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Natural variability is an essential component of observations of all geophysical and climate variables. In principal
component analysis (PCA), also called empirical orthogonal function (EOF) analysis, a set of orthogonal
eigenfunctions is found from a spatial covariance function. These empirical basis functions often lend useful in-
sights into physical processes in the data and serve as a useful tool for developing statistical methods. The under-
lying assumption in PCA is the stationarity of the data analyzed; that is, the covariance function does not depend
on the origin of time. The stationarity assumption is often not justifiable for geophysical and climate variables
even after removing such cyclic components as the diurnal cycle or the annual cycle. As a result, physical and sta-
tistical inferences based on EOFs can be misleading.
Some geophysical and climatic variables exhibit periodically time-dependent covariance statistics. Such a dataset
is said to be periodically correlated or cyclostationary. A proper recognition of the time-dependent response char-
acteristics is vital in accurately extracting physically meaningful modes and their space–time evolutions from
data. This also has important implications in finding physically consistent evolutions and teleconnection patterns
and in spectral analysis of variability—important goals inmany climate and geophysical studies. In this study, the
conceptual foundation of cyclostationary EOF (CSEOF) analysis is examined as an alternative to regular EOF anal-
ysis or other eigenanalysis techniques based on the stationarity assumption. Comparative examples and illustra-
tions are given to elucidate the conceptual difference between the CSEOF technique and other techniques and the
entailing ramification in physical and statistical inferences based on computational eigenfunctions.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Measurements of physical and climate variables show the presence
of seemingly random fluctuations in addition to such deterministic
components as the diurnal cycle and the annual cycle. This random
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component of variability is often referred to as natural variability as
opposed to “forced variation” in the presence of external forcing to a
physical system. Natural variability has been the focus of numerous
studies not only because it is an essential concept in addressing climate
and environmental changes due to such external forcing agents as
greenhouse gasses (Jones et al., 1994; Andreae et al., 2005) or volcanic
aerosols (Rampino and Self, 1992; Zielinski et al., 1996; Jones et al.,
2005) but also because natural variability is important on its own accord
(Luterbacher et al., 2004; Bengtsson et al., 2006; Swanson et al., 2009).
Much national and international effort focuses on the study of natural
variability in understanding the current and future climate changes
(NAC, 1995; IPCC, 2007, 2013).

The stochastic component of variability is often treated as a random
variable. This does not mean that the source of random fluctuation is
truly and solely the random nature of our physical and climate systems;
this rather reflects our incomplete comprehension of how the system
works in its full detail. Such a notion is often reflected in our attempts
to assign physical meaning to seemingly stochastic undulations of
some physical and climate variables. It may be fair to say that the
study of natural variability in many applications is best approached by
treating it as a random variable. Thus, data analysis often deals with
multivariate random variables in space and time.

A random variable cannot be described in a deterministic manner. It
can only be described in terms of probability, p(X), of a random variable
X having values in an event space A, i.e., X∈ A. The event space is a sub-
set of sample space, Ω, which represents a collection of all possible
values of X. A probability density function (pdf) is often awkward to
use and is also difficult to estimate accurately from limited observation-
al datasets. Thus, themoment statistics of randomvariables are comput-
ed instead in a simplified approach. The nth moment is defined as

E Xn� � ¼
Z

Ω
xnp xð Þdx ¼ Xn� �

; ð1Þ

where x is a particular realization of the random variable X, E(•) is the ex-
pectation, and 〈•〉 represents ensemble averaging. Having all of the
moment statistics of a random variable is equivalent to knowing its pdf.
The attractiveness of the moment statistics over the pdf lies in the alter-
native way of computing the former as suggested in Eq. (1)—namely,
ensemble averaging without invoking a true pdf.

Typically, it is assumed that a random variable, T(x), is reasonably
described in terms of its first twomoment statistics, i.e., themean func-
tion and the covariance function:

μ xð Þ ¼
Z

Ω
T xð Þp T xð Þð ÞdT ¼ T xð Þh i; ð2Þ

C x; x′
� � ¼

Z
Ω
T ′ xð Þp T ′ xð Þ

� �
T ′ x′
� �

p T ′ x′
� �� �

dT ′ ¼ T ′ xð ÞT ′ x′
� �D E

; ð3Þ

where T′(x) = T(x)− μ(x) and independent variable x represents time,
space, or both. According to the independent variable, the covariance
function, C(x, x′), may be called a temporal, spatial or spatio-temporal
covariance function. Thus, the computation and analysis of the first
two moment statistics of a given dataset constitute an essential step of
analyzing random variables.

Computation of the two moment statistics in Eqs. (2) and (3) may
look simple, but it actually is difficult because we do not know the pdf
nor do we usually have enough realizations for ensemble averaging. In
geophysical studies, we typically have only one realization (one obser-
vational record) for a physical variable of interest because we can
carry out only one experiment (one Earth). Modeling studies, of course,
can provide us with as many realizations as we want. The veracity of
model statistics, on the other hand, should be tested against the statis-
tics of observational data. Thus, it is necessary to introduce a simplifying
assumption to find the first two moment statistics of observed data.

An assumption we often introduce in analyzing a random variable is
stationarity. The essence of this assumption is that themoment statistics
of a random variable are independent of time. When this assumption
applies to the first two moment statistics, such a random variable is
called “weakly” stationary. What is implicit in Eqs. (2) and (3) is that
T(x) and T(x′) are different random variables since their statistics, in
general, are different. Under the stationarity assumption, however, the
two random variables at two different times x and x′ have the same
statistics and, henceforth, are regarded the same. Thus, T(x) and T(x′)
may be viewed as two different realizations of the random variable T.
As a result, the ensemble average in Eqs. (2) and (3) can be replaced
by averaging in the time direction:

μ ¼ T tð Þh i ¼ lim
N→∞

1
N

XN

t¼1
T tð Þ; ð4Þ

C t; t ′
� � ¼ T ′ tð ÞT ′ t ′

� �D E
¼ lim

N→∞

1
N

XN

t¼1
T ′ tð ÞT ′ t þ τð Þ ¼ R τð Þ; ð5Þ

where τ = t − t′ corresponds to lag and N is the number of samples.
Here, the independent variable, time t, has been introduced explicitly.
Note that C(t, t′) is no longer a function of time because of the station-
arity assumption but depends only on lag τ. The function R(τ) is called
the autocovariance function, meaning the covariance function of the
same variable (self). In a similar manner, a spatial covariance function
can be constructed as

C x; x′
� � ¼ T x; tð ÞT x′; t

� �� � ¼ lim
N→∞

1
N

XN

t¼1
T x; tð ÞT x′; t

� �
; ð6Þ

where T(x, t) hereafter denotes a zero-mean random variable and x is a
spatial independent variable. One can, of course, extend the definition
further to define a space–time covariance function:

C x; t; x′; t ′
� � ¼ T x; tð ÞT x′; t ′

� �� � ¼ lim
N→∞

1
N

XN

t¼1
T x; tð ÞT x′; t þ τ

� �
: ð7Þ

Mainly because of the difficulty involved in the computation of Eq. (7),
rarely seen in geophysical research is the analysis of a spatio-temporal
covariance function.

While the stationarity assumption allows us to carry out the seem-
ingly impossible calculations in Eqs. (2) and (3) from a limited dataset,
statistics ofmany geophysical variables unfortunately do not exhibit the
stationary behavior. Instead, many geophysical variables have statistics
that are time dependent and periodic (see Section 6 in Gardner et al.
(2006) and references therein). For example, the monthly variance of
the NINO3 time series is strongly time dependent as shown in Fig. 1;
NINO3 is a region in the equatorial Pacific defined by [150°–90°W,
5°S–5°N]. While there is no significant time-dependent component in
the insolation statistics after removing the annual cycle, Fig. 1 shows
that the variability of the equatorial climate system is stronger inwinter

Fig. 1. Monthly variance of the NINO3 time series after removing the monthly mean
values.

