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N-linked glycosylated side chains), allow for mul-
tiple interactions with collagen fibrils and may be 
an important factor in cartilage stability in rela-
tion to formation of chest wall deformities. 
Careful analysis of the composition of GAG side-
chains may be warranted as the sugar content of 
such chains has been suggested to play a role in 
binding of collagen fibers and pathology [28].

�Glycosylation

Increasing attention is being given to the glyco-
sylated side chains of proteins, particularly with 
relevance to disease [29]. Differences in side 
chains of decorin and biglycan have been 
described from different cartilage sites, includ-
ing non-glycosylated decorin and biglycan in 
nucleus pulposus of intervertebral discs [30]. 
Decorin has a single O- and three N-linked gly-
cosylation sites. Biglycan has two O-linked and 
two N-linked sites. O-linked sites are typically 
covalently bound by chondroitin/dermatan sul-
phate (Fig. 7.4). Dermatan sulphate is linked to 
these molecules in skin where defects of glyco-
sylation have been described in Ehlers Danlos 
syndrome underlying collagen fibrillogenesis 
[28]. In cartilage chondroitin sulphate is cova-
lently bound in the O-position. Glycanated side 
chains show length variation, with shorted chains 
being associated with tighter collagen fiber con-
figuration [31]. More recent work [32] has shown 
that decorin may bind to one collagen fibril by its 
core protein and to another by its side chain. 
Additionally, they demonstrate that closely 
related side chain molecules (chondroitin-4-sul-
phate and chondroitin-6-sulphate) have very dif-
ferent effects affecting fusion and layout of 
collagen fibers. This exemplifies the importance 
of recognizing subtle variations in these mole-
cules and their biological consequences in addi-
tion to enzyme systems that are responsible for 
synthesis and assembly of these molecules. 
Sulphate anion transporter abnormalities have 
been described in chondrodysplasias [29]. 
Interestingly, a recent report [33] describes a 
mutation in the GAL3ST4 gene in a single 
Chinese family showing dominant inheritance of 

pectus excavatum. GAL3ST4 is a member of the 
sulfotransferase family that catalyzes the C-3 
sulfation of galactoses in O-linked glycopro-
teins. Sulfation of proteoglycans is crucial for 
normal development of bone and cartilage [34], 
and defects in genes encoding catalytic machin-
ery responsible for sulphate biosynthesis have 
been reported [35, 36]. The inheritance of chest 
wall deformity is extremely complex [19, 37, 
38], however the importance of the role of 
enzymes responsible for glycosylation cannot be 
overlooked and this report [33] may be corrobo-
rated with other genes on these pathways.

�Scanning Electron Microscopy

Suggestions that atypical collagen fibers may be 
implicated in chest wall deformities led us to 
investigate ultrastructural aspects of costal carti-
lage. Scanning electron microscopy (SEM) was 
undertaken on a transverse section of costal car-
tilage to investigate distribution of collagen 
fibers in this tissue. Figures 7.6a, b are represen-
tative SEM images of a transverse cross-section 
of costal cartilage. Figure 7.6a shows a fracture 
in the cartilage exposing collagen fibers of 
approximately 600  nm diameter. Fibers come 
together to form an extremely large complex of 
many μm (arrowed) that run parallel to the 
length of the cartilage. Figure 7.6b is a higher 
magnification of the boxed area and shows that 
each fiber forms a nanostraw of approximately 
650 nm external diameter and 250 nm internal 
lumen diameter. Images of longitudinal sections 
show a well-defined organization with bundles 
of collagen fibers of approximately 20 μm diam-
eter and cellular lacunae, arrowed in Fig. 7.6c.

We measured the diameters from 150 clearly 
defined fibers from SEM images and found that 
most (51.1 %) were in the range from 1 to 
100  μm. The smallest (<0.1  μm) would most-
likely represent collagen fibrils, the midsize 
(~1 μm) would represent the microtubes and the 
largest (~100  μm) would be large fascicle-like 
structures [6].

