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Abstract 

Soluble extractives in wood function to protect living trees from destructive agents and also 

contribute to wood color and fragrance. Some extractive components have biological activities 

with medical applications. They also play important roles in wood processing and related 

applications. To increase the knowledge of wood chemistry, maple and oak were extracted by 

water. Ultraviolet/visible (UV/vis) spectroscopy indicated the presence of a phenolic 

compound, resorcinol, in maple extractives having higher molecular mass and more aromatic 

components than oak extractives. Negative and positive electrospray ionization Fourier 

transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) identified thousands 

of formulas in the two samples in the m/z range of 200-800. They mainly fall into the lignin-, 

carbohydrate- and tannin-like compound categories. The top 25 peaks (i.e., formulas) with the 

highest relative magnitude in negative ESI represented nearly 50% of the summed total spectral 

magnitude of all formulas assigned in the maple and oak extractives. Furthermore, the base 

peak (i.e., most abundant peak) accounted for about 14% of the total abundance in each wood 

sample. Literature comparisons identified 17 of 20 formulas in the top 5 peaks of the four 

spectra as specific bioactive compounds in trees and other plants, implying the potential to 

explore utilization of maple and oak extractives for functional and medicinal applications. The 

various profiling of the top 25 peaks from the two samples also suggested the possible 

application of FT-ICR-MS for detecting chemical markers useful in profiling and identification 

of wood types and sources. 

Keywords: Fourier transform ion cyclotron resonance mass spectrometry, maple, oak, van 

Krevelen diagrams 
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1. Introduction 

Besides cellulose, hemicellulose, and lignin as the main structure components of cell walls, 

wood contains other non-structural substances known as extractives [1, 2]. Wood extractives 

may be extracted by water and/or organic solvents. Extractives in wood function to protect 

living trees from destructive pest agents and contribute to wood color and fragrance. Some 

extractive components show specific biological activities with medical applications [3]. They 

also play certain roles in wood processing and related applications [4, 5]. Shebani et al. [6] 

reported that the thermal stability of wood polymer composites made with four extractive-free 

wood species is higher than the untreated controls. This was because the higher extractive 

contents associated with lower crystallinity and lower cellulose crystallite size could accelerate 

the degradation process [7]. While wood extractives may include an array of compounds (e.g., 

aliphatic, terpenoid, and phenolic) in nature, the detailed characterization of their molecular 

compositions by advanced instrumental techniques are very limited [8]. 

Wood extractives can also change the wettability and the curing properties of wood adhesives, 

thus affecting the gluing bond strength and performance [5, 9, 10]. Maple and oak are two 

wood substrates frequently used in wood adhesive studies [11, 12, 13, 14, 15]. Increased 

knowledge on the water extractives from the two types of wood would be helpful in better 

understanding, and thus improving the strategies, of wood-adhesive bonding. However, there 

is limited documentation of compounds or extractives from maple and oak wood types. 

Therefore, the objective of this research was to identify and characterize the chemical 

composition of the water soluble materials (i.e., extractives) from maple and oak wood veneers. 

The long-term goal is to apply the knowledge of wood extractives to develop better strategies 

for improving the adhesive-wood bonding interactions by changing surface polarity, 

wettability and permeability of the bonding interface [16]. To do so, in this study, chemical 

compounds in maple and oak strips were extracted with water. The chemical composition of 
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the water extractives was compared and characterized by ultraviolet/visible (UV/vis) 

spectroscopy and ultrahigh resolution Fourier transform ion cyclotron resonance mass 

spectrometry (FT-ICR-MS) using both negative and positive electrospray ionization (ESI) 

modes. 

2. Materials and Methods 

2.1. Wood materials 

Maple and white oak veneers (1.59 mm thick) were purchased from Certainly Wood, Inc. (East 

Aurora, NY, USA). The wood veneers were cut into strips (12 for each wood type) 25.4 mm 

wide by 88.9 mm long, with the wood grain parallel to the long side, and stored in sealed plastic 

bags until used. The maple density was 0.79 g cm−3, and the moisture content under the 

conditioning environment was 9.16% on a dry basis. The oak density was 0.77 g cm−3, with 

the moisture content under the conditioning environment being 9.29% on a dry basis [17, 18].  

2.2. Sample extraction 

The wood strips used in extractions were equilibrated in a humidity controller with 50% 

relative humidity (RH) for at least one week at 22 °C. Each set of 12 wood strips was soaked 

in distilled water (800 mL) for 2 days at 22 °C with occasional shaking. After removal of the 

soaked wood strips, 15 ml of the soaking water was retained, and the remaining was dried in a 

vacuum oven at 60 °C. The soaked wood strips were dried at 22 °C in the humidity controller 

with 50% RH (make, model, city of drier), and the weight loss was used to calculate the 

extraction efficiency (yield) on a dry weight basis. Triplicate extractions were conducted for 

each type of wood. The white oak extract was a dark brown/black solid, while the maple extract 

was an amber brown solid. 

2.3. Ultraviolet-visible (UV–vis) spectral analysis 



 

 
This article is protected by copyright. All rights reserved. 