202 K.-Y. Kim et al. / Earth-Science Reviews 150 (2015) 201–218



than in summer. This time dependence of statistics is a prevalent prop-
erty of many geophysical variables. This raises two important concerns:
(1) many statistical tools based on the stationarity assumption will not
be accurate thereby leading to inaccurate statistical inferences; and
(2) statistical tools should be developed that explicitly account for this
time dependence. The second concern is difficult to address in that the
development of general data analysis techniques for nonstationary
space–time data would be nearly impossible.

In addition to the time dependence, statistics of many geophysical
variables exhibit periodicity in time. Such a process is said to be
cyclostationary or periodically correlated. The periodicity of statistics
may primarily come from the periodic nature of external forcing and
boundary conditions associated with our climate and geophysical sys-
tems although they may not necessarily be an exclusive source of peri-
odicity in the statistics. With this added assumption of periodicity, the
second concern raised above can be dealt with efficiently as will be
shown later. It is this special class of data forwhich amore accurate con-
cept of data analysis will be discussed.

It should be stressed that the periodic nature of our physical system
manifests itself not only in the mean field, such as the annual cycle and
the diurnal cycle, but also in higher-moment statistics. The periodic
mean component of data does not pose any problem since it can be
identified and removed prior to analysis. The periodic components in
higher-moment statistics, however, are difficult to deal with. For sim-
plicity, let us confine our discussion to the second-moment statistics.

The time dependence of variance statistics such as shown in Fig. 1
can be eliminated by using the so-called variance normalization or sta-
bilization procedure. This procedure is summarized as

Tnorm tð Þ ¼ T tð Þ
σ tð Þ ; ð8Þ

where raw data, T(t), are divided by the respective standard deviation,
σ(t), at each time step t. Then, the variance of the resulting time series
will be uniform in time. This procedure, however, does not alter the
correlation structure between two different times. As shown in Fig. 2,
lagged correlation function of the NINO3 time series remains to be
time dependent even after the variance normalization procedure is ap-
plied. There is also an interesting asymmetry between positive and neg-
ative lags in the correlation structure. This asymmetry also varies in
time. Thus, time dependence of covariance statistics should be dealt
with explicitly; there is no circumventing this fundamental structure
of the second-moment statistics.

The second-moment statistics are often recast in different forms in-
cluding the spectral density function and EOFs. An EOF analysis repre-
sents decomposition of the second-moment statistics in space (spatial

covariance function) into computational orthogonal functions, which
will be discussed below in detail. The spectral density function is a
Fourier transformation of the autocovariance function, and is conceptual-
ly equivalent to an EOF analysis in the time domain. This pointwill also be
addressed in more detail in Section 6. The lack of stationarity in the tem-
poral statistics of many geophysical variables means that statistical infer-
ences made through the two very popular techniques—spectral analysis
and EOF analysis—are subject to potentially serious faults. The discussion
below elaborates on this point and, as an alternate method, CSEOF analy-
sis is introduced. The conceptual foundation of the technique is explained
with illustrations and examples in comparison with the EOF technique
and also with the extended EOF and complex EOF techniques as needed.
Computational algorithms for the CSEOF technique have been published
elsewhere (Kim et al., 1996; Kim and North, 1997b) and will not be
discussed in this paper.

2. Cyclostationary EOF analysis

Themodal decomposition in terms of a set of basis functions is often
useful in understanding the complicated response in a physical system.
The complicated response is decomposed into less complicated basic
patterns, which, in general, may be easier to understand and shed
more insight into the nature of variability in a given physical system.
Many theoretical basis functions have been studied extensively in the
context of the Sturm–Liouville problem (Richtmyer, 1978; Arfken and
Weber, 1995). Unfortunately, exact theoretical basis functions are very
difficult to find, since our physical and climate systems are extremely
complicated. Therefore, empirical basis functions (EOFs) are sought
instead (Jolliffe, 2002; Hannachi et al., 2007). Finding computational
basis functions are further complicated if the stationarity assumption
is abandoned.

Let us consider a simple temporally discrete physical systemdefined
by

T x; tð Þ ¼ B x; tð ÞS tð Þ; ð9Þ

where B(x, t) is a physical processmodulated by a stochastic time series
S(t). Then, it can be shown that

μ x; tð Þ ¼ T x; tð Þh i
¼ B x; tð Þ S tð Þh i ¼ B x; tð ÞμS;

ð10Þ

C x; t; x′; t ′
� � ¼ T x; tð ÞT x′; t ′

� �� �
¼ B x; tð ÞB x′; t ′

� �
S tð ÞS t ′

� �� � ¼ B x; tð ÞB x′; t ′
� �

RS τð Þ; ð11Þ

where μS and RS(τ) are themean and the autocovariance function of the
purely stochastic component, S(t), respectively. Thus, the first two mo-
ment statistics are shown to be time dependent in the presence of a
time-dependent physical process, B(x, t). Further, the time dependence
of the statistics comes, in theory, only from the physical component not
from the stochastic component of data in Eq. (9).

There are ample examples from geophysical observations suggest-
ing that physical processes, and, henceforth, corresponding statistics,
are time dependent. This can be seen, for example, in the covariance
function, C(t, t′), of the NINO3 time series (Fig. 3). As shown, there is a
prominent time dependence in the covariance statistics. Such a time-
dependent structure cannot come from stationary random fluctuations.
This should be contrasted with the stationarity assumption, under
which

C t; t ′
� � ¼ R t−t ′

� � ¼ R τð Þ: ð12Þ

In other words, covariance statistics of a stationary time series do not
depend on time; they depend only on lag, τ. Note specifically in EOF
analysis that physical response characteristics of a physical process are
assumed to be stationary and not dependent on time in EOF analysis.

Fig. 2. Lagged correlation, C(t, τ) = 〈T(t)T(t + τ)〉, of the NINO3 time series, where the
ordinate denotes t and the abscissa τ (month). A positive lag refers to a future time with
respect to the reference time t. The NINO3 time series has been variance normalized by
dividing eachmonthly value by the respective month's standard deviation after removing
the monthly mean values.
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In fact, many geophysical observations indicate that the stationarity as-
sumption is not really valid. A question arises, then, how these time-
dependent response characteristics can properly be accounted for in
dealing with the variability of a physical variable.

If the covariance function is time dependent, computational
eigenfunctions, Bn(x, t), can be defined as solutions of the Karhunen–
Loève equation (Loève, 1978):

Z
D

Z
T
C x; t; x′; t ′
� �

Bn x ′; t ′
� �

dt ′dx′ ¼ λnBn x; tð Þ; ð13Þ

where D and T are space and time domains, respectively. As can easily be
imagined, the solution of Eq. (13) is a computationally intensive proce-
dure. For example, if the number of spatial points is 1000 and the length
of record is 1000 at each station, then Eq. (13) is a matrix problem with
the rank of one million—hopelessly too big to solve in practice. To make
this problem tractable, a simplification should be introduced.

Let us make a further assumption in Eq. (9) that the response char-
acteristics of the physical process is periodic in time, i.e.,

B x; tð Þ ¼ B x; t þ dð Þ; ð14Þ

where d is a period. Note that this is an assumption although many ob-
served physical processes often suggest such a periodicity. Then, the
two moment statistics, with the aid of Eqs. (10) and (11), can be
shown to be periodic:

μ x; tð Þ ¼ T x; tð Þh i;
¼ T x; t þ dð Þh i ¼ μ x; t þ dð Þ; ð15Þ

C x; t; x′; t ′
� � ¼ T x; tð ÞT x′; t ′

� �� �
¼ T x; t þ dð ÞT x′; t ′ þ d

� �� � ¼ C x; t þ d; x′; t ′ þ d
� �

:
ð16Þ

It should be noted that the stochastic component, S(t) in Eq. (9), is as-
sumed stationary. A process for which the twomoment statistics satisfy
Eqs. (15) and (16) is said to be (weakly) cyclostationary. Stationarity is a
very special case of cyclostationarity, in which the physical period is
d = 1.

