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Iron (Fe) availability restricts diatom growth and primary production in large areas of the
oceans. It is a challenge to assess the bulk Fe nutritional health of natural diatom pop-
ulations, since species can differ in their physiological and molecular responses to Fe
limitation. We assayed expression of selected genes in diatoms from the Thalassiosira
genus to assess their potential utility as species-specific molecular markers to indicate Fe
status in natural diatom assemblages. In this study, we compared the expression of the
photosynthetic genes encoding ferredoxin (a Fe-requiring protein) and flavodoxin (a Fe-free
protein) in culture experiments with Fe replete and Fe stressed Thalassiosira pseudonana
(CCMP 1335) isolated from coastal waters and Thalassiosira weissflogii (CCMP 1010) iso-
lated from the open ocean. InT. pseudonana, expression of flavodoxin and ferredoxin genes
were not sensitive to Fe status but were found to display diel periodicities. InT. weissflogii,
expression of flavodoxin was highly responsive to iron levels and was only detectable
when cultures were Fe limited. Flavodoxin genes have been duplicated in most diatoms
with available genome data and we show that T. pseudonana has lost its copy related to
the Fe-responsive copy in T. weissflogii. We also examined the expression of genes for
a putative high affinity, copper (Cu)-dependent Fe uptake system in T. pseudonana. Our
results indicate that genes encoding putative Cu transporters, a multi-Cu oxidase, and a
Fe reductase are not linked to Fe status.The expression of a second putative Fe reductase
increased in Fe limited cultures, but this gene was also highly expressed in Fe replete
cultures, indicating it may not be a useful marker in the field. Our findings highlight that Fe
metabolism may differ among diatoms even within a genus and show a need to validate
responses in different species as part of the development pipeline for genetic markers of
Fe status in field populations.

Keywords: diatom, iron, flavodoxin, ferredoxin, gene expression

INTRODUCTION
Diatoms are widespread and abundant primary producers that
strongly influence the global cycling of carbon (Nelson et al.,
1995). The organic carbon produced by diatoms serves as fuel
for the higher trophic levels of marine food webs and dictates the
ecological structure of coastal environments. In the open ocean,
diatom-bound carbon can sink rapidly out of the photic zone to
depths where it is sequestered for long periods of time (Smetacek,
1999). As key players in the ecology and biogeochemistry of the
oceans, it is important to understand the variables that regulate
diatom growth and the cellular mechanisms employed in attempts
to overcome growth restrictions.

It is widely accepted that iron (Fe) availability limits the growth
of diatoms in large areas of the oceans (Moore et al., 2004). The
physiological response to Fe limitation has been shown to dif-
fer among diatom species. For example, diatoms from oceanic

environments are able to grow at maximal or near maximal growth
rates at low Fe levels that severely restrict the growth of coastal
diatoms (e.g., Brand et al., 1983; Sunda et al., 1991). Recent
studies have also identified differences at the molecular level. Mar-
chetti et al. (2009) identified an Fe storage protein, ferritin, in
several species of pennate diatoms that was absent from centric
diatoms. These Fe reserves confer a growth advantage for ferritin-
containing diatoms in Fe limiting conditions (Marchetti et al.,
2009). This variability in genetic composition and physiological
response between diatoms can make it difficult to assess the Fe
nutritional status of natural diatom populations.

The photosynthetic proteins ferredoxin and flavodoxin have
been used as biomarkers to signal Fe limitation in diatoms. Ferre-
doxin is an iron–sulfur protein that functions as an electron
carrier in the photosynthetic electron transport chain and can
also act as an electron donor in other metabolic processes such as
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nitrogen assimilation and amino acid metabolism. Ferredoxin can
be replaced by flavodoxin, an Fe-free protein, a strategy used by
cyanobacteria and diatoms to adapt to Fe limitation (reviewed by
Zurbriggen et al., 2008). Methods using immunoprobes (LaRoche
et al., 1995; McKay et al., 1997, 1999) and high performance liq-
uid chromatography (HPLC; Doucette et al., 1996; Erdner et al.,
1999) have shown that induction of flavodoxin and suppression
of ferredoxin is a strategy used by a broad range of diatom species
to lower cellular Fe demand in Fe limiting conditions.

When applied to natural phytoplankton populations, immuno-
probe and HPLC based methods measuring ferredoxin and flavo-
doxin protein production have yielded complicated results. For
example, these methods detected only flavodoxin in diatoms after
Fe enrichment in the eastern equatorial Pacific (Erdner and Ander-
son, 1999) and in the subarctic Pacific Ocean (Suzuki et al., 2009).
Ferredoxin was below the limit of detection of both methods, sug-
gesting that protein-based assays are challenging for assessing Fe
status in the environment.

In addition, methods targeting the total ferredoxin and flavo-
doxin pool are unable to distinguish among species in the envi-
ronment or determine how much an individual species may
contribute to the protein pools. They are typically combined
with isolation techniques (Erdner and Anderson, 1999) or light
microscopy (Hattori-Saito et al., 2010) to provide insight into the
diatom community composition and how it changes over time
and with Fe additions.

We are developing species-specific molecular probes to under-
stand the dynamics of Fe stress in natural diatom populations.
Our efforts are focused on the genus Thalassiosira, as it is a
large group with over 100 species that are found distributed
throughout the world’s oceans (Round et al., 1990). In this study
we targeted two previously reported systems in T. pseudonana,
a coastal diatom, that respond to Fe limitation: the flavodoxin
and ferredoxin replacement strategy, and genes with homology
to members of a putative copper (Cu)-dependent, high affin-
ity Fe uptake system in yeast (Maldonado et al., 2006; Kustka
et al., 2007; Thamatrakoln et al., 2011). The Fe uptake pro-
teins have not been functionally characterized in diatoms, but
have been well characterized in the yeast, Saccharomyces cere-
visiae (Kosman, 2003). In the yeast system, Fe(III) is reduced
to biologically available Fe(II) through the activity of plasma
membrane-localized iron reductases, followed by re-oxidation and
transport into the cell via an Fe oxidase–permease complex. The
re-oxidation of Fe(II) is a Cu-dependent reaction because the
oxidase protein must be loaded with Cu ions to be functional
(Kosman, 2003).