The UV-vis spectra of diluted water extractives of oak and maple using 1.5-ml quartz cuvettes 

were recorded at the wavelengths of 200-700 nm with an Evolution 60S UV-visible 

spectrophotometer (Thermo Scientific, Madison, WI). The scan speed mode was set at medium 

level with the interval of 1 nm. Standard 10-mm path length quartz cells were used for 

measurement. To obtain the absorbance in the measurable range, the spectra were recorded 

with the undiluted samples, as well as after diluting by factors of 10-100 with water. UV-vis 

spectral features of E2/E3 and E4/E6 were calculated from the ratios of the absorbance at 250 

and 365 nm and at 400 and 600 nm, respectively [19].  

2.4. ESI FT-ICR mass spectrometry 

The vacuum-dried wood extractives were dissolved at approximately 1 mg mL-1 in ultrahigh 

quality (UHQ) H2O at pH 8 adjusted with NH4OH. All solids appeared to dissolve completely, 

giving an amber brown solution for the oak sample and light brown solution for the maple 

sample. Each sample was then diluted by a factor of 4 to give a final sample composition of 

1:1 H2O:MeOH (methanol, LC-MS grade, Fisher Scientific). 

Samples were analyzed in both negative and positive ESI modes. The two diluted samples 

were continuously infused into an Apollo II ESI ion source of a Bruker Daltonics 12 

Tesla Apex Qe FTICR-MS, introduced by a syringe pump operating at 120 L hr-1 with the 

same parameter set-up as reported previously [20]. ESI voltages were optimized for each 

sample to maintain consistent and stable ion currents. In order to balance peak resolving 

powers with signal to noise (S/N) ratios, ions were accumulated for 1.0 sec in a hexapole 

before being transferred to the ICR cell, where 300 transients, collected with a 4 MWord 

time domain, were co-added, giving about a 30 min total run time. The summed FID signal 

was zero-filled once and Sine-Bell apodized prior to fast Fourier transformation and 

magnitude calculation using the Bruker Daltonics Data Analysis software.  
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Prior to mass spectral data analysis in both positive and negative ion modes, samples were 

externally calibrated with a polyethylene glycol (PEG) standard and internally calibrated with 

fatty acids, dicarboxylic acids, and other naturally present ions within the sample [21]. Formula 

assignments were based on a list of conservative rules that ensure the formulas are chemically 

possible in nature and would ionize in either positive or negative ion mode [22, 23]. Empirical 

formulas were generated by a molecular formula calculator using C, H, O, N, and S (C5-50H5-

100O0-30N0-4S0-2) within 1 ppm mass error. For positive ion mode, 1 Na atom was allowed per 

formula. Only m/z values with an S/N ratio above 3 were inserted into the molecular formula 

calculator. The assigned formulas, in the vast majority of cases, agreed within an error value 

of <0.5 ppm of the calculated exact mass of the assigned formulas.  

 

2.5. Data collection and analysis  

The yield and UV-vis parameters of wood extractives were analyzed by Proc Means of the 

Statistical Analysis System (SAS Version 9.2; SAS institute, Cary, NC) to generate means 

and associated standard errors. The UV-vis spectra, as well as the negative and positive ion 

ESI FT-ICR mass spectra, of the water extractives of maple and oak were obtained and 

graphically plotted to visualize their characteristics. The biomolecular compound classes of 

maple and oak extractives were categorized and plotted using two-dimensional van Krevelen 

diagrams.  The total number of formulas and selected molecular-level parameters were 

computed and tabulated for treatment combinations. Similarly, the diversity (number and 

percentage of formulas), as well as their relative frequency or abundance, of biomolecular 

compound classes were also computed. 
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3. Results and Discussion 

3.1. Extraction yield 

The yield of water extraction was 3.14% and 2.93%, for maple and oak, respectively, on a 

dry mass basis (Table 1). These values were in the range of extraction efficiency of various 

wood materials. Generally, wood extractives account for 2-5% of wood content, even though 

higher yields could be reached in certain types of wood or by different extractants [8, 24]. For 

example, Malik and Santoso [4] reported extraction efficiencies in the range of 0.7-6.7% for 

oily keruing wood samples using solutions of water and ethanol in various proportions. Malik 

et al. [1] reported that the extraction yield of merbau extractives were 12.45%, 12.56%, and 

1.34% when 80% ethanol, 60% ethyl acetate, and hot water were used, respectively. The 

organic solvents increase the extractive efficiency due to the fact that their polar and non-

polar functional groups dissolve more complicated compounds, such as tannins, resins, wax, 

and gum. The solvent choice should depend on the targeted extracted compounds and/or the 

purpose of the extraction. From a general environmental point of view, water is better than 

organic solvents, because it is relatively cheap, nontoxic, inflammable, and recyclable [1]. As 

the primary purpose of this work was characterizing the water-soluble materials in wood 

veneers, water was the best choice. 