This work shows unique ultra-structural 
properties of costal cartilage. The presence of 
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straw-like structures shows that a large degree of 
complex extracellular matrix formation occurs. 
Form and function are inextricably linked in biol-
ogy and the role of these structures remains to 
be verified. Bundles of fluid filled straws would 
certainly add strength while allowing flexibility 
during movement. Indeed, movement may be a 
driving force for fluid transport within costal car-
tilage, allowing some degree of nutrient and gas 
exchange for internally located cells. Assuming 
that the strength of costal cartilage is related to 
the sum of individual nanostraws, or conversely 
that weakness may be reflected in a more deform-
able nanostraw, we set out to determine mechani-
cal properties of individual nanostraws. Young’s 
modulus is a means to measure the elastic prop-
erties of materials that are stretched and com-
pressed and can be described as

Stress expressed as force /area (m )N/m F2 2( ) ( )

Strain (m/m) expressed as elongation or com-
pression of object (dL)/length of object (L).

	 Young’s modulus stress/strain F/A /( L/L)= = ( ) D 	

Stress and strain are resisted by collagen fibers 
and changes in the properties of collagen fibers 
would influence Young’s modulus. Many 
pathological processes change tissue elasticity 
and is the basis of palpitation as a diagnostic tool. 
Some interesting values for Young’s modulus are 
given in Table 7.1, where low values are derived 
from compliant materials, and high values from 
resilient material.

Cartilage values in Table 7.1 are for articular 
cartilage, however, reported values depend very 
much on biological sample preparation and mea-
surement technique [39]. Our rationale for atomic 

a

b

c

Fig. 7.6  SEM images of normal costal cartilage. (a) 
Transverse section (×2500) showing large numbers of 
dense fibrils running longitudinally (arrowed). (b) 
Magnification (×10,000) of the boxed area in a and shows 
the presence of collagen nanostraws (arrowed). Each 

straw is approximately 650 nm in diameter, with a lumen 
diameter of approximately 250 nm. (c) Longitudinal sec-
tion (×500) showing large bundles of collagen fibers, 
formed from multiple collagen nanostraws, of approxi-
mately 20 μm diameter (white arrow)

Table 7.1  Example of a range of Young’s moduli from 
compliant rubber to hardened steel [6]

Material
Approximate Young’s modulus (109 N/
m2; GPa)

Bone 9

Cartilage 2.4

Tendon 5.5

Rubber 0.01–0.1

Pine wood 9

Stainless steel 180
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force microscopy was that individual nanostraws 
would have characteristic Young’s modulus of 
elasticity, and that these may be reduced in sam-
ples from patients with chest wall deformities 
due to abnormalities in the assembly of 
nanostraws. Costal cartilage from patients with 
chest wall deformities have often been described 
as weak, particularly in those who do not do well 
in surgery.

�Atomic Force Microscopy

The atomic force microscope (AFM) is a very 
high resolution scanning probe microscope that 
has found applications from the biological to the 
material sciences and has several advantages over 
transmission and scanning electron microscopy, 
including the absence of electron-induced speci-
men damage, ambient operation, preservation of 
biological morphology, and the ability to be uti-
lized on live or fixed tissues. Analysis of biologi-
cal samples frequently necessitates their fixation 
and protein cross-linking by chemical fixation, 
although fixation itself can cause tissue distor-
tion. The AFM probes the surface topography of 
a sample to a very high resolution irrespective of 
whether the tissue is live or fixed. Probing of live 
tissues opens the possibility of investigating bio-
mechanical measurements, for example, Young’s 
modulus of elasticity [40–42]. Because AFM 
probing can be undertaken when the sample is 
submerged, it is possible to maintain live samples 
under physiological conditions.

