This decrease in relative permittivity in the MHz range is due to the charge build-up at the dielectric 

interfaces in the presence of an alternating electric field, and is explained by the following. A chromaffin 
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cell suspension is an electrically heterogeneous system, where the insulating cell membrane separates the 

conducting cell interior from the extracellular environment. As a result, electrical charges accumulate on 

the cell membrane and other membranes in the cell interior, forming a large dipole moment at low 

frequencies. At frequencies much higher than the inverse of the membrane charging time, electric field lines 

penetrate into the cell interior, thus diminishing these dipoles. Therefore, the low frequency permittivity of 

the cell interior was measured (i.e., 880) and reflects the presence of the granules and the nucleus. Following 

dielectric dispersion, this value decreases to 120 at 20 MHz.  

 
 
Figure 5 Relative permittivity and conductivity spectra of the chromaffin cell interior. The spectra 
include the effects of the cytoplasm, nucleus, and granules. The DC conductivity of the cell interior is 
0.49 S/m. Averaged cell properties from three independent experiments in table 2 and values in table 1 
were used to calculate the dielectric spectra of the cell interior.  

 

The electrical conductivity of the cell interior reflects the presence of water, ions, granules, and 

organelles in the cytosol. In this study, a granular cell model was used to model a large volume fraction of 

granules and the nucleus inside the cell. As shown in figure 5b, the cell interior conductivity increases 

following the onset (i.e., 400 kHz) of the dielectric dispersion. The DC conductivity of the cell interior, 

including the effects of the cytoplasm, nucleus and granules was found to be 0.49 S/m, which was less than 

half the cytoplasmic conductivity value of 1.14 S/m tabulated in table 2. This latter value excludes the 

effects of the membranous structures in the cell interior.  

In addition, the cytoplasmic conductivity of various cell types reported in studies that utilized double 

shell models ranged from 0.12 S/m for chondrocytes to 1.31 S/m for B lymphocytes (Stacey et al., 2014; 
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Polevaya et al., 1999; Zhuang, 2012). These conductivity values include the effects of membranous 

structures (excluding the nucleus) in the cell interior, which correspond to the conductivity of the intershell 

space (𝜎𝜎𝐼𝐼𝐼𝐼 = 0.52 𝑆𝑆/𝑚𝑚) determined in this study, and falls in the range of the conductivity values (0.12 to 

1.31 S/m) reported in the literature. Finally, the hepatocyte cytosol conductivity (𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 = 0.4 𝑆𝑆/𝑚𝑚) that was 

found by Raicu et al. using a vesicular cell model similar to the granular model used in this study was 

significantly smaller than the cytoplasmic conductivity of 1.14 S/m determined for chromaffin cells (Raicu 

et al., 1998). This difference could be attributed to different ion concentrations in the cytosol of hepatocytes 

and chromaffin cells. On the other hand, when the effect of the membranous structures in the cytosol of a 

chromaffin cell (i.e., nucleus and granules) was taken into account, the cytoplasmic conductivity was found 

to be 0.49 S/m, lower than the value of 1.14 S/m that excludes the effect of the nucleus and granules. These 

results demonstrate that the ultrastructure of the cell interior plays a role and affects the cytoplasmic 

conductivity.   

 

3.2.3 Granule parameters  

The dielectric properties of the granules (i.e., 𝐶𝐶𝑔𝑔𝑔𝑔 and 𝜎𝜎𝑔𝑔𝑔𝑔) as well as the volume fraction of the 

granules, 𝜐𝜐𝑔𝑔𝑔𝑔𝑔𝑔, within the cytosol of the cells were calculated using equations (1) to (6) and 𝐶𝐶𝑔𝑔𝑔𝑔 =

𝜀𝜀𝑔𝑔𝑔𝑔𝜀𝜀𝑜𝑜/𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔, where 𝜀𝜀𝑔𝑔𝑔𝑔 is the relative permittivity of the granule membrane, 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔 is the granule membrane 

thickness and 𝜀𝜀𝑜𝑜 is the permittivity of free space. As previously mentioned, the granular cell model accounts 

for the presence of numerous granules and a nucleus in the cytoplasm. However, the structure of an actual 

chromaffin cell is still more complex compared to the model used in this work. Serial electron micrographs 

of chromaffin cells showed that the ER is localized throughout the cytoplasm, occupying about 14% of the 

cell volume (Huh et al., 2005a; Huh et al., 2005b). In addition, in chromaffin cells, the secretory granules 

and mitochondria are estimated to occupy 20 to 30% (Plattner et al., 1997; Huh et al., 2005b) and 3% (Huh 

et al., 2005b) of the cell volume, respectively. All these membranous structures contribute to the interfacial 

dispersion observed in the dielectric spectra of chromaffin cell suspensions. In the cell model used in this 



18 
 

study, all the effects of the cell ultrastructure are lumped into the extracted parameters of the granules. 

Therefore, it could be possible that the unusually high volume fraction (44% versus 20 to 30%) and 

membrane capacitance of the granules (7.1 µF/cm2) reflect the presence of other membranous structures, 

such as the endoplasmic reticulum and mitochondria in the cell interior. The presence of these intracellular 

structures in the cytoplasm of a chromaffin cell could affect the extracted cell dielectric parameters in a 

more complex manner.  

 

4. Conclusion  

The use of dielectric spectroscopy has gained acceptance as a non-invasive approach for determining 

the dielectric properties of biological cells. Typically, extraction of cell dielectric properties from measured 

impedance data is achieved through simplified models for spherical cells, such as the single shell and double 

shell models. These models are then fit to the dielectric spectrum obtained from impedance measurements 

of the cell suspension and used to derive the dielectric properties of the cell membrane and nuclear envelope. 

However, neurosecretory chromaffin cells are characterized by the presence of thousands of membrane-

delineated secretory granules in their cytosol. Therefore, more sophisticated cell models, as described here, 

were needed to extract chromaffin cell parameters. Knowledge of these parameters and their incorporation 

into numerical models will increase our understanding of how the plasma membrane and intracellular 

organelle membranes of these cells interact with nanosecond electric pulses, which will be important for 

future applications aimed at modulating neurosecretion. 
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Figure S1 The small changes in figures 4a and 4b showing the frequency dependent variations in the 
granule milieu relative permittivity and conductivity are detailed in (a) and (b), respectively. 
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