3.2. The UV-Vis spectral features 

The triplicate samples of each type of wood extractive showed almost identical spectral features 

with minor strength differences (Fig. 1). The UV-vis spectral features of the oak extractives 

have monotonically-decreasing curves with increasing wavelength and two absorbance 

shoulders around 225 and 279 nm, except for a peak near 210 nm. This featureless 

characteristic of the UV-vis spectra is common for natural organic matter, which indicates that 

there were many different chromophores in this complex sample [19]. The abundant 
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chromophores could be aromatic and/or phenolic compounds with conjugated C=C and C=O 

double bonds, which have strong absorbances in the range of 200 nm to 300 nm, as described 

in earlier studies of wood extractives [25] and other plant extracts [26]. In the spectra of the 

maple extracts, the absorbance shoulder at 279 nm was a distinct absorbance peak. Therefore, 

in the maple extractives, some chromophores were apparently more abundant than in oak 

extractives. Malik et al. [1] attributed a strong UV-peak at the similar 279 nm in their merbau 

extractives to the phenolic compound resorcinol, by comparison to the UV-vis spectrum of the 

model compound.  

Quantitatively, the value of E2/E3 was about 17 for the oak extractives per the measurements 

of A250 and A365 with the 1/100x and 1/20x diluted samples (Table 1). The value was near 6 for 

the maple extractives per the measurements with the 1/50x and 1/10x diluted samples. The 

visible absorbance, especially at 600 nm, was quite low, and as such, the undiluted samples 

were used to obtain the E4/E6 ratios. These data show that both of the E2/E3 and E4/E6 

parameters were higher in the oak extractives than in the maple extractives. These two UV-vis 

ratios are widely used for the characterization of labile organic matter from various sources of 

soil and environmental samples [27, 28, 29, 30]. The E4/E6 value was also used as a colloidal 

parameter of the water-soluble materials in the composting of forestry waste (oak biomass) 

[31]. Higher E2/E3 values may reflect lower average molecular mass components. Higher 

E4/E6 values may be contributed by both lower average molecular mass components and less 

aromatic structures. Waldrip et al. [28] reported an E2/E3 value of about 7.2 for surface beef 

manure, but around 3.5 in its sediment samples. The authors attributed their observations that 

the surface manure was more recently excreted materials with lower molecular mass (i.e., no 

humification). In humic acid samples, He et al. [32] observed that E4/E6 values were 3.6 and 

15, respectively, for the acid’s high (> 3 KD) and low (<3 KD) molecular mass fractions. Based 

on these earlier observations, the two sets of E2/E3 and E4/E6 values recorded in this study 
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imply that the maple extractives possessed higher molecular mass and more aromatic 

components than the oak extractives. 

3.3. ESI FT-ICR mass spectral features 

The broadband ESI FT-ICR mass spectra of the two extractives are shown in Fig. 2. For both 

samples, peaks were mainly detected at m/z 250-800. However, apparent differences were 

observed in the spectral features between the two samples, and between the different ionization 

modes of the same sample. For both ESI modes, the maple sample showed strong peaks in the 

range of m/z 320-380, with modestly strong peaks between m/z 500-700 using negative ion 

mode. In contrast, strong peaks were detected in the wider range of m/z 420-620 in the oak 

extractives with negative ion mode and a more narrow range of m/z 400-480 with positive ion 

mode. The ultrahigh resolving powers of FT-ICR-MS allowed for the separation of m/z values 

to a mass accuracy of less than 1 ppm. Thus, numerous peaks could be detected at each nominal 

mass within an error value of less than 0.5 ppm compared to the calculated exact mass of the 

assigned formulas (insets of Fig. 2). In total, negative ion mode analysis allowed for the 

assignment of 2781 formulas in the maple extractives and 2256 formulas in the oak extractives 

(Table 2). Positive ion mode detected fewer peaks (and thus less formulas), with 924 and 1009 

formulas for the maple and oak samples, respectively. The difference between the two ion 

modes is due to the fact that positive ESI produces mostly proton adducts or cation adducts, 

i.e., [M + H]+ or [M + Na]+; and negative ESI produces mostly deprotonated compounds, i.e., 

[M - H]- [33]. As a result, positive ESI could represent more of those molecules with high 

proton affinities, and negative ESI enhances ion signals for acidic compounds. It should be 

noted that low molecular weight compounds, such as resorcinol (C6H6O2, 110.112 Da) featured 

in the UV-vis spectra (Fig. 1), are not efficiently detected by FT-ICR0MS, and thus, the bulk 

elemental compositions may differ [20, 34]. Other hyphened MS techniques could be applied 

to detect the smaller ions, such as GC-MS and analytical pyrolysis-MS [35, 36]. 
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The average m/z for the water extractives of maple were 546 and 477 for negative and positive 

ion modes, respectively (Table 2). For the water extractives of oak in negative and positive ion 

mode, the average m/z values were 534 and 457, respectively, which are slightly lower than 

the values for maple, which is consistent with the absorbance ratio indications previously 

described from the UV-vis spectra. The average number of carbons and O/C ratios were similar 

between the two samples for each ion mode. H/C ratios are inversely proportional to DBE 

values, as high H/C ratios indicate a more aliphatic character and high DBE ratios indicate a 

more aromatic character. For both ion modes, the maple sample was less aromatic (i.e., had 

higher H/C and lower DBE) than the oak sample. These observations are consistent with oak 

having higher overall UV absorbances (Fig. 1), but inconsistent with the E4/E6 ratio that 

suggested that oak was less aromatic than the maple. This inconsistency likely points towards 

a fraction of the oak water extractive that is aromatic but not ionized by ESI in either ion mode, 

which suggests a pure hydrocarbon that would be ionized by atmospheric pressure 

photoionization (APPI). These data are in the range of other organic materials, such as bio-oil 

products, water extracts of plant, and organic humic acid fractions (Table 1). The average O/C 

ratios and DBE values of the two wood extractives are higher than other organic samples, but 

within the typical range for dissolved organic matter extracted from aquatic sources.  