It was proposed that the straw-like structures 
observed in costal cartilage act as a means of 
nutrient and gas transport; additionally they pro-
vide biomechanical support [6]. This is analo-
gous to the pressure induced fluid flow in the 
canaliculi-lacunae network described in bone 
[43]. Here stress induced microcirculation in can-
aliculi of approximately 200 μm in diameter was 
investigated to show that flow can nourish 4–5 
layers of concentric osteocytes and also suggest 
that stress induced flow may be important in bone 
remodeling where lack of flow may have patho-
logical consequences, e.g., osteoporosis. Further 
characterization of collagen nanostraws is war-

ranted if such a model is to be applied to fluid 
flow in costal cartilage.

In order to further characterize collagen 
nanostraws, brief homogenization and enzymatic 
digestion of cartilage with trypsin and hyaluroni-
dase was used to isolate individual samples [44]. 
Individual nanostraws were examined for D-zone 
spacing and Young’s modulus of elasticity. 
D-Zone bands are characteristic of collagen 
fibers, reflect the underlying regular arrangement 
of fibrils, and are estimated to be approximately 
67 nm in hydrated and 64 nm in dehydrated sam-
ples [45]. The D-Zone patterns were measured 
from an SEM image compared to a digested and 
homogenized AFM image in air (Figs.  7.7a, b, 
respectively) and found mean D-Zone values of 
63  nm and 65  nm from 10 zones each. These 
results are consistent with shorter D-Zones in 
dehydrated collagen forms suggesting that the 
underlying arrangement of fibers in costal carti-
lage derived from a patient with pectus carinatum 
is comparable to normal values under these 
conditions.

To determine Young’s modulus of elasticity, 
individual isolated nanostraws were attached 
onto poly-L-lysine cover glass. Force measure-
ments were performed using frequency modula-
tion force spectroscopy [46], and the resulting 
force data was modeled using the Derjagin, 
Muller, Toropov (DMT) model [47–49] via an in-
house data analysis program written in 
MATLAB® (version 2009, Mathworks). 
Figure 7.8 shows typical force measurement on a 
nanostraw for digested, homogenized and fixed 
specimen in air. Utilizing the DMT model the 
modulus of elasticity from six separate measure-
ments is found to be 2.06 ± 0.35 GPa.

Collagen nanostraws are structures signifi-
cantly larger than individual collagen fibers and 
may be cross-linked by many structural proteins. 
Force measurements published in the literature, 
conducted for dehydrated collagen fibrils 
obtained from the common sea cucumber and 
analyzed at ambient conditions, resulted in val-
ues ranging between 1 and 11.5  GPa [50–52]. 
These values are high compared to reported 
hydrated, unfixed samples, where values of 
2–5 MPa are reported [53]. These values strongly 
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depend upon ionic concentration, hydrogen 
bonding, and hydration forces, all of which can 
influence interactions of tropocollagen molecules 
and, therefore, the elastic modulus. High values 
observed in Fig.  7.8 from costal cartilage 
(23  MPa) are derived from fixed samples, and 
due to cross-linking of proteins, create a more 
ridged structure and thus a higher Young’s 
modulus.

Overall, these results show the unusual tubu-
lar network of costal cartilage that is hypothe-
sized to act as a means of fluid and gas transport. 
To study nano-fluidic transport, such structures 
necessitate the accurate measurements of their 
dimensions. Interestingly, previous reports sug-
gest that in rabbit tibia these structures corre-
spond to the known biomechanical properties of 
the tissue, and would act as a dampening system 
during compression by resisting lateral fluid 
flow in the tissue and directing it against the 
compressive force [54]. Our study demonstrates 
that the protocols adopted for these measure-
ments have significant influence on size mea-
surement. Clearly, costal cartilage has large fiber 
dimensions with complex structures that are 
formed through finely tuned fibrillogenesis that 
ultimately reflect the biology of this understud-
ied tissue type. The complex inheritance of chest 
wall deformities suggests that these processes 
are under the control of many genes.