We, along with others (Maldonado et al., 2006; Kustka et al.,
2007; Thamatrakoln et al., 2011), have identified genes in Thalas-
siosira pseudonana (CCMP 1335) encoding proteins with homol-
ogy to those expressed in the yeast Fe uptake system. In this study,
we followed the expression of T. pseudonana Fe uptake system
homologs in Fe replete and Fe limited cultures using quantita-
tive reverse transcription-polymerase chain reaction (qRT-PCR)
to determine whether members of this system would be a sen-
sitive field-based indicator of Fe status. We also compared ferre-
doxin and flavodoxin gene expression profiles in response to Fe
stress in T. pseudonana and in a related diatom isolated from

the open ocean, Thalassiosira weissflogii (CCMP 1010), to discern
whether ferredoxin and flavodoxin gene expression could be used
as markers to indicate Fe status in field populations.

MATERIALS AND METHODS
CULTURE CONDITIONS AND SAMPLING
Thalassiosira pseudonana (CCMP 1335) and Thalassiosira weiss-
flogii (CCMP 1010) isolates were obtained from the Provasoli-
Guillard National Center for Culture of Marine Phytoplankton
(West Boothbay Harbor, ME, USA). Trace metal limitation exper-
iments were performed using a basal synthetic medium con-
sisting of a modified and combined version of f/2 (Guillard
and Hargraves, 1993) and Aquil media (Price et al., 1989). The
basal salt medium and individual nutrient stocks were pumped
(∼2 mL min−1) through an ion-exchange column (Chelex 100,
Biorad) containing resin prepared according to Price et al.
(1989). Macronutrients were added at initial concentrations
of 300 μM NO−

3 , 15 μM PO3−
4 , and 50 μM Si(OH)4. Media

batches were sterilized by microwaving in acid-washed Teflon
bottles (Keller et al., 1988) and enriched with filter-sterilized
(0.2 μm Acrodisc) EDTA-trace metal and vitamin (B12, thiamine,
and biotin) solutions. The trace metals zinc (Zn), manganese
(Mn), cobalt (Co), selenium (Se), molybdenum (Mo), vana-
dium (V), nickel (Ni), and chromium (Cr) were added as in
previous studies (Maldonado et al., 2002); boric acid (H3BO3)
was added at 6.14 × 10−5 M. Metals were buffered with 11.7 μM
EDTA and the free ion activities calculated using the chem-
ical equilibrium program MINEQL+ (Schecher and McAvoy,
1998).

Iron stock solutions were added separately to achieve the
desired conditions. Cultures of T. pseudonana and T. weissflogii
grown under replete conditions received 150 nmol L−1 total Fe
and Fe limited cultures either received 0.5 nmol L−1 total Fe or did
not receive any additional Fe, depending on the experiment being
conducted. In some experiments, Cu limitation was also explored.
In these experiments, Cu was added separately with cultures grown
under replete conditions receiving 10 nmol L−1 total Cu and cul-
tures grown under low Cu conditions receiving 0.1 pmol L−1 total
Cu. All bottles and apparatus were acid cleaned and sample manip-
ulations were conducted within a laminar-flow hood (HEPA, class
100) using trace metal clean techniques (Maldonado et al., 2002;
Wells et al., 2005).

To investigate the effects of Fe limitation, T. pseudonana and
T. weissflogii were grown under two experimental conditions:
cultures were acclimated to Fe deficient conditions as well as
subjected to rapid Fe stress. For the acclimation experiments,
triplicate cultures were grown at 13.5˚C on a 12:12-h light:dark
cycle and maintained at exponential growth by successive addi-
tions of culture media. There were four acclimation conditions:
replete, low Cu, low Fe, and low Fe/Cu. Cultures were consid-
ered acclimated and harvested for molecular analysis when the
growth rate differed by <10% upon consecutive media addi-
tions. Growth rates were calculated from daily in vivo chlorophyll
a fluorescence measurements (Turner fluorometer). Cell counts
were done on samples collected at the time of harvesting; in T.
pseudonana, cell abundance was determined using a flow cytome-
ter (Cytopeia) and in T. weissflogii cell concentration was measured
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in one culture replicate from each experimental treatment using a
nannoplankton counting chamber.

To rapidly stress T. pseudonana and T. weissflogii for Fe, cells
were transferred from replete media into media with replete Fe lev-
els or media with no added Fe and grown as semi-continuous batch
cultures at 13.5˚C under continuous light. Samples were collected
daily with 200 mL (T. pseudonana) or 300 mL (T. weissflogii) of cul-
ture volume harvested and an equal volume of fresh media added;
samples were also collected for cell counts (Cytopeia flow cytome-
ter) and chlorophyll a fluorescence (Turner) measurements. The
semi-continuous batch cultures were maintained for 11 days for
T. pseudonana and 15 days for T. weissflogii; the duration of the
experiments represents the time when a notable difference in cell
abundance was observed between Fe replete and Fe limited cul-
tures. T. weissflogii cultures did not reach steady state growth until
day four, so work presented here represents the 9-days of steady
state growth.

Trace metal clean techniques were used to filter cells onto
47 mm, 2 μm or 5 μm polycarbonate or polyester filters for both
of the Fe limitation experiments described. The filters were flash
frozen in liquid N2 and stored at −80˚C until RNA extractions
were conducted.

A second semi-continuous batch experiment designed to mon-
itor gene expression changes associated with a light:dark cycle was
performed with T. pseudonana. Triplicate cultures were grown in
f/2 media (Guillard, 1975) at 13.5˚C at 150 μE m−2 s−1 on a 12:12-
h light:dark cycle for 48 h after which the light regime shifted to
continuous light for another 48 h. Samples were collected every 3 h
by gentle filtration onto 2 μm polyester filters and flash frozen; at
each time point 150 mL of culture was removed for genetic analysis
and 150 mL of fresh f/2 media was added. To ensure cell numbers
were not drifting from the expected concentration, cell counts were
taken every 12 h and fluorescence measurements every 24 h.