3.4. van Krevelen (V-K) analysis 

Table 3 summarizes the distribution of the formulas (by both number and magnitude) based on 

the heteroatom content (CHO(Na), CHON (Na), and CHOS (Na), where Na was only included 

for positive ion mode data). For both extractives, more than 90% of the formulas fall in the 

CHO and CHON categories. Using negative ion mode, 6% of the formulas (accounting for 7% 

of the total spectral magnitude) were CHOS and were assigned in the maple extractives, but 

even less (2% of formulas accounting for 1% of the total spectral magnitude) were in the oak 

extractives.   
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To better visualize and compare the chemical compositions of the maple and oak water 

extractives, V-K diagrams were plotted and formulas were grouped into 7 biomolecular 

compound classes (Figs. 3 and 4). Nearly all formulas aligned within a compound classes, 

leaving only 2-3% of the formulas (accounting for 1-3% of the total spectral magnitude, Table 

4) falling outside one of these ranges. While there are less formulas in the positive ion mode 

data, the patterns in the distribution of compound categories within the V-K diagrams between 

the two ion modes looks quite similar. The patterns of the V-K diagrams of the two extractives 

were similar to that of steam-treated pine biomass samples dominated by carbohydrates and 

lignins, although there were only 10 data points obtained from bulk elemental analysis [37]. 

While lignins are generally considered to be essentially hydrophobic (or lipophilic) [37], the 

lignin-like formulas in the water extractives may be devoted to the hydrophilic precursors 

and/or degradation products of lignins [38, 39]. The patterns of the V-K diagrams of the two 

extractives were also similar to that of the V-K diagram of short-rotation willow fast pyrolysis 

oil observed with negative ion mode FT-ICR MS, except more lipids, as expected, were 

observed in the bio-oil [24].  

In general, the O/C averages are fairly similar between the extractives of maple and oak. 

However, maple sample possessed a higher average H/C (and thus lower DBE). As such, there 

are more aliphatic formulas in the maple samples, and more aromatic formulas in the oak 

samples. For both samples, most of the formulas contain CHO-only, but they do both contain 

some CHON and CHOS formulas. The V-K diagrams visually show that most of the formulas 

fall into the lignin-like (approximate boundaries of O/C 0.1-0.6 and H/C 0.5-1.7) and 

carbohydrate-like (approximate boundaries of O/C 0.6-1.2 and H/C 1.5-2.2) regions, with some 

contributions in the tannin-like (approximate boundaries of O/C 0.6-1.2 and H/C 0.5-1.5) and 

lipid-like (approximate boundaries of O/C 0.0-0.2 and H/C 1.7-2.2) regions. Quantitatively, 

lignin-like components are the most diversified, accounting for 53-75% of the formulas (and 



 

 
This article is protected by copyright. All rights reserved. 

35-81% of the total spectral magnitude, Table 4). Carbohydrate- and tannin-like compounds 

exist in moderate abundance and diversity, accounting for about 10-24% of detected formulas 

and 8-39% of the abundance. Peptide- and lipid-like are also present in both extractives but in 

small amounts (<3%). Positive ion mode did detect more peptide-like components, as peptides 

are N-containing compounds that are typically ionized more efficiently in positive mode. 

Condensed aromatics and unsaturated hydrocarbons were essentially negligible.  

3.5. Characteristics of major compounds 

Although thousands of formulas were identified in the wood extractives by FT-ICR-MS, the 

top 25 formulas detected in highest magnitude accounted for the much (nearly 50%) of the total 

spectral magnitude of all formulas in negative ion mode (Tables 5 and 6). Furthermore, the 

abundance of the top 5 formulas accounted for 30.1% and 49.3% of total magnitude in the 

maple extractives, and 32.2% and 19.0% in the oak extractives, using negative and positive ion 

mode, respectively. With the exception of one formula, all of the top 25 formulas belong to the 

lignin-like, carbohydrate-like, or tannin-like classes. The one exception is the peak at m/z 

329.2333 with an abundance of 0.523%, assigned to C18H33O5, which could be 9,12,13-

trihydroxyoctadecenoate or any of its structural isomers [40]. There are five formulas that 

appeared twice in the top 25 peaks of the maple and oak extractives. Three formulas (C22H37O19, 

C29H31O12, and C27H31O10) were detected in negative ion mode of both the maple and oak 

extractives, and one formula (C22H26O9Na) appeared in positive ion mode of both extractives. 

These results implied that the four formulas should be major components in both wood samples. 

One formula (C22H27O8) appeared in both negative and positive ion mode spectra of the oak 

sample, probably representing the zwitterion properties of the compound. While two S-

containing lignins and one tannin were in the top 25 peaks of the maple extractives, no S-

containing compound was in the top 25 peaks of the oak extractives. Among the three S-

containing formulas, C22H25O11S has been reported as a fragment of paeoniflorin sulfonate 
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(C23H27O13S), a newly-generated marker due to sulfur-fumigation of Moutan Cortex (a root 

bark) [41]. While there is no information on the history of the two wood samples we studied, 

it would be of interest to investigate further the origin of these S-containing compounds in the 

maple sample. 