�Analysis of Candidate Genes

Aggrecan is an integral part of cartilage and muta-
tions in the ACAN gene are associated with skele-
tal dysplasias [55, 56]. Patients with pectus 
excavatum commonly exhibit scoliosis, and ACAN 
has been investigated as a candidate gene in famil-
ial idiopathic scoliosis [57, 58]. The CS1 domain 
of the ACAN gene exhibits length polymorphisms 
due to a variable number of tandem repeats 
(VNTR), 19 amino acids in length. Each repeat 
acts as an attachment site for chondroitin sulphate 
[59]. The number of ACAN VNTRs determines 
the number of GAG side-chains. The presence on 
aggrecan of a large number of highly charged 
chondroitin sulphate chains generates an osmotic 
swelling pressure and is important in maintaining 
structural integrity of the tissue. Smaller repeat 
sequences may result in mechanical shearing and 
tearing [60], and are associated with rheumatoid 
arthritis and spinal disc degeneration [56, 61]. It 
was hypothesized that abnormalities of costal car-
tilage in patients with pectus excavatum may be 
due to variation in number of repeat sequences 
outside of the normal reported range of 26–28 [59, 
62] that would result in a concomitant change in 
chondroitin sulphate anchorage sites and compro-
mised structural characteristics.

For this investigations were performed on the 
size and frequency distribution of ACAN VNTRs 
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250

a b

Fig. 7.7  SEM (a) and AFM (b) of characteristic D-zones of collagen fibers. A single D-zone is blocked and arrowed 
in a. The insert in b shows variation in D-zones over a single fiber [44]
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Fig. 7.8  (a) Representative topography of costal cartilage 
digested and homogenized. Contrast covers height varia-
tion of 390 nm. Insets in the figures show height distribu-
tion of nanostraws at various locations. (b) Force versus 
indentation depth data on a nanostraw for homogenized 

digested fixed sample in PBS buffer. Analysis based on 
the DMT model gives the modulus of elasticity of 
E = 23 ± 3 MPa in PBS buffer. Experimental data is shown 
by symbols, while the curve-fit of data to the DMT model 
is shown by solid lines [44]
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in patients with pectus excavatum and correlated 
overall allele sizes (genotype) to Haller index 
(Fig.  7.9) [63]. This was achieved by isolating 
DNA from venous blood of patients or by isola-
tion from chondrocytes derived from patient cos-
tal cartilage and amplifying VNTR regions by 
polymerase chain reaction (PCR) [59, 62].

Genotyping identified 15 alleles ranging from 
19 to 34 repeats, with alleles 25–28 accounting 
for 94 % and 84.7 % respectively in patients and 
controls. Allele distribution differed between 
patient and control groups (χ2 = 48.58, p < .009) 
such that patients had 0.43 fold fewer 25 repeats 
(χ2 = 7.41, p < .025) and 1.5 fold more 27 repeat 
alleles (χ2 = 145.32, p < .001) compared to con-
trols. Overall, however, we observe an allele fre-
quency of 0.120, 0.866, and 0.014 in patients for 
<26, 26–28, and >28 alleles respectively, consis-
tent with the normal observed range [59, 62]. 
There is no apparent bias of allele genotype with 
increased Haller index, therefore a specific 
combination of VNTRs does not predispose to 
increased severity in pectus excavatum.

Patients showed phenotypic variation, and 
subgroups were identified where a genetic com-
ponent may be influential. Females (16 % of 
patients), showed a significant increase in severity 
compared to males (t(250) = 2.36, p < .019; 
Mean + SD: 5.7 + 2.1 vs. 4.8 + 2.2), and tended to 
have a decreased number of VNTRs, consistent 

with a hypothesis of reduced attachment sites for 
chondroitin sulphate and weakened cartilage.

Marfan phenotype patients (10.4 % of 
patients), exhibited phenotypic findings consis-
tent with Marfan appearance such as long limbs, 
arachnodactyly and high-arched palate without 
absolute diagnostic criteria for Marfan syndrome 
[64]. There was no apparent correlation in the 
number of VNTRs compared to the non-Marfan 
patients, suggesting that VNTRs do not have a 
differential role in this subgroup.