With this added assumption, finding eigenfunctions as solutions of
Eq. (13) can be made computationally tractable. Note that the eigen-
functions should also be periodic in timewith the same period of the cor-
responding statistics leading to the terminology “cyclostationary” EOFs
(Kim et al., 1996; Kim and North, 1997b). In a CSEOF analysis, space–
time data are written as:

T x; tð Þ ¼
X

n
Bn x; tð ÞTn tð Þ; ð17Þ

where Bn(x, t) = Bn(x, t+ d) are CSEOF loading vectors (CSLV) and Tn(t)
are corresponding principal component (PC) time series. Thus, each
eigenfunction represents not one spatial pattern but multiple (d) spatial
patterns,which repeat in time. Obviously, this is amore reasonable repre-
sentation of a physical process, whose response characteristics vary in
time periodically. It is crucial to realize that the temporal variation of
data, as in Eq. (9), has two distinct sources: time-dependent physics,
Bn(x, t), and stochasticmodulation of physical processes, Tn(t). It is impor-
tant to distinguish these two disparate sources of variability in order to
make sound physical and statistical inferences. This issue will be ad-
dressed in detail in the following sections.

3. Nested periodicity

While the assumption of periodic statistics may be reasonable for
many geophysical variables, it is difficult to prove the periodicity of
statistics and identify the period. This so-called “nested period” is
often determined based on a priori physical understanding of the phys-
ical process to be investigated. In many cases, however, there exists an
obvious choice for the nested period because of the natural period in
the Earth's physical and climate systems (e.g., Kim and Chung, 2001).
Sometimes, however, the period of a physical process is not obvious
mainly because of the lack of understanding of the underlying physical
process. For example, Rasmusson et al. (1990) suggested that a signifi-
cant power in the two-year period exists in the tropical Pacific sea sur-
face temperature anomaly (SSTA) field. This biennial physical process is
not obvious intuitively (Kim, 2002; Yeo and Kim, 2014). Yet, in another
case, physical processes may not have any definite periods, to which
CSEOF analysis may not be applicable.

We have already shown that in this model the nested period is iden-
tical with the period of a physical process in Eqs. (14–16). How is the
nested period determined when multiple physical processes have dif-
ferent periods? Let us consider a dataset consisting of several physical
processes

T x; tð Þ ¼
X

n
Bn x; tð ÞSn tð Þ; Bn x; tð Þ ¼ Bn x; t þ dnð Þ; ð18Þ

where dn is the period of a physical process Bn(x, t). If we assume that
Sn(t) are stationary time series, then

μ x; tð Þ ¼ T x; tð Þh i ¼
X

n
Bn x; tð Þ Sn tð Þh i

¼
X

n
Bn x; t þ dð Þ Sn t þ dð Þh i ¼ T x; t þ dð Þh i ¼ μ x; t þ dð Þ; ð19Þ

C x; t; x′; t ′
� � ¼ T x; tð ÞT x′; t ′

� �� � ¼ X
n

X
m
Bn x; tð ÞBm x′; t ′

� �
Sn tð ÞSm t ′

� �� �
¼

X
n

X
m
Bn x; t þ dð ÞBm x′; t ′ þ d

� �
Sn t þ dð ÞSm t ′ þ d

� �� �
¼ T x; t þ dð ÞT x′; t ′ þ d

� �� � ¼ C x; t þ d; x′; t ′ þ d
� �

;

ð20Þ

if d is given as the least common multiple (LCM) of {dn}, i.e., d =
LCM(dn). Note that

Sn tð ÞSm t ′
� �� � ¼ Cnm t−t ′

� � ¼ Cnm τð Þ ð21Þ

defines the cross-covariance function of two stationary time series,
which is a function only of lag τ. Thus, the period of the first two mo-
ment statistics of a given dataset is the least common multiple of all
physical periods in the dataset. If we further assume that Sn(t) are
independent of each other, i.e., uncorrelated at all lags, then

C x; t; x′; t ′
� � ¼ T x; tð ÞT x′; t ′

� �� � ¼ X
n

X
m
Bn x; tð ÞBm x′; t ′

� �
Sn tð ÞSm t ′

� �� �
¼

X
n

X
m
Bn x; tð ÞBm x′; t ′

� �
Rn τð Þδnm ¼

X
n
Bn x; tð ÞBn x′; t ′

� �
Rn τð Þ;
ð22Þ

a familiar expression for the covariance function. This expression
clearly shows that the time dependence in the covariance function

Fig. 3. Covariance function, C(t, t′), of the NINO3 sea surface temperature anomaly time
series with the nested period of 24 months.
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comes only from the physical evolutions constituting the dataset
and signifies the motivation of the CSEOF technique—physical de-
composition of variability. Note that Rn(τ) in Eq. (22) does not con-
tribute to the temporal covariance structure but only affects the
magnitude of the covariance function.

The consequence of d being the LCM of all physical periods is that
physical processes with a period less than d are shown to repeat in
cyclostationary loading vectors, Bn(r, t). For example, a physical process
with a period of 6 monthswill repeat twice in the corresponding CSEOF
loading vectors if d is set to 12 months. Although the nested period can
be set to be an integral multiple of the LCM of all physical periods, the
minimum period should be used; this is to minimize the contamination
of covariance statistics by sampling errors. Typically, one has to work
with a relatively short record so that the stationarity of the stochastic
components in Eqs. (19) and (20) is difficult to establish. This contami-
nates the estimation of covariance statistics, which, in turn, distorts
physical structures in CSEOF loading vectors.

4. A simple example of CSEOF analysis

Fig. 4 shows the first CSEOF with the nested period of 12 months of
the tropical Pacific sea surface temperatures (SST). The PC time series
indicates that the first CSEOF presents the annual cycle; the amplitude
is always positive indicating that the loading patterns appear every
year without any sign change. Unlike a conventional analysis such as
composite analysis or harmonic analysis, the amplitude of the annual

cycle is not a constant; it fluctuates interannually. The spatial loading
patterns depict the evolution of the tropical Pacific sea surface temper-
ature in the annual cycle. As addressed above, the loading patterns
describe the evolution of a physical process called the annual cycle
whereas the PC time series describes the “stochastic” amplitude varia-
tion of the annual cycle.

Fig. 5 shows the first two EOFs of the tropical Pacific SST. The first
EOF resembles the March and September patterns and the second EOF
the June and December patterns of the first CSEOF. Undoubtedly, the
first two EOFs capture the characteristic features of the annual cycle.
The corresponding time series are highly correlated (correlation =
0.75) at 3-month lag with the second PC time series leading the first
PC time series. This is consistent with the interpretation of the spatial
patterns in the context of the annual cycle.

Fig. 6 shows the loading vector of the second CSEOF mode of the
tropical Pacific SST and represents El Niño; the loading patterns look
similar to the second EOF pattern. Indeed, the two PC time series are
highly correlated (correlation = 0.60), and the 1982/1983 and 1997/
1998 El Niño events are captured in both the time series. This is clearly
a serious problem, since the second EOFmode reflects both the seasonal
cycle and the El Niño. An identical evolution pattern in two or more dis-
tinct physical processes is captured as a single EOFmode, and this leads
to an ambiguous physical and statistical inference.

Fig. 7 shows the evolution of equatorial SST in the first CSEOF and
that in the first two extended EOFs (EEOFs; see Appendix 1 for the
definition of EEOFs) in comparison with the monthly composite (see

Fig. 4. The first CSEOF of the monthly sea surface temperatures in the tropical Pacific (upper panel) and the corresponding PC time series (lower panel).
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Appendix 1). The first CSEOF and the composite essentially describe the
same evolution of equatorial SST whereas the first two extended EOFs
describe different evolutions. This discrepancy in the extended EOF rep-
resentation is due to the use of temporal lag instead of specific time ref-
erence in extended EOF analysis (see Appendix 1). The second extended
EOF is 90° out of phasewith the first one. In the absence of specific time
reference, the second extended EOF describes exactly the same evolu-
tion of the equatorial SST of the first extended EOF. This redundancy is
clearly visible in the corresponding lagged correlogram in Fig. 8. More
examples of comparisons between CSEOF analysis and extended EOF
analysis are presented by Kim andWu (1999) and Seo and Kim (2003).