RNA EXTRACTION AND cDNA SYNTHESIS
Total RNA was extracted using the RNeasy Midi Kit (Qiagen,
Valencia, CA, USA) according to the manufacturer’s protocol,
with the following exceptions: cells were lysed using 0.5 mm zirco-
nia/silica beads (BioSpec) mixed with the lysis buffer and vortexed
until the solution looked homogenous 2–3 min, the lysis solution
was then put over Qiashredder columns (Qiagen) to remove any
large plant material that could clog the spin columns. To aid in
the removal of DNA, two DNase digestions were performed. First,
Qiagen’s RNase-free DNase Set (an on-column treatment) was
used according to the manufacturer’s instructions. The RNA was
then quantified in triplicate using the Mx3005 or Mx4000 Mul-
tiplex Quantitative PCR System (Stratagene, La Jolla, CA, USA)
and the Quant-iTRiboGreen RNA Assay Kit (Invitrogen, Carls-
bad, CA, USA). Following quantification, all RNA samples were
diluted to 31.25 ng/μL; this allowed us to add equal volumes
(8 μL) to the cDNA synthesis reactions. After this dilution, a sec-
ond DNA removal step was conducted using the Turbo DNA-free
kit (Ambion, Austin, TX, USA) according to the manufacturer’s
protocol.

cDNA was synthesized from 250 ng of DNase-treated RNA
using Invitrogen’s SuperScript III First-Strand Synthesis System
for RT-PCR. An oligo (dT) primer was used to generate cDNA

for measuring expression of nuclear-encoded genes. T. pseudo-
nana (5′-CCAGCACCCATTTGATCATCATC-3′) and T. weissflogii
(5′-TACAAAACCAGCACCCATTT-3′) gene specific primers were
used to generate ferredoxin cDNA as it is a plastid-encoded gene.
The cDNA synthesis reactions were conducted in triplicate for
each sample from the acclimation experiments as well as the T.
pseudonana semi-continuous batch rapid Fe stress experiment.
Because the greatest variance observed in these experiments came
from the biological replicates, it was determined that cDNA syn-
theses could be carried out in single replicates for the T. weissflogii
semi-continuous batch rapid Fe stress experiment as well as the
T. pseudonana semi-continuous batch diel experiment (experi-
ments with the largest sample number) without affecting the
results. Control reactions lacking reverse transcriptase were also
performed on each sample.

QUANTITATIVE REAL-TIME PCR
Multiplexed qRT-PCR was performed using the Mx3005 qPCR
System and the Brilliant II qPCR Master Mix (Stratagene). Multi-
plex qPCR allows for the simultaneous amplification of multiple
genes (reference and target gene) as the probes included in the
reaction are labeled with different fluorophores (Table 1 and 2).
Primers and probes, designed using Primer Express software
(Applied Biosystems, Carlsbad, CA, USA), were used at final
concentrations of 200 and 100 nM, respectively. To each reac-
tion, 2 μL of cDNA or plasmid standards were added to 25 μL
qPCR reactions containing the master mix and reference dye
and set up following the manufacturer’s protocol. The qRT-PCR
cycling conditions were: 1 cycle at 95˚C for 10 min, followed by
40 cycles of 95˚C for 30 s and 60˚C for 30 s. Amplification effi-
ciencies for the reference and target genes were determined by
analyzing serial dilutions of selected cDNA samples. When plot-
ting Ct (cycle threshold) versus log of cDNA input, the slope of
the line can be used to calculate qPCR efficiencies with the for-
mula: E = 10(−1/slope). The average efficiency for all genes was 1.92
(±0.05).

Actin was used as a reference gene and was included in the qRT-
PCR reactions for nuclear-encoded genes. Actin was selected as a
reference gene because its expression was found to be constitutive
and any changes in its expression were random and not correlated
with experimental treatment. Standards made from plasmid dilu-
tions for each gene to be amplified (reference and target gene) were
run in triplicate. Controls were also included from the cDNA reac-
tions lacking reverse transcriptase as well as no-cDNA template
controls.

To generate the qRT-PCR plasmid standards, genes of interest
were isolated from the study organisms using a PCR amplification
strategy. First, T. pseudonana genomic DNA was extracted from a
culture grown in f/2 media using the DNeasy Plant Mini Kit (Qia-
gen). Five microliters of diluted DNA was added to PCR reactions
consisting of 0.5 μM of each primer, 25 μL of BIO-X-ACT Short
Mix (Bioline, Randolph, MA, USA), and 15 μL of AccuGENE Mol-
ecular Biology Grade Water (Cambrex Bio Science Rockland, Inc.,
Rockland, ME, USA). Reactions were performed in an Eppen-
dorf Mastercycler ep thermocycler (Eppendorf North America,
Westbury, NY, USA) using the following parameters: a denatura-
tion step at 94˚C for 3 min, followed by 30 extension cycles (94˚C
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Table 1 | Genes and primers used to amplify targets for plasmid standards (PCR) and measure transcript abundance (qRT-PCR) inT. pseudonana.

Target gene/protein ID/Accession number Reaction type Primer direction Primer sequence (5′–3′)

Fe reductase (chr 3)/3129/XP_002288167 PCR Forward TCAACGTTTTCTTCTGGAGTCA

Reverse ATTCTCCGCAGCACATTTTT

qRT-PCR Forward TCGTGGGCATGTATCTTCATG

Reverse GCCTCCGTAGCAGACTATTGATG

Probea TCCTGGTGCTCGTCCCTTCATCCTC

Fe reductase (chr 19)/11375/XP_002297175 PCR Forward TGGTAGCACATCCTTTCACGGTCA

Reverse ATGGAGAGAAACGTTGCAAACGGC

qRT-PCR Forwardc GCCGTACTTGACAATGCTGA

Reversec ACCAGTGAAATGCACGATGA

Probea AAGTCTCCTCTCACGAAATCAGTGGAGC

Multicopper oxidase/5574/XP_002290775 PCR Forward TGGGAGTTTGGTACATGCAA

Reverse GCGACACATCCAGAAGGTTT

qRT-PCR Forward CGGTGGTGGCTGCTGATT

Reverse TCTCCGACGTGTACCACAACTT

Probea AGTTGAAGCGTTTACTGTAGAC

Cu transporter (chr 7)/35496/XP_002295670 PCR Forward GTCGTTTGGGCATTGCTACT

Reverse CAATCACCTTCTGACGAGCA

qRT-PCR Forward GCCTGCCCTTGTGCATTG

Reverse TGCTCCTATTCCGGTTCCAA

Probea ATTGGCCACGCCTACTGCCGTCAT

Cu transporter (chr 16)/264357/XP_002296688 PCR Forward CCAACGGATGGAGTGCTAAT

Reverse AGGGACACGCCACTACAATC

qRT-PCR Forward TCCAAGCTCAGGCTGATCGT

Reverse TGTAGCGGCAGCAACTAGCA

Probea TTGCATCCATCTTTGCTCCGATCGTC

Flavodoxin/28635/XP_002291468 PCR Forward AAGTGGGCGTCTTCTTCGGTACTT

Reverse TCTCCACGCTGAGCCTTTGATTCT

qRT-PCR Forward TGCGAAGTATGATGCTTTAGTGGTA

Reverse CCAGCCCGTTCCACTACGT

Probea CCAACATGGAACACTGGTGCTGACACTG

Ferredoxin/YP_874492 PCR Forward GTCTGATCTTCCAAAGATTCAAATCGGG

Reverse CCAGCACCCATTTGATCATCATC

qRT-PCR Forward AGATGCAGCAGAAGAAGCAGGA

Reverse ACCATCTGATACTTTACCAGCACA

Probea CTTGTCGTGCTGGTGCTTGTTCTACA

Actin/25772/XP_002294917 PCR Forward ACGTGACCTCACGGACTACC

Reverse CAAAGCCGTAATCTCCTTCG

qRT-PCR Forward GTGGACTTTGAGGAGGAGATGAA

Reverse CAGGGAGCTCGAAGGACTTCT

Probeb GGCTGCGGAGTCGTCGGCTCT

aProbe labeled with 5′-FAM and 3′-BHQ.
bProbe labeled with 5′-HEX and 3′-BHQ.
cPrimer pair used in Kustka et al. (2007).