Repeat surgeries are the smallest subgroup (3.2 % 
of patients) and showed no correlation between 
Haller index and surgical outcome, suggesting ini-
tial presentation is not an indicator of outcome.

Furthermore variation in a functional VNTR 
were investigated and identified, a useful marker 
for first-pass analysis. Investigation of SNPs will 
allow a more refined description in the inheri-
tance of this, and other candidate genes, in the 
role of inherited chest wall deformities.

�Analysis of Gene Expression in Costal 
Cartilage

Cartilage formation is a complex process with 
many interacting components. To determine gene 
expression in costal cartilage investigations were 
performed on twelve candidate genes based upon 
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structural and functional importance in cartilage 
formation. Table 7.2 lists each gene and chromo-
somal location. Chest wall deformities show a 
sex bias, being more prevalent in males compared 
to females (4:1) [37, 38], suggesting that genes 
located on chromosome X may be of importance. 
Males have a single X chromosome (XY) and 
therefore defects in genes on this chromosome 
cannot be compensated for by genes at a second 
allele as in females (XX). Four genes were identi-
fied on chromosome X with relevance to carti-
lage formation (Table 7.2).

Aggrecan: A large aggregating proteoglycan that 
serves to anchor highly negatively charged 
keratin and chondroitin sulphate molecules 
ultimately responsible for generating osmotic 
pressure within cartilage.

Biglycan: BGN, a SLRP on the X-chromosome 
that encodes for the protein involved in assem-
bly of collagen fibrils within the extracellular 
matrix of cartilage. It is closely related to 
decorin, possibly through gene duplication, 
and carries two glycosaminoglycan side 
chains. It strongly binds the growth factor 
TGF-β, controlling bioavailability.

Tissue inhibitor of metalloproteinase-1: TIMP1 
is located on the X chromosome and plays a 
role in the maintenance and turnover of the 
extracellular matrix within cartilage. It func-
tions as an inhibitor of matrix metalloprotein-
ases (MMPs), specifically MMP-8 and 
MMP-13, which are both collagenases.

Voltage-gated calcium channel-α1F: CACNA1F 
is a gene that encodes for a voltage-gated cal-
cium channel and is found on the X chromo-
some. It functions to control the amount of 
calcium that enters the cell upon membrane 
polarization and may be linked to bioelectric 
components of cartilage.

Nyctalopin: The NYX gene was investigated 
because of its location on the X chromosome 
and its function as a SLRP.  It is associated 
more with eye function, and defects in the 
gene result in a number of eye related anoma-
lies including night blindness

Collagen α-1 chain: COL1A1 encodes for Type I 
α collagen fiber found in most connective tis-
sues. Although not expressed highly in articu-
lar cartilage, it acts as a marker of cartilage 
differentiation.

Collagen type II α-1: COL2A1 encodes for col-
lagen Type II-α fibers found in cartilage where 
mutations in this gene have been associated 
with chondrodysplasias. It is highly expressed 
in articular cartilage and is essential for carti-
lage to resist compressive forces.

Decorin: DCN is a SLRP that plays a role in 
matrix assembly. It has an important role in 
binding collagen fibrils and strongly influ-
ences fiber size and shape. It has a single gly-
cosaminoglycan side chain. It binds to 
COL1A1, COL2A1 and the growth factor 
TGF-β, controlling bioavailability.