Fig. 9 shows the evolution of equatorial Pacific SST based on the first
two EOFs and the first two extended EOFs assuming that the evolution
of the seasonal cycle is captured by the first two modes. The evolution
of the seasonal cycle is reasonably described in terms of the first two
modes. While EOF and extended EOF analyses appropriately capture
the spatial patterns associated with the annual cycle in this simple ex-
ample, it is obvious that two spatial patterns are rarely sufficient to de-
pict complicated physical evolution and possibly mislead physical
interpretation of the spatially propagating signals (e.g., Kim et al., 2010).

5. Implications on physical inferences

Once physically interesting modes are identified, one may be inter-
ested in identifying spatial patterns of other physical variables, which
evolve in a consistent way with the identified modes. This is an impor-
tant question for many reasons. For one thing, one may want to know

how twoormore physical variables interact in associationwith a certain
physical process. For example, how is the surface wind change related
to the sea surface temperature change in the tropical Pacific during
El Niños (e.g., Kim, 2002)? How does the sea level height change
(e.g., Kim and Kim, 2002)? What happens to the thermocline depth
when sea level height changes (Kim and Kim, 2004)? For another, we
maywant to know how a certain physical process affects other physical
processes at remote areas. For example, how is the mid-latitude jet af-
fected by El Niño-Southern Oscillation (ENSO) events or vice versa
(Kim et al., 2003)? Answers to such questions may be explored by find-
ing physically consistent evolution patterns among different physical or
derived variables.

Patterns of two physical variables may be called “consistent” when
they have a “common” evolution history (see Fig. 10). When a physical
system (or a process) undergoes a stochastic variation for some reason,
two physical variables describing the system may evolve in the same
fashion. This may not be quite true if the relationship between two
physical variables is a nonlinear one. Also, if the response of a physical
system as manifested in the variation of physical variables to imposed
external forcing is nonlinear, this argument may not truly hold. On the
other hand, it can be argued that the response of a physical system is es-
sentially linear when a forcing has amuch longer time scale than that of
the physical system. If a physical system is strongly nonlinear, it does
not make much sense to decompose data into physical modes in the
first place. Therefore, let us take a very simple-minded view and assert
that our initial assumption is reasonable; that is, two spatial patterns
having the same evolution history are consistent patterns.

Fig. 5. The first two EOF modes of the monthly tropical Pacific sea surface temperatures (upper panels) and the corresponding PC time series (middle and lower panels).
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One way to find a consistent pattern is to simply project the data,
P(x, t), on the target time series, say, T(t):

Pproj xð Þ ¼
X

t
P x; tð Þ � T tð Þ; ð23Þ

where T(t) is the amplitude time series of target spatial pattern, ϕ(x).
This procedure is essentially the inner product in time and results in
the component of P(x, t), which is parallel to (consistent with) the
time series T(t). Thus, the target pattern, ϕ(x), and the consistent pat-
tern, Pproj(x), have the same evolution history:

ϕ xð Þ⇒T tð Þ⇐Pproj xð Þ: ð24Þ

This procedure can also be written as a regression problem in EOF
space. Let

P x; tð Þ ¼
X

n
Pn tð Þφn xð Þ; ð25Þ

where φn(x) and Pn(t) are the EOFs and the corresponding PC time se-
ries of P(x, t). Then, a regression relationship is sought between the tar-
get time series and a number of “predictor” PC time series:

T tð Þ ¼
XN

n¼1
βnPn tð Þ þ ε tð Þ: ð26Þ

That is, we want to express the target time series, T(t), as a linear
combination of predictor time series, Pn(t). Regression coefficients, βn,
are determined such that the residual error variance, E(ε2), is mini-
mized. Once regression coefficients are found, a consistent pattern is
given by

P xð Þ ¼
XN

n¼1
βnφn xð Þ: ð27Þ

The number of predictor time series,N, used in the regression should be
small in order to avoid over fitting. Typically a number between 10 and
20 is a good choice.

Note that the procedure described in Eqs. (26) and (27) is the same
as the projection method (Eq. (23)), which can be proved as follows.
Eq. (23) can be rewritten as

P xð Þ ¼
X

t

X
n
Pn tð Þφn xð Þ � T tð Þ ¼

X
n
αnφn xð Þ; ð28Þ

whereαn is the correlation between the two normalized time series T(t)
and Pn(t). Note from Eq. (26) that

αn ¼
X

t
T tð Þ � Pn tð Þ ¼

X
m
βm

X
t
Pm tð Þ � Pn tð Þ ¼ βn; ð29Þ

Fig. 6. The second CSEOF mode of the monthly tropical Pacific SST (upper panel) and the corresponding PC time series (lower panel).
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from the uncorrelatedness of the PC time series, Pn(t). Thus, regression
coefficients are identified as correlation coefficients, and Eqs. (23) and
(27) are essentially identical approaches. One advantage in using the re-
gression method is that certain unwanted portions of data, say noise,
can be excluded by choosing a proper EOF truncation level. This may re-
sult in a physically more meaningful spatial pattern without noise,
which is easier to understand and interpret.

The two approaches of finding consistent physical patterns as
discussed above will fail when a physical system (process) produces
two different evolution histories for two physical variables. One impor-
tant reasonwhy this may happen is that “physical response characteris-
tics” of two variables are generally different (see Fig. 11). For example,
evolution of sea surface temperature may not be the same as that of
surface wind at the same location even for a very simplified physical
system with only one physical process. In fact, their evolution is deter-
mined by a physical relationship between the two variables aside
from the stochastic undulation of the physical system. As depicted in
Fig. 11, response characteristics of two physical variables may not nec-
essarily coincide, and this results in different evolution for distinct var-
iables even though they represent the same physical process. We can
only stipulate that the stochastic component of variation is identical in
the evolutions of two variables pertaining to the same physical process.

Therefore, a proper distinction from stochastic undulation and ex-
planation of time-dependent physical response is vital in accurately
determining physically consistent evolutions or teleconnection re-
sponses in different variables.

Fig. 12 depicts the difference in the representation of variability be-
tweenCSEOF analysis and EOF analysis. In the former technique, tempo-
ral dependence due to physics is resolved in CSLVs and is separated
from the stochastic fluctuation in the PC time series. By contrast, the lat-
ter technique assumes stationary (uniform) response characteristics for
all physical variables. Thus, in the context of CSEOF analysis, the view
that two consistent patterns have the same “stochastic” evolution histo-
ry still holds:

B x; tð Þ⇒T tð Þ⇐C x; tð Þ: ð30Þ

Therefore, the regression method, Eqs. (26) and (27) with EOFs
being replaced by CSLVs, can be used in finding physically consistent
patterns in CSEOF space. Let T(x, t) be a “target” variable, say wind,
which is decomposed into:

T x; tð Þ ¼
X

n
Bn x; tð ÞTn tð Þ: ð31Þ

Let P(x, t) be a “predictor” variable, say geopotential height, which is
decomposed into:

P x; tð Þ ¼
X

n
An x; tð ÞPn tð Þ: ð32Þ

Then, the evolution of the predictor variable, which is physically consis-
tent with Bn(x, t) is obtained as follows. Regression coefficients are
obtained from

Tn tð Þ ¼
X

m
β nð Þ
m Pm tð Þ þ εn tð Þ; ð33Þ

where the superscript (n) denotes that the regression coefficients are
for the nth mode of the target variable. Then the evolution of the

a b

c d

Fig. 7. Longitude–timeplots of equatorial sea surface temperature evolutions (°C) in (a) themonthly composite, (b) thefirst CSEOF, (c) thefirst extendedEOF, and (d) the second extended
EOF of tropical Pacific sea surface temperatures.

Fig. 8. Lagged correlogram of the first two PC time series of the extended EOFs of the
tropical Pacific sea surface temperatures.
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predictor variable, Cn(x, t), which is physically consistent with the evo-
lution, Bn(x, t), is obtained via

Cn x; tð Þ ¼
X

m
β nð Þ
m Am x; tð Þ; ð34Þ

where Am(x, t) are the CSLVs of the predictor variable. In this way, evo-
lution of any variables can be derived to be physically consistent with
that of the target variable.