30 s, melting for 30 s, 72˚C 1 min), a final 5 min extension step at
72˚C and then an incubation at 4˚C until analyzed. Primers used
for target gene isolation in T. pseudonana are listed in Table 1
(PCR).

Degenerate primers were used to amplify target genes from
T. weissflogii cDNA as its genome has not been sequenced. The
PCR reaction setup was the same as described for T. pseudo-
nana, except the number of extension cycles was increased to

35 cycles. PCR products were sequenced and putative func-
tions were investigated by BLAST analysis against other ferre-
doxin and flavodoxin sequences. Accession numbers for these
genes are indicated in Table 2. T. weissflogii gene specific
primers were then designed and used for subsequent steps
(Table 2).

After amplification, the PCR products were loaded on to a 1%
agarose (wt/vol) TAE gel. Bands were purified using either the
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Table 2 | Genes and primers used to amplify targets for plasmid standards (PCR) and measure transcript abundance (qRT-PCR) inT. weissflogii.

Target gene/Accession number Reaction type Primer direction Primer sequence (5′–3′)

Flavodoxin/JN228117 PCR Forward AAGGAGTAATACCGCTGGCGAGTT

Reverse CCAGCTAAACGGGTGCCATT

qRT-PCR Forward GGCGGAGAAAGATGGGAAGT

Reverse AACCAGTATGATCTCAGCGAGG

Probea TGTCGGGTGCATGTTCGATGAGGA

Ferredoxin/JN247400 PCR Forward GGAATCAAATGGCTACTTACA

Reverse TACAAAACCAGCACCCATTT

qRT-PCR Forward TGTTTTAGATGCAGCAGAAGAAGCA

Reverse ACCAGCACATGTAGAACAAGCA

Probea GGAATCGATTTACCTTATTCATGTCGTGCT

aProbe labeled with 5′-FAM and 3′-BHQ.

QIAquick Gel Extraction Kit or the QIAEX II Gel Extraction Kit
according to the manufacturer’s protocol (Qiagen).

The purified products were cloned into pGEM T vector
(Promega, Madison, WI, USA), transformed in either JM 109
(Promega) or α-Select Silver Efficiency (Bioline) competent cells
and identified by blue-white screening. The plasmids were purified
using the QIAprep Spin Miniprep kit (Qiagen) and subsequently
sequenced on either the Beckman Colter CEQ 8000 Genetic Analy-
sis System (Beckman Colter, Inc., Fullerton, CA, USA) or the
Applied Biosystems 3130xl Genetic Analyzer (Applied Biosystems,
Foster City, CA, USA). Purified plasmids were linearized using the
restriction endonuclease, SpeI (New England Biolabs), and quan-
tified using the Quant-iTPicoGreen DNA Assay Kit (Molecular
Probes, Invitrogen) and the Mx3005 (Stratagene).

The quantified plasmids carrying the target inserts were then
used to generate standards in triplicate for qRT-PCR. Serial dilu-
tions of the plasmids, ranging from <10 to >106 copies per
reaction, were used to quantify transcript abundance of the target
genes in experimental samples.

STATISTICAL ANALYSES
Analysis of variance (ANOVA) tests were conducted using Sigma-
Stat version 3.5 to determine statistically significant differences
among samples.

PHYLOGENETIC ANALYSIS
The flavodoxin protein sequence from T. pseudonana was
used for homology-based searches to identify gene copies
from the sequenced diatom genomes, Phaeodactylum tri-
cornutum and Fragilariopsis cylindrus, as well as from
the recently sequenced pelagophyte, Aureococcus anophageffer-
ens (http://genome.jgi-psf.org/Auran1/Auran1.home.html). Gene
copies were also isolated from preliminary genomes (unpublished)
of P. multiseries (JN226577, JN226578) and Thalassiosira ocean-
ica (JN226574, JN226575). CLUSTAL W (Thompson et al., 1994)
was used to align the translated fragments (58 amino acids in
length). The resulting alignment was used to generate an arbi-
trarily rooted, maximum-likelihood tree with bootstrap values
calculated from 1000 replicates in PhyML (Guindon and Gascuel,
2003) in the Geneious software package (Drummond et al., 2010).

Bayesian analysis was also performed using MrBayes (Huelsen-
beck and Ronquist, 2001) in the Geneious software package. The
Bayesian search was run using the Poisson model during 1,100,000
generations, with a burn-in of 250,000, and every 200th tree was
saved.

RESULTS
GROWTH RESPONSE TO FE LIMITATION IN T. PSEUDONANA
Thalassiosira pseudonana was acclimated to low Fe and Cu con-
ditions, as well as a low Fe/Cu condition, through the successive
addition of the experimental media. Growth rates were highest
in cells grown in replete media and similar growth rates were
obtained in the low Cu media (Table 3). A significant drop in
growth rate was seen in cultures acclimated to low Fe and low
Fe/Cu conditions (p < 0.001, one-way ANOVA; Table 3).

GENE EXPRESSION ANALYSIS
The expression levels of all target genes were normalized to beta-
actin with the exception of ferredoxin and flavodoxin. Actin was
determined to be a suitable reference gene since its transcript copy
number per cell did not significantly change with growth rate
(R2 = 0.07; data not shown) or experimental treatment (data not
shown). To compare gene expression levels of ferredoxin and flavo-
doxin, transcript abundances of those two genes were normalized
to cell number since ferredoxin is a plastid-encoded gene and sub-
ject to different cellular regulatory processes than nucleus-encoded
genes. We assayed the expression of several plastid-encoded genes
(including DNA-directed RNA polymerase beta chain, accession
number YP_874523 and 50S ribosomal protein L12, accession
number YP_874519) for their use as reference genes; however their
expression was found to change with experimental treatment and
could not be used to normalize ferredoxin abundance (data not
shown).