We further explored possible identities of the top 5 peaks of each spectrum. The highest peak 

(13.6% of the total spectral magnitude) using negative ion mode for the maple extractives 

was at m/z 341.1087. Its formula was assigned to C12H21O11, which could be dihexoside. Its 

abundance could be due to the presence of various dihexoside derivatives found in nature, 

such as pine cones [42]. The second highest peak (7.2%) at m/z 683.2246 seemed to be a 

dimer of dihexoside, having a formula of C24H43O22. The third abundant peak was lignin-like 

but having 4 N atoms and 14 DBEs with the formula C24H25O10N4, which could not be found 

in the literature. The fourth abundant formula (C31H37O11) is related to the products of natural 

hypolignification [43]. The fifth formula (C18H31O16) could be a 6-kestose monohydrate [44]. 

The highest peak (30.7% of the total spectral magnitude) of the maple extractives in positive 

ion mode is at m/z 381.0792, assigned to C15H18O10Na. This chemical is a 

glucuronoconjugate, which has not been well documented but found in neuroblastoma 

patients [45]. The second highest peak (9.5%) at m/z 365.1053 (C12H22O11Na) could be a 

6,6’-linked disaccharide, such as 6-O-(6-Deoxy-D-allos-6-yl)-D-allose and 6-O-(6-Deoxy--

D-mannopyranos-6-yl)--D-mannopyranose, previously reported in their relevance to the 

root of the thorny palm Acrocomia mexicana [46]. The formula (C18H18O8Na) and exact mass 

(385.0894) of the third peak are equal to the values of lepraric acid in metabolite profiling of 

lichens by an LC–MS method [47]. The fourth and fifth peaks could be classified as 

artoheterone (C17H16O7Na) [48] and sucrose (C12H26O11N, [M+NH4]+) [49], respectively. 
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In the oak extractives, the highest peak (14.2% of the total spectral magnitude) using negative 

ion mode was at m/z 419.1708 with a formula of C22H27O8. This peak could be assigned to 

lyoniresinol, which has been documented in oak extractives and maple sap [50, 51]. As a 

major component of oak, it is also found in the positive ion mode spectrum of the oak 

extractives with an abundance of 1.8%, which is still in the top 25. This chemical is also 

present in the maple extractives, but with a much lower magnitude (0.03% and 0.02% using 

negative and positive ion modes, respectively). The second abundant peak (C22H31O12, 6.7%) 

could be assigned to caffeoyl hexose-deoxyhexoside, which is found in fruit tree biomass, 

such as avocado (Persea americana) [52]. The formula (C22H37O19) of the third peak (5.7%) 

is also in the top 25 formulas of the maple extractive with a relative abundance of 1.1%. It fits 

the molecular formulas for deaminoneuraminic acid--2,6-lactoside--OCH3 and 

deaminoneuraminic acid--2,3-lactoside--OCH3 [53]. The fourth peak with the formula of 

C28H37O13 could be a tinosposinenside, as detected in the stems of Tinospora sinensis plants 

[54]. The fifth peak at m/z 551.2134 still possessed a relatively high magnitude (1.4%), but 

no published information on its identity (C21H37O12) was available.  

The relative abundance of the first peak in the oak extractives using positive ion mode was 

9.8%, which is lower than the relative abundance of the first peak of other spectra. However, 

the abundance was still much higher than the next 4 peaks in the top 5 that were all 

approximately 2.0% (Table 6). The first peak could be assigned to the formula C25H24O7Na 

with a structural possibility of tert-butyl 4-hydroxy-6'-methoxy-2'-methyl-2-oxo-2H,4'H-

[3,4'-bichromene]-3'-carboxylate [55]. The formula of the second peak is similar to the first 

one but with one more DBE (C25H22O7Na), which could be artobiloxanthone or 

cycloartobiloxanthone found in evergreen trees Artocarpus rigida Blume (Moraceae, 

mulberry family) [56]. The third one (C22H23O7) could be 6-Oxo-6-{4-[(4-

propoxybenzoyl)oxy]phenoxy}hexanoate or yatein, a lignin isolated from evergreen trees and 
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other sources [57]. The fourth formula (C22H28O8Na) could be a eupachinisin product that has 

been isolated from a whole plant extract of Eupatorium chinense [58]. There was no match 

found for the fifth formula (C19H26O12N) based on literature searches.  

4. Conclusions 

This work showed that about 3% of chemical components in maple and oak were extractable 

by water. UV-vis spectral data indicated that the maple extractives possessed higher 

molecular mass and more aromatic components than the oak extractives. UV-vis spectra 

indicated the presence of the phenolic compound resorcinol (C6H6O2, 110.112 Da) in the 

maple extractives. ESI FT-ICR-MS analysis provided more molecular-level information on 

the composition of the wood extractives, which have a molecular weight range of 200-800 

Da. For both extractives, more than 90% of the formulas fell into the CHO and CHON 

heteroatom categories. With negative ion mode, 6% of the formulas, which account for 7% of 

the total spectral magnitude, were CHOS formulas detected in the maple extractives, but only 