Fibrillin 1: FBN1 encodes a large matrix proteo-
glycan that serves as a structural component in 

Table 7.2  Candidate genes investigated in this study [6]

Gene Name Chromosome location

ACTB β-Actin 7p22

ACAN Aggrecan 15q26.1

BGN Biglycan Xq28

CACNA1F Voltage-gated calcium channel-α1F Xp11.23

COL1A1 Collagen α-1 chain 17q21.33

COL2A1 Collagen type II α-1 12q13.11

DCN Decorin 12q21.33

FBN1 Fibrillin 1 15q21.1

NYX Nyctalopin Xp11.4

SOX9 SRY (Sex determining region Y)-box 9 17q24.3

TGFβ1 Transforming Growth Factor-β1 19q13.2

TIMP1 Tissue inhibitor of metalloproteinase 1 Xp11.23
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force bearing microfibrils and binds to TGF-
beta. Mutations in this gene are associated 
with Marfan syndrome where chest wall 
defects are common. One of these mutations 
creates an N-glycosylation site that disrupts 
multimeric assembly [28].

Sex determining region SRY box-9: SOX9 is a 
homeobox class of DNA binding proteins. It is 
a potent activator of COL2A1 and may also 
regulate the expression of other genes involved 
in cartilage formation by acting as a transcrip-
tion factor for these genes.

Transforming Growth Factor-β1: TGFβ1 is a 
multifunctional protein that controls prolifera-
tion and differentiation in many cell types. It 
regulates many other growth factors, and stim-
ulates chondrocyte cell growth through the 
MAPK3 signaling pathway.

β-Actin: ACTB, was used throughout as a reference 
housekeeping gene and from which relative lev-
els of gene expression were calculated.

For this, costal cartilages were immediately 
placed into a solution of RNAlater after surgery 
to preserve the integrity of expressed genes. RNA 
was extracted as described previously [6]. RNA 
was reverse transcribed to produce cDNA and 
amplified by RT-PCR on a BioRad CFX96 real 
time system (Fig.  7.10). Gene expression was 
measured by incorporation of SYBR green into 

amplified products. All primers were designed 
specifically for gene amplification (Qiagen CA, 
USA). Relative fold differences in gene expres-
sion were calculated as 2 - (CtGOI- CtHKG), where 
CtGOI is the Ct value of the gene of interest com-
pared to the CtHKG, which is the Ct value for the 
house keeping gene [65].

Costal cartilage from individuals with chest 
wall deformities is described as abnormally grown 
and weak. Typically, surgical repair takes place 
during teenage years to early 20s. Phenotypically, 
there is considerable variation of the clinical con-
dition of PC, reflecting the complex nature and 
inheritance observed in these families. Variation 
in gene expression between samples is, therefore, 
expected; however, it is unknown whether the 
expression of matrix genes will be affected by 
surgical procedures. We compared gene expres-
sion of 4 patients with pectus carinatum to an age-
matched-control. COL2A1, DCN, ACAN, and 
TIMP1 are all highly expressed compared to 
ACTB, however, when normalized to control 
(=100 %) significant reductions in expression are 
observed with sample variation (Table 7.3).

Compared to control, PC1 showed significant 
reduction in expression of DCN (p < 0.001) and 
TIMP1 (p < 0.001). PC3 showed significantly 
lower expression of COL2A1 (p < 0.001) and like 
PC4, both showed decreased expression of ACAN 
(p < 0.03 and p < 0.024, respectively). PC4 also 
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showed significantly higher expression of TIMP1 
(p < 0.001) and decreased expression of BGN 
(p < 0.04). PC2 showed significant reduction in 
expression of COL2A1 (p < 0.01), DCN 
(p < 0.0002), TIMP1 (p < 0.001), BGN (p < 0.03) 
and FBN1 (p < 0.01). This sample, like all PC 
samples, was immediately processed from the 
operating room, although results suggest possible 
degradation of this sample.

Many patients with chest wall deformities are 
considered Marfanoid-like [64] without fulfilling 
all criteria for diagnosis of Marfan syndrome, 
including mutations of the fibrillin-1 gene. The 
expression of this gene was not significantly dif-
ferent between control and patients, with the 
exception of PC2 (p < 0.01). Expression of the 
X-linked genes NYX and CACNA1F was not 
detected in any samples. Overall, deregulation of 
TIMP1 expression was evident in 3/4 PC sam-
ples, and expression of DCN was significantly 
lower in 2/4, suggestive of roles for fibrillogene-
sis and matrix turnover.