REGULATION OF PUTATIVE FE UPTAKE GENES IN T. PSEUDONANA
Five genes representing key components of the putative inducible
Fe uptake system were selected for expression analysis in T. pseudo-
nana. These include genes encoding two Fe reductases (located on
chromosomes 3 and 19), a multicopper oxidase, as well as two Cu
transporters (located on chromosomes 7 and 16) that putatively
function to supply the multicopper oxidase with Cu ions (Table 1).
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Gene expression of the multicopper oxidase in cells acclimated
to low Fe and low Fe/Cu conditions decreased approximately 2-
fold and 2.5-fold, respectively, when compared to expression of
cells grown under replete conditions (p < 0.005, one-way ANOVA;
Figure 1A). The gene encoding Fe reductase (chr 19) was the most
highly expressed gene in all treatment conditions and was found
to be significantly induced in cells acclimated to low Fe, increasing
approximately 1.8-fold (p = 0.002, one-way ANOVA; Figure 1B).
A significant increase in Fe reductase (chr 19) expression was
also seen in Fe/Cu co-limited cells; expression increased 1.6-fold
when compared to the replete cells (p = 0.013, one-way ANOVA;

Table 3 | Culture conditions and growth rates ofT. pseudonana and

T. weissflogii.

Treatment Fe/Cu (nmol L−1) Growth rate (day−1)

T. pseudonana

Replete 150/10 1.00 ± 0.01

Cu limited 150/0.0001 1.00 ± 0.03

Fe limited 0.5/10 0.22 ± 0.01

Fe/Cu limited 0.5/0.0001 0.16 ± 0.01

T. weissflogii

Replete 150/10 0.63 ± 0.03

Cu limited 150/0.0001 0.48 ± 0.00

Fe limited 0.5/10 0.28 ± 0.07

Fe/Cu limited 0.5/0.0001 0.20 ± 0.03

Triplicate cultures were acclimated to each treatment with total Fe and Cu con-

centrations given. Growth rates represent the average of the triplicate cultures

(±SD).

Figure 1B). No significant differences were detected when the
relative transcript levels of these genes were compared between
low Cu and replete-grown cells. There was also no significant dif-
ference in the relative transcript abundances of the Cu transporters
or the gene encoding Fe reductase (chr 3) between cultures grown
in replete media and trace metal limiting media (Figures 1C,D).

TRANSCRIPT ABUNDANCES OF FERREDOXIN AND FLAVODOXIN IN
T. PSEUDONANA
Ferredoxin and flavodoxin transcripts were detected in all exper-
imental treatments with no significant changes in expression
regardless of the cells’ Fe nutritional status (Figures 2A,B, respec-
tively). Ferredoxin, the iron-containing protein, was expressed at
levels several orders of magnitude higher than flavodoxin, the
iron-free protein, in all experiments.

Ferredoxin and flavodoxin gene expression was also measured
in cells collected daily from Fe limited semi-continuous batch cul-
tures. Unlike the acclimation experiment where cells were exposed
to chronic Fe stress, in this experiment T. pseudonana was sub-
jected to rapid Fe deficiency as cells were transferred from replete
media into media without any added Fe and sampled daily for
11 days. Cell abundances of the replete cultures and cultures with
no added Fe were similar for the first 7 days of the experiment, after
which cell numbers in the Fe-minus cultures dropped relative to
the replete cultures (Figure 3A). Time points selected for genetic
analysis were strategically chosen as they represent cells before
experiencing Fe stress (days 1 and 3),at the early onset of stress (day
7), and at the end of the experiment when growth is dramatically
restricted (day 11; Figure 3A, indicated with asterisks).

Ferredoxin expression levels were detected at extremely high
levels throughout the duration of the time course experiment in

FIGURE 1 | Expression patterns of genes in the putative Fe uptake

system in triplicateT. pseudonana cultures acclimated to different

treatments. Relative transcript abundance (RTA) of genes encoding (A)

a multicopper oxidase, (B) Fe reductase located on chr 19, (C) two Cu
transporters located on chr 7 (circles) and chr 16 (triangles), and (D) Fe

reductase located on chr 3, all normalized to expression levels of actin.
Results from culture replicates are shown; each symbol within a
treatment indicates a replicate. Error bars represent the SD of triplicate
relative transcript abundance determinations (separate cDNA syntheses)
for each culture replicate.
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FIGURE 2 | (A) Ferredoxin and (B) flavodoxin transcript abundances
normalized to cell number in T. pseudonana cultures acclimated to different
culture treatments. Results from culture replicates are shown; each symbol
within a treatment indicates a replicate. Error bars represent the SD of
triplicate relative transcript abundance determinations (separate cDNA
syntheses) for each culture replicate.

the control cultures (Figure 3B). Similarly, high copies of ferre-
doxin per cell were detected in the cultures with no added Fe; these
high levels were maintained throughout the experiment, even on
day 11 when cell numbers decreased with Fe limitation. With the
exception of day 3, there were no significant changes in ferredoxin
expression over time in either the control or minus Fe cultures. On
day 3, ferredoxin levels were significantly lower when compared to
expression levels on the other days (p < 0.008, one-way ANOVA).
Flavodoxin was expressed at levels 100-fold less than ferredoxin,
but transcript abundances were similar between cultures grown in
replete and Fe-minus media throughout the experiment with no
significant changes over time (Figure 3C).

FLAVODOXIN GENE EXPRESSION DISPLAYS DIEL PERIODICITIES IN
T. PSEUDONANA
Results from a previous Fe limitation experiment (unpublished)
suggested flavodoxin expression in T. pseudonana coordinated
with a diel cycle. To investigate this further, gene expression was

evaluated in semi-continuous batch cultures of T. pseudonana
grown on a light:dark cycle. Triplicate cultures were grown in
nutrient replete media under a 12:12 h light:dark cycle and sub-
sampled every 3 h with an equal volume of media added back.
The dilution kept the cells at exponential growth for the duration
of the experiment and maintained the cell concentration around
1.25 × 106 cells mL−1. The experiment lasted for 96 h; during the
final 48 h of the experiment the light regime was shifted to con-
tinuous light, a method commonly used to determine if genes are
under circadian control.

The effect of the light cycle on ferredoxin and flavodoxin
gene expression was examined every 3 h in two culture replicates
(Figures 4A,B). Expression of both genes was found to be reg-
ulated over the diel cycle, but with opposite trends. Ferredoxin
levels reached their maximum during the light cycle and their min-
imum at the onset of the dark period with an average reduction in
transcript abundance of ∼7-fold (Figure 4A). As in the previous
experiments (Figures 2 and 3), ferredoxin was expressed at levels
100-times greater than flavodoxin. Flavodoxin transcript abun-
dance was greatest at the onset of the dark period, decreased by
∼20-fold over the course of the night, and increased at the end of
the light cycle (Figure 4B). These oscillating ferredoxin and flavo-
doxin expression patterns were similar over two light:dark cycles,
but were eliminated when shifted into continuous light indicat-
ing expression of these genes was not under circadian control
(Figures 4A,B).