It should be mentioned that regressed patterns, Cn(x, t) in Eq. (34),
are, in theory, orthogonal to each other. From Eq. (33), it can be
shown, within the limit of small regression errors, that

1
T

XT

t¼1
Tn tð ÞTm tð Þ ¼ 1

T

XT

t¼1

X
k
β nð Þ
k Pk tð Þ þ εn tð Þ

� �
�

X
l
β mð Þ
l Pl tð Þ þ εm tð Þ

� �

¼
X

k

X
l
β nð Þ
k β mð Þ

l
1
T

XT

t¼1
Pk tð Þ � Pl tð Þ

¼
X

k

X
l
β nð Þ
k β mð Þ

l δkl ¼
X

k
β nð Þ
k β mð Þ

k ¼ δnm:

ð35Þ

Eq. (35) derives from the uncorrelatedness of PC time series and shows
that the regression coefficients of the nth target time series and those of
themth target time series are orthogonal to each other. Thus, for n≠m,

1
Nd

Xd

t¼1

X
x
Cn x; tð Þ � Cm x; tð Þ

¼ 1
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β nð Þ
k β mð Þ

k ¼ δnm:

ð36Þ

Thus, regressed patterns for two different modes should also be orthog-
onal to each other within the limit of small regression errors. It, then,
can be shown that

P x; tð Þ ¼�
X

n
Cn x; tð ÞTn tð Þ: ð37Þ

In order to prove Eq. (37), let us rewrite Eq. (37)with the aid of Eqs. (33)
and (34) as

P x; tð Þ ¼�
X

n

X
k
β nð Þ
k Ak x; tð Þ

X
l
β nð Þ
l Pl tð Þ

¼
X

k

X
l
Ak x; tð ÞPl tð Þ

X
n
β nð Þ
k β nð Þ

l

¼
X

k

X
l
Ak x; tð ÞPl tð Þδkl ¼

X
k
Ak x; tð ÞPk tð Þ ¼ P x; tð Þ;

ð38Þ

where the small regression error has been ignored.
The consistent patterns of two physical variables, Bn(x, t) and Cn(x, t),

respectively in Eqs. (31) and (37), may not generally have the same
physical response characteristics. In fact, the physical relationship be-
tween physically consistent patterns of two or more physical variables
(e.g., relationship between Bn(x, t) and Cn(x, t)) should be dictated by
a governing equation describing the particular physical process they
represent. It is the “stochastic” component of undulation that should
be identical in the evolution of two physical variables originating from
the same physical process. On the other hand, space–time evolution
(CSLVs) of two consistent patterns should be compatible with respect
to their governing physics. In this sense, CSEOF analysis followed by re-
gression analysis may be viewed as

Data x; tð Þ ¼
X

n
Tn x; tð Þ;Hn x; tð Þ;Un x; tð Þ;Vn x; tð Þ;…f gTn tð Þ; ð39Þ

where the entire data collection (physical variables) is decomposed into
a series of physical modes. Specifically, {Tn(x, t), Hn(x, t), Un(x, t),
Vn(x, t),…} represents the evolution of the nthmode as reflected in var-
ious physical variables; evolution of each variable should be physically
consistent with those of the other variables. For this reason, CSEOF
decompositionmay be regarded as “physical” decomposition with indi-
vidual modes describing short time-scale physical processes and corre-
sponding PC time series denoting long-term amplitude undulation of
the physical processes.

As an example, Fig. 13 shows physically consistent evolutions
of geopotential height and wind as discussed in conjunction with
Eq. (30). As a comparison between different panels shows, the evolution
of geopotential height anomalies (predictor) is not identicalwith that of
thewind anomalies (target) whereas the physical relationship between
the two appears to be reasonable in the context of the geostrophic bal-
ance. The evolution of the geopotential height anomalies is very consis-
tent with that of the wind anomalies for the entire 90-day period of the
CSLV (figure not shown). Further, a reasonable physical relationship is
also seen at other pressure levels as well. In fact, a reasonable physical
relationship is seen not only for the first mode but also for all the first
ten modes as can be seen in terms of the R2 values of regression in
Tables 1 and 2.

a b

Fig. 9. Longitude–time plot of the evolution of sea surface temperatures at the equator (a) based on the first two EOFs and (b) based on the first two extended EOFs.

Fig. 10. Schematic diagram explaining the concept of physically consistent spatial patterns
of two variables. The two consistent spatial patterns pertaining to the same physical pro-
cess,which is driven by a stochastic external forcing,may have the same evolution history.
Reproduced from Kim et al. (2003).
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As the second example, Fig. 14 shows the vertical section of the
stratospheric seasonal cycle averaged in the 60°–80°N latitude band;
the seasonal cycle was extracted from the 150-day (November 17–
April 15) boreal winter data derived from the 1.5° × 1.5° ERA interim
data for the period of 1989–2008 (Dee et al., 2011). The first CSEOF
mode of 10-hPa air temperature, which is the target variable, is shown
in Fig. 14a. The regressed patterns of geopotential height and potential
vorticity are shown in Fig. 14b and e. As can be seen in the correspond-
ing PC time series, the stratospheric seasonal cycle exhibits strong inter-
annual variability; the PC time series derived from the ERA interim
reanalysis data is very similar to that derived from the 1948–2008
NCEP/NCAR reanalysis data (Kalnay et al., 1996).

All physical variables exhibit seemingly downward propagations of
anomalies; as can be seen, significant time lags exist between anomalies
at 10- and 200-hPa levels. Not only so, this lag appears to vary from one
variable to another. It is obvious that a conventional analysis based on
co-evolving spatial patterns cannot capture such distinct temporal
evolutions of physical variables as one physical mode. Not being able
to render physical evolution in its entirety results in at most partial or

incomplete pictures of the true nature of the physical mechanism. For
example, Fig. 14f shows the zonally average tropopause pressure in
comparison with the zonally-averaged 200-hPa potential vorticity; the
evolutions of these two variables are highly correlated as can be seen.
Also, the zonally averaged 10 hPa potential vorticity is negatively corre-
lated with the tropopause pressure. It is not entirely obvious from
Fig. 14f why there is a strong negative correlation in the evolution of
the upper and lower stratospheric potential vorticity fields. It is through
the detailed vertical evolution pattern in Fig. 14e that the negative cor-
relation of the upper and lower stratospheric potential vorticity fields
makes sense.

The accuracy of regression analysis in CSEOF space in deriving
physically consistent evolutions from different variables makes
this “statistical” technique uniquely adapted for detailed physical
inferences. For example, Fig. 14c represents the evolution pattern
of potential vorticity derived from the potential temperature based
on the physical relationship between them (see figure caption).
Likewise, Fig. 14d represents temperature derived from geopotential
height based on their physical relationship (essentially hydrostatic

Fig. 11. Physical response characteristics of two variables pertaining to a physical process. When an independent physical system (or a process) fluctuates due to an external forcing, the
response of two physical variables may be different from each other because of different physical response characteristics of the two variables. The resulting evolution histories, then, will
be different between the two.
Reproduced from Kim et al. (2003).

Fig. 12. Schematic diagram explaining the conceptual difference between stationary EOF analysis and cyclostationary EOF analysis. In EOF analysis, physical response is uniform (stationary) in
time while in cyclostationary EOF analysis physical response characteristic is periodically time dependent with a given nested period.
Reproduced from Kim et al. (2003).
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equation; see figure caption). As can be seen, the physical relation-
ship holds accurately between the regressed fields. This example
firmly demonstrates one of the key benefits of the CSEOF analysis
technique: physically consistent evolutions can be extracted from
different variables.

6. Implications on spectral inferences

Time series of physical variables are often analyzed spectrally to
identify any dominant periodicities in the fluctuation. Spectral analysis
is based on Fourier decomposition. Sinusoids are proper basis functions
(EOFs) of stationary time series as can be proved as follows:

Z
T
R t−t ′
� �

exp 2πiωnt ′
� �

dt ′ ¼ f ωnð Þ exp 2πiωntð Þ; ð40Þ

where f(ωn) is the spectral density function. Eq. (40) follows from the
Fourier relationship between the autocovariance function and the spec-
tral density function (Newton, 1988). Under the stationarity assump-
tion, the temporal covariance function is identified as autocovariance
function, R(τ). Then, it can be shown that Fourier functions are the
eigenfunctions of the Karhunen–Loève equation and the eigenvalues
are the spectral density function of the time series. Thus, a spectrum is
nothing but a plot of eigenvalues.