The differentiation status of cartilage can be 
equated to the ratio of COL2A1, present in dif-
ferentiated cartilage, to COL1A1, present at 
higher levels in more undifferentiated cartilage. 
We compared ratios of gene expression from our 
samples to published data.

Ratios of the differentiation markers 
COL2A1:ACAN and COL2A1:COL1A1 are low in 
PC patients and control (Table  7.4) compared to 
rabbit articular cartilage (1090 and 1790, respec-
tively) but both are highly comparable to the 
nucleus pulposus region of lumbar discs (23 and 
930 respectively), [66]. The ratios of 
ACAN:COL1A1 fall between those reported for 
fully differentiated rat chondrosarcoma cells (78.4) 
and dedifferentiated chondrocytes cultured from 
costal cartilage (4.6) [67]. A high expression ratio 
of COL2A1:COL1A1 (294.6) in human articular 
cartilage has been reported [65], but here results are 
referenced to GAPDH rather than ACTB. Overall, 
these results suggest costal cartilage is at an inter-
mediate stage of differentiation and likely repre-
sents the different functional requirements of this 
tissue compared to articular cartilage. The differen-
tiation similarities between lumbar discs and costal 
cartilage are of interest. The high incidence of sco-
liosis in patients with chest wall deformities indi-
cates that defects of cartilage of a specific 
differentiation status may be very important. Small 
differences exist however between patients and 
between patients and control (Table 7.4), suggest-
ing that gene ratios measured here are not major 
contributors to chest wall abnormalities in these 
samples. Interestingly, DCN is expressed at high 
levels compared to BGN. As well as binding growth 
factors, both SLRPs have a role in fibrillogenesis 
and were hypothesized to play a role in the etiology 
of chest wall deformities. The high DCN/BGN 
ratio strongly suggests the importance of decorin 

Table 7.3  Percent fold difference in gene expression of 
four patients with pectus carinatum compared to β-actin 
and normalized to an age-matched control

PC1 PC2 PC3 PC4

COL2A1 100 *63 *35 89

ACAN 122 93 *42 *205

DCN *25 *25 92 117

TIMP1 *21 *29 107 *174

ACTB 100 100 100 100

BGN 43 *24 60 *22

COL1A1 125 100 92 100

FBN1 NA *39 107 65

SOX9 91 61 46 191

TGF-β1 83 72 50 22

Significant differences in expression between control and 
patients are marked with * [6]

Table 7.4  Gene expression ratios in costal cartilage from pectus carinatum and age-matched control

COL2A1/ACAN COL2A1/COL1A1 ACAN/COL1A1 DCN/BGN

PC1 35 878 25 8

PC2 29 701 24 13

PC3 36 427 12 19

PC4 19 990 53 69

Control 43 1117 26 13
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expression in costal cartilage morphology. Decorin 
is present at high levels during tendon (fibro-
cartilage) development and persists until thick 
fibers are formed [17], thus parallels with costal 
cartilage (hyaline cartilage) are apparent.

�Conclusions

Biological properties of human costal car-
tilage are a much understudied field. In this 
chapter preliminary data that investigates these 
properties were described. Sample character-
ization is of upmost importance and future 
studies should attempt to utilize samples from 
different but identified ribs, and the site of 
control samples should be verified for com-
parative purposes. Acquisitions of healthy age 
match controls are not easy because the age 
of patients tend to be teens to twenties. It has 
been suggested that rib abnormalities may be 
secondary to events of the thorax, with costal 
cartilage responding to micro-environmental 
factors, changing their biological characteris-
tics as a result. The ‘chicken and egg’ paradox 
needs to be resolved, and identification of bio-
logical causes identified. This is particularly 
relevant to patients who do not do well in sur-
gery, where a biological basis may underlie 
their prognosis and outcomes.
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