GROWTH RESPONSE TO FE LIMITATION IN T. WEISSFLOGII
The molecular response to Fe limitation was also studied in an
oceanic strain of T. weissflogii, isolated from the North Atlantic.
T. weissflogii cells were grown under the same conditions as those
previously described for T. pseudonana. Cultures were acclimated
to low Cu, low Fe and low Fe/Cu conditions as well as subjected
to rapid Fe stress in a semi-continuous batch, time course exper-
iment. T. weissflogii cultures acclimated to trace metal limiting
conditions had reduced growth rates when compared to cells accli-
mated to nutrient replete conditions with the greatest drop seen
in cultures chronically stressed for both Fe and Cu (Table 3).

FERREDOXIN AND FLAVODOXIN GENE EXPRESSION IN T. WEISSFLOGII
Ferredoxin was expressed at high levels in T. weissflogii cells
acclimated to both replete and trace metal limiting conditions
(Figure 5). There was no significant difference in the amount of
normalized ferredoxin between replete and trace metal limited
T. weissflogii cultures. Flavodoxin, however, was undetectable in
cells acclimated to replete and low Cu conditions but was signifi-
cantly induced in cultures acclimated to low Fe media (p = 0.017,
one-way ANOVA; Figure 5). Flavodoxin transcripts relative to cell
number increased from essentially zero in cultures acclimated to
replete growth conditions to levels averaging 2.5 × 103 transcripts
per cell in the low Fe cultures. Flavodoxin was also induced in
cells co-limited by low Fe and Cu to levels averaging 2.75 × 102

transcripts per cell; approximately 10-fold less when stressed for
Fe alone.

To investigate the molecular response to rapid Fe limitation,
semi-continuous batch cultures started from T. weissflogii cells
grown in nutrient replete media were transferred into media
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FIGURE 3 | Growth and gene expression patterns ofT. pseudonana cells

grown in Fe replete and deplete media. (A) Time course of average cell
concentration with error bars representing the SD of the biological replicates.
Asterisks indicate days analyzed for gene expression. Transcript copies of (B)

ferredoxin and (C) flavodoxin normalized to cell number. Results from each
culture replicate are shown. Error bars represent the SD of triplicate relative
transcript abundance determinations (separate cDNA syntheses) for each
culture replicate.

lacking added Fe. Once steady state growth was reached, sam-
ples were collected every day for cell counts, relative fluorescence
readings, and genetic analysis. When comparing control and Fe
deficient culture treatments, cell abundances were similar for the
first 7 days of the experiment after which the Fe deficient cultures
decreased (Figure 6A).

When exposed to rapid Fe stress, ferredoxin expression in T.
weissflogii was detected at similar levels for both treatments with
no significant differences throughout the duration of the exper-
iment (Figure 6B). As was seen in the acclimation experiment,
flavodoxin expression in T. weissflogii was below detectable limits
in the control cultures throughout the entirety of the time course
experiment (Figure 6C). In cultures lacking added Fe, expression
was detected on day 7, with transcript levels averaging 28 per cell,
but flavodoxin was significantly induced by day 9 (Figure 6C).
Flavodoxin transcripts per cell reached levels as high as 4.7 × 103 in
one culture replicate; transcript levels were not as high in the other
Fe deficient cultures, but were significantly higher when compared
to earlier time points (p < 0.05, one-way ANOVA).

PHYLOGENETIC ANALYSIS OF FLAVODOXIN GENES IN DIATOMS
Diatoms can contain more than one copy of the flavodoxin
gene in their nuclear genomes. Two copies were identified in the
complete genomes of Fragilariopsis cylindrus and Phaeodactylum
tricornutum and the recently sequenced pelagophyte, Aureococ-
cus anophagefferens. Two copies were also identified in the draft
genomes of Pseudo-nitzschia multiseries and Thalassiosira ocean-
ica. Phylogenetic comparison of these flavodoxin genes shows
that they group into two distinct clades with high bootstrap sup-
port (Figure 7). Clade I contains the T. pseudonana flavodoxin
gene copy. The T. weissflogii Fe-responsive flavodoxin gene copy
is found in clade II (Figure 7), suggesting that the two different
flavodoxin copies have different functions. It should be noted that
it is unknown whether T. weissflogii contains a second copy of
flavodoxin as its genome has not been sequenced and attempts
at isolating an additional copy with degenerate PCR techniques
were unsuccessful. The two A. anophagefferens flavodoxin genes
also group into separate clades (Figure 7). The presence of two
copies in the evolutionarily “younger” pelagophyte (Brown and
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FIGURE 4 | (A) Ferredoxin and (B) flavodoxin transcript abundances
normalized to cell number in T. pseudonana semi-continuous batch cultures
grown in replete media under a 12:12 h light:dark cycle and shifted into

continuous light. Results from culture replicate 1 are shown in white and
replicate 2 results are shown in black. Data points not connected in replicate 2
represent missing time points. Shaded boxes indicate the dark period.

FIGURE 5 | Ferredoxin (circles) and flavodoxin (triangles) transcript

abundances normalized to cell number inT. weissflogii cultures

acclimated to different culture treatments. Results from culture
replicates are shown; each symbol within a treatment indicates a replicate.
Error bars represent the SD of triplicate relative transcript abundance
determinations (separate cDNA syntheses) for each culture replicate.

Sorhannus, 2010) suggests that flavodoxin underwent an ancient
gene duplication that preceded the divergence of diatoms and
pelagophytes, and that T. pseudonana has lost a copy of flavodoxin.

DISCUSSION
The aim of this study was to characterize genes that respond to Fe
limitation and to identify potential gene-based molecular markers

that could be used to detect Fe status and Fe limitation in Tha-
lassiosira species. Gene-based markers provide a means to identify
species-specific responses to changing environmental conditions
and the extent of their response. An ideal field-based gene target
would have a robust transcriptional response in diatoms whose
growth is limited by Fe availability. In this study, we analyzed the
response of candidate genes that encode components of a putative
inducible high affinity Fe uptake system as well as genes encod-
ing ferredoxin and flavodoxin, proteins that have been shown to
respond to iron status in a variety of diatom species. The response
of these genes was analyzed in the model diatom T. pseudonana,
as its complete genome facilitates gene identification and it is a
member of a genus with many species that live in different ocean
environments.