When the stationarity assumption is not met as in the case of
cyclostationary processes, spectral analysis should be carried out with
a strong caution since Fourier functions are not a proper basis set. This
means that Fourier expansion coefficients of time series are neither in-
dependent of each other nor orthogonal to each other and, henceforth,
the variability of the time series is not properly partitioned among inde-
pendent modes. This, of course, is not a serious concern since spectral
estimation based on only one realization is already prone to some

Fig. 13. Spatial patterns of 300 hPa geopotential height anomalies (predictor: colored contours) and the streamlines of winds (target: black contours) on four different days of the 90-day
long first CSEOF mode (upper panel) and the corresponding PC time series (lower panel).
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sampling error. Amore serious concern is in the erroneous estimation of
the positions and magnitudes of spectral peaks as hinted in Fig. 12.
Whether the physical response characteristics of a variable are resolved
accurately or not affects the outcome of spectral analysis significantly
(Kim and Chung, 2001). This can be demonstrated as follows.

Let us suppose in Eq. (9) that

B tð Þ ¼ A cosω1t and S tð Þ ¼ C cosω2t; ð41Þ

where the physical time scale, ω1
−1, is much shorter than the stochastic

time scale, ω2
−1. Then, the raw time series can be written as

T tð Þ ¼ B tð ÞS tð Þ ¼ A cosω1t � C cosω2t ¼ AC
2

cosω ′
1t þ cosω ′

2t
� �

; ð42Þ

where

ω ′
1 ¼ ω1 þω2 and ω ′

2 ¼ ω1−ω2: ð43Þ

Thus, spectral analysiswould indicate peaks atω1′ andω2′ insteadofω2,
which is the frequency of stochastic undulation. This is a critical issue
since the periods corresponding to spectral peaks are among the impor-
tant statistical inferences about a random variable. In CSEOF analysis,
the physical response function is separated from stochastic modulation
of a physical process and the PC time series (stochastic modulation) is
stationary in theory (Kim and North, 1997a). Therefore, spectral analy-
sis on a CSEOF PC time series does not pose an intrinsic problem.

7. Utility of CSEOF analysis

A primary advantage of CSEOF analysis lies in the physical consisten-
cy of loading vectors extracted from different physical variables, which
we already discussed in conjunction with Figs. 13 and 14. The key idea
of physical consistency is expressed in Eq. (39) through regression anal-
ysis in CSEOF space. The concept of physical consistency can be extend-
ed to finding teleconnection responses. If the target domain in Eq. (31)

and the predictor domain in Eq. (37) are different, then regression in
CSEOF space, in essence, is used to find a remote response to a physical
process in the target domain. Figs. 15 and 16 illustrate the concept of
teleconnection. There are three sets of CSEOF patterns—one for the
North Pacific domain (20°–60°N; red contours), another for the entire
domain (30°S–60°N; blue contours), and the other for the tropical Pacif-
ic domain (30°S–30°N; black contours). The first two sets of spatial pat-
terns are from the regressed loading vectors onto the first and second
CSEOF modes of the tropical Pacific SSTA aside from the seasonal
cycle. As can be seen in the figures, the regressed patterns are fairly sim-
ilar to the CSEOF patterns of the tropical Pacific SSTA and to each other
although SST variability differs from one domain to another significant-
ly. The similitude of the seasonal evolution patterns is also remarkable.
Fig. 17 indicates that the temporal evolutions of SSTA exhibited in the
regression patterns are similar to each other and to that in the target
patterns. It should be emphasized that the evolution of SSTA in the tar-
get pattern is quite different from that in the regression pattern at a lo-
cation apart from the target region as expected. The distinctiveness of
the temporal evolution in the tropical region from that in the northern
North Pacific makes it clear that it is important to link physical evolu-
tions rather than two spatial patterns between two geographically un-
connected regions (see Yeo et al., 2012 for more details). Examining
the consistent physical evolutions has been applied to determine the at-
mospheric forcing responsible for the ocean response in a remote region
(Na et al., 2010, 2012a) and to investigate their lead–lag relationship
(Na et al., 2012b). Not only distinct physical evolution but also temporal
lead and lag between two placesmake it difficult to apply a convention-
al analysis technique to a teleconnection problem. An accurate method
of teleconnection should be able to account for distinct physical evolu-
tion and lead/lag relationship between two remote regions.

Another important application of the CSEOF technique is the con-
struction of synthetic data in a physically consistent manner. The idea
can be elucidated in terms of the following equation:

T̂ r; tð Þ ¼
X

n
Bn r; tð ÞT̂n tð Þ; ð44Þ

Table 1
The R2 values of regression for the first ten CSEOFmodes of the 300-hPawind anomalies at the standard pressure levels. Regressionwas conducted using thefirst 20 PC time series of wind
anomalies at each standard pressure levels as predictors.

1 2 3 4 5 6 7 8 9 10

200 hPa 0.993 0.994 0.992 0.989 0.987 0.996 0.976 0.992 0.984 0.965
250 hPa 0.999 0.998 0.998 0.998 0.998 0.998 0.995 0.998 0.995 0.993
300 hPa 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
400 hPa 0.997 0.997 0.998 0.997 0.997 0.997 0.997 0.997 0.994 0.992
500 hPa 0.993 0.992 0.994 0.992 0.995 0.992 0.994 0.994 0.982 0.981
600 hPa 0.990 0.988 0.989 0.988 0.992 0.986 0.989 0.991 0.968 0.971
700 hPa 0.986 0.982 0.982 0.983 0.989 0.976 0.983 0.985 0.940 0.957
850 hPa 0.981 0.971 0.960 0.972 0.978 0.972 0.963 0.972 0.911 0.928
925 hPa 0.977 0.963 0.950 0.955 0.965 0.966 0.952 0.957 0.890 0.912
1000 hPa 0.976 0.963 0.944 0.946 0.928 0.963 0.952 0.951 0.882 0.894

Table 2
The R2 values of regression for the first ten CSEOF modes of the 300–hPa wind anomalies at the standard pressure levels. Regression was conducted using the first 20 PC time series of
geopotential height anomalies at each standard pressure level as predictors.

1 2 3 4 5 6 7 8 9 10

200 hPa 0.953 0.938 0.960 0.931 0.925 0.903 0.838 0.878 0.878 0.735
250 hPa 0.967 0.949 0.976 0.958 0.964 0.934 0.878 0.906 0.916 0.816
300 hPa 0.975 0.958 0.973 0.963 0.975 0.930 0.898 0.914 0.920 0.838
400 hPa 0.975 0.951 0.967 0.962 0.973 0.915 0.903 0.922 0.916 0.841
500 hPa 0.974 0.940 0.962 0.960 0.972 0.905 0.898 0.926 0.908 0.839
600 hPa 0.973 0.936 0.953 0.950 0.969 0.904 0.893 0.914 0.909 0.880
700 hPa 0.963 0.933 0.933 0.948 0.963 0.904 0.888 0.906 0.905 0.892
850 hPa 0.956 0.940 0.909 0.952 0.945 0.897 0.882 0.886 0.824 0.878
925 hPa 0.950 0.939 0.908 0.940 0.932 0.893 0.859 0.818 0.749 0.858
1000 hPa 0.946 0.937 0.900 0.923 0.918 0.884 0.868 0.777 0.754 0.845
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where the hat sign denotes “estimate”. There are many different

contexts and approaches in obtaining the estimates T̂nðtÞ. In developing
a weather generator, each PC time series can be fit to an ARMA
(autoregressive–moving average) model:

Tn tð Þ þ
Xp

j¼1
α jTn t− jð Þ ¼ ε tð Þ þ

Xq

k¼1
βkε t−kð Þ

� ARMA p; q; ~α; ~β;σ2
� �

; ð45Þ

where p and q are respectively the AR and MA orders, ~α ¼ fαiji ¼ 1;
…; pg and ~β ¼ fβ jj j ¼ 1;…; qg are the AR and MA coefficients, and σ2

is the variance of the white noise time series. Then, synthetic PC
time series can be generated based on Eq. (45) by using different

realizations of the white noise time series. In this way, as many syn-
thetic amplitude time series as needed can be constructed in such a
way that they have identical statistical properties with the original
PC time series. Once synthetic time series are constructed, synthetic
datasets can be constructed from Eq. (44).