2% of the formulas (1% of the total spectral magnitude) were in the oak extractives. Lignin-, 

carbohydrate-, and tannin-like compounds were the three major categories of biomolecules 

detected. In this research, negative ion ESI allowed for the detection of >2500 formulas, 

while positive ion mode allowed for the detection of about 1000 formulas. Moreover, the top 

25 most abundant peaks (i.e., formulas) accounted for 47.1% and 63.8% of the total spectral 

magnitude of all formulas in the maple extractives using negative and positive ion mode, 

respectively. About 45.5% and 33.5% of the total spectral magnitude was due to the 25 most 

abundant peaks in the oak sample using negative and positive ion mode, respectively. The 

profiles of the top 25 formulas differed between the two wood samples, although 4 formulas 

appeared in the spectra of both samples. Among the 20 formulas of the top 5 from the 4 

spectra, 17 could be connected to specific bioactive chemical compounds related to tree and 

other plant biomass, based on the literature comparisons. Thus, data and observations in this 
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research increased the knowledge of wood chemistry for exploration of bioactive chemicals 

in wood extractives, as well as provided some information for further applications of FT-

ICR-MS for chemical markers useful in profiling and identification of wood types and 

sources [36, 59]. 
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Fig. 1. UV-vis spectra of triplicate water extractives of oak and maple. 
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Fig. 2. Negative and positive ion ESI FT-ICR mass spectra of water extractives of oak and 

maple wood. 
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Fig. 3. The 2D van Krevelen diagrams of the maple water extractives. Overlain boxes show 

where the seven major biomolecular compound classes align. 
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Fig. 4. The 2D van Krevelen diagrams of the oak water extractives. Overlain boxes show where 

the seven major biomolecular compound classes align. 
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Table 1. Yield and UV-vis parameters of maple and oak water extractives. Absorbance values (A250 and A365) were with 1/100x (I), 1/50x (II), 

1/20x (III), or 1/10x (IV) diluted extractives for the E2/E3 values. A400 and A600 were with undiluted extractives for the E4/E6 values. Data are 

presented with averages ± standard deviations (n=3). 

 Yield (%) A250 A365 E2/E3 A400 A600 E4/E6 

Maple 3.14 ± 0.04 0.102 ± 0.021 II  

0.496 ± 0.015 IV 

0.020 ± 0.005 II 

0.077 ± 0.001 IV 

5.18 ± 0.25 

6.42 ± 0.15 

0.404 ± 0.004  0.057 ± 0.003  7.15 ± 0.41 

Oak 2.87 ± 0.07 0.410 ± 0.026 I 

2.150 ± 0.165 III 

0.024 ± 0.002 I 

0.128 ± 0.011 III 

17.34 ± 0.11 

16.86 ± 0.78 

0.829 ± 0.078 0.060 ± 0.020 14.52 ± 3.12 
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Table 2. Total number of assigned formulas and selected average FT-ICR-MS peak 

parameters.   

Sample Formula 
Number Averages 

m/z C O/C H/C DBE 

Maple, negative 2781 546 24.4 0.57 1.35 9.5 

Maple, positive 924 477 21.3 0.53 1.31 9.1 

Oak, negative 2256 534 23.9 0.59 1.17 11.6 

Oak, positive 1009 457 21.6 0.47 1.24 9.6 

Bio-oil-o, negative a 1926 490 29.4 0.14 1.55 8.4 

Bio-oil-o, positive a 2000 425 25.6 0.09 1.52 8.4 

Plant WEOM, negative b 882 431 22.7 0.36 1.50 7.38 

Soil MHA, negative b 701 420 23.6 0.33 1.34 9.16 
a: Bio-oil oily fraction from defatted cottonseed meal; data related to [19]. 

b: Water extracted organic matter (WEOM) of plant biomass, and soil mobile humic acid 

(MHA). Data were adopted from [59].  

C is the number of carbons in the assigned formulas 

O/C is the atomic ratio of oxygen to carbon 

H/C is the atomic ratio of hydrogen to carbon 

DBE (double bond equivalents) = (2c + 2 + n + p - h)/2 for any molecular formula 

CcHhNnOoSsPp 

 

 

 

Table 3. The percentage of formulas (by number, num, and by peak magnitude, mag) of the 

types of formulas assigned in the wood extractives. 

Sample %CHO (Na) %CHON (Na) %CHOS (Na) 

num mag num mag num mag 

Maple-negative 63% 75% 31% 18% 6% 7% 

Maple-positive 60% 82% 40% 18% 0% 0% 

Oak-negative 75% 83% 23% 16% 2% 1% 

Oak-positive 81% 86% 19% 14% 0% 0% 

Na was only included in positive ion mode 
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Table 4. Diversity (the number and % of formulas) and relative abundance (% of the total 

spectral magnitude) of the biomolecular compound classes in the water extractives of maple 

and oak, as identified by negative and positive ion mode ESI-FT-ICR-MS. 