FE LIMITATION INDUCES EXPRESSION OF A PUTATIVE FE REDUCTASE
IN T. PSEUDONANA
Chronically stressing T. pseudonana for Fe or Fe and Cu together
resulted in a significant decrease in growth rate, but did not cause
an increase in expression of genes putatively involved in the Fe
uptake system with the exception of the iron reductase gene copy
on chromosome 19 (Figure 1). These results suggest the T. pseudo-
nana putative Fe uptake system is constitutively expressed and may
function to acquire Fe in all cells regardless of the cells’ Fe nutri-
tional status. As the only induced gene,Fe reductase (chr 19),which
was also the most highly expressed, may be important in supplying
the constitutively expressed uptake system with reduced Fe under
Fe limiting conditions.

Upregulation of the putative Fe reductase (chr 19) in Fe lim-
ited T. pseudonana as measured by qRT-PCR has been seen in
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FIGURE 6 | Growth and gene expression patterns ofT. weissflogii cells

grown in Fe replete and deplete media. (A) Time course of average cell
concentration with error bars representing the SD of the biological replicates.

Asterisks indicate days analyzed for gene expression. Transcript copies of (B)

ferredoxin and (C) flavodoxin normalized to cell number (note the change in
scale). Results from each culture replicate are shown.

previous studies (Kustka et al., 2007; Thamatrakoln et al., 2011)
and should be considered a potential Fe status marker. However,
this gene is also highly expressed at basal levels in acclimated
cells (Figure 1) so it may be difficult to detect induction over
background in wild populations of T. pseudonana. More work is
needed to determine if this response is seen throughout the genus
or is specific to T. pseudonana. Attempts to isolate this gene from T.
weissflogii using degenerate PCR techniques were unsuccessful and
thus await investigation until more sequenced diatom genomes or
transcriptomes become available.

FERREDOXIN AND FLAVODOXIN GENE EXPRESSION ARE
CONSTITUTIVE IN FE LIMITED T. PSEUDONANA
Expression of ferredoxin and flavodoxin was also measured in Fe
limited cultures of T. pseudonana. These genes were selected as
potential molecular markers as they have been shown to be use-
ful indicators of Fe stress when measuring protein abundances in
diatoms. Studies have shown that diatoms, such as P. tricornutum
(LaRoche et al., 1995; McKay et al., 1997), T. weissflogii (CCMP

1336; Doucette et al., 1996; Erdner et al., 1999) and T. weissflogii
(Gru.) Fryxell et Hasle (clone T-VIC; McKay et al., 1997, 1999)
respond to Fe stress by increasing flavodoxin protein abundances.
Coupled to the increase in flavodoxin was a decrease in ferredoxin
protein levels, thus lowering the cells’ Fe demand (Doucette et al.,
1996; Erdner et al., 1999; McKay et al., 1999).

In this study, transcript abundances of ferredoxin and flavo-
doxin in Fe limited T. pseudonana cells were expected to simulate
protein abundance patterns seen in the above-mentioned studies.
However, the ferredoxin and flavodoxin transcriptional response
was not dependent on iron levels in T. pseudonana cultures accli-
mated to Fe stress nor in cells exposed to rapid Fe limitation
(Figures 2 and 3B,C). In both studies, ferredoxin transcripts
were present in abundances several orders of magnitude greater
than flavodoxin; this likely reflects the use of ferredoxin in many
metabolic pathways.

These results could be interpreted to suggest that the T. pseudo-
nana cells in our experiment were not sufficiently Fe stressed to
repress ferredoxin and induce flavodoxin. However, it has been
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FIGURE 7 | Maximum-likelihood tree (1000 replicates) depicting the

relationships of flavodoxin protein sequences from six diatoms and

the pelagophyte, Aureococcus anophagefferens. T. pseudonana and
T. weissflogii are highlighted in bold; clades I and II are indicated.
GenBank accession numbers are shown in parentheses for T.
pseudonana, T. weissflogii, T. oceanica, Pseudo-nitzschia multiseries,

Phaeodactylum tricornutum, and A. anophagefferens; JGI protein ID
numbers are provided for Fragilariopsis cylindrus. Bootstrap proportion
values greater than 50 are indicated at the branch points. Included at
these branch points are posterior probability values generated from a
Bayesian analysis (bootstrap proportion/posterior probability). Scale bar
indicates substitutions per site.

shown that flavodoxin proteins were detected in Fe limited T. weiss-
flogii cells before a significant drop in growth rate was observed
(McKay et al., 1997; Erdner et al., 1999). In the experiments pre-
sented here, Fe limited cultures of T. pseudonana experienced
significant reductions in growth. T. pseudonana cultures accli-
mated to low Fe and low Fe/Cu conditions grew at ∼20% of
the maximum rate measured in the control and Cu limiting
cultures (Table 3). In the rapid Fe starvation time course experi-
ment, cell abundances were similar until day 8 when the growth
in the minus Fe cultures decreased by ∼26% compared to the
control cultures (Figure 3A). The growth rate and cell abun-
dance data show T. pseudonana was sufficiently Fe stressed in
our experiments to detect an early onset response, like flavodoxin
induction.

Another possibility, which was not explored in this study, is
the potential for post-transcriptional and/or translational level
regulation of ferredoxin and flavodoxin in T. pseudonana. This
may resolve the differences between this study where transcript
abundances were quantified and previous studies where protein

levels were measured. However, in T. weissflogii this level of regu-
lation does not seem to occur as flavodoxin gene expression (see
discussion below) and upregulation of protein expression (from
previous studies, e.g., McKay et al., 1997; Erdner et al., 1999)
patterns are similar.