As demonstrated in J.W. Kim et al. (2013) and K.Y. Kim et al. (2013),
synthetic datasets exhibit statistical properties that are very close to
those of the original data sets. One superior advantage of the CSEOF-
based weather generator is that other variables can be generated in a
physically consistent way as the target variable. This can be accom-
plished via regression analysis in CSEOF space. Note that entire data
can be written as in Eq. (39) and distinct physical evolutions as mani-
fested in different variables are all governed by an identical PC time

Fig. 14. The wintertime evolution of (a) temperature, (b) geopotential height, (c)− g(f+ ζ)(dθ/dp), (d)− (g/R)(dZ/d ln p), (e) potential vorticity, (f) tropopause pressure (black solid),
200-hPa potential vorticity (blue dotted), and 10-hPa potential vorticity (red dashed), (g) and the PC time series (black: NCEP, red: ERA interim) for the first CSEOF mode (stratospheric
seasonal cycle). All the panels represent 60°–80°N zonal averages.
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series for each mode n. Thus, the synthetic time series generated by
using Eq. (45) apply to the regressed loading vectors derived from dif-
ferent physical variables. As a result, physical consistency is preserved
among synthetic datasets of different variables.

The concept delineated above can also be extended into a statistical
prediction study, which is another interesting application of the CSEOF
technique. Eq. (45) can be fitted to detrended PC time series. Then,
Eq. (45) can be used to generate longer PC time series together with

Fig. 15. Thefirst CSEOFmode (aside from the seasonal cycle) of tropical (30°S–30°N) SSTA (black contours), the regressed SSTA patterns (red contours) over the North Pacific (30°–60°N),
and the regressed SSTA patterns (blue contours) over the combined domain (30°S–60°N). The nested period is 24 months. Contour intervals are 0.1 °C.

Fig. 16. The second CSEOF mode (aside from the seasonal cycle) of tropical (30°S–30°N) SSTA (black contours), the regressed SSTA patterns (red contours) over the North Pacific (20°–
60°N), and the regressed SSTA patterns (blue contours) over the combined domain (30°S–60°N). The nested period is 24 months. Contour intervals are 0.1 °C.
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“projected” trends for future periods. Eq. (44) can be used in conjunc-
tion with the extended PC time series to generate “future” synthetic
datasets by utilizing Bn(r, t) = Bn(r, t+ d). In this sense, Eq. (44) serves
essentially as a statistical prediction model. Of course, an important
caveat in such an exercise is that loading vectors (physical evolutions)
do not change in any significantmanner under a climate change scenario.

In forecast studies, T̂nðtÞ should be calculated at a future time. In a

conventional prediction approach, T̂nðtÞ is obtained from

T̂n t þ hð Þ ¼
XM

m¼0
wmTn t−mð Þ; t∈D; t þ h∈ R; ð46Þ

where h is called the horizon, D implies the data domain and R implies
the prediction domain (Kim and North, 1998; Kim, 2000). The optimal
weight {wm} can be determined from the prediction normal equation
(Newton, 1988). Eq. (46) can be modified as

T̂n t þ hð Þ ¼
XM

m¼1
w nð Þ

m P nð Þ
m ðt−τ nð Þ

m Þ; t∈D; t þ h∈ R; ð47Þ

where {Pm(n)(t)} are predictor time series and {τm(n)} are corresponding
lags. We determine appropriate predictor time series and correspond-

ing lags tomake the variance of error in Eq. (47),VarðT̂nðtÞ−TnðtÞÞ, min-

imized over a training period. Once all the PC time series, T̂nðtÞ, are

estimated, the forecast field, T̂ðr; tÞ , can be obtained from Eq. (44).
Some examples are presented in Kim and North (1999) and Eq. (46)
was also used to forecast summer monsoon precipitations over East
Asia (Lim and Kim, 2006).

It should be pointed out that relatively short temporal scales associ-
ated with individual physical processes shorten autocorrelation time
scales thereby seriously limiting the predictability of geophysical phe-
nomena. By separating short “physical” time scales from relatively long
“stochastic” time scales, predictability can be improved significantly as
demonstrated in Lim and Kim (2006).

The CSEOF technique can also be used to develop a downscaling

method. In downscaling studies, T̂ðr; tÞ over a small and high-resolution
domain can be estimated based on data over a wider and coarse-
resolution domain. Let us consider an experiment, in which temperature
over a small domain is estimated based on a coarse model temperature
over amuchwider domain. Byfirstfinding the regression relationship be-
tween the target PC time series and the predictor PC time series as in
Eq. (33), one can estimate the target PC time series based on the predictor
PC time series. That is,

T̂n tð Þ ¼
XM

m¼1
β nð Þ
m Pm tð Þ þ ε nð Þ tð Þ; t∈ R ð48Þ

Fig. 17. Temporal evolution of SSTA for the second CSEOFmode (upper panels) and the third CSEOFmode (lower panels). The left panels denote SSTA variability averaged over the 10°S–
10°Nband from the tropical Pacific SSTA (shadewith black contours) and that from the regressed patterns from the entire domain (30°S–60°N; red contours). The right panels denote SSTA
variability averaged over the 35°–45°N band derived from the entire domain (30°S–60°N; shade with black contours) and that from the North Pacific domain (20°–60°N; red contours).
Contour intervals are 0.1 °C.
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where R is the prediction interval. Then, downscaling onto a high-

resolution domain, T̂ðx; tÞ, can be achieved by writing

T̂ x; tð Þ ¼
X

n
Bn x; tð ÞT̂n tð Þ; ð49Þ

where Bn(x, t) are loading vectors of high-resolution data.
This approach was used for regional-scale forecasts of temperatures

and precipitations based on globalmodel forecasts (e.g., Lim et al., 2007,
2010). Namely, the PC time series of high-resolution data can be esti-
mated for future times by using the PC time series of global model fore-
casts as in Eq. (48). Such statistical downscaling methods can also be
useful in developing modeling strategies, in which resolving small
scale climate features is essential.

Application of CSEOF analysis as a reconstruction tool is considered
of increasing importance these days. A reconstruction is a way to pro-
duce complete data fields from sparse historical data. The idea is to
use spatial information from a data-rich period to interpolate between
sparse measurements during data-poor periods. A full theory of recon-
struction algorithm is beyond the scope of this study, but a brief sketch
is given instead. Let data over the training period be given as

X r; tð Þ ¼
X

n
Bn r; tð ÞTn tð Þ; t∈D; ð50Þ

where D denotes the training period. In the reconstruction period, we
have only a limited number observations (say, tide gauge observations),
that is,

X r j; t
� �

; j ¼ 1;…;N; t∈ R; ð51Þ

where N is the number of observations and R is the reconstruction peri-
od. In order to generate data over the whole domain in the prediction
period, we need to estimate Tn(t) based on N observations at each
time step. That is,

T̂n tð Þ ¼
Xδ

k¼−δ

XN

j¼1
wjkBn r j; t þ k

� �
X r j; t þ k
� �

; ð52Þ

where {wjk} are optimal weights. Optimal weights are determined such

that the variance of T̂nðtÞ−TnðtÞ is minimized over the training period.
The advantage of a CSEOF-based estimation algorithm is that data at

multiple (2δ+1) time steps can be used as shown in Eq. (52). It is pos-
sible to use multi-level data, since CSEOF basis functions reflect both
spatial and temporal correlation structures. In other words, data at
past time steps provide useful information for estimating data at the
present time step. Likewise, data at future time steps provide useful in-
formation for estimating data at the present time step. An example of
CSEOF-based reconstruction is found in Hamlington et al. (2011a,
2011b), inwhich global sea level height from1950 to 2010was estimat-
ed based on a limited number of tide-gauge observations (see also
http://podaac.jpl.nasa.gov/dataset/RECON_SEA_LEVEL_OST_L4_V1). In
an additional recent study, CSEOF-based sea level reconstructions
were also found to be superior to more widely-used EOF-based sea
level reconstructions with regards to sensitivity to sparse historical
observations and the ability to capture natural climate variability. By
every tested metric, the CSEOF-based reconstruction outperformed
the EOF-based reconstruction (Strassburg et al., 2014).