Class Definition Amount Maple-

negative 

Maple-

positive 

Oak-

negative 

Oak-

positive 

Lipid O/C 0.0-0.2           

H/C 1.7-2.2 

Number 10 4 11 16 

% Form. 0.4% 0.4% 0.5% 1.6% 

% Mag. 0.1% 0.1% 0.1% 0.5% 

Peptide O/C 0.2-0.6           

H/C 1.5-2.2         

N/C>0.05 

Number 19 25 0 7 

% Form. 0.7% 2.7% 0% 1% 

% Mag. 0.1% 0.8% 0% 0% 

Carbohydrate O/C 0.6-1.2           

H/C 1.5-2.2 

Number 614 177 356 114 

% Form. 22% 19% 16% 11% 

% Mag. 39% 24% 22% 8% 

Lignin O/C 0.1-0.6           

H/C 0.5-1.7    

AI<0.67 

Number 1600 610 1199 752 

% Form. 58% 66% 53% 75% 

% Mag. 51% 35% 59% 81% 

Tannin O/C 0.6-1.2           

H/C 0.5-1.5    

AI<0.67 

Number 436 89 535 93 

% Form. 16% 10% 24% 9% 

% Mag. 9% 39% 14% 8% 

Unsaturated 

hydrocarbon 

O/C 0.0-0.1           

H/C 0.7-1.7 

Number 0 0 0 0 

% Form. 0% 0% 0% 0% 

% Mag. 0% 0% 0% 0% 

Condensed 

aromatics 

O/C 0.0-1.0           

H/C 0.3-0.7       

AI>0.67 

Number 5 0 115 2 

% Form. 0.18% 0.00% 5% 0% 

% Mag. 0.03% 0.00% 2% 0% 

Extra a -- Number 97 19 40 25 

% Form. 3% 2% 2% 2% 

% Mag. 1% 2% 3% 1% 

Total # 

Formulas 

-- -- 2781 924 2256 1009 

a: Compounds that do not fit into any of the above categories 

% form = % of the total number of formulas 

% mag = % of the total spectral magnitudeextractives. The peaks in red font are those found 

in the top 25 peaks of more than one spectrum of the maple and oak extractives. Formulas in 

black, dark blue, light blue, and pink are CHO, CHON, CHONa, and CHOS, respectively. 
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Table 5. Relative abundances (% of total spectral magnitude), formulas, double bond equivalents (DBE), and compound class of the top 25 

peaks detected in the FT-ICR mass spectra of the maple extractives. The peaks in red font are those found in the top 25 peaks of more than one 

spectrum of the maple and oak extractives. Formulas in black, dark blue, light blue, and pink are CHO, CHON, CHONa, and CHOS, 

respectively. 

Maple-negative    Maple-positive    

MS peak 

(m/z) 

Exact 

Mass 

Height 

(%) Formula DBE Class 

MS peak 

(m/z) 

Exact 

Mass 

Height 

(%) Formula DBE Class 

341.1087 341.1089 13.590 C12H21O11 2 Carb 381.0792 381.0792 30.690 C15H18O10Na 7 Lignin 

683.2246 683.2251 7.167 C24H43O22 3 Carb 365.1053 365.1054 9.513 C12H22O11Na 2 Carb 

529.1580 529.1576 4.604 C24H25O10N4 14 Lignin 385.0894 385.0894 4.031 C18H18O8Na 10 Lignin 

585.2340 585.2341 2.760 C31H37O11 13 Lignin 355.0789 355.0788 3.013 C17H16O7Na 10 Lignin 

503.1617 503.1618 2.011 C18H31O16 3 Carb 360.1500 360.1500 2.017 C12H26O11N 1 Carb 

555.1177 555.1178 1.906 C24H27O16S 11 Lignin 325.1129 325.1129 1.571 C12H21O10 3 Carb 

567.2082 567.2083 1.478 C7H35O13 10 Lignin 381.0773 381.0776 1.268 C12H17O12N2 6 Tannin 

577.0872 577.0869 1.344 C22H25O16S 10 Tannin 543.1321 543.132 1.209 C21H28O15Na 8 Tannin 

665.2145 665.2146 1.300 C24H41O21 4 Carb 366.1087 366.1084 1.022 C9H16O5N3 14 Lignin 

443.1922 443.1923 1.288 C21H31O10 6 Tannin 459.1262 459.1262 0.865 C21H24O10Na 10 Lignin 

555.2235 555.2236 1.214 C30H35O10 13 Lignin 503.1677 503.1676 0.850 C27H28O8Na 14 Lignin 

605.1933 605.1935 1.106 C22H37O19 4 Carb 425.1571 425.1571 0.838 C22H26O7Na 10 Lignin 

583.2183 583.2185 0.966 C31H35O11 14 Lignin 517.1317 517.1316 0.675 C23H26O12Na 11 Lignin 

379.0826 379.0823 0.879 C21H15O7 14 Lignin 339.1050 339.1050 0.673 C14H20O8Na 5 Lignin 

497.1124 497.1123 0.763 C22H25O11S 10 Lignin 428.1762 428.1763 0.672 C16H20O12N 3 Carb 

479.1195 479.1195 0.680 C22H23O12 11 Lignin 369.1156 369.1156 0.648 C15H22O9Na 5 Lignin 

671.2040 671.2040 0.630 C26H39O20 7 Tannin 383.0836 383.0834 0.630 C14H15O9N4 10 Tannin 

571.182 571.1821 0.520 C29H31O12 14 Lignin 527.1582 527.1583 0.599 C18H32O16Na 3 Carb 
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617.224 617.224 0.513 C31H37O13 13 Lignin 386.0928 386.0929 0.530 C12H20O13N 4 Carb 