GENE EXPRESSION PATTERN SUGGESTS ALTERNATE FUNCTION FOR
FLAVODOXIN IN T. PSEUDONANA
The expression patterns of ferredoxin and flavodoxin in T. pseudo-
nana suggest that Fe does not regulate these genes; instead their
expression was found to respond to diel periodicities. Ferredoxin
expression peaked during the light cycle (Figure 4A); its expression
pattern was opposite to that of flavodoxin which peaked during the
dark cycle (Figure 4B). Regulation of ferredoxin by diel cycles has
been documented in higher plants such as pea (Dobres et al., 1987)
and wheat (Bringloe et al., 1995), and the green alga, Chlamy-
domonas reinhardtii (Lemaire et al., 1999). There have not been
previous studies in eukaryotic phototrophs assaying flavodoxin in
response to diel variations.
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Recently Saito et al. (2011) demonstrated that flavodoxin pro-
tein production followed diel patterns in the marine diazotrophic
cyanobacteria, Crocosphaera watsonii. In this organism, the flavo-
doxin protein accumulates in the dark concomitant with nitrogen
fixation and likely serves as an electron donor for Fe-containing
nitrogenase. This allows C. watsonii to reduce its Fe demand
during peaks of nitrogen fixation and maintain optimal photo-
synthesis during the day. Perhaps in T. pseudonana flavodoxin
serves a similar function, accumulating at night to help this
diatom to meet its high Fe cellular demands, as coastal diatoms
have been shown to have higher Fe requirements compared to
oceanic isolates (Brand et al., 1983; Brand, 1991; Sunda et al., 1991;
Sunda and Huntsman, 1997). Flavodoxin could serve as an elec-
tron carrier in plastid-localized processes that occur in the dark,
such as fatty acid biosynthesis (Wilhelm et al., 2006); this would
allow ferredoxin, the Fe-requiring protein, to fuel photosynthesis
and nitrogen assimilation, plastidial processes that occur in the
daytime.

FE LIMITATION TRIGGERS FLAVODOXIN INDUCTION IN T. WEISSFLOGII
In marked contrast to T. pseudonana, flavodoxin expression was
undetectable in T. weissflogii (CCMP 1010) cultures grown under
replete media and was induced in Fe limiting conditions; a result
consistent with the dynamics of flavodoxin protein induction in
other isolates of T. weissflogii (McKay et al., 1997; Erdner et al.,
1999). When acclimated to trace metal replete and deplete con-
ditions, flavodoxin was detectable only in the low Fe and low
Fe/Cu cultures. Expression levels in the Fe limited cells were sig-
nificantly greater (nine times higher) than in the Fe/Cu co-limited
cells (Figure 5). The reduction in flavodoxin expression in the co-
limited cultures suggests Cu limitation impedes the cells’ ability
to adapt to Fe limitation. This is an interesting response and indi-
cates that expression of the putative high affinity uptake system
may be induced by low Fe in T. weissflogii and is Cu-dependent. As
previously mentioned, we were unsuccessful in homology-based
cloning efforts to isolate T. weissflogii components of the putative
high affinity uptake system and further analysis of this system will
require genome or transcriptome sequence data.

The daily sampling of the time course study allowed us to
capture the window of time where flavodoxin transcription in T.
weissflogii was induced in response to rapid Fe starvation. Expres-
sion reached detectable levels 7 days after being transferred into
media without added Fe, 1 day before a decrease in cell abundance
was observed (Figures 6A–C). By day 9, flavodoxin expression had
increased on average more than 80-fold when compared to day 7
(Figure 6C). The flavodoxin transcriptional response in T. weiss-
flogii matched the protein response seen by McKay et al. (1997)
and Erdner et al. (1999), where flavodoxin protein was detected
prior to a major decrease in growth rate.

Repression of ferredoxin expression did not accompany the
induction of flavodoxin in Fe stressed T. weissflogii cultures. In
this study, ferredoxin was detected at high transcript levels regard-
less of growth conditions. It is difficult to conclusively determine
from this study if ferredoxin expression in this diatom is consti-
tutive and unresponsive to Fe levels as was seen in T. pseudonana,
or if it is reduced only under severe Fe stress that exceeds what
was experienced by cells in our experiments. However, the lat-
ter hypothesis seems probable as flavodoxin, the early-response

indicator of Fe stress, was only detected during the last few days of
the T. weissflogii time course experiment.

PHYLOGENETIC ANALYSIS SUPPORTS FLAVODOXINS HAVE MULTIPLE
FUNCTIONS
Phylogenetic analysis of available flavodoxin proteins from
diatoms supports the hypothesis that the T. pseudonana gene has a
function other than substituting for ferredoxin under Fe limiting
conditions (Figure 7). Gene copies encoded by T. pseudonana and
T. weissflogii group into separate clades; clade II contains the T.
weissflogii flavodoxin gene copy whose expression was regulated
by Fe. This suggests members from this clade may be the proteins
that respond to Fe deficiency. Clade I contains the T. pseudonana
flavodoxin gene copy whose expression did not change with Fe
limitation, but rather was regulated by diel periodicities.

One could speculate that diatoms with two gene copies of flavo-
doxin could have a copy that functions similarly to the one in T.
pseudonana and C. watsonii and another copy that is the functional
analog of ferredoxin and is induced under Fe limiting conditions.
This could be the strategy used by T. weissflogii (CCMP 1010), but
may differ among diatoms. For example, Pankowski and McMinn
(2009) detected flavodoxin proteins in several coldwater diatom
species, despite being grown under Fe replete conditions. The
dynamic and complex regulation of flavodoxin among diatoms
suggests the species-specific response needs to be investigated
before using flavodoxin as a diagnostic marker of Fe stress.

CONCLUSION
We have shown the expression of a gene encoding a putative Fe
reductase may function as a gene marker for Fe status in Thalas-
siosiroid diatoms. Transcripts accumulated in T. pseudonana when
grown under Fe limiting conditions, a response that has been pre-
viously documented. It is unknown if this response is specific to
T. pseudonana. It was also demonstrated that flavodoxin could
be used as a gene-based molecular marker in T. weissflogii. Its
expression is specific to Fe stress and appears to be sensitive to
the severity of the stress (i.e., not just on/off). This is not true
for T. pseudonana where flavodoxin expression is insensitive to
Fe status but controlled by a diel cycle. The distinct expression
patterns of T. weissflogii and T. pseudonana likely reflect the dif-
ferences in evolutionary history of the flavodoxin gene copy being
analyzed. From this study, we cannot determine if other diatoms
are similar to T. pseudonana in that they contain only a single
copy of flavodoxin. It is possible that T. pseudonana could have
lost the Fe-responsive flavodoxin as it has been maintained for
many years in culture. Comparing the transcriptional response
to Fe limitation in T. pseudonana to other diatoms would help
determine if T. pseudonana is anomalous, but the limited num-
ber of sequenced diatom genomes places restrictions on making
these comparisons. However, advances are being made on this
front. The Marine Microbial Eukaryotic Transcriptome Project
(sponsored by the National Center for Genome Resources and the
Gordon and Betty Moore Foundation’s Marine Microbiology Ini-
tiative) aims to sequence the transcriptomes of nearly 1000 marine
microbes. This will vastly improve our ability to compare the mol-
ecular response to Fe limitation among species of diatoms as well
as aid in the selection of molecular markers that can be used to
detect Fe stress in natural populations of diatoms.
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