An additional advantage of the CSEOF-based estimation technique
lies in the fact that it allows related physical variables to be utilized in
reconstructing a specific variable. This has important implications as
reconstructions extend further into the past when historical measure-
ments become sparser and have poorer coverage of the global ocean.
For example, sea surface temperatures were used together with tide
gauge data to estimate sea level height from 1900 to 2010 (Hamlington
et al., 2012). The resulting dataset is the longest global reconstruction of
sea level height and serves as an important tool for investigating long-
term variability in sea level height. Such an estimation algorithm can be

used to reconstruct global patterns of variables based on a few satellite
observations; at any given time, there are only a few satellite observa-
tions, which can optimally be averaged to produce data with global
coverage.

8. Concluding remarks

In this study, the conceptual foundation of CSEOF analysis has been
addressed in comparison with EOF analysis, which is based on the sta-
tionarity assumption. The assumption of stationarity is often not justifi-
able and cyclostationarity may be a better assumption for a wide range
of geophysical processes. CSEOF analysis finds computational modes of
a cyclostationary process, for which the first two moment statistics are
periodically time dependent. The computational modes, eigenfunctions
of the covariance function, then, are also time dependent and periodic
with the sameperiod of thefirst twomoment statistics. The timedepen-
dence of covariance statistics, and henceforth the time dependence of
eigenfunctions (CSLVs), comes primarily from time-dependent physical
evolutions and should be distinguished from stochastic components of
variability, which are described in corresponding PC time series. The
time dependence of physical processes aside from stochastic undula-
tions is clearly realized in the time dependence of corresponding covari-
ance statistics.

Accounting for the time-dependent characteristics of physical pro-
cesses is important in wide areas of climate research. Specifically,
CSLVs may provide clearer pictures of physical processes extracted
from complex observational and model datasets. The importance of
extracting accurate physical evolution cannot be emphasized too
much. More importantly, it is extremely beneficial to extract physical
evolutions frommultiple variables in such away that they are physically
consistent with each other. Such physical consistency is ensured in a re-
gression analysis in CSEOF space. Physically consistent evolutions in two
or more variables can be derived, since physical evolutions are not as-
sumed to be identical between the two or more variables. In fact, such
an assumption is not physically valid, for the evolution of variables in
a specific physical process is determined according to the equation
governing the physical process.

Being able to extract independent and accurate physical evolutions
from a given dataset is a pivotal characteristic of the CSEOF technique.
Not only does this lead to more accurate physical and statistical infer-
ences on physical processes but also allows the development of more
accurate statistical algorithms. The distinction between physical and
stochastic components of variability is extremely crucial in addressing
the teleconnection between two geographically unconnected regions,
since two regions should, in general, exhibit disparate physical evolu-
tions. Unless such non-identical physical evolutions between two places
can be dealt with appropriately, addressing a teleconnection between
two places is bound to be difficult and erroneous.

If the physical processes captured by a variable can be assumed to be
periodic, then the PC time series of CSEOF loading vectors are stationary;
therefore, spectral analysis on themmakes sense. As can easily be veri-
fied, the stationarity assumption is often a poor characterization of geo-
physical and climatic data. Thus, EOF PC time series,which are supposed
to represent stochastic components of variability, are contaminated by
physical evolutions. As a result, conventional spectral analysis may
lead to incorrect statistical inferences. On the other hand, CSEOF PC
time series are stationary and represent the stochastic amplitudefluctu-
ations of time-dependent physical processes. Thus, spectral analysis on
CSEOF PC time series does not pose any problem.

A more accurate representation of space–time covariance statistics
provides additional benefits in statistical estimation studies. Separate
accounts for temporal and spatial covariance statistics should not
suffice; they should be dealtwith in a physically consistentmanner. Dis-
tinction of physical evolutions of a deterministic nature from stochastic
components of variability in CSEOF analysis provides a superior advan-
tage in developing more accurate statistical algorithms in estimation,
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prediction, detection and reconstruction. Examples addressed in Section 7
are but a few possible applications of the CSEOF technique.

Aswith any other analysis technique, the CSEOF analysis has obvious
limitations. Themost important caveat is the periodicity of the statistics.
Thus, CSEOF analysismay not be suitable for analyzing physical processes
without well-defined periodicity. The technique, nevertheless, is a
significant improvement over existing eigen-techniques based on the
stationarity assumption. Specifically, the CSEOF technique is a three-
dimensional extension of the EOF technique. By relating multiple vari-
ables in a physically consistentway, the CSEOF technique further expands
the analysis dimensions into four—space, time, and variables.
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Appendix 1. A comparison between CSEOF analysis and extended
EOF analysis

The motivation of CSEOF analysis may look similar to extended EOF
analysis (Weare and Nasstrom, 1982; Plaut and Vautard, 1994),
i.e., extract temporal evolution of physical processes from a given
dataset. There are, however, some essential differences. In a general
form of extended EOF analysis, eigenfunctions are found by diagonaliz-
ing the matrix

C ¼
C 0ð Þ C 1ð Þ ⋯ C dð Þ
C 1ð Þ C 0ð Þ ⋯ C d−1ð Þ
⋮ ⋮ ⋱ ⋮

C dð Þ C d−1ð Þ ⋯ C 0ð Þ

0
BB@

1
CCA; ðA1Þ

where lag-d spatial covariance matrix is given by

C dð Þ ¼ T x; tð ÞT x′; t þ d
� �� �

: ðA2Þ

One significant difference between the two techniques is that the co-
variance matrix of the extended EOF technique in Eq. (A1) does not
have any specific time reference. Note that Eq. (A1) is very different
from Eq. (16) although Eq. (16) may collapse to Eq. (A1) under the sta-
tionarity assumption. Note in CSEOF analysis that

C x; t ¼ 1; x′; t ′ ¼ 1
� �

≠C x; t ¼ 2; x′; t ′ ¼ 2
� �

; ðA3Þ

both of which represent zero-lag spatial covariance function, C(0), in
Eq. (A1). Likewise,

C x; t ¼ 1; x′; t ′ ¼ 3
� �

≠ C x; t ¼ 6; x′; t ′ ¼ 8
� �

; ðA4Þ

although, they may be termed C(2) in extended EOF analysis. Further,

C x; t ¼ 3; x′; t ′ ¼ 5
� �

≠ C x; t ¼ 3; x′; t ′ ¼ 1
� � ðA5Þ

may also be termed C(2). Bear in mind that the covariance function
should be explicitly time dependent in light of Fig. 2.

Note similarly in Eq. (16) that the covariancematrix is symmetric, i.e.,

C x; t; x′; t ′
� � ¼ C x′; t ′; x; t

� �
: ðA6Þ

On the other hand,

C x; t; x′; t ′
� � ¼ K x; t; x′; τ

� �
≠K x; t; x′; τ þ d

� � ¼ C x; t; x′; t ′ þ d
� �

; ðA7Þ

where τ= t′− t and K(x, t; x′, τ) is the covariance function as a function
of time and lag. The first and the last terms in Eq. (A7) are generally dif-
ferent because of different lags. This asymmetry of covariance statistics

implies that there is a preferred direction of physical processes in space
and time.

The cyclostationary covariance function, on the other hand, is not
limited in its representation and is well defined for all combination of
points t and t′. This is possible because the cyclostationary covariance
function is conceptually infinite in length. A key to the implementation
of the rigorous concept of cyclostationarity as described in Eqs. (15) and
(16) lies in the Fourier representation of the cyclic covariance function
(Kim et al., 1996). Although the covariance function repeats itself indef-
initely, it can be decomposed into a finite number of Fourier expansion
coefficients, the number of which is determined by the periodicity d.
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