533.1723 533.1723 0.436 C19H33O17 3 Carb 455.1161 455.1160 0.464 C18H24O12Na 7 Tannin 

534.1828 534.1828 0.422 C22H32O14N 7 Tannin 356.0823 356.0824 0.415 C11H18O12N 4 Carb 

613.2289 613.2290 0.418 C32H37O12 14 Lignin 457.1470 457.1469 0.412 C22H26O9Na 10 Lignin 

515.1922 515.1923 0.393 C27H31O10 12 Lignin 385.0875 385.0878 0.389 C15H17O10N2 9 Tannin 

587.2134 587.2134 0.372 C30H35O12 13 Lignin 499.1364 499.1363 0.388 C27H24O8Na 16 Lignin 

691.2110 691.2104 0.368 C30H35O15N4 15 Lignin 487.1938 487.1938 0.369 C24H32O9Na 9 Lignin 

 Total 47.128     Total 63.751    
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Table 6. Relative abundances (% of total spectral magnitude), formulas, double bond equivalents (DBE), and compound class of the top 25 

peaks detected in the FT-ICR mass spectra of the oak extractives. The peaks in red font are those found in the top 25 peaks of more than one 

spectrum of the maple and oak extractives. Formulas in black, dark blue, light blue, and pink are CHO, CHON, CHONa, and CHOS, 

respectively. 

Oak-negative    Oak-positive    

MS peak 

(m/z) 

Exact 

Mass 

Height 

(%) Formula DBE Class 

MS peak 

(m/z) 

Exact 

Mass 

Height 

(%) Formula DBE Class 

419.1708 419.1711 14.172 C22H27O8 9 Lignin 459.1413 459.1414 9.783 C25H24O7Na 14 Lignin 

487.182 487.1821 6.744 C22H31O12 7 Lignin 457.1258 457.1258 2.799 C25H22O7Na 15 Lignin 

605.1932 605.1935 5.726 C22H37O19 4 Carb 401.1593 401.1595 2.367 C22H23O7 11 Lignin 

581.2239 581.2240 3.815 C28H37O13 10 Lignin 443.1675 443.1676 2.111 C22H28O8Na 9 Lignin 

481.2291 481.2290 1.735 C21H37O12 3 Lignin 460.1448 460.145 1.951 C19H26O12N 8 Tannin 

551.2134 551.2134 1.413 C27H35O12 10 Lignin 419.1699 419.1700 1.766 C22H27O8 10 Lignin 

481.0625 481.0624 1.390 C20H17O14 12 Tannin 473.1207 473.1207 1.097 C25H22O8Na 15 Lignin 

461.0725 461.0725 0.801 C21H17O12 13 Lignin 459.1389 459.1398 0.988 C22H23O9N2 13 Lignin 

641.1685 641.1683 0.771 C23H33O19N2 8 Tannin 367.1209 367.1211 0.983 C12H24O11Na 1 Carb 

377.0878 377.0878 0.755 C18H17O9 10 Lignin 399.1203 399.1203 0.897 C23H20O5Na 14 Lignin 

447.0569 447.0569 0.754 C20H15O12 13 Lignin 435.1648 435.165 0.803 C22H27O9 10 Lignin 

603.1779 603.1778 0.723 C22H35O19 5 Carb 351.1260 351.1262 0.791 C12H24O10Na 1 Carb 

461.1301 461.1301 0.661 C19H25O13 7 Tannin 417.0945 417.0945 0.754 C22H18O7Na 14 Lignin 

565.1369 565.1370 0.590 C17H29O19N2 4 Carb 441.1518 441.152 0.645 C22H26O8Na 10 Lignin 

471.1355 471.1355 0.580 C17H27O15 4 Carb 375.1414 375.1414 0.629 C18H24O7Na 7 Lignin 
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300.9989 300.9990 0.571 C14H5O8 12 Lignin 419.1101 419.1101 0.600 C22H20O7Na 13 Lignin 

611.1943 611.1941 0.544 C23H35O17N2 7 Carb 457.1469 457.1469 0.552 C22H26O9Na 10 Lignin 

329.2333 329.2333 0.523 C18H33O5 2 Extra 461.1396 461.1402 0.548 C18H25O12N2 8 Tannin 

449.1261 449.1260 0.490 C13H25O15N2 2 Carb 433.0894 433.0894 0.532 C22H18O8Na 14 Lignin 

537.1423 537.1421 0.485 C16H29O18N2 3 Carb 444.1709 444.1712 0.528 C16H30O13N 3 Carb 

535.1264 535.1264 0.479 C16H27O18N2 4 Carb 402.1627 402.1636 0.510 C18H25O6N3Na 8 Lignin 

571.1820 571.1821 0.390 C29H31O12 14 Lignin 507.1263 507.1262 0.496 C25H24O10Na 14 Tannin 

515.1921 515.1923 0.369 C27H31O10 12 Lignin 417.1543 417.1544 0.479 C22H25O8 11 Lignin 

605.2238 605.2240 0.360 C30H37O13 12 Lignin 621.1944 621.1942 0.465 C31H34O12Na 15 Lignin 

575.2134 575.2134 0.336 C29H35O12 12 Lignin 481.1856 481.1857 0.448 C27H29O8 14 Lignin 

 Total 45.177      Total 33.523    
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